
CAN-Ethernet Architectures for Real-Time Applications

Jean-Luc Scharbarg, Marc Boyer, Christian Fraboul
IRIT - ENSEEIHT

2, rue Camichel
31000 Toulouse - France

Jean-Luc.Scharbarg@enseeiht.fr

Abstract

Embedded systems have specific real-time require-
ments that led to the development of dedicated communi-
cation protocols. Such systems must face increasing com-
munication needs and the evolution of switched Ethernet
architecture. But moving from existing dedicated field-
busses architectures to new Ethernet based architectures
is not always feasible, due to industrial constraints.

In this paper, we compare different solutions for inte-
grating existing data busses (such as CAN, which is an
important standard in automotive context) on a global
architecture that respects increasing bandwidth require-
ments. In a first step, we study classical CAN/CAN bridg-
ing strategies. In a second step, we propose CAN/Ethernet
bridging strategies that respect the real time behavior of
CAN End System when communicating through an Ether-
net network that can be shared by (non CAN) applications.

1. Introduction

Fieldbusses , e.g. CAN, WorldFIP, Profibus [24] have
been developed in the context of real-time applications
(distributed computer control systems) that have specific
communication requirements such as:

• bounded end-to-end transmission delays in order to
guarantee respects of deadlines,

• bounded and small jitter for periodic traffic.

However, the amount of informations that are nowadays
exchanged in such systems has been increasing steadily
and is now reaching the limits of traditional fieldbusses,
especially in terms of bandwidth [6].

Switching from dedicated field-busses to Ethernet is a
classical trend in embedded systems [23] due to the wide
acceptance of the Ethernet standard and its evolution to-
wards a more predictable switched architecture.

However, successful experience with introduction of a
switched Ethernet in avionic systems (AFDX, [11, 10]) is

mainly due to the preservation of the applications commu-
nication model (periodic schemes) and the respect of the
expected real time properties (bounded delay).

The goal of the study presented in this paper is slightly
different, as the objective is to build an heterogeneous ar-
chitecture obtained by interconnecting existing CAN data
busses on an Ethernet backbone.

We have build a twofold study: on the one hand, we
have developed a prototype with some Linux-PCs with
CAN or Ethernet cards inside, on the other hand, we re-
alized a more theoretical study which is shortly presented
in this paper.

Section 2 presents CAN and Ethernet technologies and
their extensions to cope more efficiently with real-time
constraints. In section 3, We study classical pure CAN
architectures. In section 4, we consider CAN/Ethernet ar-
chitectures and propose CAN/Ethernet bridging strategies
that respect the real-time behavior of CAN End Systems.
Section 5 concludes the paper and presents some ideas for
future works.

2. Communication technologies

We present the two communication technologies we in-
tend to use, i.e. the Controller Area Network and Ether-
net. We summarize the proposed solutions to make those
technologies deterministic, especially in terms of respect
of deadlines and boundaries for jitter.

2.1. CAN
The Controller Area Network (CAN) [12] is a serial

communication protocol suited for networking sensors,
actuators and other nodes in real-time systems. The CAN
specification defines several versions of the protocols for
the physical and the data link layer. In his paper, we focus
on CAN 2.0 A. Several application layer protocols have
been proposed.

The CAN addressing system is based on message iden-
tifier : a frame does not have a destination nor a source
address. Frames are broadcasted on the bus. Stations get
the frames they are interested in by a filtering process of
the identifiers.

0-7803-9402-X/05/$20.00 © 2005 IEEE

DLC

41 1 1

R
T

R

r0ID
E

Data

0..64 2

EOF

7

A
C

K

IF
S

3

CRC

1611

SO
F

1

Identifier

Figure 1. CAN frame (sizes in bits)

The frame format is depicted in figure 1. The detail of
each field will not be presented. The relevant fields for the
remaining of the paper are the following :

• the identifier field, as mentioned earlier, identifies the
data contained in the frame,

• the DLC field gives the length (in bytes) of the data
field,

• the data field is the payload of the frame.

Bit-stuffing is used to avoid the transmission of long se-
quences of bits with identical value. As soon as 5 bits
of identical value are transmitted, a complementary bit is
automatically inserted. This mechanism is valid for the
whole frame, except IFS, EOF, ACK and the last bit of
CRC.

The medium access method (MAC) is CSMA/CR :
the starting of frame transmissions on the bus are syn-
chronous. When two or more stations start a transmission
simultaneously, the one with the smaller frame identifier
wins and the others stop their transmission. This is imple-
mented by a collision detection on a bit by bit basis. When
a station transmits 1 (recessive bit) and detects 0 (domi-
nant bit), it knows that a frame with a higher priority is
being transmitted and, consequently, it immediately stops
transmission. This mechanism guaranties strict priority
order on identifiers. It implies limitations of the band-
width and the maximal length of the bus (e.g. 1 Mbs for
40 meters).

2.2. Enhancement of the CAN protocol
Some drawbacks of the CAN native MAC have been

identified. First, it is event-triggered : when a station has
a frame to transmit, it tries to. It will succeed as soon
as no frame with a higher priority is being transmitted.
This mechanism can induce large jitter on periodic frames.
Second, identifiers are associated with frames statically.
This imposes a scheduling algorithm using static prior-
ities, e.g. rate monotonic [17] when periodic traffic is
considered. It is well known that higher utilization of the
medium is obtained with a scheduling algorithm using dy-
namic priorities, e.g. Earliest Deadline First [17].

Solutions have been proposed to solve those draw-
backs. Most of them add a protocol over CAN native
MAC.

Time triggered CAN (TT-CAN) [13] [9] impose a static
scheduling on CAN. This scheduling is memorized in a
table which is known by all the stations. This scheduling
comprises in particular exclusive and arbitration windows.
Each exclusive window is dedicated to exactly one frame

identifier while an arbitration window is shared. The sta-
tions are resynchronized with a trigger message broad-
casted periodically by the master station.

Flexible TTCAN (FTT-CAN) [1] aims at introduce
flexibility in the static scheduling of TTCAN. The table is
memorized by the sole master. The trigger message con-
tains the numbers of the messages that can be transmitted
until the next trigger message. Moreover, time is reserved
for non synchronous messages. Problems may occur if the
master fails. Solutions to this problem have been proposed
in [8].

Implementations of EDF scheduling relying on the na-
tive MAC have been proposed [26] [5]. They use a part of
the identifier to encode the (dynamic) priority of the mes-
sage, implying a limited number of different messages. In
[21], a server-based method is proposed.

This paper will only consider the native CAN MAC.
However, it could be of great interest to evaluate the so-
lutions proposed in this section in our context, as will be
stated later.

2.3. Ethernet
The Ethernet link layer [7] is designed for computer

local networks where high bandwidth and low cost hard-
ware is more important than guaranteed deadlines and/or
jitter.

The Ethernet addressing system is based on MAC ad-
dresses: each Ethernet entity has a unique MAC address.
In each frame, the destination (unicast, broadcast or multi-
cast) and source addresses are inserted. Frames are broad-
casted on the physical layer. Entities get the frames there
are interested in by a filtering process.

The Ethernet medium access method is CSMA/CD: the
time is divided into slots. Emission always begins at slot
start. When two entities (or more) start to emit at the same
time (± the signal propagation delay), a collision is de-
tected by the entities, they immediately stop to emit and
go into a retransmission state (in order to be sure that all
entities have detected the collision, at least 64 bytes are
sent). In retransmission state, a sender draws a random in-
teger value n uniformly in [0, 2c

− 1], where c is the num-
ber of collisions already observed for this frame (bounded
to 10). It waits n slots before to re-emit the frame. The
number of retransmissions is bounded to 15.

The Ethernet payload can vary from 46 to 1500 bytes.
The Ethernet traffic was 10Mbs, the most common is

now 100Mbs and there also is a 1Gbs solution.
The Ethernet frame format for 10Mbs and 100Mbs is

described in figure 2. In an Ethernet frame, there are (at
least) 26 bytes of control and 0 up to 1500 bytes of data.
Padding guarantees a minimum payload of 46 bytes.

Src
addr

Padding CRCCtrl

7

St
ar

t

1

Dest
addr

6 6 2 0..1500

Data
size

Data

Figure 2. Ethernet frame (sizes in bytes)

2.4. Real-time Ethernet
As stated earlier, the original goal of Ethernet was to

maximize the bandwidth utilization and to minimize the
mean response time. Consequently, it is not well suited
for real-time applications where the main challenge is to
guarantee the respect of deadlines (to bound the response
time) and to limit jitter. However, there has been many
attempts to make Ethernet real-time [22].

A first class of approaches consist in modifying the
medium access control to achieve a bounded access time
to the bus e.g. [15]. The worst-case transmission delay
is frequently orders of magnitude greater than the aver-
age transmission time, leading to overscaling of the sys-
tem. Furthermore, it often implies a modification of the
firmware which forbids the use of standard Ethernet cards.

A second class of approaches consists in adding a con-
trol layer over Ethernet, in order to bound or even elim-
inate collisions. Some of those techniques are based on
a master/slave architecture, which generate an important
overhead, due to master messages. Some others use token-
passing, which often induces large jitter and/or overhead.
TDMA requires a costly precise clock synchronization
[25]. In the virtual time protocol [19] [20], every frame
waits for a specific amount of time before being transmit-
ted and, in case a collision occurs, a probabilistic approach
is used. Parameters of this technique are hard to optimize
and worst-case transmission delays are often much greater
than average ones.

A time-triggered approach has been recently proposed.
It is an adaptation of FTT-CAN to an Ethernet link and
is called FTT-Ethernet [22]. A master transmits periodi-
cally a trigger message indicating the frames that should
be transmitted until the next trigger message and the in-
stant of transmission. It is a master/slave architecture
where the master overhead is reduced. We will propose
a solution inspired by FTT-Ethernet in section 4.

Switched Ethernet is a way to bypass the medium ac-
cess strategy of Ethernet: each station is directly con-
nected to an Ethernet switch with a full duplex link. Then,
the medium is always free. Consequently guaranteed per-
formances are strongly connected to policies of the switch.
Several approaches have been developed. One generic ap-
proach is the Network Calculus ([3, 4]), that have been
successfully applied in the AFDX network system for Air-
bus embedded networks [11, 10]. Another is the Response
Time Analysis, [17]. Both approaches have been com-
pared in [14].

As already mentioned, the use of switched Ethernet is
out of the scope of this paper.

3. Pure CAN architectures

The real-time network architectures considered in this
section are composed of CAN busses. Performance of
those architectures will be illustrated with an application
comprising the message set listed in table 1. It includes
148 periodic messages. The relative deadline of each mes-

Type Nb of Per. Data Lg. trans. bw
mes. (ms) (bits) (bits) time Mbs

(ms)
M1 13 4 64 135 0.135 0.43
M2 13 4 48 115 0.115 0.37
M3 13 4 32 95 0.095 0.31
M4 13 4 16 75 0.075 0.24
M5 12 10 64 135 0.135 0.16
M6 12 10 48 115 0.115 0.14
M7 12 10 32 95 0.095 0.11
M8 12 10 16 75 0.075 0.09
M9 12 15 64 135 0.135 0.11
M10 12 15 48 115 0.115 0.09
M11 12 15 32 95 0.095 0.08
M12 12 15 16 75 0.075 0.06

Table 1. message sets of the application

sage is equal to its period. The values for length and trans-
mission time correspond to a 1 Mbs CAN bus. Let’s have
a look at the first line. It means there are 13 periodic CAN
messages of period 4 ms. Those messages will be called
M1 messages in the following. Each occurrence of an M1
message contains 8 bytes of data. The length of an occur-
rence of the message is 135 bits. It is computed using the
following formula :

length = 47 + 8 × DLC +

⌊

34 + 8 × DLC

4

⌋

(1)

47 is the number of control bits of a CAN frame, including
the interframe space. 8 × DLC is the number of data
bits of the frame. The remainder of the formula is the
maximum number of stuff bits inserted in the frame. So,
it is a worst case length. The transmission time is 135 µs.
The bandwidth needed by the M1 CAN messages is 0.43
Mbs.

3.1. One shared CAN bus
This architecture considers a single CAN bus intercon-

necting all the stations. It is the simplest solution. It is
impracticable in the following cases :

• the cumulative bandwidth needed by all the traffics
exceeds the available bandwidth of the bus (band-
width condition),

• the geographical dispatching of the stations is incom-
patible with the maximal length of the CAN bus, e.g.
40 meters at 1 Mbs (distance condition).

Considering a strictly periodic traffic and allocation of
frame identifiers following a rate monotonic policy (the
smallest the period of a message, the highest its priority),
the bandwidth condition can be evaluated statically. The
distance condition is independent of the traffic.

Concerning the application depicted in table 1, the cu-
mulative bandwidth needed by all the traffics is 2.19 Mbs.

It clearly violates the bandwidth condition. Thus, the ap-
plication cannot be implemented using one shared CAN
bus.

3.2. Several CAN busses interconnected by bridge sta-
tions

This architecture aims at satisfying the bandwidth con-
dition. It is a classical solution frequently used in embed-
ded systems. An example with 4 CAN busses is depicted
on figure 3. Each CAN bus includes two local stations (S1

S1 S2 S3 S4

S9

S10

S11

S12

CAN1 CAN2

CAN3CAN4

S7 S8 S5 S6

Figure 3. CAN busses interconnected by
bridge stations

and S2 for CAN bus 1) and two bridge stations (S9 and
S12 for CAN bus 1). In this example, each CAN bus is
not directly connected to all the other ones. For instance,
bus 1 is not directly connected to bus 3.

System operation is very simple. Different kinds of
frames have to be considered :

1. frames local to a CAN bus s : they only have to be
transmitted over this bus,

2. frames from a local station Sa of a CAN bus s to a lo-
cal station Sb of a CAN bus d, s and d being directly
connected by a bridge Sk : they have to be transmit-
ted by Sa on bus s, received by Sk, transmitted by
Sk on bus d and received by Sb,

3. frames from a local station Sa of a CAN bus s to
a local station Sb of a CAN bus d, s and d being
not directly connected by a bridge : they have to be
transmitted by Sa on bus s, received by a bridge con-
nected to bus s, transmitted via busses and bridges to
a bridge connected to bus d, and then to station Sb.

We will suppose that the network architecture is build so
that the last kind of frame never occurs. Frames of the first
type are called local frames, while frames of the second
type are called distant frames.

As an example, we map the example of table 1 on the
network architecture of figure 3, where the number of lo-
cal stations per CAN bus is not known (it is two on the

Type Nb Kind Priority Per. Worst-
of (ms) (case)

mes. (ms)
M1 8 Local C1 21-28 4 2.262
M1 5 C1 → C2 1-5 4 2.114
M2 8 Local C2 29-36 4 2.302
M2 5 C2 → C3 6-10 4 2.569
M3 8 Local C3 37-44 4 1.942
M3 5 C3 → C4 11-15 4 2.229
M4 8 Local C4 45-52 4 1.542
M4 5 C4 → C1 16-20 4 2.624
M5 8 Local C1 69-76 10 6.312
M5 4 C1 → C2 53-56 10 6.144
M6 8 Local C2 77-84 10 6.392
M6 4 C2 → C3 57-60 10 6.184
M7 8 Local C3 85-92 10 3.522
M7 4 C3 → C4 61-64 10 5.184
M8 8 Local C4 93-100 10 2.822
M8 4 C4 → C1 65-68 10 5.824
M9 8 Local C1 117-124 15 14.410
M9 4 C1 → C2 101-104 15 14.284
M10 8 Local C2 125-132 15 14.570
M10 4 C2 → C3 105-108 15 11.874
M11 8 Local C3 133-140 15 6.932
M11 4 C3 → C4 109-112 15 9.874
M12 8 Local C4 141-148 15 5.552
M12 4 C4 → C1 113-116 15 11.154

Table 2. Pure CAN architecture

figure). The messages are distributed as descibed in table
2 (3 first columns). Priorities are assigned to messages as
shown in column 4 of table 2. The higher priority corre-
sponds to the value 1. A rate monotonic policy is applied.
For messages with the same period, the local ones have
a lower priority. For distant messages with an identical
period, priority allocation is made arbitrarly. The same
applies for local messages with identical period.

In order to validate the system, it is necessary to guar-
anty that every frame of every message respects its dead-
line. One way to do that is to calculate a worst-case end-
to-end transmission delay. Let’s consider Fs,d,m,i, the ith

distant frame of message Mm from a local station on bus
s (source bus) to a local station on bus d (destination bus).
Its worst-case end-to-end transmission delay Ts,d,m,i is :

Ts,d,m,i = T s
s,d,m,i + TB + T d

s,d,m,i (2)

where T s
s,d,m,i (resp. T d

s,d,m,i) denotes the worst-case
transmission delay of frame Fs,d,m,i on CAN bus s (resp.
d) and TB is the maximum overhead induced by the
bridge.We consider TB = 0.5 ms (it is a reasonable value
for an average microcontroller). If the frame Fs,d,m,i

becomes ready for transmission on bus s at time tstart,
the worst-case transmission delay T s

s,d,m,i of Fs,d,m,i on
s is defined following the non-preemptive version of the
schedulability test described in [16] [2] [18] :

T s
s,d,m,i = min(t) with

t = ∆s
m + ∆bloc + (3)
∑

Mx∈hp(Mm,s)

(

⌈

t

P (x)

⌉

× ∆s
x)

We start from t = 0 and iterate until two consecutive
iterations produce the same value. ∆s

m is the transmis-
sion time of one frame of message Mm on CAN bus s.
∆bloc is the maximum delay induced by the frame beeing
transmitted at time tstart (the system is non-preemptive).
∑

Mx∈hp(Mm,s)(
⌈

t
P (x)

⌉

× ∆s
x) corresponds to the trans-

mission of all the frames with a priority not lower than
Fs,d,m,i between tstart and t. hp(Mm, s) contains all
the messages generating frames on bus s with prioriy not
lower than Fs,d,m,i. P (x) is the period of message Mx.

Fs,0,m,i denotes a frame of message Mm which is local
to bus s. We have

Ts,0,m,i = T s
s,0,m,i (4)

As an illustration, let’s consider a frame F4,1,4,i from
the lowest priority distant M4 message. We have

T4,1,4,i = T 4
4,1,4,i + TB + T 1

4,1,4,i

where

T 4
4,1,4,i = min(t) with

t = ∆4
4 + ∆bloc+

5 × (
⌈

t
P (3)

⌉

× ∆4
3)+

4 × (
⌈

t
P (4)

⌉

× ∆4
4)

⇒ t = 0.942 ms

TB = 0.5 ms

T 1
4,1,4,i = min(t) with

t = ∆1
4 + ∆bloc+

5 × (
⌈

t
P (1)

⌉

× ∆1
1)+

4 × (
⌈

t
P (4)

⌉

× ∆1
4)

⇒ t = 1.182 ms

So, we have T4,1,4,i = 2.624 ms.
Worst-case transmission delays for the example appli-

cation are given by the last column of table 2. We observe
that, for every message, the worst-case delay is smaller
than the period. As deadlines equal periods, we can con-
clude that every frame of every message will meet its
deadline.

The architecture presented in this paragraph is a good
solution to satisfy the bandwidth solution. However, it is
of little efficiency concerning the distance conditon. The
architecture proposed in the next section aims at being an
answer to this distance condition.

4. Several CAN busses interconnected by
bridge stations on Ethernet

An example of such an architecture is depicted on fig-
ure 4. It includes four CAN busses and an Ethernet link

S9 S10

S12 S11

S4

CAN1 CAN2

CAN3CAN4

S7 S8 S5 S6

S1 S2 S3

Ethernet

Figure 4. CAN busses interconnected by
bridge stations on Ethernet

(no switched Ethernet will be considered in this section).
Each CAN bus shares a bridge station with Ethernet (S9,
S10, S11 and S12 on figure 4). Two kinds of frames have
to be considered :

1. frames local to a CAN bus s : they only have to be
transmitted over this bus,

2. frames from a local station Sa of a CAN bus s to a
local station Sb of a CAN bus d : they have to be
transmitted by Sa on bus s, received by the bridge
associated with s, transmitted over Ethernet, received
by the bridge associated with d, transmitted by this
bridge on bus d and received by Sb.

Again, we consider the application depicted in tables 1
and 2.

The question we have to answer is : what bridging
strategy between CAN and Ethernet ? Answering this
question, we have to keep in mind that characterisitics of
CAN and Ethernet are very different :

• the available bandwidth :1 Mbs or less for CAN, 10
Mbs, 100 Mbs, 1Gbs for Ethernet,

• the addressing system : identifiers associated to data
for CAN, MAC addresses of stations for Ethernet,

• the data encapsulted in a frame : between 0 and 8
bytes for CAN, between 46 and 1500 bytes for Eth-
ernet,

• the collision resolution : deterministic and non de-
structive for CAN, non deterministic and destructive
for Ethernet.

The very different addressing systems make an encapsu-
lation bridge the most suitable solution : CAN frames are
encapsulated in Ethernet frames. More precisely, Identi-
fier, DLC and Data fields of CAN frames are put in the
Data field of Ethernet frames (the other fields of CAN
frames can be easily reconstructed). This means that a
CAN frame occupies at most 10 bytes of the Data field
of an Ethernet frame. Consequently, if one CAN frame
is encapsulated in one Ethernet frame, there is at least 36
bytes of padding. This is clearly an important waste of
bandwidth.

The worst-case transmission delay of each CAN frame
depends on the type of frame. For a distant frame Fs,d,m,i

from a local station on bus s to a local station on bus d,
the worst-case end-to-end transmission delay Ts,d,m,i is :

Ts,d,m,i = T s
s,d,m,i + 2 × TB + T eth

s,d,m,i + T d
s,d,m,i (5)

T s
s,d,m,i and T d

s,d,m,i are the transmission delays for the
frame Fs,d,m,i on bus s and d. Worst-case values are cal-
culated in the same manner as for the previous architec-
ture. TB is the overhead for one bridge (there are two
bridges on the way). T eth

s,d,m,i is the transmission delay on
the Ethernet link for the CAN frame Fs,d,m,i encapsulated
in an Ethernet frame.

For a local frame Fs,0,m,i of bus s, we have

Ts,0,m,i = T s
s,0,m,i (6)

Simulations have been made on the example applica-
tion of table 1 and 2, using a queueing network modelling
and QNAP2. We suppose that each CAN frame is en-
capsulated in a separate Ethernet frame and transmitted as
soon as possible. We consider an Ethernet link at 10 Mbs
(a 100 Mbs link is necessary if additional non CAN traffic
is considered) and TB = 0.05 ms (considering a modern
microprocessor). The results show that nearly all distant
CAN frames miss their deadline. This is a consequence of
the many collisions observed on the Ethernet link. So, this
encapsulation strategy is clearly a bad solution for such an
application.

The first idea to overcome this problem is to put more
than 1 CAN frame in one Ethernet Frame. If, for instance,
we put 5 CAN frames of maximum length in one Ether-
net frame, it represents 50 bytes of Ethernet Data and no
padding is necessary. More formally, we encapsulate Nce

CAN frames in an Ethernet frame.
Simulations with QNAP2 have been made on the ex-

ample application of table 1 and 2, considering an Ether-
net link at 10 Mbs and TB = 0.05 ms. We have con-
sidered values of Nce from 2 to 5. For Nce = 2, nearly
all distant CAN frames miss their deadline. Table 3 gives
percentages of CAN frames that miss their deadlines for
Nce = 3, 4 and 5. For those three values, only a small part
of distant CAN frames miss their deadlines. For this ap-
plication, the optimal value of Nce is 3. In fact, the value
Nce influence two characteristics of the system:

• the load of CAN traffic on Ethernet, which decreases
as Nce increases,

Type Kind Nce = 3 Nce = 4 Nce = 5
M1 Local C1 0 % 0 % 0 %
M1 C1 → C2 6 % 8.3 % 14.8 %
M2 Local C2 0 % 0 % 0 %
M2 C2 → C3 7.5 % 10.2 % 13.1 %
M3 Local C3 0 % 0 % 0 %
M3 C3 → C4 11.7 % 11.4 % 17.4 %
M4 Local C4 0 % 0 % 0 %
M4 C4 → C1 8.3 % 8.2 % 14.3 %
M5 Local C1 0 % 0 % 0 %
M5 C1 → C2 0 % 0 % 0 %
M6 Local C2 0 % 0 % 0 %
M6 C2 → C3 0.7 % 0 % 0 %
M7 Local C3 0 % 0 % 0 %
M7 C3 → C4 1 % 0 % 0 %
M8 Local C4 0 % 0 % 0 %
M8 C4 → C1 0 % 0.5 % 0 %
M9 Local C1 0 % 0 % 0 %
M9 C1 → C2 0 % 0.4 % 1.9 %
M10 Local C2 0 % 0 % 0 %
M10 C2 → C3 0.4 % 0 % 0 %
M11 Local C3 0 % 0 % 0 %
M11 C3 → C4 0 % 0 % 0 %
M12 Local C4 0 % 0 % 0 %
M12 C4 → C1 0 % 0 % 0 %

Table 3. Missed deadlines with CAN-
Ethernet architecture

• the maximal duration a CAN frame has to wait before
being encapsulated and transmitted on the Ethernet
link, which increases as Nce increases.

For our example application, Nce = 3 is the best compro-
mise.

A further improvement is to associate a timer
WDs,d,m,i with each distant CAN frame Fs,d,m,i. A
bridge transmits an Ethernet frame encapsulating all pend-
ing CAN frames as soon as it has Nce pending CAN
frames or a pending CAN frame Fs,d,m,i has been initi-
ated since a duration of WDs,d,m,i. As an example, sup-
pose that Nce = 2 and WDs,d,m,i = 0.5 ms for all dis-
tant CAN frames Fs,d,m,i. A bridge transmits an Ethernet
frame as soon as it has two pending CAN frames or one
pending CAN frame initiated for more than 0.5 ms.

Table 4 shows simulation results for two sets of
WDs,d,x,i values. For the first set (column hyp. 1 of the
table), we consider

WDs,d,m,i = T s
s,d,m,i (7)

for each distant CAN frame Fs,d,m,i. For the second set
(column hyp. 2 of the table), we consider

WDs,d,m,i = T s
s,d,m,i + 0.1 × Ls,d,m,i

where (8)
Ls,d,m,i = P (m) − (T s

s,d,m,i + 2 × TB + T d
s,d,m,i)

Type Kind hyp. 1 hyp. 2
M1 Local C1 0 % 0 %
M1 C1 → C2 0.3 % 0 %
M2 Local C2 0 % 0 %
M2 C2 → C3 0 % 0.1 %
M3 Local C3 0 % 0 %
M3 C3 → C4 0 % 0.2 %
M4 Local C4 0 % 0 %
M4 C4 → C1 0 % 0 %
M5 Local C1 0 % 0 %
M5 C1 → C2 0 % 0 %
M6 Local C2 0 % 0 %
M6 C2 → C3 0 % 0 %
M7 Local C3 0 % 0 %
M7 C3 → C4 0 % 0 %
M8 Local C4 0 % 0 %
M8 C4 → C1 0 % 0 %
M9 Local C1 0 % 0 %
M9 C1 → C2 0 % 0 %
M10 Local C2 0 % 0 %
M10 C2 → C3 0 % 0 %
M11 Local C3 0 % 0 %
M11 C3 → C4 0 % 0 %
M12 Local C4 0 % 0 %
M12 C4 → C1 0 % 0 %

Table 4. Missed deadlines with CAN-
Ethernet architecture

Ls,d,m,i is the duration available for the transmission
of Fs,d,m,i, considering bridges overhead and worst-case
transmission delays on CAN busses. The second set aims
at reducing the load on the Ethernet link, compared with
the first set. For the two sets, we fix Nce = 100. Results
of simulation show that nearly all CAN frames meat their
deadline, whatever set of WDs,d,m,i values is used. So,
this solution is much better than the previous ones. We
can say it is a good solution for soft real-time applications.
However, it is not well-suited for hard real-time applica-
tions:

• there are still some CAN frames that miss their dead-
lines,

• there are still collisions on the Ethernet link and no
guarantee on worst-case transmission delays can be
given.

Futhermore, finding optimal values for the WDs,d,m,i is
a tricky problem.

Actually, this solution aims at limiting the load on the
Ethernet link, but it does nothing to prevent collisions.
The use of a time-triggered technique is one way to elimi-
nate collisions. The implementation of the time-triggered
paradigm on Ethernet has already been proposed. The so-
lution we suggest is inspired from FTT-Ethernet [22].

We define a master station Sm on the Ethernet link.
The other stations Ssp are the slaves. As long as Ms

has not transmitted a frame on Ethernet, no other station
is allowed to transmit. Each time a station Ssp receives
a frame from Ms, it is allowed to transmit a frame af-
ter a delay of WSsp. Sm transmits Ethernet frames pe-
riodically with perod PSm. The sequence of Ethernet
frames is depicted on figure 5, considering 3 slave sta-
tions. Compared with FTT-Ethernet, our proposal is not

Tx
Sm Ssx

Rx
Ss1
Tx

Ss2
Tx Tx

Ss3
Tx
Sm

Tx
Sm

WSs1

WSs2

WSs3

PSm

Figure 5. Time-triggered communications
on Ethernet link

flexible, since the moment when slave stations are allowed
to transmit is computed only from the moment they re-
ceive the master frame. There is no overhead induced by
the master, since the data frame is used as trigger message.

Simulations have been done considering the architec-
ture of figure 4 and the application of tables 1 and 2.
the master station is Ms = S9, the slaves stations are
Ss1 = S10, Ss2 = S11 and Ss3 = S12. The period
associated to the master is Psm = 1 ms. The delays of
slave stations are WSs1 = 0 ms, WSs2 = 0.2 ms and
WSs3 = 0.4 ms. Results of simulation show no missed
deadlines for CAN frames and no collisions on the Ether-
net link.

This solution is promising. However, further analysis
should be done and a worst-case transmission delay calcu-
lation should be developped in order to guarantee that, for
a given application, no CAN frame misses its deadline.

5. Conclusion and future works

In this paper, we mainly focused on two types of com-
munication technologies :

• the first one is Controller Area Network (CAN),
which is a good example of deterministic real-time
communcation system,

• the second one is Ethernet, which is the most popular
non real-time communication system.

The aim of the paper was to study the use of Ethernet in
conjunction with CAN for communications in a real-time
system. Pure CAN architectures have first been studied.
They are limited in terms of available bandwidth (CAN
maximum bandwidth is 1 Mbs) and area coverage (max-
imum length of a CAN bus at 1 Mbs is 40 meters). The

use of several CAN busses directly interconned by bridges
partially solve the bandwidth limitation, but is quite inef-
ficient against the area coverage limitation.

The use of an Ethernet link to interconnect the various
CAN busses is a good alternative if a solution can be found
to bound the transmission delay on Ethernet. This is very
difficult with pure CSMA/CD Ethernet, since we have no
control on collisions.

We propose the implementation of a time-triggered so-
lution on CSMA/CD Ethernet and show that it allows
to avoid collision. So, transmission delays on Ethernet
can be bounded and the respect of CAN traffic deadlines
can be guaranteed. This proposal only considers periodic
CAN traffic. It could be interesting to apply it in the pres-
ence of non periodic CAN traffic.

Another important characteristic of real-time commu-
nication is the limitation of the jitter of periodic traffics.
In this context, it would probably be judicious to study the
use of the time-triggered paradigm on CAN (via TT-CAN
or FTT-CAN) in conjunction with the time-triggered Eth-
ernet solution.

Nowadays, switched Ethernet can be used for real-
time applications. There are no more collisions on the
medium and guaranteed transmission delays are strongly
connected to potential congestion problems that may oc-
cur in output queues of the switches. We intend to apply
the time-triggered paradigm on switched Ethernet consid-
ering both the architecture of one switch and the global
architecture of the network. The open question is : given
their service disciplines, are switches able to give a time-
triggered communication schema ?

References

[1] L. Almeida, P. Pedreiras, and J. A. G. Fonseca. The ftt-can
protocol : why and how. IEEE transactions on industrial
electronics, 49(6), dec 2002.

[2] N. Audsley, A. Burns, K. Tindell, M. Richardson, and
A. Wellings. Applying a new scheduling theory to static
priority preemptive scheduling. Software engineering
journal, 5(5):284–292, 1993.

[3] R. Cruz. A calculus for network delay, part I. IEEE Trans-
actions on Information Theory, 37(1):114–131, January
1991.

[4] R. Cruz. A calculus for network delay, part II. IEEE
Transactions on Information Theory, 37(1):132–141, Jan-
uary 1991.

[5] M. Di Natale. Scheduling the can bus with earliest dead-
line techniques. In Proceedings of the IEEE Real-Time
Systems Symposium, 2000.

[6] D. Dietrich and T. Sauter. Evolution potentials for fieldbus
systems. In IEEE Workshop on Factory Communication
systems, Porto, September 2000.

[7] CSMA/CD access method. IEEE Standard 802.3, IEEE,
2002.

[8] J. A. Fonseca, J. Ferreira, M. Calha, P. Pedreiras, and
L. Almeida. Issues on task dispatching and master repli-
cation in ftt-can. In IEEE Africon, 2002.

[9] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel,
and M. Walther. Time triggered communication on can. In
International CAN Conference, 2000.

[10] J. Grieu. Analyse et évaluation de techniques de commu-
tation Ethernet pour l’interconnexion des systmes avion-
iques. PhD thesis, Insitut National Polytechnique de
Toulouse (INPT), INPT – Toulouse – France, Juin 2004.

[11] J. Grieu, F. Frances, and C. Fraboul. Preuve de
déterminisme d’un réseau embarqué avionique. In Actes
du 10ème Colloque Francophone sur l’Ingenierie des Pro-
tocoles, Paris, 7-10 Octobre 2003.

[12] ISO. ISO International Standard 11898 - Road vehicles -
Interchange of digital information - Controller Area Net-
work for high-speed communication, nov 1993.

[13] ISO. ISO International Standard 11898-4 - Road vehicles
- Controller Area Network - Part 4 : Time-Triggered Com-
munication, dec 2000.

[14] A. Koubâa and Y. Q. Song. évaluation et amélioration
des bornes du temps de réponse pour des applications
temps réel avec ordonnancement á priorité fixe et non-
préemptif. In Actes du 4éme Colloque Francophone sur
la Modélisation des Systèmes Réactifs, 2003.

[15] G. Le Lann and N. Rivierre. Real-time communications
over broadcast networks : the csma-dcr and the dod-csma-
cd protocols. Report RR1863, INRIA, 1993.

[16] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm : exact characterization and average
case behavior. In Proceedings of Real-Time Systems Sym-
posium, pages 166–171, dec 1989.

[17] C. Liu and L. J.W. Scheduling algorithms for multipro-
gramming in hard real-time environment. Journal of ACM,
20(1):46–61, 1973.

[18] J. W. S. Liu. Real-Time systems. Prentice Hall, 2000.
[19] N. Malcolm and W. Zhao. Hard real-time communications

in multiple-access networks. Real Time systems, 9:75–
107, 1995.

[20] M. Molle and L. Kleinrock. Virtual time csma : why two
clocks are better than one. IEEE Transactions on Commu-
nications, 33(9):919–933, 1985.

[21] T. Nolte, M. Sjödin, and H. Hansson. Server-based
scheduling of the can bus. In IEEE International Confer-
ence on Emerging Technologies and Factory Automation,
2003.

[22] P. Pedreiras, L. Almeida, and G. Paolo. The ftt-ethernet
protocol : merging flexibility, timeliness and efficiency. In
Euromicro conference on real-time systems, 2002.

[23] S. Schoenberg. Etherenet bursts the field-bus war
bubble. Industrial computing online, April 1998.
http://www.sixnetio.com/html files/web articles/
Ethernet%20Bursts%20the%20Field-
Bus%20War%20Bubble.htm.

[24] J.-P. Thomesse. Fieldbusses and interoperability. Control
Engineering Practice, 7:81–94, 1999.

[25] C. Venkatramani and T. Chiueh. Supporting real-time traf-
fic on ethernet. In IEEE Real-Time Systems Symposium,
San Juan, dec 1994.

[26] K. M. Zuberi and K. G. Shin. Scheduling messages on
controller area network for real-time cim applications. In
Proceedings of Real-Time Technology and Applications
symposium, 1995.

