
Reuse of Components in Formal Modeling and Verification of
Distributed Control Systems

Valeriy Vyatkin
The University of Auckland

Dept. of Electrical and Computer
Engineering

Auckland, New Zealand
V.Vyatkin@auckland.ac.nz

Hans-Michael Hanisch
Martin Luther University of

Halle-Wittenberg,
Dept. of Engineering Sciences

D-06099 Halle, Germany
Hans-Michael.Hanisch@iw.uni-halle.de

Abstract

This paper describes formal modeling and verification of
automation systems from the system engineering point of
view. Reuse of model components is the key issue in order to
bring the scientific modeling methodology into engineering
practice.

The reuse is achieved by the combination of modular
modeling of automation systems with object-oriented
description of models in UML style. This allows to benefit
from advantages of both worlds: efficiently manage highly
hierarchical complex models with UML tools and end up with
efficiently executable models with distributed states that are
compatible also with IEC61499 function block specifications.
The approach is supported by the tool framework that is
described in the contribution.

1. Introduction

Reuse of components in system design is the cornerstone
of engineering. In the information technology, attempts to
reuse the intellectual property, in particular represented in
form of software components, gave birth to object-oriented
methods of programming and UML-based modeling and
design of software systems. It gradually finds its way also to
the area of automation technology, for example as the
Function Block paradigm of the IEC61499 standard, a
number of works on Java applications in automation and
UML applications in automation.

Automation technology, however, is different from
software engineering, as well as from mechanical
engineering. It is an engineering discipline that applies
knowledge from such subjects as manufacturing and process
systems, electrical, computer and control engineering, as well
as from software engineering and computer science.

Thus, although automation technology is deeply
influenced by information technology in the sense that the
control system itself is an information processing system,
automation technology is not identical with information
technology. The major point of concern in automation
technology is the object that is controlled, and the control
system serves only as a means to reach the goals coming from
the controlled object.

The major responsibility of an automation engineer is to
design and implement a control system that interacts with the
object of control in a closed loop and that ensures that the
controlled object behaves safely and efficiently.

Therefore, any keen and scientific methodology for design
and verification of control systems must take the behavior of
the controlled object, along with its distributed and
hierarchical structure, into consideration. Having only a
model of the controller is in general not sufficient to prove the
correctness of the specifications.

In this contribution we continue the discussion of a
systematic modeling and verification methodology that
started in [HaVy05]. Our approach includes models of the
controller as well as models of the controlled object and is
intended to be integrated into routine engineering process. For
that reason we need to address the reuse issue in more detail.

The goal of the recently started research project
VAIAS - Validatable Architectures for Industrial
Automation Systems- that is funded by German
Ministry for Education and Research and by the
industrial partners is the development of an architecture
that combines two issues:

1. an object-based approach to software and
system engineering following the structure
of the original systems, and

2. inherited validatability that allows
application of formal analysis methods.

 The validatability of the architecture shall be
reached by the use of formal methods for specification
of behavioral and structural properties of the system.
VAIAS intends to meet the new challenges of the
automation world by providing a new software
architecture that could better fit to the decentralized
reconfigurable nature of new automation systems. A
higher inherited level of robustness will be reached by
means of formal analysis and synthesis.

VAIAS defines three mutually interconnected
scenarios in system engineering:

1. development of the automation software

in an object-oriented way,
2. simulation of such systems and
3. their formal verification.

It was found, that many features of models required
for all three scenarios are very similar and thus can be
shared. In particular, the structure of all three models
can be almost identical if proper description means are
used.

We use function blocks of IEC61499 standard for
description of the executable component-based model of
the automation software. This executable specification
form can be also used to define the simulation model of
the automation system. For formal analysis, we use the
formalism known as Net Condition/ Event Systems. We
pursue the following features:

- reduced complexity, time and effort in the design
will be achieved through the use of pre-designed
elements and standard design templates;

- improved assurance of correctness will be achieved
by the use of simulation and formal verification.

This contribution will give an outline of an appropriate
methodology for modeling and verification of distributed
systems. It is organized as follows. In Section 2 we
attempt to identify and classify the problems arising from
decentralized control organization combined with
component structure of the controlled plant. In Section 3
we present a brief survey of the results reached so far on
application of object-oriented design methodologies in
control engineering. Then, in Section 4 we present the
main ideas of the modeling and verification framework

0-7803-9402-X/05/$20.00 © 2005 IEEE

being developed. Section 5 extends it by several application
scenarios. The paper is concluded with the future work plans
and acknowledgements.

2. Problems of Decentralized Control

When manufacturing systems are composed from standard
building blocks, the natural desire of any control engineer is
to reuse some parts of the control design. This justifies the
idea of modular control design. But, the modularity itself is
not sufficient for really complex systems. Object-oriented
methods are therefore being applied to this problem.

As we have mentioned, control design and validation must
take into account the closed-loop behavior of plant and
controller. Complex systems with distributed control may
have several closed loops and hierarchical compositions of
them. This will be illustrated on the following example.

Figure 2: Example of a manufacturing system

Figure 1 shows an example of a part of a manufacturing
system in laboratory scale. This primitive (but still
representative!) example of a manufacturing system with
decentralized control consists of two independent
mechatronic actors. These are a storage unit and a transfer
unit. The storage unit stores a pile of workpieces. The feder,
which is a part of the storage unit, can push one of the
workpieces from the pile to the output position. From there it
can be picked up by the transfer unit. The transfer unit grasps
the workpiece using its vacuum sucker, and carries it to the
subsequent unloading position located on the right side (not
shown in the Figure). Thus, we distinguish two end positions
of the transfer unit: the left or loading position and the right,
unloading position.

 It is assumed that both of these constituent parts have
some pre-programmed autonomous functionality. Their
controllers interact with each other and with the superior
levels of control.

Figure 3. Structure of the Storage unit.

Each of the actors is composed from mechatronic elements

potentially having some control logic. For example, Figure 3
shows the structure of the storage unit. The transfer unit has
approximately the same complexity.

The storage is composed from two parts, one of
which is the magazine for ten workpieces with the
presence sensor, and the other is the pneumatic cylinder
with two end position sensors.

The diagram in Figure 3 is obviously inspired by the
class diagrams of UML. It shows that certain
components (like pusher) may have their own
embedded control logic. Thus, the whole system can be
regarded as a hierarchical composition of closed-loop
plant/controller systems.

Integration of such multi-level decentralized
controllers is complex even for such a primitive
example. It may, however, pave the way torwards
methodologies that reuse components instead of starting
from scratch over and over again.

For example, the system in Figure 3 contains two
identical sensors. If the sensor requires specific control
or modeling, there is no need to develop it twice. It
could be done once and reused as many times as
needed.

3. Object-oriented approaches to control
engineering

There is growing recognition of object-based design
of software for automation systems. In particular, a
number of researches touch the use of the Unified
Modeling Language (UML) [Gom00, Doug99] for the
development of industrial automation systems. Thus,
UML was used in a number of works in the industrial
automation context, with most attention paid to the
issues of modeling for specification and design of
controllers, modeling as a part of system engineering,
and modeling for formal verification.

In particular, a methodological framework for the
application of formal design and verification techniques
is presented in [Bonfe03, Bonfe04]. The object-oriented
modeling approach is based on an extended subset of
UML and adopts several of its diagram types. The
system is decomposed in a top-down approach into
mechatronic objects whose signal-based interfaces are
specified by mechatronic classes. Then Class Diagrams
– representing the structural model – are used to
describe the system’s hierarchical architecture by means
of composition links between those mechatronic classes.
UML Collaboration Diagrams – stereotyped as
Mechatronic Data Flow Diagrams – specify object
interaction and Statecharts specify the behavior of a
mechatronic object. Additionally it is also possible to
describe the behavior of the uncontrolled plant by
Statecharts that are associated with classes stereotyped
as hardware.

Commercial CASE tools may be used to create and
edit the various diagram types, and the symbolic model
checking tool SMV allows for the verification of desired

Figure 1. Model of a cylinder

properties which have to be expressed in the temporal logic
CTL.

That approach permits a modular, reusable and
implementation platform independent description of control
system design models. However, to ease its practical
application, tools are required for the translation of the model
into the input language of SMV and for generating PLC code.

4. Modeling and Verification Methodology

Modeling the uncontrolled plant behavior is definitely the
most critical issue in all model-based technologies since any
result is only as good as the model is. It is also a critical issue
with respect to time and effort that have to be spent on
obtainig the model.

We prefer a way of modeling that is rather an engineering
process of the model than a design process. This means that
we suppose that there is a library of models for
subcomponents available that serves as a basis for model
engineering.

There are some specifics in the control area regarding the

models that are used. Requirements to the modeling
formalism origin from two aspects:

- How to build the model?
- How to use the model?

First, we have to realize that the human factor in

engineering the model is very essential. The human beings
who are involved in the process have to trust the model. It is
therefore very useful to have models which are graphical and
executable to support validation.

Since almost any engineer in the area of control system
design is familiar with some kind of block-diagrams, we have
chosen a way of model-engineering that is based on blocks
and interconnection of blocks by means of signals.

Models must be modular with a clear interface and hidden
dynamic behavior. Models should also support an incremental
way of modeling. They have to be extendable to ensure that
new or more precise information can be included in the model
during the lifecycle of the system that is modeled.

Last, but not least, they have to have capabilities for
parametrization to adapt models to similar, but not identical
components.

Another very important issue is how the models support

specifications. Specifications describe forbidden behavior as

well as desired behavior. Forbidden behavior describes
situations that cause danger for the controlled object,
human operators, or the environment. Such behavior is
specified by means of forbidden states. It is mostly
some kind of local specification that includes only states
of a small number of subsystems.

Due to the distributed nature of the models,
specification of local properties is much easier than
specification of such properties in a huge composed
model with thousands or millions of global states.

Desired behavior is specified as sequences of states
or state transitions, that are in most cases also local.

The price one has to pay for all these nice (and

required!) features regarding the use of the models is the
fact that the pure “standard”-models that are used in the
scientific community for formal verification do not
support such a way of model engineering. This has
some consequences.

The first one is that the theoretical results and
appropriate software tools cannot directly be applied to
the models.

One solution is to define and implement
transformation rules from the engineering models and
the specifications to the models and the specifications
that are used for formal verification. This, however, is
only half of the truth since a retransformation from the
results of the formal verification into the original
models and specification has to be provided as well.

This can be a rather demanding and complicated task.
Another solution is to develop formal verification

methods and software tools for the original models. This
avoids the need for retransformation of the verification
results and has been done for our approach as will be
described later on.

Our experience gained within preceding applications
[Hanisch et al 01, Lobov et al. 03, Lobov et al. 04]
shows that it is highly desirable to use models that may
constitute a one-to-one mapping of the structure of the
manufacturing process onto the structure of the
corresponding model. Coming up with large monolithic
models is almost infeasible due to the size and
complexity of the original system.
We use a modeling formalism of Net Condition/Event
Systems (that were called NCES or SNS in the past
[HaLu99, HaLu00, Thi02]).

Figure 4. VAIAS engineering tool framework.

Figure 5. NCES model of the whole storage unit

They provide means for modular, graphical modeling in a
way that is intuitively understandable by any engineer. The
basic patterns are modules or blocks that encapsulate some
kind of dynamic behavior model as exemplified in Figure 3
for a model of cylinder. Modules can be interconnected by
signals. We have two types of signals, namely condition
signals that represent state information and event signals that
provide state transition information. The syntax and
semantics as well as composition rules of the models are
exactly defined, but these formalisms go beyond the scope of
this contribution.

If we compare the modeling formalism with the IEC

61499 specification of Function Blocks, we see some strong
similarities:

• dynamic behavior is encapsulated in the blocks and

hidden to their environment
• blocks resp. modules have a signal interface that clearly

distinguishes between data (resp. conditions) and events.
• The structure of the system is given by the interconnection

of blocks by means of signals.
• The dynamic behavior of the system is given by the

behavior of the modules and the structure, i.e. the
interconnection of blocks or modules.
It is therefore very natural to map Function Blocks to

formal modules and to interconnect them exactly in the same
way as the Function Blocks are interconnected in the
application. Due to these strong similarities, a mapping of a
Function Block application to a formal model with identical

structure could be defined and implemented. That has
been done and integrated in the tool that is described in
the following section.

The formalism of Net Condition/Event Systems has
undergone some “modifications” as described in
[VHP03, VHB04] in order to be compatible with the
IEC61499 executable specification and its supporting
tools.

In particular, we have developed an open XML
format for the models. It allows for interoperability of
independently developed tools, that already had its
positive impact – the NCES models can be created,
opened and configured with the editor developed in our
group in Halle, as well as by the Function Block
Development Kit FBDK and by a tool developed at
Tampere University of Technology [Lobov et al, 04]
and by iMATCh.

V. VAIAS APPLICATION SCENARIOS

Achieving better “validability” of automation
software requires performing of simulation and formal
verification procedures through the engineering cycle,
probably in a repetitive manner.

The application scenarios provided by the VAIAS
architecture are supported by the tool framework as
presented in Figure 4. At first the system is being
composed from the constituent “automated mechatronic
objects”. Engineering tools allow the description of the
system’s structure, geometrical positioning of the

components, and their interaction with each other. As a result,
the engineering tool produces a number of data files
containing the described dynamic and static properties of the
system. The most suitable data format for the result of the
engineering process are XML/XMI. This data will form the
input of the three subsequent scenarios.

Executable system configuration.

The intermediate XMI format is converted into the
executable specification of Function Blocks following the
IEC61499 standard. This form is precise enough but still
independent from particular hardware architecture. The
structure of the executable specification follows the
MVA/CDA approach (model-view-adapters)/(control-
diagnostics-adapters). Further translation to a machine-
executable form is performed by the corresponding tools,
such as the Function Block Development Kit (FBDK).

System configuration with simulated plant.

This configuration is also described by means of Function
Blocks of IEC61499 standard and is different from the former
one only in the block standing for the mechatronic
components. The simulation can be conducted using the same
distributed function block run-time platform as the former
configuration, with some add-ons, such us statistics gathering.
In Figure 4 the execution is illustrated by means of FBRT –
Function Block Run-Time of Rockwell Automation [FBDK],
that is a distributed Java-based platform.

System configuration with discrete state model of the
plant ready for formal verification.

This is a modular object-oriented model of the executable
system, where the modules corresponding to the object are
inserted from the corresponding automation object repository,
and the models of the software components (such as
controller, diagnostics, supervisor, etc.) are generated using
the corresponding model-generators.

Graphical editors provide full graphical authoring and
editing of the models. The editor uses an open XML-based
data format for basic and composite NCES models. The data
format of composite model blocks intentionally was made
identical with that of IEC61499 Function Blocks, supported
by the tool FBDK [Hlbl].

iMATCh is an integrated tool that contains a model
builder (assembler), a translator to the flat format for
subsequent model-checking, interfaces to several model-
checkers, and the means for analysis of scenarios (e.g. their
visualization in form of state/time diagrams), or even system
simulation along the selected scenarios. iMATCh inputs the
model type files given in XML and is capable of:

 Assembling a composite, hierarchically organized model
from modules contained in different libraries. The
component model types are instantiated into NCES
modules. This is illustrated in Figure 5. For example, the
model type PosSensor is instantiated three times: twice in
the definition of the model type Feeder (instances
sensor_s and sensor_e) and in the model type VertMag
(instance NotEmpty). The model of the storage connected
in the closed loop to the model of its autonomous
controller is created from the model types stored in the
library of model types. The complete model of the object
from Figure 2 would contain also the model of the transfer
unit connected to the model of material flow and to the
model of the storage.

 Translating the model into a “flat” NCES with the through
numbering of places and transitions. The inter-module
connections are converted into event and condition arcs
between places and transitions. Thus, the module
boundaries are removed and the model-checking tools can
be applied. In particular, the translator generates files in
the input format of SESA model checker.

 The model checker SESA allows for efficient
model-checking of fairly complex systems (millions
of discrete states).

 The application methodologies are represented as
libraries of standard model elements and by the web-
based documentation;

The model of the plant is engineered by predefined
components that are stored in a repository of models.
The modularity of the modeling approach is helpful for
this. Therefore, the modeling process does not need to
be started from scratch. Predefined and validated
component models are encapsulated in modules and can
be used over and over again without dealing with their
internal details.

The validation of automation systems modeled by
NCES can be performed by simulation and formal
verification via model-checking.

Simulation usually follows a limited number of
scenarios in the system’s behavior. In contrast, the
model-checking studies multiple scenarios caused for
example by some unpredictable factors, such as variable
durations of some operations, communication delays,
malfunctions, etc.

The results of the model-checking, such as a
reachability space (full, or generated until an
example/counterexample is found) can be visualized as
state/time diagrams of relevant values (e.g. represented
as marking of certain places, or firing of certain
transitions).
The verification consists in proving specifications with
respect to the dynamic behavior of the model. The
specifications can be given either in form of second
order predicates or in form of temporal logic
expressions. Terms of the expressions can be formed by
referencing inputs, outputs and internal variables of the
controller or variables of the model of plant. The latter
have to be eventually expressed via marking of places in
the model.

It is worth mentioning that the closed-loop approach
to the modeling enables expression of the specifications
directly in terms of the machine behavior (not only
input and output signals of the controller).

In particular, the following properties of automation
systems could be scrutinized applying the formal
validation techniques:

1. Robustness of the system in case of malfunctions of

some sensors;
2. The control programs in some programming

languages (e.g. Structured Text and Sequential
Function Charts) have branching structure. Formal
verification may help to prove that the response time
is never exceeded in any feasible IO combination.

3. Quality assurance: sometimes it is important to
ensure that the plant never runs in undesirable
situations, when, for example, inexact
synchronization of processes in the plant occurs as a
result of wrong synchronization of control programs;

5. Conclusion and Future Work

In this paper we presented the state of the art of the
development of the modeling and verification scenario
in the VAIAS research project. The work is still in
progress and is currently in the stage of accomplishing
pilot applications done as “proof of the concept”.

This step will be followed by the tool development
and integration that is supposed to make the presented
vision real.

6. Acknowledgements

This work was supported in part by the cooperative project
VAIAS funded by the German Ministry for Education and
Research (BMBF).

References

[HaVy05] H.-M. Hanisch and V. Vyatkin: Modeling and
Verification of Distributed Control Systems,
International conference “Design, Analysis, and
Simulation of Distributed Systems
(DADS’2005)”, Proceedings, San Diego, April,
2005

[BoFa03] M. Bonfe, C. Fantuzzi: Design and verification of
mechatronic object-oriented models for industrial
control systems, IEEE Conference on Emerging
Technologies and Factory Automation (ETFA'03),
Proceedings, vol. II, pp.253--260, Lisbon, September,
2003

[Hanisch et al 01] H.-M. Hanisch, T. Pannier, D. Peter, S. Roch
and P. Starke: Modeling and verification of a modular
lever crossing controller design.
Automatisierungstechnik, 2000

[Ha04] H.-M. Hanisch: Closed-Loop Modeling and Related
Problems of Embedded Control Systems in
Engineering, 2004, in Abstract State Machines 2004,
LNCS 3052

 [HaLu99] H.-M. Hanisch and A. Lüder: Modular Modelling of
Closed-Loop Systems, Colloquium on Petri Net
Technologies for Modelling Communication Based
Systems, Berlin, Germany, October 21-22, 1999,
Proceedings, pp. 103-126

[HaLu00] H.-M. Hanisch und A. Lüder: A Signal Extension for
Petri Nets and its Use in Controller Design,
Fundamenta Informaticae. Nr.4, March 2000, pp. 415
– 431.

 [HaVy04] H.-M. Hanisch and V. Vyatkin: Achieving
Reconfigurability of Automation Systems by Using the
New International Standard IEC 61499: A Developer’s
View, The Industrial Information Technology
Handbook, CRC Press, October 2004

[Hlbl] http://www.holobloc.com – web site devoted to
IEC61499

[IEC1131] International Standard IEC 1131-3, Programmable
Controllers - Part 3, International Electrotechnical
Commission, 1993, Geneva, Switzerland

[IEC1499] Function Blocks for Industrial Process Measurement
and Control Systems, Publicly Available Specification,
International Electrotechnical Commission, Part 1:
Architecture, Tech. Comm. 65, Working group 6,
Geneva, 2002

[Lew01] R. Lewis: Modeling Distributed Control Systems using
IEC 61499, Institution of Electrical Engineers;
London, 2001

[Lobov et al. 04] A. Lobov, J. LM Lastra, R. Tuokko, V. Vyatkin:
Modelling and Verification of PLC-based Systems
Programmed with Ladder Diagrams, INCOM’2004,
Proc., Salvador, Brazil, April, 2004

[Lobov et al. 03] A. Lobov, J. L.M. Lastra, R. Tuokko, V.Vyatkin,
“Methodology for Modeling Visual Flowchart Control
Programs using Net Condition/Event Systems
Formalism in Distributed Environments”, IEEE
Conference on Emerging Technologies and Factory
Automation (ETFA'03), Proc., Lisbon, Portugal,
September 2003

 [StaGu03] M. Stanica, H. Guéguen, "A Timed Automata Model
of IEC 61499 Basic Function Blocks Semantic",

ECRTS'03 Euromicro European Conference on
Real-Time Systems, Porto, Portugal, July 2003

[Thi02] J. Thieme: Symbolische Erreichbarskeitanalyse
und automatische Implementierung struktuirter,
zeitbewerter Steuerungsmodelle, Dissertation zur
Erlagung des Grades Dr.-Ing., Berlin: Logos
Verl., 2002

 [VHP03] V. Vyatkin, H.-M., Hanisch, T.Pfeiffer,
“Modular typed formalism for systematic
modeling of automation systems”, 1st IEEE
Conference on Industrial Informatics
(INDIN’03), Proceedings, Banff, Canada,
August 2003, ISBN 0780382005

[VHB04] V. Vyatkin, H.-M. Hanisch, G. Bouzon: Open
Object-Oriented Validation Framework For
Modular Industrial Automation Systems,
INCOM’2004, Proceedings, Salvador, Brazil,
April, 2004

[VyHa03] V. Vyatkin, H.-M. Hanisch: Verification of
Distributed Control Systems in Intelligent
Manufacturing, Journal of Intelligent
Manufacturing, vol.14, N.1, 2003, pp.123-136

[Wurmus00] H. Wurmus, B. Wagner,: «IEC 61499 konforme
Beschreibung verteilter Steuerungen mit Petri-
Netzen»; Conference Distributed Automation
2000 (Verteilte Automatisierung), Institut für
Automation und Kommunikation e.V.,
Magdeburg 2000

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

