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Abstract  

A generic heuristic algorithm is introduced for the 
derivation of “common” PI controllers, that is PI 
controllers that achieve specific performance 
requirements simultaneously for all members of a set of 
linear models, called the target set. Common PI 
controllers find application for the control of processes 
with multi-linear description, since they can achieve 
safe and satisfactory performance for all switching 
events between the linear models of the target set. The 
heuristic algorithm is generic, simple to use and can be 
extended for other classes of controllers. The 
performance of the heuristic algorithm is illustrated for 
the case of a double effect evaporator process.  

 

1. Introduction 

Multi-linear model descriptions are used in many 
engineering applications, in order to describe switched 
systems. A switched (or hybrid) system consists of a 
number of subsystems, either continuous-time or 
discrete-time ordinary dynamic systems, and a rule that 
orchestrates the switching between them [1]-[5]. 
Switching can be activated by environmental factors, by 
control commands or by changes in the mode of 
operation of the process. For example, in the case of a 
wheeled mobile robot, switching between different 
dynamic models occurs when the motion of the wheels 
changes from rolling to sliding. Typical examples of 
such systems include batch processes, power systems, 
relay systems, transmission and stepper motors, internal 
combustion engine control, constrained robotics, etc. 

Multi-linear model descriptions are also used in 
many cases as approximate models of nonlinear 
processes. Then each linear model can be considered as 
the linearization of the nonlinear model at a 
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corresponding operating point of the process. The linear 
model is accurate in a range around the respective 
operating point. The union of all ranges is assumed to 
cover the total area of operation of the process. As the 
process trajectories move between the ranges of 
different operating points, the process description 
switches between the corresponding linear models of 
the multi-linear model.  

A significant control objective for the control of 
multi-linear models is to design controllers that achieve 
satisfactory performance not only when the process 
trajectories lie in the range of a specific linear model, 
but also during switching between different linear 
models.  

Many of the control techniques, which are proposed 
for controlling multi-linear models, are based on 
designing for each linear model a controller that 
achieves specific performance requirements and then 
propose a controller switching scheme activated by the 
process switching sequence. Switching control has 
attracted much research attention (see e.g. [6]–[12] and 
the references therein). 

Multi-linear models may also be controlled with the 
application of gain scheduling, where a parameter 
varying feedback controller is applied, whose 
parameters vary on-line as functions of the operating 
conditions (e.g. [13]-[14] and the references therein). 
Scheduling variables are signals that indicate the current 
state of operating conditions, e.g. the measurement 
signal, the controller output signal, an external 
command, etc. When the variation of the parameters is 
scheduled by a fuzzy supervisor, we refer to fuzzy gain 
scheduling techniques (e.g. [15]-[16] and the references 
therein). Fuzzy gain scheduling appears in several 
approaches, e.g. changing the controller parameters 
according to the control error, or applying a fuzzy 
controller with Sugeno type rules. 

Switching control as well as gain scheduling 
techniques require a supervisory scheme that decides 
on-line the required variation of the controller based on 
measurements of process signals, thus increasing the 
complexity of the controller. Moreover, design 
techniques based on on-line controller variation may 
appear operational problems in case of abrupt changes 
due to model switching or to controller switching.  
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Control of multi-linear models can be significantly 
simplified by using “common” controllers, that is 
controllers which achieve specific performance 
requirements not only for one of the linear models of the 
target set, but for two or even more “adjacent” linear 
models. The term “adjacent” is used to denote models 
that are only one switch event away from each other. 
The use of common controllers reduces or even 
eliminates the need for on-line controller variations, and 
consequently for the corresponding scheduling 
supervisory scheme. Moreover, the performance of 
common controllers is independent from abrupt changes 
that may appear in process behaviour due to switching. 

The derivation of common controllers is a difficult 
task that belongs to the field of robust control. In the 
field of robust control, a variety of control design 
problems have been solved, namely stabilizability, 
model matching, disturbance rejection, input-output 
decoupling and pole placement (e.g. [17]-[18] and the 
references therein). For some of these problems the set 
of controllers have been determined analytically and 
explicitly but many related problems remain to be 
solved.  

The selection of the robust control algorithm that has 
to be applied for the derivation of common controllers is 
strongly related to the specific characteristics of the 
problem under consideration, e.g. the form and the 
degree of the nominal process model, the form and the 
extent of uncertainty, the desired design goal, etc. Thus 
any algorithm, based on robust control techniques, for 
the derivation of common controllers, should include a 
decision tree for the selection of the robust control 
technique to be applied dependent on the specific 
process characteristics. This would increase 
significantly the complexity of the algorithm. 

The present paper proposes a heuristic approach to 
the design of “common” PI controllers, that is PI 
controllers that achieve specific performance 
requirements simultaneously for two or more models. 
The proposed algorithm for the derivation of common 
controllers is performed off-line, thus significantly 
reducing, in comparison with switching or gain 
scheduling techniques, the computational burden of the 
controller’s implementation. 

The proposed form of the algorithm concerns the 
case of multi-linear models, since this is the most 
common case in practice. However, it can be extended 
for multi-models of generic form. The proposed 
algorithm is generic, in the sense that is does not depend 
on the degree or the specific structure of the process 
model, or even the design goal under consideration. 
Moreover, the algorithm is very simple to use and it can 
be extended for the derivation of common controllers of 
other type, e.g. PID controllers, or other general order 
dynamic controllers. However, the increase of the 
number of controller parameters will increase the 
numerical complexity of the algorithm.  

2. Process Description 

Consider a process which can be described 
satisfactorily by a set of discrete-time linear models  

 
1 1: ( ) ( ) ( ) ( )j j j j jS A q y k B q u k− −=  ,  1,2, ,j m= …   (1) 

 
where 1 1( ), ( )j jA q B q− −  are polynomials of the delay 

operator 1q−  and ( ), ( )j jy k u k  are the fluctuations of the 
outputs and the inputs, respectively, of the linear model 
jS . When the linear models jS  are derived through 

linearization of a nonlinear process around a 
corresponding operating point ( , )j j jY U=A , ( )jy k  and 

( )ju k  denote the deviations of the process output y  
and the process input u , respectively, from the 
corresponding operating point, that is ( ) ( )j jy k y k Y= −  

and ( ) ( )j ju k u k U= − . 
Let jΩ  denote a set of discrete-time PI controllers 

with incremental description of the general form 
 

( ) ( 1) ( ) ( 1)j j j j j ju k u k c e k g e k= − + + −              (2) 
 

where the controller parameters jc  and jg  are selected 
in a way that the closed-loop system derived by the 
application of the controller (2) to the linear model jS  
satisfies a set of design requirements, let say j℘ . Note 
that ( ) ( ) ( )j j je k w k y k= −  denotes the error between the 
reference signal jw  and the output jy  of jS .  

To help the reader to clarify the form of the 
performance requirements j℘  characterizing the set of 
admissible controllers for each of the corresponding 
linear models, we will present the following indicative 
proposition:  

j℘ =  
{ 
a) The settling time of the step response of the closed 

loop system must be 
1
p % better than the corresponding 

settling of the linear model jS .  
b) The overshoot of the step response of the closed 

loop system is less than 
2
p %. 

c) The steady state gain of the closed-loop system is 
equal to 1. 

d) The magnitude of the maximum eigenvalue of the 
closed loop system is not allowed to be more than 

3
p % 

larger than the corresponding of the linear model jS . 
} 
The values of 

1 2 3
, ,p p p  are set by the designer 

according to the desired characteristics for the closed-
loop process. Note the fact that the eigenvalues of the 



closed-loop system may be slightly larger than the 
corresponding one of the linear model jS , since the PI 
controller cannot achieve arbitrary pole assignment for 
linear models with order greater than 1. However, this 
fact does not affect significantly the response of the 
closed loop process, since the settling time of the step 
response of the closed loop system will be improved.  

The above requirements (a-d) in j℘  appear to be 
some of the most common control design requirements. 
However, the proposed algorithm can easily be applied 
for other performance requirements, such as stability 
improvement, command following and/or disturbance 
attenuation through H∞  tests. Checking whether a 
candidate controller satisfies the performance 
requirements can be performed either in an analytic way 
or using simulations. The latter case provides the 
possibility to extend significantly the class of 
performance requirements, as well as the class of multi-
model plants under consideration. 

Note, that the incremental form of the PI controller 
can be derived through discretization of a continuous-
time PI description of the form  

 

0
,

( ) ( ) ( )
tj

j j j j
I j

K
u t K e t e d

T
τ τ= + ∫                   (3) 

 
For example, when the discrete-time description (2) is 
derived through backward discretization, the parameters 

,j jc g  are related with the proportional gain jK , the 
parameter ,I jT  and the sampling period T  through the 
equations 
 

( ),
1 ,

I j

T
j j T j jc K g K= + = −                  (4) 

 
Note that since 0T >  and , 0I jT > , equations (4) 
imply that the parameters jc  and jg−  have always the 
same sign with the proportional gain jK  and moreover 

j jg c< . Similar relations hold when other 
discretization methods are used. 

3. Common PI Controller Search Algorithm 

Consider, now, a set  
 

{ }, 1, ,
ij

S S i µ= = …                         (5) 

 
of “adjacent” operating models, called the target set. 
The target set S  is a subset of the multi-linear model. 
The term “adjacent” is used to denote that for any 

ij
S  of 

the target set S , there exists at least one model 
nj

S  of 

S  that is only one switch event away from 
ij
S , that is 

there are single switch events during which the process 
switches from 

ij
S  to 

nj
S  and/or vice versa.  

Consider, now, that a PI controller of the form (2) 
can be found, that satisfies the performance 
requirements 

1j jµ
℘ ∪ ∪℘" . The application of such a 

controller to the process described by the multi-linear 
model (1) would achieve: a) satisfactory performance of 
the corresponding closed-loop system within the range 
of validity of each linear model 

ij
S  of the target set S  

and b) safe and satisfactory performance of the 
corresponding closed-loop system for all transitions 
between any two models of S .  

In order to determine a controller satisfying the 
requirements 

1j jµ
℘ ∪ ∪℘" , it is necessary to determine 

the set 
1j jµ

Ω = Ω ∩ ∩Ω"  (or at least a subset of Ω ). In 
the following a heuristic algorithm is presented for the 
determination of the set Ω , when the applied controller 
is a PI controller in discrete-time incremental form (2). 

The algorithm searches within rectangles of the 
( , )c g -plane, where 

 
( ) ( 1) ( ) ( 1)u k u k ce k ge k= − + + −                (6) 

 
is the description of the common controller to be 
determined, where e w y= −  and u , y , w denote the 
input, the output and the external command of the 
process, respectively. The incremental form of the PI 
controller can be used indeed as a common controller, 
since the variation ( ) ( ) ( 1)u k u k u k∆ = − −  of the 
process input, as well as the error e  between the 
external command and the process output remains the 
same, whatever the linear model that describes the 
process at each specific instant of time. However, 
special considerations have to be made in order to use 
other type of controllers as common controllers for 
more than one model.  

At the first steps of the proposed algorithm, search is 
performed within an initial search area of the form 
 

{ }min max min max( , ), ,P c g c c c g g g= ≤ ≤ ≤ ≤      (7) 
 
the determination of which will be further discussed in 
the following. The points of search on the ( , )c g -plane 
are determined by a web of 1,0 2,0( 1) ( 1)N N+ × +  
points, where 1,0N  and 2,0N  are parameters of the 
algorithm. Thus the search step in the c -direction is 
equal to max min 1,0( )/c c c Nδ = − , while the search step 
in the g -direction is equal to max min 2,0( )/g g g Nδ = − . 
The search within the initial area will be repeated twice 
by duplicating the density of the web. If this second 
search also fails to determine a set of common 
controllers, the algorithm determines for each linear 
model 

ij
S  the rectangles  



 
{ },min ,max ,min ,max( , ) : ,

i i i i ij j j j jR c g c c c g g g= ≤ ≤ ≤ ≤  
(8) 

 
within which controllers that satisfy the performance 
requirements 

ij
℘  have been found. Then the algorithm 

proceeds with searching repeatedly within a rectangle, 
which will be called the union rectangle and is 
determined as the smallest rectangle that includes in its 
interior all the rectangles 

ij
R , 1, ,i µ= … . The density 

of the web is duplicated at each repetition of the search. 
Moreover, at each repetition of the search within the 
union rectangle, the intersection rectangle of the 
rectangles 

ij
R  is determined and compared with the 

corresponding intersection rectangle determined at the 
previous repetition. The search within the union 
rectangle will be repeated until a set Ω  of common 
controllers is determined, or until the size of the 
intersection rectangle does no longer increase. This 
repeated search within the union rectangle intends to 
determine with a satisfactory accuracy the intersection 
rectangle, that is the area inside which common 
controllers are expected to be found. It is important to 
determine the whole extent of the intersection area, 
since otherwise points of the ( , )c g -plane corresponding 
to common controllers may be missed.  

Once the intersection rectangle has been determined, 
the algorithm proceeds with searching within the 
intersection rectangle. The search within the intersection 
rectangle will be repeated twice, with a web of double 
density at the second repetition. If the algorithm fails to 
determine a set of common controllers after two 
consecutive searches within the intersection rectangle, 
then the algorithm stops. In any case, the algorithm will 
stop if any of the following occurs: a) if a set of 
common controllers has been found, b) if the steps cδ  
and gδ  become smaller than a threshold value ε , or if 
the total number of search repetitions exceeds a 
maximum value maxI . 

The density of the web, determined by the 
parameters 1,0N  and 2,0N , is an important design 
parameter of the algorithm, since large values of these 
parameters could result in a very time consuming 
algorithm, while small values could result to failure of 
the algorithm.  

The heuristic algorithm in pseudo-code form is 
presented in the following. 
 
Common PI Heuristic Algorithm 
Data: 

 Linear models: , 1, ,
ij
S i µ= …   

 Design Specifications: , 1, ,
ij
i µ℘ = …  

 Initial Area of Search: 
{ }min max min max( , ), ,P c g c c c g g g= ≤ ≤ ≤ ≤  

 Initial grid parameters: 1,0 2,0,N N  
 Maximum Accuracy: ε  
 Maximum Number of Iterations: maxI  

Step 0: Set 1 20, 0h h= = , 3 0h = , 4 0h = , R = ∅  

Step 1:  Set 1 1,0N N= , 2 2,0N N=  
Step 2:  Set  

max min 1( )/c c c Nδ = − , 

max min 2( )/g g g Nδ = − , 

2 2 1h h= +  
Step 3: 

,min max ,max min, , 1, ,
i ij jc c c c i µ= = = …  

,min max ,max min, , 1, ,
i ij jg g g g i µ= = = …  

Ω = ∅ , , 1, ,
ij

i µΩ = ∅ = …   

Step 4:   
  For 10, ,Nκ = …  
    For 20, ,Nλ = …  
  For 1, ,i µ= …  

  Check if the PI controller with parameters 
min cc c κδ= +  and min gg g λδ= +  satisfy the 

requirements 
ij

℘ . If yes then  
   a) if ,min ,min,

i ij jc c c c< = , 
   b) if ,max ,max,

i ij jc c c c> = , 
   c) if ,min ,min,

i ij jg g g g< = , 
   d) if ,max ,max,

i ij jg g g g> = , 
   e) {( , )}

i ij j c gΩ = Ω ∪  
   End (if) 
  End (for) 

If all requirements 
ij

℘ , 1, ,i µ= …  were 

found to be satisfied then {( , )}c gΩ = Ω∪ . 
End (for) 
End (for) 

Step 5: If Ω ≠ ∅  or min{ , }c gδ δ ε<  or 2 maxh I= , 
then Stop. 

Step 6: If Ω = ∅  and 1 1h <  then  

1 1 1h h= + , 1 1,0 2 2,02 , 2N N N N= =  

  Go to Step 2. 
  End (if) 
Step 7: If 

ij
Ω = ∅  for any 1, ,i µ= …  and 1 1h =  

then Stop. 
Step 8: If 4 1h =  then Stop. 
Step 9: If 

ij
Ω ≠ ∅  for all 1, ,i µ= …  then determine 

the rectangles  
{ },min ,max ,min ,max( , ) : ,

i i i i ij j j j jR c g c c c g g g= ≤ ≤ ≤ ≤  
  If R = ∅  or 

1j jR R R
µ

⊂ ∩ ∩"  then  
a) 

1j jR R R
µ

= ∩ ∩"  

b) min ,min max ,max1, , 1, ,
min { }, max{ }

i ij ji i
c c c c

µ µ= =
= =

… …
 



c) min ,min max ,max1, , 1, ,
min { }, max{ }

i ij ji i
g g g g

µ µ= =
= =

… …
 

d) { }min max min max( , ) : ,P c g c c c g g g= ≤ ≤ ≤ ≤  

  e) 3 3
1 1,0 2 2,02 , 2h hN N N N= =  

f) 3 3 1h h= +  
  g) Go to Step 2. 
  End (if) 
 End (if) 
Step 10: If 

1j jR R
µ

∩ ∩ ≠ ∅"  then  
 a) 

1
0h = , 4 1h =  

 b) min ,min max ,max1, , 1, ,
max{ }, min { }

i ij ji i
c c c c

µ µ= =
= =

… …
 

 c) min ,min max ,max1, , 1, ,
max{ }, min { }

i ij ji i
g g g g

µ µ= =
= =

… …
 

     d) { }min max min max( , ) : ,P c g c c c g g g= ≤ ≤ ≤ ≤  

 e) Go to Step 1. 
   End (if) 

Step11: If 
1j jR R

µ
∩ ∩ = ∅"  then Stop. 

 

3.1. Initialization of the algorithm 
As already mentioned, the common PI heuristic 

algorithm requires the knowledge of an initial area of 
search within the ( , )c g -plane, inside which the 
algorithm will start seeking for common controllers. 
The initial search area represents an estimation, that 
should be available before the implementation of the 
algorithm, of the intervals inside which the common 
controller parameters are expected to be found.  

The determination of this initial search area should 
be based on any available a priori information about the 
process. For example, in case a safe but poorly tuned PI 
controller can be derived for the process through 
standard tuning techniques (e.g. Ziegler-Nichols), the 
initial area of search may be selected as a sufficiently 
large area around the parameter values of this controller.  

Moreover, the derivation of the initial search area 
should exploit all available information about the 
controller parameters. For example, when the discrete-
time incremental form (2) of the PI controller is derived 
through backward discretization of a corresponding 
continuous-time description, the parameter g  of the 
discrete-time description must satisfy the condition 
g c<  (recall the relations between ,c g  and the 

parameters , ,
I

K T T ). Thus, in order to determine the 
initial search area, it suffices to determine an upper 
bound, let maxc , for the absolute value of the parameter 
c . In the special case, being the most common in 
practice, namely when the sign of the dc gain of the 
process remains the same, then the proportional gain K  
of the PI controller should also keep the same sign. In 
this case, the initial area of search of the algorithm can 
be determined taking into account that the signs of the 
parameters c  and g  are predetermined.  

Consider now the case when the process input is 
subject to actuator constraints of the form  

 
( ) ( ) ( 1) uu k u k u k ε∆ = − − ≤               (9) 

 
which implies that the change of the input variable 
between two consecutive time instants can not exceed a 
threshold value uε . Then, assuming that the error ( )e k  
is equal to zero for 0k < , and ( ) ee k ε≤  for 0k ≥ , 
the upper bound maxc  can be selected as  
 

max
u

e

c
ε
ε

=                                  (10) 

 
This selection guarantees that at the first time instant 

( 0k = ) of the controller’s application, the variation 
u∆  of the process input will not exceed the maximum 

value uε , provided that ( )e k  is equal to zero for 0k < , 
and (0) ee ε≤ . The selection of the threshold value eε  
may be based on the available knowledge about the 
extent of the considered area of operation of the process, 
as well as the external commands that may be used.  

4. Application for a Double Effect 
Evaporator  

To illustrate our results in brevity, we will present 
the application of the proposed algorithm for the 
derivation of common controllers for three adjacent 
operating points of a typical industrial process, that is a 
double effect evaporator process with short-tube vertical 
calandria-type units. The double effect evaporator 
process is described in [19] and [20]. The feed solution 
which is pumped to the first effect is heated by a 
saturated steam flow rate u , which is the input of the 
process. The solution produced by the first effect is fed 
to the second effect, where it is in turn heated by the 
vapor flow produced by the first effect. The solution 
concentration produced by the second effect constitutes 
the output y  of the process. The double effect 
evaporator process is a stable nonlinear process. 
Consider now that identification is performed around 
the three nominal operating points, deriving the 
following three corresponding linearized second order 
discrete-time models: 

 
Operating Point  

1 1 1
[ , ] [0.09395,1.34]Y U= =A  

1 :S  
1 1 1

1 1

 ( ) - 1.7619 ( - 1) 0.7756 ( - 2)  

0.0045 ( - 1) - 0.0032 ( - 2)

y k y k y k

u k u k

+ =
 

where 1 1y y Y= −  and 1 1u u U= − . 
Operating Point  

2 2 2
[ , ] [0.10331,1.43]Y U= =A  

2 :S  
2 2 2

2 2

 ( ) - 1.7769 ( - 1) 0.7888 ( - 2)

 0.0051 ( - 1) - 0.0038 ( - 2)

y k y k y k

u k u k

+ =
 



where 2 2y y Y= −  and 2 2u u U= − . 
Operating Point  3 3 3[ , ] [0.11066,1.49] Y U= =A  

3 :S  
3 3 3

3 3

 ( ) - 1.7870 ( - 1) 0.7978 ( - 2)

 0.0057 ( - 1) - 0.0042 ( - 2)

y k y k y k

u k u k

+ =
 

where 3 3y y Y= −  and 3 3u u U= − . 
The sampling period is 10[min]T = . 

The set of admissible controllers for each of the 
corresponding linearized models is determined to satisfy 
the specifications expressed as the following set of 
propositions:  

 
i

℘ =  
{ 
a) The settling time of the step response of the closed 

loop system must be 15% better than the corresponding 
settling time of the linearized model 

i
S .  

b) The overshoot of the step response of the closed 
loop system is less than 5%. 

c) The steady state gain of the closed-loop system is 
equal to 1. 

d) The magnitude of the maximum eigenvalue of the 
closed loop system is not allowed to be more than 1% 
larger than the corresponding of the linearized model 
i
S . 

} 
The above specifications can be achieved by 

applying PI controllers, with discrete-time description 
of the form (2).  

The determination of the set 1 2 3Ω ∩Ω ∩Ω  of 
common controllers for the linear models 1S , 2S  and 

3S  can be done with the use of the heuristic algorithm 
presented in Section 3.  

The initial area of search is determined according to 
the following. The dc gain of the double effect 
evaporator is positive. Thus, the proportional gain K  as 
well as the parameter c  of the discrete-time description 
of the PI controller must be also positive, while the 
parameter g  of the discrete-time description must be 
negative and with g c<  (recall the relations between 
,c g  and the parameters , ,

I
K T T ). Considering an 

actuator restriction of the form (9) with 0.3uε = , as 
well as the error e  to be bounded by 0.02506eε = , the 
initial search area for the set 1 2 3Ω ∩Ω ∩Ω  of common 
controllers is determined according to (10) to be: 

2{( , ) : 0.0001 11.9697, 11.9696P c g c= ∈ ≤ ≤ − ≤\

0.0001}g ≤− . Note that the selection of eε  is based 
on an estimation of the expected difference between the 
output value of the initial operating point of the process 
and the command signal. For example, if the external 
command is a step signal whose value indicates the 
desired target operating point, then the distance between 
the output value of the target and the initial operating 
point should be less than or equal to 0.02506eε = . 

The initial web parameters of the heuristic algorithm 
are 1,0 2,0 100N N= = . The heuristic algorithm 
determines a non empty set of common controllers at 
the first repetition of the search within the intersection 
rectangle. The results of the search are presented in 
Figures 1 and 2. As shown in Figure 2, the heuristic 
algorithm determines five common controllers: 

 
1) 8.5594, 7.7475c g= = −  

2) 8.5768, 7.7634c g= =−  

3) 8.5941, 7.7793c g= =−  

4) 8.6114, 7.7952c g= =−  

5) 8.6287, 7.8111c g= =−  

 
 
 

c

g

8 9 10 11 12
-11

-10

-9

-8

-7

 

Figure 1. Results of Search Algorithm for 
1

Ω  
(black dots), 

2
Ω  (red dots) and 3Ω  (blue 

dots) within the intersection rectangle  

 
 

c

g

8.54 8.56 8.58 8.6 8.62 8.64
-7.82

-7.8

-7.78

-7.76

-7.74

-7.72

 

Figure 2. Results of Search Algorithm for 
1 2 3Ω ∩Ω ∩Ω   



In the following, we select to use the controller that 
corresponds to 8.5594, 7.7475c g= = − . Figures 3-6 

present the simulation results derived from the 
application of the aforementioned controller, when the 
double effect evaporator process is described by the 
following nonlinear state equation ([19], [20]) 

 
0 01 1 1 2 1

502 3 1 2 4 1 2

( ) ( ( )) ( ) ( )

( ) ( ( ) ( )) ( ( ) ( )) ( )

x t d F C x t d x t u t

x t d F x t x t d x t d x t u t

= − +

= − + +

�

�
  

2
( ) ( )y t x t=  

 
where 

1
x  and 

2
x  are the output concentrations of the 

first and the second effect respectively, 
0

2.525[kg/min]F =  is the feed flow to the first effect, 

0
0.04[kg(sugar)/kg(water)]C =  is the feed 

concentration to the first effect and 
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, ,d d…  are 
parameters of the process with values 

1 0.010526[1/kg]d = , 2 0.008510[1/kg]d = , 3d =  
0.009524[1/kg] , 4 0.007700[1/kg]d = − , and 5d =  
0.010306[1/kg] . 

Figure 3 presents the closed-loop response when the 
process trajectories move from operating point 1A  to 
operating point 3A , while Figure 4 presents the 
corresponding controller output. Figures 5 and 6 present 
the corresponding signals when moving from 3A  back 
to 1A . Note that the controller output is applied to the 
process with the use of a zero-order hold. In Figures 3 
and 5, we also present for comparison reasons the 
corresponding response of the nonlinear model for input 
function determined, respectively, by 3( )u t U=  and 

1( )u t U=  for 0t ≥ . 
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Figure 3. Open loop (-) and closed loop 
trajectories (*) from 1A  to 3A  
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Figure 4. Controller output for the 
transition from 1A  to 3A  
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Figure 5. Open loop (-) and closed loop 
trajectories (*) from 3A  to 1A  
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Figure 6. Controller output for the 
transition from 3A  to 1A  



5. Conclusions 

A heuristic algorithm has been introduced for the 
derivation of “common” PI controllers, that is PI 
controllers that achieve specific performance 
requirements simultaneously for all members of a set of 
linear models, called the target set. Common PI 
controllers find application for the control of processes, 
with multi-linear description, since they can achieve 
safe and satisfactory performance for all switching 
events between the linear models of the target set. The 
heuristic algorithm is generic, simple to use and can be 
extended for other classes of controllers, as well as for 
multi-model plants of generic form. The extension of 
the algorithm for other types of controllers and systems 
is currently under investigation. The performance of the 
heuristic algorithm is illustrated for the case of a double 
effect evaporator process. 
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