
Formal models for the verification of IEC 61499 function block based control
applications

Arndt Lüder, Christian Schwab, Marcus Tangermann, Jörn Peschke
Univ. of Magdeburg, Center Distributed Systems – CVS@IAF

Universitätsplatz 2; D-39106 Magdeburg; Germany
{arndt.lueder/christian.schwab/marcus.tangermann/joern.peschke}@mb.uni-magdeburg.de

Abstract

Industrial automation is currently on the cusp to the
application of distributed systems based on distributed
intelligence enabling distributed decision making within
control. As one main technology within this field IEC
61499 based function block systems will be applied. But
the usage of function block systems may cause problems
which have to be avoided prior to the integration of a
function block system in a control system. Hence,
function block systems need to be examined using formal
models and formal verification technologies. Therefore,
formal models need to be created automatically during
the function block system design. Within this paper an
algorithm for automatic model design and its integration
in the Function Block System Designer will be described.

1. Introduction

Industrial automation is currently at the crossroads.
Conventional hierarchical organized and on central
decision making based control architectures will be step
by step replaced by distributed control systems based on
distributed intelligence and distributed decision making.
But this replacements requires a reasonable support
during the design and maintenance phases of control
systems. Here, the huge variety of conventional control
programming systems such as STEP7, RSLogix, or PL7-
PRO are not sufficient any more, since the conventional
programming systems will not provide means for
describing and maintaining distributed systems.

This problem has been faced by industry as well as by
the research community. Within industry the new control
specification and programming standard IEC 61499 [1]
and new control programming strategies as for example
integrated in the ProfiNet CBA based Imap [2] and the
TransparentFactory [3] approach first industrial tools
have been arisen to enable the application of distributed
control systems based on distributed intelligence and
distributed decision making. Within the academic world
especially the IEC 61499 has been adopted as basement
for the consideration of distributed control systems with
respect to specification, implementation, and validation

with the Function Block Development Kit (FBDK) [4],
the tools around the CORFU approach [5,6], the
Function Block System Designer (FBSD) [7] and the
VEDA tool [8]. Within any case either industrial or
academic the developed function block systems (FBS)
can contain multiple errors and malfunctions. Prominent
examples for such malfunctions are deadlocks created by
pair wise on each other waiting functions blocks or
hazards of different functions block sequences. Hence,
formal models describing the behavior of are IEC 61499
based FBS are required to provide a mean for validation
and verification. These models have to be automatically
designed during and in parallel to the design process of
FBS to ensure a continuous equivalence of the FBS and
its formal model.

The aim of this paper is to describe a methodology to
design such models in parallel to a FBS design tool.
Here the Function Block Systems Designer (FBSD) from
Magdeburg University is used as a reference.

Several different formal models for Discrete Event
Dynamic Systems (DEDS) are available. During the last
years one type of models has been proven as very
efficient for modeling of FBS since it enables a direct
expression of the block, data, and event expression, the
Net-Condition/Event-Systems (NCES, also known as
signal event systems) first introduced by Hanisch and
Rausch [9] in 1995. For this type of models several
methodologies for formal analysis have been developed
and implemented [10,11]. Hence, this type of models is
used within this approach of automatic modeling of FBS.

This paper is organized as follows. Within the second
section IEC 61499 FBS and the NCES are introduced.
The third section describes the automatic step by step
translation of FBS to NCES and the fourth section
provides information on the integration of the automatic
model design within the FBSD tool. With a short
conclusion and an outlook on further research within
upcoming international research projects the paper is
finished.

2. Models for distributed control systems

IEC 61499 based Function Block Systems as well as
Net-Condition/Event-Systems are special types of

0-7803-9402-X/05/$20.00 © 2005 IEEE

models used to describe discrete event dynamic control
systems. Within the following both types of models will
be described in more detail.

2.1. Function block systems based in IEC 61499
The IEC 61499 standard is based on a fundamental

module, the Function Block (FB), which represents a
functional unit of control software, associated to a
hardware resource of a control system. A FB instance is
characterized by its type name and instance name, a sets
of event inputs/outputs, a set of data inputs/outputs, an
execution control chart (ECC), internal data, and internal
algorithms.
The type and instance name is used to uniquely identify
a FB, the event and data inputs and outputs are required
for the interconnection of different FB to a FBS, while
the ECC, the internal data, and the internal algorithms
will describe the internal behavior of the FB.

Figure 1. Basic structure of a Function Block

For the overall behavior of a FBS the ECC and its
connection to events, data, and algorithms is of most
importance. An ECC consists of states, transitions and
actions, which invokes the execution of algorithms,
which are associated to the ECC states, in response to
event inputs. An incoming event will be read by the
ECC and can enforce the invoking of an algorithm in
dependence of the active state of the ECC, the possible
state changes enforced by the incoming event, and
internal bordering conditions of state changes described
by transition guards. When the execution of an
algorithm is invoked, the needed input and internal data
values are read and new values for output and internal
data may be calculated. Furthermore, upon completion
of execution of an algorithm, the execution control part
generates zero or more event outputs as appropriate
which can be transmitted to other FB.

By properly connecting more then one FB, a FBS
generating a distributed application can be defined. The
event flow between ECCs of FBs determines the
scheduling and execution of the algorithms and thereby
the behavior of the complete FBS based control
application.

An application can be distributed among several
devices. A device uses the causal relationship specified

by the application FBs to determine the appropriate
responses to events, which may include communication
and process events, utilising the different resources
associated to the devices.

To give the described FB structure a more
understandable background the FB example for
controlling a pushed system as depicted in Figure 2 will
be examined.

Figure 2. Pusher example

This pusher can be actively extended and retracted by
using the valves 1 and 2. Within a FB dedicated to
control the pusher for both activities as special algorithm
can be implemented opening and closing the valves
depending on the pusher position.

Additionally the pusher can reach an error state, i.e.
the extension or retraction process will fail by seizing it.
This case will also require a special algorithm handling
the failure.

As the result of the mentioned behavior the FB
controlling the FB can be structured as given in Figure 3.

Within this figure the ECC consists of 3 states. The
“Wait” state is used for process initialization and as
waiting state before an object in front of the pusher has
to be moved. The “Move” state is used to move an object
by extending and retracting the pusher. The “Error” state
is used to handle the error of a seized pusher.

The FB has one internal variable “ObjectPushed”
used to determine whether the pusher has moved an
object or not. It will be used within transition guards to
decide whether the pusher has been seized or not and
thereby whether the error state has to be entered or not.

The FB can be integrated in a FBS by using the event
and data inputs and outputs. For example, the
“MoveEvent” event input can be used to enforce the
moving of a work piece and the “ErrorEvent” event
output will signalize that the pusher has seized up.

2.2. Net-Condition/Event-Systems
Extending Petri nets by incoming and outgoing

signals is by no means new. Some classical concepts
from Petri net application to discrete event controller
design use such signal extensions. These extensions,
however, do not provide means for interconnecting
several separate Petri nets with incoming and outgoing

13
0_
42
_0
30
31
2_
IE
C
61
49
9_
ba
si
cF
B

Event
Input

Event
Output

Data
Input

Data
Output

ECC

Control
Algorithms

13
0_
42
_0
30
31
2_
IE
C
61
49
9_
ba
si
cF
B

Event
Input

Event
Output

Data
Input

Data
Output

ECC

Control
Algorithms

Event
Input

Event
Output

Data
Input

Data
Output

ECC

Control
Algorithms

Air preasure

Valve 2

Valve 1

Pusher

Sensor 1 Sensor 2

signals to a new model which has the same
characteristics. Such means for interconnecting several
subsystems to a new system, however, are needed if a
automatic model design for FBS is intended. The
modelling framework has to provide means to compose
models of individual FB models by event and data
connection describing means to a consistent model.
These type of signal are integrated in the Net-
Condition/Event-Systems (NCES).

The term ''Net Condition/Event System'' (abbr.:
NCES) is somewhat misleading since it does not relate
to 1-bounded Petri nets which are usually called
Condition/Event systems as well. The terms
''Conditions'' and ''Events'' refer to two different types of
signals interconnecting subsystems. The idea of defining
these two types of signals came from R. Sreenivas and
B. Krogh [12]. In the original paper condition and event
signals are defined over a time axis where time takes its
values from a subset of real numbers. Condition signals
are piecewise constant over time. They ''jump'' to new
values at certain points in time. Event signals, in contrast
to this, have nonzero values only at certain points in
time. They can be thought of as pulses of zero length.
Signal propagation delays do not exist for this signals.

In NCES this idea of two types of signals has been
used, but here in a strictly causal way, i.e. as untimed
signals. Hence, the semantics differs slightly. Condition
signals carry information about states or substates, and
event signals carry information about state transitions.
Furthermore, for the case of modelling FBS the NCES
definition can be restricted to binary systems.

In the following a more informal definition of
structure and behaviour for one Net Condition/Event
Module (abbr.: NCEM), the combination of NCEM to a
NCES, and the translation of NECS to NCEM are given.
A more formal definition of NCES can be found in [10].

The basis of the formal definition of a NCEM is
formed by the NCE structure, describing the internal
static part of the module, the input and output structure
of the module, as the static interface of the module, and
the marking by tokens, as the dynamical part of the
module.

A NCE structure contains two nonempty and disjoint
sets of places and transitions as well as three sets of arcs
connecting them. The first set is the set of ordinary arcs
connecting places and transitions as well as transitions
and places to describe the token flow within the net as
known from Petri nets. The second set is given by
condition arcs connecting places and transitions to
describe additional enabling conditions of transitions
depending on markings of places. The third type of arcs
is unusual for Petri nets. This type is formed by event
arcs connecting transitions with transitions describing
the joint firing of transitions under special conditions. It
is supposed that the set of event arcs will not form any
cycle.

A NCE structure describes the structural basis for
modelling purposes but contains no facilities for modular
modelling by modules and signals. The integration of the
input and output signal concept of Condition/Event
systems will be possible only by definition of an input
and output structure. The input set to a NCE structure is
formed by a set of condition inputs and a set of event
inputs. Both sets are connected by condition input arcs
and event input arcs to transitions only. The output set is
formed by condition outputs and event outputs which are
connected by condition output arcs and event output arcs
with places (in the case of condition outputs) and
transitions (in case of event outputs). The values of
condition outputs is determined by the places of the NCE
structure, and the values of the event outputs by the
transitions of the NCE structure.

Figure 3. Function block to control the pusher

ObjectAvailable ObjectPushed
Init() {ObjectPushed := 0;}
Push() {// Push the Object; Internal Variable ObjectPushed

can be changed//}
Return() {// Return the pusher //}
Error() {// Error actions //}

Wait

Move Push

Return

MoveEvent [ObjectAvailable > 0]

DoneEvent

Init

Error Error ErrorEvent

 [ObjectPushed > 0]

 [ObjectPushed < 1]

ResetEvent
MoveEvent

ResetEvent

DoneEvent

ErrorEvent

A NCEM is completed by the marking. A marking of
an NCE structure is given by a mapping of the set {0, 1}
to the set of places.

Now the NCEM structure is complete. Places and
transitions, resp., are denoted by the usual symbols of
Petri nets. The same applies for the flow arcs and the
tokens. Condition signals are represented by arcs with a
black dot instead of an arrowhead, and event signals are
represented by arcs with zigzag symbols. Condition
inputs and outputs are represented by small boxes
whereas event inputs and outputs are represented by
small diamond symbols. In the following figure a small
NCEM example is given.

Figure 4. NCEM example

The dynamic of the system is defined by enabling of
transitions and the firing rule. The two types of signals
have an important influence on the enabling and firing
rule. Condition input signals and condition arcs enable
transitions to fire whereas event input signals and event

arcs force transitions to fire. As a result, we get the
following enabling and firing rules for NCES.

A transition is enabled, if its predecessor places over
ordinary arcs are marked, its successor places over
ordinary arcs are not marked, the predecessor places
over condition arcs are marked, the condition inputs
connected by connection input arcs to the transition are
true, the event inputs connected by event input arcs to
the transition are true and finally all predecessor
transitions over event arcs are enabled. A set of
transitions is enabled, if all of its transitions are enabled,
all transitions have disjoint sets of predecessors places
with respect to ordinary arcs, all transitions have a
disjoint set of successor places with respect to ordinary
arcs, and for all transitions with incoming event arcs the
predecessor transitions are within the set of enabled
transitions. Only a maximal set of enabled transitions is
allowed to fire.

If the firing rule is applied to the example the
following sets of transitions will fire and the following
states are reached. Within the initial state only transition
{t3} is enabled. After its firing the state {p1,p4} is
reached. Within this state {t1} is enabled if , and only if,
cin

1 is true. If {t1} is fired the state {p2,p4} is reached.
Within this state the transition set {t2,t4} is enabled if,
and only if, ein

1 is true. Only this set will fire in this state.
{t2} will not fire alone. If {t2,t4} fires the initial state is
reached again.

Now the behaviour of a NCEM has been described. A
NCES will be developed out of NCEM by connecting its
inputs and outputs with appropriate connection arcs as
expressed in Figure 5. Therefore a NCES is defined as a

p1

p2

p3

p4

t1

t2

t3

t4

cin
1

ein
1

cout
1

eout
1

cin
1

ein
1

cout
2

eout
2

p1

p2

p3

p4

t1

t2

t3

t4

cin
1

ein
1

p5

p6

p7

p8

t5

t6

t7

t8

cout
2

eout
2

p1

p2

p3

p4

t1

t2

t3

t4

cin
1

ein
1

cout
1

eout
1

p5

p6

p7

p8

t5

t6

t7

t8

cin
2

ein
2

cout
2

eout
2

Figure 5. Example of NECS transformation to NCEM

set of NCEM, a set of overall condition inputs, a set of
overall condition outputs, a set of overall event inputs, a
set of overall event outputs, a set of condition connection
arcs connecting local NCEM condition outputs with
local NCEM condition inputs, a set of event connection
arcs connecting local NCEM event outputs with local
NCEM event inputs, a set of condition input connection
arcs connecting global NCES condition inputs with local
NCEM condition inputs, a set of event input connection
arcs connecting global NCES event inputs with local
NCEM event inputs, a set of condition output connection
arcs connecting local NCEM condition outputs with
global NCES condition outputs, and finally a set of event
output connection arcs connecting local NCEM event
outputs with global NCES event outputs.

A set of NCEM which has been connected to form a
NCES can be combined to a NCEM by replacing each
chain of arcs from a place over a condition output and a
condition input to a transition be a condition arc and
from a transition over an event output and an event input
to a transition by an event arc. Additionally the arc
chains from an global input over an local input to a place
or transition will be replaced by an appropriate input arc
and chains from places or transitions over local outputs
to global outputs will be replaced by appropriate output
arcs. This is also depicted in Figure 5.

Following this composition process each NCES can
be analysed by using its appropriate NCEM.

NCES have been used in several formal ways to
analyse or calculate control systems. Within a huge set
of papers the way how to analyse NCEM models to
verify state and/or firing sequence related properties
have been examined. Here technologies as the
consideration of the state space [13], unfoldings [14],
and structural analysis [15] have been used. The models
also have been used to automatically generate
specifications and finally control code [16].

3. Transformation of FBS to NCES

The generation of Petri net based models of FBS has
been considered before (for example [17]). One
remaining problem is the generation of models in
parallel and in consistence with the development process
of FBS which is necessary to enable a fast, online
simulation and validation of modelled FBS..

This can only be achieved by providing mechanisms
and modelling technologies handling the different
building blocks and the different entities within a FBS.

Following the aims of modelling of FBS the resulting
NCES models have to be useable for evaluating the
overall system behaviour and the absence or presence of
special system conditions. Therefore the ECCs of all FB,
its connections among each other, its relations to local
variables, and its relations to the FB algorithms have to
be modelled.

Following the definition of FBS the following basic
modelling steps need to be provided:
- Modelling of individual states and transitions

within an ECC,
- Modelling of transition guards and events initiating

by transitions,
- Modelling of the execution of algorithms in

relationship to the events triggered and the data
local variables changed by the algorithms, and

- Modelling of connections between different FB to
an FBS.

Based on this modelling steps an automatic model
design during the FBS design is possible.

3.1. Modelling of ECC states and ECC transitions
A state within an ECC is characterised by the two

main phases of behaviour within the state. If the state is
activated the algorithms attached to this state will be
executed in a given order. After the algorithm execution
the state will remain until one of its successor transition
will occur. To model these two phases two different
places are necessary. A transition within an ECC is
executed without a time consumption. Hence, transitions
have to be modelled by one transition only. Following
these both facts a state-transition-system of an ECC will
be modelled by a system of place-transition-place and
transition system as depicted in the following figure.

Figure 6. Modelling of ECC states and
transitions

3.2. Modelling of transition execution
ECC transitions will be executed if the incoming

events associated with the transition and the transition
guard are true. Hence, the guard as well as the incoming
events have to be modelled.

In case of the incoming event the modelling step is
trivial. It will be modelled by an incoming event signal
with an event input and incoming event arcs.

The guard consisting of logical conditions related to
internal variables and external data signals will be
modelled by translating incoming data signals to
condition inputs and condition input arcs and internal
variables to condition arcs from places modelling the
internal variable. The binary character of this signals will

State1

Transition1

Transition2 Transition3Transition2

State2

Transition3

State3

Transition1

State1.Run
Algorithms

State1.Algorithms
Finished

State2.Run
Algorithms

State2.Algorithms
Finished

State3.Run
Algorithms

State3.Algorithms
Finished

not be a problem since the fact, that a variable will fulfil
a guard condition will be modelled by an individual
place only marked if the guard condition is given. The
translation of the execution rules is depicted in Figure 7.

Figure 7. Modelling of ECC transition
execution

3.3. Modelling of algorithm execution
Algorithms will be executed, if the state they are

attached to, is active. They will be executed in a fix
sequence and if all algorithms are finished the events
attached to the algorithms will be fired.

Figure 8. Modelling of algorithm execution

To model this behaviour a direct link from the activity
of the algorithms to the activity of a state has to be
developed. This will be reached by modelling a
condition arc from the place indicating the execution of
the state attached algorithms to the transition indicating
the start of the algorithm execution. Additionally the

sequence of the algorithms has to be modelled. This will
be done by a cycle of places and transitions with one
place indicating the waiting for the start of the algorithm
execution, a set of places indicating the execution of the
individual algorithms, and one place indicating the
finalisation of all algorithms. The transition taking a
token from the place indicating the finalisation of all
algorithms and placing it on the place indicating the
waiting for the start of the algorithm will be connected to
the transition demarking the place indicating the
execution of all algorithms. All invoked events will be
modelled by event arcs outgoing from the transition
indicating the finalisation of all algorithms. This
translation of event execution is depicted in the Figure 8.

During the execution of algorithms the internal
variables, which can be part of the transition guards, may
be changed. This can be modelled by connecting the
places modelling the internal variables with transitions
whose enabling depends on the activity of an algorithm
execution indicating place. This is depicted in the
following figure.

Figure 9. Modelling of dependencies of
internal variables on algorithm execution

The outgoing data connections from the internal data
can be modelled by using data outputs and outgoing
condition arcs from the individual places modelling the
internal data.

3.4. Modelling of connections between FB
The modelling of connections by event / data signals

between FB is straight forward. Since the nature of event
connections is equal to the nature of event connection
arcs and the nature of data signals is equal to condition
connection arcs they will be modelled in that way.

3.5. FB translation example
If we consider the example of the pusher, the function

block controlling the pusher the NCEM model of the FB
is given in Figure 10.

4. Integration of the automatic model
generation in the FBSD tool

As mentioned in the introduction different tools for
developing FBS based control systems are under
development. One of these tools is the Function Block
System Designer (FBSD) which is based on the results
of the TORERO project [18] and has been implemented
using the ECLIPSE framework [19].

Poststate

Transition1

InEvent
Guard[VarInternal ≥ j ∧ VarExternal ≥ i]

Prestate

Prestate.AlgorithmsFinished

Poststate.RunAlgorithms

VarInternal
InEvent

VarExternal

VarInternal1 RunAlgorithm1

RunAlgorithm2
VarInternal2

State Algo.1 Event1

Algo.2 Event2

Transition1 Transition2

Transition3 Transition4

Transition3 Transition4

Transition1 Transition2

State.Run
Algorithms

State.Algorithms
Finished

RunAlgorithm1

RunAlgorithm2

AlgorithmsFinished

Wait

Event1

Event2

Within the TORERO approach a control system is
implemented using pre-implemented and customized
IEC 61499 function blocks. Therefore a function block
editor as well as a system of additional ECLIPSE plug-
ins handling the automatic control code design,
distribution, and deployment have been developed. The
FBSD works on an integrated data model for all parts of
the control application design process including FBS
model data and control code. The automatic modelling
of FB by NCES models will be also integrated within
this data model. Thereby, the FB data set will be
extended by a data set containing the relevant NCEM
information as well as the interconnections to other FB
describing NCEM. Using this data model in the near
future at first a NCES model based simulation and later
on a NCEM based analysis plug-in for the FBSD will be
implemented. An screenshot of the current version of the
FBSD is given in Figure 11.

Figure 11: FBSD user interface

Move
Event

Object
Available

Wait.Run
Algorithms

Wait.Algorithms
Finished

Algorithms
Finished

Object
Pushed

ObjectNot
Pushed

Move.Run
Algorithms

Move.Algorithms
Finished

Algorithms
Finished

Error.Run
Algorithms

Error.Algorithms
Finished

Algorithms
Finished

Reset
Event

Wait

RunPush

RunReturn

Algorithms
Finished

Wait

RunError

Wait

RunInit

Algorithms
Finished

Algorithms
Finished

Object
Pushed

Error
Event

Done
Event

Figure 10. NCEM model of the pusher controlling function

5. Outlook

Within this paper a methodology for automatic
modelling of IEC 61499 compliant function block
systems by Net-Condition/Event-Systems has been
presented. Using this models it will be possible to
formally validate and/or verify the behaviour of function
block systems to ensure its correctness within control
systems.

The described methodology will be integrated in the
near future within the Function Block System Developer
tool developed at Center Verteilte Systeme at Otto-von-
Guericke university Magdeburg, Germany.

Within further maybe joint research activities like the
EC funded research project PABADIS’PROMISE and
the German national research project AgentAut the
developed methodology will be applied to analyse the
behaviour of agent and function block based distributed
control systems.

More information on the FBSD and the mentioned
projects can be found under [20].

Acknowledgement

The work presented within this paper was partially
supported by the European Commission under the 5th
Framework Program within the TORERO project (IST
2001-37573).

References

[1] IEC: International Standard IEC 61499 - Function
Blocks - Part 1 Architecture, www.iec.ch.

[2] Siemens AG: Distributed intelligence with PROFINET,
Technical documentation, http://www2.automation.
siemens.com/profinet/html_76/produkte/imap.htm, 2005.

[3] Schneider Electric: Transparent Factory – internat based
technologies for the factory floor, Technical
documentation, http://www.schneider-electric.com.au
/Products/Automation/TF_RealTime/WhatIs.htm, 2005.

[4] J. Christensen (Rockwell Automation): Function Block
Development Kit (FBDK) – Download and User Manual,
http://www.holobloc.com/doc/fbdk/gettingstarted.htm,
2005.

[5] K. Thramboulidis: Development of distributed industrial
control applications – The CORFU framework, IEEE Int.
Workshop on Factory communication systems, Vasteras,
Schweden, 2002, Proceedings, pp. 39-46.

[6] K. Thramboulidis: Model-integrated mechatronics –
towards a new paradigm in the development of
manufacturing systems, IEEE Transactions on Industrial
Informatics, Vol. 1, No. 1, 2005, pp. 54-61.

[7] Kalogeras, A. P., Prayati, A., Schwab, C., Tangermann,
M., Ferrarini, L., Papadopou-los, G.: Integrated Web
Enabled Control System Design Methodology. IEEE
International Workshop on Factory Communication
Systems – WFCS, Vienna, Austria, 2004, Proceedings.

[8] Vyatkin V., Hanisch H.-M.: Component design and
validation of decentralized reconfigurable control
systems with IEC61499, International Symposium on
Advanced Control of Industrial Processes, June 2002,
Kumamoto, Japan, Proceedings, pp. 215-220.

[9] M. Rausch, H.-M. Hanisch Netz-Condition/Event-
Systeme, 4. Fachtagung Entwurf komplexer
Automatisierungssysteme, Braunschweig, Juni 1995,
Proceedings, pp. 55-71.

[10] H.-M. Hanisch, A. Lüder: A Signal Extension for Petri
Nets and its Use in Controller Design, Fundamenta
Informaticae 41, IOS Press, 2000, pp. 415-431.

[11] A. Lüder, H.-M. Hanisch: Supervisoury synthesis for
petri nets and partial order specification, Klüver
Academic Publisher, Journal on Discrete Event Dynamic
Systems, 2001.

[12] R.S. Sreenivas, B.H. Krogh: On condition/event systems
with discrete state realizations, Discrete Event Dynamic
Systems-Theory and Application, 1991, 2(1), pp. 209-
236.

[13] H.-M. Hanisch, A. Lüder, M. Rausch: Controller
Synthesis for Net-Condition/Event-Systems with
Incomplete State Observation, Computer Integrated
Manufacturing and Automation Technologie (CIMAT
96), Grenoble, France, May 1996, Proceedings, pp. 351-
356.

[14] A. Lüder, H.-M. Hanisch: Synthesis of admissible
behavior of Petri nets for partially ordered specifications,
Workshop on Discrete Event Dynamic Systems
(WODES2000), Gent, Belgium, Aug. 2000, Proceedings,
Kluver Accademic Publisher, ISBM 0-7923-7897-0, pp.
409-420.

[15] D. Schwanke, A. Lüder, H.-M. Hanisch: Dynamic
Behavior and the Deadlock-Trap Property of
Signal/Event Nets, Workshop on Concurrency
Specifications and Programming 1998, Berlin, Germany,
1998, Proceedings, pp. 215-220.

[16] A. Lüder: Formaler Steuerungsentwurf mit modularen
diskreten Verhaltensmodellen, PhD-thesis, Dept. of
Engineering Science, Martin-Luther-University of Halle-
Wittenberg, 2000, Logos Verlag, Berlin, 2000.

[17] Vyatkin V., Hanisch H.-M: Verification of Distributed
Control Systems in Intelligent Manufacturing, Journal of
Intelligent Manufacturing, special issue on Internet
Based Modeling in Intelligent Manufacturing, vol.14,
N.1, 2003.

[18] TORERO project consortium: TORERO project
homepage, www.uni-magdeburg.de/iaf/cvs/torero, 2005.

[19] J. Arthorne, C. Laffra, Official Eclipse 3.0 FAQ,
Addison-Wesley Professional, 2004.

[20] Center Verteilte Systeme: Team homepage, www.uni-
magdeburg.de/iaf/cvs, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e002000430072006500610074006500640020003200310020004e006f00760065006d00620065007200200032003000300033>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

