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Abstract 

The use of distributed computing architectures has 
become commonplace in complex embedded systems 
with potential advantages, for example, in terms of 
scalability, dependability and maintainability. One 
particular area in which that trend can be witnessed is 
mobile autonomous robotics in which several sensors 
and actuators are interconnected by means of a control 
network. In this paper we address one case study 
concerning the CAMBADA robots that were developed 
at the University of Aveiro for the Robocup Middle Size 
League. These robots have a distributed architecture 
with two layers, a coordination layer responsible for the 
global behaviors and a distributed sensing and actuating 
layer that conveys internal state information and 
executes coordination commands. This paper focuses on 
the latter layer, which is based on the FTT-CAN 
protocol, following a network-centric approach that 
provides an efficient framework for the synchronization 
of all systems activities. We describe the computing and 
communication requirements, the robot architecture, the 
system design and implementation, and finally we 
provide experimental results that show advantages with 
respect to a non-synchronized distributed approach.  

1. Introduction 

Distributed Embedded Systems (DES) are typically 
part of intelligent automatic equipment with a high 
degree of autonomy. In most cases, DES have a strong 
impact on human lives, either because they are used 
within important economic processes, e.g. complex 
machinery in factories, or because they control 
equipment that directly interacts with people, e.g. 
transportation systems [1].  

The importance of DES has been growing steadily 
and it is expected to grow even further as distribution 
provides an efficient way to improve several desirable 

properties in a system, from maintainability, to 
scalability, composability and dependability, to name a 
few [2] [3]. Also, DES are a natural support for higher 
integration of resources in complex systems, e.g. robots, 
cars and planes, with a potential for lower costs and 
lower overall complexity [4].  

However, the positive aspects of distribution do not 
come for granted and specific techniques and protocols 
must be used to achieve the desired properties. 
Therefore, designing and deploying such techniques and 
protocols is still an important research topic [1]. 

The control of robots, particularly autonomous mobile 
robots, is one of the application fields where DES have 
been increasingly used, seeking for cabling reductions 
and simplification, improved maintainability, fault-
tolerance, scalability of functionality, etc.. In this paper 
we address a specific case study that concerns the 
CAMBADA robots developed at the University of 
Aveiro for participation at the RoboCup Middle Size 
League. These robots have a low level distributed 
sensing and actuation system based on Controller Area 
Network (CAN) that interconnects the motor drives, the 
movement controllers, the odometry system and other 
subsystems detailed later. This work focuses on the 
communication and synchronization of activities, which 
is carried out using the FTT-CAN [5] protocol. We show 
how to implement an application on top of this protocol 
as well as some of the benefits that arise from its use 
with respect to other communication alternatives based 
on non-globally synchronized frameworks. 

The paper is structured as follows. Section 2 presents 
some related work, section 3 shows the general 
architecture of the CAMBADA robots while the 
respective communication and computation requirements 
are analyzed in section 4. Section 5 addresses some 
relevant implementation issues, mainly those concerning 
the use of the communication system and the 
synchronization of activities across the distributed 
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system. Finally section 6 presents preliminary experi-
mental results while section 7 concludes the paper. 

2. Related Work 

As referred before, there are several advantages that 
may arise from the use of distributed architectures in 
embedded control systems and such a distributed 
approach has been often used in the specific field of 
mobile and autonomous robotics for diverse application 
scenarios. For example, [6] presents a robot for orange 
picking that is divided into 4 platforms, each one with 
two picking arms. An SP50 (later Foundation Fieldbus 
FF-H1) fieldbus is used to provide connectivity between 
the four platforms and support the required data 
exchanges. [7] presents an industrial robot based on a 
ProfiBus network. The authors simulate the system 
operation using Matlab/ Simulink, and measure the 
communication delays and level of synchrony achieved 
among the activities carried out within the robot. 

One particular protocol that has been substantially 
used within mobile robots is CAN [8] due to its low 
price, good reliability and timeliness properties. 
Examples of using this protocol can be found in [9], [10] 
[11]. The latter one is particularly relevant to this work 
as it addresses the concerns of supporting a distributed 
sensing and actuation system integrated in a more 
complex architecture encompassing a deliberative level 
that extends beyond the robot using a TCP/IP connection 
with an adequate temporal firewall to isolate this level 
from the lower one in which real-time constraints are 
tight. In [12] the same authors discuss the impact that the 
communication jitter of real-time data transfers can have 
on the performance of control closed-loops and propose 
a mixed CAN-based event/time-triggered protocol. 

The control architectures referred above either use 
event-triggered approaches that present poor control over 
the communication jitter given the absence of relative 
offsets, or they use time-triggered approaches for the 
periodic traffic specified in a static way. In this work we 
address the issues arising from the use of FTT-CAN [5] 
to support the distribution of low level sensing and 
actuation information. This protocol provides support for 
both event and time-triggered traffic as well as support 
for flexible time-triggered communication, allowing to 
adapt the rates of the periodic communication on-line 
according to the instantaneous needs. [13] shows the 
interest of providing dynamic rate adaptation of the 
periodic information in a mobile robot but using a 
centralized architecture. Our work allows extending 
those benefits to a distributed framework. 

3. General architecture 

The general architecture of the CAMBADA robots 
has been described in [14]. Basically, the robots follow a 
biomorphic paradigm, each being centered on a main 

processing unit, the brain, which is responsible for the 
higher-level behavior coordination, i.e. the coordination 
layer. This main processing unit handles external 
communication with the other robots and has high 
bandwidth sensors, typically vision, directly attached to 
it. Finally, this unit receives low bandwidth sensing 
information and sends actuating commands to control 
the robot attitude by means of a distributed low-level 
sensing/actuating system, the nervous system (Figure 1). 

At the heart of the coordination layer is the Real-Time 
Database (RTDB) that contains both the robot local state 
information as well as local images of a subset of the 
states of the other robots. A set of processes update the 
local state information with the data coming from the 

vision sensors as well as from the low-level control 
layer. The remote state information is updated by a 
process that handles the communication with the other 
robots via an IEEE 802.11b wireless connection. The 
RTDB is then used by another set of processes that 
define the specific robot behavior for each instant, 
generating commands that are passed down to the low-
level control layer (Figure 2). 
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Figure 2. The robots functional architecture 
built around the RTDB. 

The low-level sensing/actuating system follows the 
fine-grain distributed model [2] where most of the 
elementary functions, e.g. basic reactive behaviors and 
closed-loop control of complex actuators, are 
encapsulated in small microcontroller-based nodes 
interconnected by means of a network. The nodes are 
based on the PIC microcontroller 18Fx58 [15] operating 
at 40MHz while the network uses the CAN protocol with 
a bit rate of 250Kbps. 
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Figure 1. The biomorphic architecture of the 
CAMBADA robots. 



At this level there are 3 DC motors with respective 
controllers plus an extra controller that, altogether, 
provide holonomic motion to the robot. Each motor has 
an incremental encoder that is used to obtain speed and 
displacement information. Another node is responsible 
for combining the encoder readings from the 3 motors 
and building a coherent displacement information that is 
then sent to the coordination layer. Moreover, there is a 
node responsible for the kicking system that consists of a 
couple of sensors to detect the ball in position and trigger 
the kicker. This node also carries out battery voltage 
monitoring. Finally, the low-level control layer is 
interconnected to the coordination layer by means of a 
gateway attached to the serial port of the PC, configured 
to operate at 115Kbaud. From the perspective of the low-
level control layer, the higher coordination layer is 
hidden behind the gateway and thus, we will refer to the 
gateway as the source or destination of all transactions 
arriving from or sent to that layer. 

4. Lower-level requirements 

In the previous section we have identified the 
functional and hardware architectures of the low-level 
control layer. The specific mapping of the former over 
the latter generates the operational architecture which 
presents requirements concerning both the tasks that 
need being executed on each node as well as the 
messages that must be exchanged over the network. In 
this section we will analyze in detail these requirements 
which were used for the actual implementation. In 
particular, the communication requirements are shown in 
Table 1. 

The Motion function depicted in Figure 2 spans 
across 4 nodes, the 3 motor controllers plus the 

holonomic controller that translates the robot velocity 
vector set-point received from the upper layer into 
individual speed set-points for each of the motors. Both 
the motor controllers as well as the holonomic controller 
execute in a periodic fashion but with different periods. 
The former ones execute a PI-type closed-loop motor 
speed control once every 5ms. This value has been 
deduced from the dynamics of the robot. Moreover, 
these tasks are relatively light, taking less than 1 ms to 
accomplish. On the other hand, the holonomic controller 
executes a cyclic conversion of the higher layer set-
points once every 30ms. This node is relatively loaded as 
each conversion takes about 16ms to carry out. The 
chosen period is, nevertheless, sufficiently small to 
support a smooth robot motion. 

In terms of communication the Motion function 
requires the periodic transfer of the robot velocity vector 
set-point from the gateway to the holonomic controller 
and then the periodic transfer of the motor speed set-
points from the holonomic controller to the individual 
motor controllers. Both transfers are carried out once 
every 30ms. The former transfer requires two messages 
(M6.1, M6.2) to convey the linear and angular 
information respectively. Concerning the latter transfer, 
the motor speed set-points generated for the motor 
controllers should be applied to each motor 
approximately at the same time thus they are 
piggybacked on the same message and transferred as a 
broadcast (M1). Finally, the control loops of the 3 motor 
controllers should also be synchronized among 
themselves so that they generate motor actuation signals 
at approximately the same time. 

Another important subsystem is the one 
corresponding to the Odometry function. This function 
also spans across 4 nodes, the 3 motor controllers plus a 
4th node that combines the individual encoder readings 
into a coherent displacement information sent up to the 
higher layer. The encoder readings are the same as used 
by the closed-loop motor speed control and thus they are 
sampled every 5ms, and this should be carried out 
synchronously in all three motors. However, depending 
on the desired precision in constructing the robot 
displacement information, these readings can be sent 
with a periodicity that varies from 5ms to 20ms (higher 
to lower precision). During the execution of certain high 
level behaviors the odometry information is not needed, 
e.g. when tracking the ball, and thus it can also be 
temporarily switched off. Three messages are used to 
convey the encoder readings (M3.1-M3.3). Upon 
reception of these messages, the odometry node 
calculates the robot position and orientation, taking 
approximately 4ms, and sends it to the higher layer, 
every 50ms, using 2 messages (M4.1, M4.2). This period 
is compatible with the cycles used by the processes 
running within the higher layer. The Odometry function 
also includes a pair of sporadic messages (M5.1, M5.2) 
received from the higher layer to set or reset the current 
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of the low-level control layer. 



robot position and orientation information within the 
odometry node. These messages are not expected to be 
generated within less than 500ms intervals (minimum 
inter-arrival time – mit). 

Finally, the Kick and System monitor functions are 
integrated in the same node, the kicker controller, which 
is lightly loaded. The former corresponds to executing 
the kicking commands received from the higher layer. 
These are conveyed within one sporadic message (M7) 
which is not expected to be transmitted more often than 
once every second. In fact, the kicker is electromagnetic 
and takes about this time to recharge between 
consecutive kicks. On the other hand, the latter function 
currently encompasses the batteries level sampling 
which is sent up to the higher layer using a periodic 
message (M2) with a period of 1s, as well as a set of 5 
sporadic messages (M8-M12) that inform the higher 
layer whenever a hard reset occurs in the respective 
node. 

5. Low-level control layer implementation 

After having defined the operational architecture of 
the low-level control layer and deduced the computing 
and communication requirements the practical 
implementation was carried out. Two approaches have 
been followed, one without and another with global 
synchronization among the activities executed at this 
layer. The former approach used communication 
functions of the type send and receive, as commonly 
found in event-triggered systems, and without any 
further support for synchronizing remote activities. At 
fixed points within the respective cycle the data would 
be transmitted using the send function and retrieved at 
the receiver with the receive function. 

The temporal behavior of the approach referred above 
may suffer large delays due to the multiple 
unsynchronized chained cycles. For example, consider 
that a new velocity vector arrived at the holonomic 
controller right after it started processing one cycle. 
Then, the new vector would be processed one cycle later, 
generating speed set-points for the motors with about 
30ms additional delay, i.e., the cycle time of the 
holonomic controller. These set-points would then be 
transmitted over the network within one message, 
possibly suffering an access delay caused by possible 

transmissions from other unsynchronized nodes. Finally, 
this message would arrive at a motor node right after this 
node had started one speed control cycle thus holding the 
new set-point until the next cycle causing a further delay 
of 5ms. Comparing with the case in which the new data 
would arrive just before the start of the cycle in which it 
would be used, i.e. the best-case delay, the previous 
situation corresponds to an additional delay of more than 
35ms to process a new velocity vector. Figure 4 
illustrates the impact of chained non-synchronized cycles 
on the end-to-end delay (dee) for the general case of two 
periodic tasks in different nodes, A and B, which 
communicate via a periodic message. 

 
 
 
 
 

Figure 4. Synchronization and end-to-end delay. 
 

Moreover, this delay can vary on-line due to drifts in 
the local clocks of the nodes, generating jitter in the 
control signals. These additional delays and jitter can 
cause degradation to the global control loops associated 
to high level behaviors, such as tracking the ball. 

On the other hand, this non-synchronized approach 
has the advantage of being very simple to deploy. For 
this reason, it was the first approach to be implemented. 
As expected, the parameters of the global control loops 
were relatively difficult to tune and a nervous robot 
behavior was frequently observed. 

Therefore, it was decided to use a communication 
infrastructure based on CAN that would allow building a 
globally synchronized framework so that relative phases 
among all activities in the system, including tasks 
execution in the nodes and message transfers over the 
network, could be established as appropriate to maintain 
the end-to-end delays of the information flows under 
tight bounds. The FTT-CAN [5] protocol was used for 
this purpose, which supports global synchronization of 
tasks and messages according to a network-centric 
approach [16]. Moreover, it combines the time-triggered 
(synchronous) traffic with event-triggered (asynchr-
onous) traffic providing an efficient support to both 
periodic and sporadic messages. Another feature, and 
probably its most distinguishing one, is that the protocol 

Task A 

Task B 
Message 

d ee d ee 

ID Source Target Type Period/mit (ms) Size (B) Short description 
M1 Holonomic ctrl Motor node[1:3] Periodic 30 6 Aggregate motor speeds set points 
M2 Kicker Gateway Periodic 1000 2 Battery status 

M3.1-M3.3 Motor node [1:3] Odometry node Periodic 5 to 20 3*3 Wheels encoder values 
M4.1-M4.2 Odometry node Gateway Periodic 50 7+4 Robot position + orientation 
M5.1-M5.2 Gateway Odometry node Sporadic 500 7+4 Set/reset robot position + orientation 
M6.1-M6.2 Gateway Holonomic ctrl Periodic 30 7+4 Velocity vector (linear+angular) 

M7 Gateway Kicker Sporadic 1000 1 Kicker actuation 
M8-M12 Every node Gateway Sporadic 1000 5*2 Node hard reset 

Table 1. Low-level control layer communication requirements 



supports on-line changes to the synchronous traffic, 
allowing to switch off and on any message stream 
according to current needs or even to adapt the rate, for 
example, to control the provided Quality-of-Service. 

In order to use FTT-CAN two more nodes were added 
to the low-level control layer to perform the Master 
function with replication for fault-tolerance purposes 
[17][18]. The following section makes a brief 
presentation of the basic concepts and operational 
aspects of FTT-CAN. 

5.1. FTT-CAN basics 
The FTT-CAN protocol (Flexible Time-Triggered 

communication over CAN) is a time triggered protocol 
that establishes a common notion of time across the 
system using the regular transmission of a particular 
synchronization message by a specific node called 
Master. This message is called the Trigger Message 
(TM) and its periodic transmission creates fixed duration 
bus time slots called Elementary Cycles (EC). Each EC 
is divided in two phases, one for the transmission of 
time-triggered traffic, synchronously with respect to the 
ECs framework, and another for the transmission of 
event-triggered traffic, within which transmissions can 
take place at any instant. These phases are called the 
synchronous and asynchronous windows, respectively, 
with the latter preceding the former (Figure 5). A gap is 
used in between these windows to guarantee that the 
asynchronous traffic does not interfere with the 
synchronous one. 

According to the needs of each application, the 
maximum duration of the synchronous window can be 
bounded (LSW), leaving a minimum bandwidth always 
available to the aperiodic traffic, improving its 
responsiveness. 

The Master node controls the transmission of the 
synchronous traffic whose periods and offsets are 
expressed as integer multiples of the EC duration. A 
master/multi-slave approach is used in which the Master 
sends one command per EC, possibly triggering several 
synchronous transmissions in the respective phase of that 
EC. The Master triggering commands, called EC-
schedules, are conveyed within the TMs using a specific 
bit encoding technique (Figure 5). The EC-schedules 
may also include specific flags to trigger the execution 
of tasks within the nodes, synchronously with the ECs 
framework. These flags allow remote tasks to 
synchronize with each other as well as with the 
transmission of messages and using system wide offsets. 

The scheduling of the synchronous part of the system, 
including task triggers and synchronous messages, is 
carried out by the Master node, on-line, based on a table 
that contains the synchronous requirements. This is 
called the Synchronous Requirements Table (SRT) and it 
can be updated on-line, granting the operational 
flexibility that characterizes this protocol. 

The EC duration is configured off-line and has a 
significant impact on the communication and computing 
overhead of the system. Basically, the shorter it is the 
higher the overhead but also the higher the temporal 
resolution to express the messages properties. Therefore, 
the common technique is to use the shortest period as 
long as the corresponding overhead is admissible. 
Typical values range from 1 to 10ms. 

 

Figure 5. FTT-CAN transmission schema. 

5.2. Implementation using FTT-CAN 
In order to effectively use FTT-CAN in a given 

application it is necessary to identify the flows of 
information related with cyclic activities executed in the 
system, to determine what triggers each of those flows 
and then to determine which should be the appropriate 
offset of each transmission or activity knowing the 
respective transmission and execution times. This has 
been carried out in the previous section where the 
information flows within the low-level control layer of 
the CAMBADA robots were identified and 
characterized. In this section we will see how FTT-CAN 
was used to support the required synchronization. 

The first aspect is to separate the periodic from the 
sporadic traffic. The latter is handled by the 
asynchronous subsystem similarly to a non-synchronized 
framework. This separation is already accomplished in 
Table 1. The periodic traffic is then named using FTT-
CAN synchronous identifiers. 

The EC duration is set to 5ms which is the shortest 
period among all periodic activities and messages, i.e., 
the closed-loop motor speed control period. For a trigger 
message with 5 bytes, the communication overhead is 
lower than 8.4% (420µs/5ms) while the computing 
overhead is close to 1.5% (76ms/5ms). These values 
were considered admissible given the application load. 
Particularly, the communication load according to Table 
1 is close to 27% of the bus bandwidth at 250Kbps. 

Knowing the EC duration, all periods are expressed in 
number of ECs. Then, the synchronization requirements 
are analyzed to identify the set of activities that needed 
synchronization and the respective set of synchronous 
triggers. These inherit periods equal to those of the 
related messages and are also named using appropriate 
FTT-CAN identifiers. 

Finally, the off-sets of all messages and synchronous 
triggers are established so that transmissions are carried 
out soon after the respective data becomes available and, 
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conversely, activities are triggered enough in advance to 
generate data before but as close as possible to the 
respective transmission instant. Moreover, the 
synchronous triggers allow triggering several remote 
activities at approximately the same time (within a few 
micro-seconds), as it is required by the Odometry 
function. These concerns lead to increase the freshness 
of the data in the information flows, reducing the 
respective end-to-end latency and jitter, with a positive 
impact in the performance of the respective global 
control loops associated to the high level behaviours. 

Table 2 shows the system SRT, including both 
synchronous messages and triggers. The off-sets 
extracted from the system requirements are expressed in 
the column init time and they are also expressed in 
number of ECs. 

Figure 6 shows the timeline of the two main 
synchronous information flows, separately, associated to 
the Motion function (top) and the Odometry function 
(bottom). In what concerns the Motion function, the flow 
is triggered by a pair of messages (6,7) sent by the 
gateway with off-set 0 and arriving from the higher layer 
with a velocity vector. These values are received by the 
holonomic controller that is synchronized in trigger 12, 
which is produced right after the transmission of the 
messages, with off-set of 1EC. This trigger starts the 
execution of the holonomic controller to process the new 
velocity vector. The resulting motor speed set-points will 
be available after 16ms, which rounds up to 4 ECs. Thus 
the respective message (0) is transmitted to the motor 
nodes in the following cycle, i.e. with an off-set of 5ECs. 
Trigger 13 is used to synchronize the closed-loop speed 
control of each motor with the arriving set-point. The 
off-set is 6ECs to enforce a reduced latency between 

reception and use of the set-points. 
The transmission of the next velocity vector, and thus 

the start of the next cycle, is carried out in the following 
EC. 

In what concerns the Odometry function, the 
respective information flow starts with trigger 8, with 
off-set 0, which causes the synchronous sampling of the 
encoders in the 3 motors. These values are locally 
accumulated until they are transmitted. In the example, 
the transmission of the encoder readings is set to 2 ECs 
(messages 1-3) and the respective values are produced 
with trigger 9, in the EC before their transmission. Thus 
the off-set of messages 1-3 is 2ECs while the off-set of 
trigger 9 is 1EC. The periods of these entities can vary 
depending on the desired odometry precision from 1EC 
(highest) to 4 ECs (lowest). They can also be suspended 
(period set to 0) when the Odometry function is not 
needed.  

The odometry node is triggered right after the 
transmission of the messages 1-3 carrying the encoder 
readings, using trigger 10 with an off-set of 3 ECs. Since 
it executes in less than one EC, the production of the 
current position and orientation (trigger 11) is carried out 
in that EC (same off-set of 3 ECs) while the message 
transmissions (messages 4,5) are assigned to the 
following EC thus with an off-set of 4 ECs. 

6. Experimental results 

In order to assess the benefits of using FTT-CAN a 
few experiments were carried out, comparing the system 
timeliness with the case in which CAN was used without 
support for synchronization among remote tasks. For that 
comparison, we measured the end-to-end delay 

FTT-CAN 
ID 

Source Destination Period 
(#ECs) 

Init time 
(#ECs) 

 Short description 

0 Holonomic contr Motor node[1:3] 6 5 Motors speed setpoints 
1 Motor 1 node Odometry node 2 (0-4) 2 Encoder Count in motor 1 
2 Motor 2 node Odometry node 2 (0-4) 2 Encoder Count in motor 2 
3 Motor 3 node Odometry node 2 (0-4) 2 Encoder Count in motor 3 
4 Odometry node Gateway 10 4 Current position 
5 Odometry node Gateway 10 4 Current orientation 
6 Gateway Holonomic contr 6 0 Velocity vector (linear) 
7 Gateway Holonomic contr 6 0 Velocity vector (angular) 
8 --- Motor node[1:3] 1 0 Triggers the encoder readings 
9 --- Motor node[1:3] 2 1 Triggers production of messages 1,2,3 at the 

motor nodes (encoder readings) 
10 --- Odometry node 2 3 Triggers the consumption of encoder 

messages 1,2,3 at the odometry node 
11 --- Odometry node 10 3 Event to produce messages 4,5 
12 --- Holonomic contr 6 1 Triggers the consumption of Messages 6,7 in 

holonomic controller 
13 --- Motor nodes [1:3] 6 6 Triggers the consumption of Message 0 in the 

motor nodes 
Table 2. Low-level control layer message set and activity triggers. 



associated with the two information flows referred 
before, i.e. Motion and Odometry functions. The first 
flow was measured from the point in which the gateway 
starts transmitting a velocity vector to when one of the 
motors receives the corresponding speed set-point. The 
second flow was measured from the point in which the 
encoder of one motor is read to when the respective new 
position is received by the gateway. The results are 
presented in Table 3, concerning the maximum and 
minimum values observed for the end-to-end delays (dee) 
of both information flows in the two approaches referred 
before, i.e. unsynchronized using CAN and globally 
synchronized using FTT-CAN. 

 
Information flow CAN FTT-CAN 

(all values in ms) max dee Min dee max dee min dee 
Motion 64.4 38.8 27.7 26.7 

Odometry 21 12 21.7 21.6 

Table 3. Timeliness of information flows. 

These results are according to expected as stated in 
section 5. In fact, the absence of synchronization 
between multiple chained cycles creates large delays 
and, mainly, large delay variations (jitter). On the other 
hand, the synchronization capabilities of FTT-CAN 
allow establishing adequate off-sets that can be used to 
reduce end-to-end delays, and mainly the associated 
jitter. The former effect, however, i.e. reduction of end-
to-end delays, is only noticeable when the cycle 
durations are large enough, at least 3 ECs long. For 
shorter cycles, as it is the case with the Odometry 
information flow, the temporal resolution of FTT-CAN 
limits the achievable reduction in the end-to-end delay. 
However, there is still a strong reduction in jitter, nearly 
elimination, which is probably more beneficial for 

control purposes than the limitation on the end-to-end 
delay reduction. 

Another advantage of FTT-CAN is the easiness and 
efficiency in triggering tasks with synchronous triggers. 
In fact this is done without extra messages, just using the 
Trigger Message with additional data bits to encode 
them. These triggers also allow synchronizing tasks in 
remote nodes with relatively high precision. In the 
specific case of the closed-loop speed control in the 3 
motors, the use of triggers allowed to synchronize all the 
loops within +/-130µs. 

7. Conclusions 

Distributed embedded systems are becoming 
pervasive, spanning application fields in which there are 
stringent real-time and safety constraints. Such archi-
tectural option has a potential for several advantages, the 
most important of which is, probably, the constraining of 
complexity within manageable bounds. 

The control of robots, particularly autonomous mobile 
robots, is one of the application fields where distributed 
embedded systems have been increasingly used, seeking 
for cabling reductions and simplification, improved 
maintainability, fault-tolerance, scalability of function-
ality, etc.. However, increasing requirements in terms of 
responsiveness, arising from complex environments with 
fast dynamics, stress the need for adequate architectural 
support so that robots cope with sudden events that occur 
in the environment and respond to them in a timely way. 
One particular application that has been driving the need 
for more reactivity is RoboCup where teams of mobile 
robots play football. Robots need to move faster without 
colliding with each other or against the field objects and 
they must react promptly to the ball with sufficiently 

 
Figure 6. Timeline of the main information flows within the low-level control layer. 

Top: motion. Bottom: odometry. 



accurate control. This is only possible if the respective 
control infrastructure is timely, in spite of its complexity. 

In this paper we described the architecture of the 
CAMBADA robots developed at the University of 
Aveiro to participate in the RoboCup Middle Size 
League. The paper focused on the robots distributed low-
level control layer that interconnects the motion, 
odometry, kicking and monitoring subsystems. The 
computing and communication requirements were 
deduced, and then the paper focused on the 
implementation of this layer using the FTT-CAN 
protocol. The performance of this implementation was 
compared with a previous implementation based on 
CAN in which there was no control over the 
synchronization of remote activities and chained control 
cycles. Experimental results were shown where the 
benefits of using a globally synchronized framework, 
such as provided by FTT-CAN, were clear. The jitter in 
the end-to-end delay of the main information flows was 
nearly eliminated and, in the case of the motion control, 
the end-to-end delay was substantially reduced. 

Future work will address the dynamic reconfiguration 
capabilities supported by FTT-CAN so that the rate of 
the information flows is adapted on-line according to the 
instantaneous needs. This will allow maximizing the 
bandwidth available to the asynchronous communica-
tion, both to react promptly to asynchronous events or 
commands and to allow time for retransmissions upon 
errors. The released bandwidth can also be used to allow 
the insertion of more subsystems for complementary 
functionalities. 

The paper focused on the robots distributed low-level 
control layer, only. However the control loop includes 
components in both upper and low-level layers (Figure 
2). Therefore, the robot global performance can be 
further enhanced with the use of global synchronization 
mechanisms, allowing minimizing the overall end-to-end 
latency. This topic will also be addressed in future work. 
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