
Proceedings of the IJCAI–09 Workshop on
Configuration (ConfWS–09)

July 11–13, 2009

Pasadena, CA, USA

Markus Stumptner and Patrick Albert, Editors

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Foreword

Representing and solving configuration problems has always been one of the key application and commercialization
areas for AI research, and the need for powerful knowledge-representation formalisms to capture the great variety
and complexity of configurable product models was a major driver for innovation in areas such as expert systems in
the 1980s and constraint satisfaction systems and description logics in the 1990s. Efficient reasoning methods are
required to provide intelligent interactive behavior in configurator software, such as solution search, satisfaction of
user preferences, personalization, optimization, diagnosis, etc.

From the point of view of configuration as product configuration, different AI approaches are well established as
central technologies in industrial configuration systems. This wide-spread industrial use of AI-based configura-
tors makes the field more challenging than ever: the complexity of configurable products still increases, the mass-
customization paradigm is extended to fields like service and software configuration, personalized (web-based) user
interaction and user preference elicitation are of increasing importance, and finally, the integration of configurators
into surrounding IT infrastructure like business information systems or web applications is critical. As a result, con-
figuration technology often finds itself centrally placed in a number of interdisciplinary relationships. In addition to
the ones previously listed these include engineering areas such intelligent manufacturing and supply chain solutions,
configuration management in software engineering, and the configuration of financial and insurance services.

However, configuration as a computational paradigm traditionally has a wider range of applications. The configura-
tion approach to problem solving, also referred to as model construction, has been used as an underlying technology
in areas such as computational biology, service composition, design, image analysis. More recently, configuration
emerges as an to Model-Driven Engineering (MDE) techniques for applications such as component-based software
construction, where topics of interest would include Model Transformation, Model Satisfaction and Test Case gen-
eration, and in the creation and management of Software Product Lines.

The main goal of the workshop is to promote high-quality research in all technical areas related to configuration. As
such, the workshop is of interest for researchers working in the various fields within the wide range of applicable AI
technologies (e.g. Constraint Programming, Description Logics, Non-monotonic Reasoning, Case-Based Reason-
ing, Decision Support Systems, Business process and supply chain modeling). It serves as a platform for researchers
and industrial participants to exchange needs, ideas, benchmarks, and use cases.
The workshop is the twelfth in a series of successful Configuration Workshops started at the AAAI’96 Fall Sym-
posium and continued on IJCAI, AAAI, and ECAI since 1999. Its best papers, together with those of the 2010
workshop, will be collected in a special issue in AI EDAM in 2011.

Markus Stumptner and Patrick Albert
July 2009

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Workshop Organization
Workshop Co-Chairs
Markus Stumptner University of South Australia, Adelaide, Australia
Patrick Albert ILOG S.A., France

Workshop Organizing Committee
Claire Bagley Oracle Corporation, USA
Alexander Felfernig Universität Klagenfurt/Configworks, Austria
Albert Haag SAP AG, Germany
Lothar Hotz Universität Hamburg, Germany
Thorsten Krebs encoway, Bremen, Germany
Tomi Männistö Helsinki University of Technology, Finland
Barry O’Sullivan Cork Constraint Computation Centre, Ireland
Juha Tiihonen Helsinki University of Technology, Finland
Markus Zanker Universität Klagenfurt, Austria

LATEXmacros for proceedings autoformatting written by Wolfgang Mayer.

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Contents

A Metamodelling Approach to Configuration Knowledge Representation . 9
Timo Asikainen and Tomi Männistö

A Simple Evaluation Process for Configurability . 17
Andreas Falkner and Alois Haselböck

Construction of Configuration Models . 23
Lothar Hotz

Combining Binary Decision Diagrams and Backtracking Search for Scalable Backtrack-Free Interactive Product Config-
uration . 31
Andreas Hau Nørgaard, Morten Riiskjær Boysen, Rune Møller Jensen, and Peter Tiedemann

Industrial requirements for interactive product configurators . 39
Matthieu Quéva, Christian Probst, and Per Vikkelsøe

Argumentation based constraint acquisition . 47
Kostyantyn Shchekotykhin and Gerhard Friedrich

On Solving Complex Rack Configuration Problems using CSP Methods . 53
Wolfgang Mayer, Marc Bettex, Markus Stumptner, and Andreas Falkner

Configuring Models for (Controlled) Languages . 61
Mathias Kleiner, Patrick Albert, and Jean Bézivin

Characterization of 26 configuration models . 69
Juha Tiihonen

Interactive Configuration and Time Estimation of Civil Helicopter Maintenance . 77
Élise Vareilles, Cedrick Beler, E. Villeneuve, Michel Aldanondo, and Laurent Geneste

Author Index . 83

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

8

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

A Metamodelling Approach to Configuration Knowledge Representation∗

Timo Asikainen and Tomi Männistö
Department of Computer Science and Engineering

Helsinki University of Technology
timo.asikainen@tkk.fi, tomi.mannisto@tkk.fi

Abstract
Traditionally, product configuration research has
focused on two main areas: first, encoding the con-
figuration task in terms of a knowledge representa-
tion language, such as a form of constraint satisfac-
tion or some description logic, and reasoning about
the properties of the encoding; second, implement-
ing practical configuration systems. Less atten-
tion has been given to the conceptual and seman-
tic foundations of product configuration. In this pa-
per, we show how a novel metamodelling language,
NIVEL, can be used to explicitly represent knowl-
edge on three levels of abstraction, e.g., configura-
tion modelling concepts, configuration models and
their instances, configurations. In addition to phys-
ical products, we also consider the configuration of
software product families. Major parts of the se-
mantics for configuration modelling languages is
obtained as a by-product of defining a configura-
tion modelling language using NIVEL.

1 Introduction
Traditionally, product configuration research has focused on
two main areas: first, encoding the configuration task in terms
of a knowledge representation language, such as a form of
constraint satisfaction or some description logic, and reason-
ing about the properties of the encoding; second, implement-
ing practical configuration systems. Less attention has been
given to the conceptual and semantic foundations of prod-
uct configuration. In terms of citations, the most important
conceptualisations are those by [Soininen et al., 1998] and
[Felfernig et al., 2001]. However, both leave much room for
improvement in clarity and level of detail.

Also, the conceptual modelling languages, e.g., Ontolingua
[Gruber, 1992] applied by [Soininen et al., 1998] or UML
[Object Management Group, 2007] applied by [Felfernig et
al., 2001], are based on two levels of abstraction and hence
do not support representing the three levels of abstraction—
metalevel containing the definition of configuration mod-
elling concepts, model level containing configuration models,

∗This is a preliminary version of an article to appear in the Inter-
national Journal of Mass Customization

and instance level containing configurations—needed to rep-
resent configuration knowledge.

In this paper, we show how recent results in metamod-
elling, in particular the metamodelling language NIVEL
[Asikainen and Männistö, 2009], can be applied in the con-
text of product configuration. In more detail, we show how
configuration knowledge on the three levels of abstraction
can be represented in a natural and uniform manner us-
ing NIVEL. Major parts of the semantics of configuration
modelling languages is obtained as a by-product of defin-
ing them using NIVEL. In addition to standard conceptual-
isations of configuration knowledge [Soininen et al., 1998;
Felfernig et al., 2001], we discuss representative solutions to
a similar problem in the software engineering domain known
under the term software variability management. Further, we
extend NIVEL with role cardinalities that turn out to be in-
strumental in representing configuration knowledge.

The remainder of this paper is structured as follows.
NIVEL is introduced and extended with role cardinalities in
Section 2. Section 3 shows how NIVEL can be used to repre-
sent configuration knowledge. Discussion and comparison to
previous work follow in Section 4. The paper is rounded up
by some concluding remarks in Section 5.

2 Nivel: A metamodelling language
In this section, we discuss NIVEL [Asikainen and Männistö,
2009], a metamodelling language that will be used in the next
section for representing configuration knowledge.

2.1 Overview of NIVEL

NIVEL is a metamodelling language that does not commit
to a single modelling paradigm, such as object-orientation,
and therefore covers a large variety of different modelling
purposes. NIVEL is based on a core set of modelling con-
cepts, i.e., class, instantiation, association, generalisation,
attribute and value, and incorporates a number of recent
ideas including strict metamodelling [Atkinson and Kühne,
2002a], distinction between ontological and linguistic instan-
tiation [Atkinson and Kühne, 2003; Kühne, 2006], unified
modelling elements [Atkinson and Kühne, 2002b] and deep
instantiation [Atkinson and Kühne, 2007]. NIVEL supports
modelling on any number of levels in a uniform manner.

Timo Asikainen and Tomi Männistö 9

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

2.2 Abstract syntax
The abstract syntax of NIVEL is illustrated in Figure 1 using
the UML class diagram notation. However, the figure is not
intended to serve as an exhaustive description of the abstract
syntax of NIVEL, let alone as a definition of a semantics for
NIVEL. Instead, the figure is intended to give an intuitive
account of the concepts of NIVEL to a reader familiar with
the UML class diagram notation.

Class is the central language element of NIVEL in the sense
that all other language elements are directly related to class.
A class is an entity with an identity. Figure 2 contains an
example that will be used to illustrate the NIVEL language
elements throughout this section. A number of classes are
present in Figure 2, e.g., Book, Person and Novel.

Instantiation is a binary relation between classes. If the
pair (i, t) is in the relation, class i is termed an instance of t,
and class t a type of i. A restriction to single classification can
be made, in which case a class not on the top level must be
an instance of exactly one class; otherwise such a class must
be an instance of at least one type. Classes in Figure 2 (b)
are instances of classes in Figure 2 (a) with their types given
after their names, separated using colon (“:”); or alternatively,
using a dashed arrow, see Figure 2 (c).

A model consists of a set of classes, some of which are
top-level classes. A top-level class is such a class that is not
an instance of another class. The classes in Figure 2 (a) are
top-level ones.

A class may simultaneously be an instance and a type.
Hence, being an instance or a type are not intrinsic properties
of a class but roles played by a class in the instanceOf rela-
tion, as illustrated in Figure 2 (c), where Ivanhoe is both an
instance of Book and a type of LefasIvanhoe. LefasIvanhoe is
said to be a first-order instance of Ivanhoe and a second-order
instance of Book. The term higher-order instance is used to
refer to instances of order 2 or more.

The potency of a class gives the maximum order of its in-
stances. For instance, in Figure 2 (c), the class Book is of po-
tency 2 while LefasIvanhoe is of potency 0 and can therefore
have no instances. The potency is given using a superscript,
with 1 as the default value if none is given.

There can be generalisations between pairs of classes.
A generalisation is a binary relationship between a pair
of classes (a, b), represented using the subclassOf relation.
Class a is termed a subclass of b, and class b a superclass
of a. An instance of a subclass is also an instance of all the
superclasses of the subclass. Classes on a higher level exer-
cise control over their instances whether and how they may
participate in generalisations and define attributes.

A generalisation may belong to a generalisation set. All
generalisations in a generalisation set must share the same
superclass. Disjointness and covering constraints may apply
to generalisation sets. In the former (latter) case, an instance
of the superclass must be an instance of at most (least) one of
the subclasses of the generalisation set.

A class may have attributes and named values. An attribute
describes what values the instances, including higher-order
ones, of a class may and must have. The ability to describe
higher-order instances is achieved using the potency of an at-
tribute: an instance of a class has the same attributes as the

class but the potency decremented by one. When a class with
an attribute of potency 1 is instantiated, the instance has a
corresponding value. Hence, an attribute of potency p de-
scribes the instances of order p of the class. In Figure 2, class
Ivanhoe has the attributes name and nrOfPages bound to val-
ues Ivanhoe and 415, respectively.

An association is a relationship among a set of classes.
An association defines a set of roles each of which is played
by one or more classes, which is in contrast with associa-
tions (relations) in most previous conceptual modelling lan-
guages, such as UML and ER modelling, where a role must
be played by exactly one class. Also in contrast with such
languages, an association in NIVEL is also a class and may
hence have higher-order instances. Consequently, an associa-
tion in NIVEL may specify a relationship of interest between
higher-order instances of the participating classes.

Cardinality constraints may apply to associations. Cardi-
nality constraints in NIVEL resemble those in ER modelling,
see [Thalheim, 1992], and to a lesser extent the multiplicities
of association ends in UML. In addition to a lower and upper
bound, a cardinality constraint in NIVEL includes a potency
giving the order of instances of the association to which the
constraint applies; customary cardinality constraints apply to
first-order instances. The UML notation for multiplicities is
used for cardinality constraints, with the added concept of po-
tency denoted using superscript.

In Figure 2, trade is an assocation with three roles, seller,
buyer and book. The role seller is played by Person and
Company, the role buyer by Person and the role book by
Book; the name of the role book can be omitted as the name
equals the name of the class playing it.

2.3 Formal semantics
A formal semantics is given for NIVEL by translation to
WCRL [Simons et al., 2002], a general purpose knowledge
representation language syntactically similar to logic pro-
grams; a full discussion of the formal semantics is given by
[Asikainen and Männistö, 2009]. The symbol t will be used
to denote the translation.

In symbols, we write: t : N 7→ W , where N denotes the
set of syntactically well-formed NIVEL models andW the set
of WCRL programs. A model M entering the mapping t is
termed an input model.

The formal semantics capture the notion of a valid model.
Intuitively, the notion of validity pertains to the interrelations
that may and must exist between model elements: for exam-
ple, a class must not be an instance of itself. The mapping t
is constructed in such a way that each stable model of t(M),
where M ∈ N , corresponds to a valid NIVEL model.

An input model M need not be valid. In general, only
a subset of the elements of M is found in each valid spun
by M : an input model contains elements that may or may not
appear in valid models. Intuitively, an input model spans a
search space for valid models.

2.4 Extending NIVEL with role cardinalities
As discussed above, a role in an association may be played by
more than one class. This is a generalisation over typical con-
ceptual modelling languages, such as ER modelling [Chen,

Timo Asikainen and Tomi Männistö 10

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Association

Class
name:string [0..1]
/level:natural
potency:natural
isAbstact:Boolean
/mayDefineAttributes:Boolean
instancesMayHaveAttributes:Boolean
/superclassing:{none,single,multiple}
instanceSuperclassing:{none,single,multiple}

1

typeinstance

(direct)
instanceOf

hasRole

1

1

hasAttr

superclasssubclass

Value
name:string
value

1hasValue

(direct)
subclassOf

0..1

Attribute
name:string
potency:natural
cardinality:Cardinality
domain:Domain

Model
numberOfLevels:natural
multipleClassification:Boolean

topLevel 1..*

Cardinality
lower:natural
upper:natural [0..1]

GeneralisationSet
name:string
isCovering:Boolean
isDisjoint:Boolean

playsRoleIn

Domain
name:string
value [*]

RoleCardinality
cardinality:Cardinality
potency:natural

name:string
Role

1..*

cardinality:Cardinality
potency:natural

CardinalityConstraint

1

Figure 1: The abstract syntax of NIVEL given as a UML class model extended from [Asikainen and Männistö, 2009]

Personbuyer
seller[1..1]

trade
price
date

CompanyPerson

Book

Fact Novel

Book2

name
owner2

nrOfPages

Ivanhoe1

name=Ivanhoe
nrOfPages=415
owner

LefasIvanhoe0

owner=Lefa
Dan:Personbuyer

seller

:trade
price=4.99€
date=2008-09-22

BookLtd:Company

(b)

(a)

(c)

Ivanhoe:Novel

Figure 2: A NIVEL example: trades related to books

1976] and UML, where a role in a relation or an association
may only be played by a single class or entity, respectively.
However, in some cases it may be necessary to restrict the
number of classes playing a role in the instances of an asso-
ciation, either first or higher order. Towards this purpose, we
extend NIVEL with the notion of role cardinality; see Figure 1

for the abstract syntax.

A role cardinality relates to a role r in an association a and
consists of a cardinality [L..U] and a potency p. The intuitive
semantics is that for an instance of order p of a, the number
of classes playing role r must be at least L and at most U .
The upper bound may be omitted, in which case there is no

Timo Asikainen and Tomi Männistö 11

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

constraint on the maximum number of classes playing role r.
Note that the existing semantics of NIVEL implies that each
role is played by at least one class, i.e., L = 1.

The notation for role cardinalities is illustrated in Fig-
ure 2 (a): a role cardinality of [1..1] is defined for role seller
of trade. Similar conventions as for UML cardinalities are
adopted: If L = U , only one number is given as is done in
the figure. A missing upper bound is denoted using the sym-
bol “*”.

Role cardinalities can be given a formal semantics in
WCRL as follows using the symbols introduced in the previ-
ous paragraph and the predicates defined by [Asikainen and
Männistö, 2009]. For a lower bound L ≥ 2, we write:

←
{
playsRoleIn(C, r,Ai) : playsRoleInp(C, r,Ai)

}
L− 1,

instanceOf tpo(Ai, a, p), class(Ai)

and for an upper bound U (if one is defined):

← U + 1
{
playsRoleIn(C, r,Ai) : playsRoleInp(C, r, Ai)

}
,

instanceOf tpo(Ai, a, p), class(Ai)

Above, the predicate playsRoleIn(c, r, a) gives that class
c plays role r in association a and instanceOf tpo(i, t, o) that
i is an instance of t of order o.

3 Representing configuration knowledge
using NIVEL

In this section, we show how configuration knowledge can be
represented using NIVEL.

3.1 Levels of abstraction
Figure 3 illustrates the three levels of abstraction that under-
lie all product configuration frameworks, at least implicitly.
The highest level is the metalevel containing the metamodel
for the languages. In other words, the metalevel contains the
concepts and their interrelations that are used to define con-
figuration models on the level next below, termed the model
level. The third and lowest level termed instance level con-
tains instances and configurations. Intuitively, a configura-
tion represents an individual product. A configuration model
defines a set of configurations that are valid with respect to
the model. The semantics of a configuration model usually
concern the relation between a configuration model and con-
figurations: some configurations are valid with respect to the
configuration model.

The metalevel and the model level, and the model level and
the instance level are related to each other in a similar man-
ner: in both cases, the former can be characterised as a model
of the latter. Further, in both cases, entities on the former,
e.g., Mainboard and processor in Figure 3, can be termed
types of the entities on the latter and entities on the latter,
e.g., :Mainboard and :processor can be termed instances of
the entities on the former.

Nivel We give the NIVEL representation of configuration
modelling concepts under headings like this. The three lev-
els of abstraction can be represented in NIVEL in a straight-
forward manner using NIVEL models with three levels. The

metalevel

Type
Definition

Mainboard

Pentium

part

whole

whole

part

processor

model
level

instance
level

:Mainboard

:Pentium

whole

part

:processor

Configuration
Model

Computer

:Computer rootmodel

rootmodel

rootmodel

Figure 3: Levels of abstraction in product configuration
frameworks

metalevel is mapped to the top level, i.e., level 0, of a NIVEL
model. Entities on the model level are represented by NIVEL
model elements on level 1; these model elements are in-
stances of model elements on the top level. Similarly, en-
tities on the instance level are represented by level 2 model
elements.

3.2 Taxonomy
Types in configuration models can typically be organised into
taxonomies using a binary relation known under different
names in different approaches, e.g., isa [Soininen et al., 1998]
or generalisation [Felfernig et al., 2001], with the terms sub-
type and supertype used to refer to the types playing the roles
in the relation. The intuition underlying the relation is that
an instance of a subtype is also an instance of its supertypes.
This implies that the properties of a supertype become prop-
erties of its subtypes.

There are a number of issues that differentiate configura-
tion modelling languages with respect to taxonomies. First,
an important question related to generalisation is whether
multiple superclasses are allowed for a type or not: some con-
ceptualisations explicitly allow multiple superclasses [Soini-
nen et al., 1998] while others seem to equivocate on the issue
[Felfernig et al., 2001]. Second, in a configuration modelling
language with modelling constructs such as structure, con-
nection points and functions, one might wish to enable tax-
onomies for some constructs, e.g., components and functions,
but disable them for others.

Nivel Taxonomies in configuration modelling languages
can be represented in NIVEL using generalisations. It is
possible to decide independently for each modelling concept
whether its instances may be organised in taxonomies or not,
and if yes, whether multiple superclasses (supertypes) are al-
lowed or not. The double-headed arrow in Figure 4 (a) gives
that a component type, i.e., and instance of ComponentType,
may have any number of supertypes. Similarly, the single-

Timo Asikainen and Tomi Männistö 12

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

headed arrow in Figure 4 (e) has the semantics that a com-
ponent type may have at most one supertype. By default,
taxonomies are not allowed.

3.3 Compositional structure
Modelling the structure of configurable products is one of
the key constructs in virtually all configuration modelling
languages. The structure may be either physical or logical
[Soininen et al., 1998].

Intuitively, the structure pertains to part-whole relation-
ships between entities, most importantly components. In
other words, a component may be composed of other compo-
nents, thus forming a compositional hierarchy. It is also said
that a component is a part of the other component, termed
whole, that is said to contain the part.

The compositional structure is specified using part defini-
tions in component types. A part definition relates a whole
type and part type(s): depending on the method, there may
be either many possible part types [Soininen et al., 1998] or a
single part type [Felfernig et al., 2001]. In the latter case, the
effect of multiple possible types can be achieved by defining
a common supertype, if one does not already exist, for the
desired set of types.

In addition to the above-disussed types, a part definition
may have other properties. Most importantly, a cardinality is
an integer range [L..U] with the semantics that a whole in a
valid configuration must have at least L and at most U parts
by the part name. Further, a part definition contains a part
name [Soininen et al., 1998] that identifies the role in which
instances of the possible part types are parts of instances of
the whole type.

Nivel The NIVEL representations for the approaches by
[Soininen et al., 1998] and [Felfernig et al., 2001] are il-
lustrated in Figures 4 (a) and (e), respectively. In the lat-
ter approach, the effect of multiple possible types is achieved
by defining a supertype for the desired set of types, cf. Fig-
ure 4 (f). Note that the cardinality of the whole role is re-
stricted to 1 in both cases.

Figures 4 (b), (c) and (f) illustrate parts on the model level.
Figures 4 (b) and (c) are both based on Figure 4 (a), with
(b) using the basic NIVEL notation and (c) a more concise
notation tailored. Figure 4 (f) shows a part definition based
on Figure 4 (e).

At the instance level, Figures 4 (d) and (g) illustrate part
relationships based on Figures 4 (c) and (f), respectively.

3.4 Root types and instances
The root, or possibly multiple roots, of the compositional hi-
erarchy are commonly defined by associating one (or more)
types as root types of a configuration model. The intuitive
semantics is that only an instance of a root type may appear
in a valid configuration without being a part of another com-
ponent. It is said that each instance in a valid configuration
must have a justication in one of these two ways.

Alternatively, instead of defining a root type for a config-
uration model, it is possible to define a Boolean attribute for
component types with the semantics whether an instance of

ComponentType2

ConfigurationModel2

model

root 11,2

(a)

ComponentType2

ConfigurationModel2

model

root [1..*]1,12

(b)

model

root

:Altitude

«AltitudePC»
TomsAltitude

(d)

ComponentType2

independent:boolean

(e)

model

root

«ConfigurationModel»
Altitude

«ComponentType»
AltitudePC

(c)

Figure 5: Representing configuration models and root com-
ponent types, and configurations and root component in-
stances in NIVEL. (a) A definition at the metalevel requiring
that each configuration model has a single root component
type and each configuration has a a single root component in-
stance. (b) Similarly as above, but a configuration model may
now have several root component types. (c) Configuration
model Altitude with component type AltitudePC as its root
component type. (d) An unnamed configuration of Altitude
with TomsAltitude as its root component instance. (e) An al-
ternative approach used by [Soininen et al., 1998].

the component type may appear in a valid configuration with-
out being a part of another component [Soininen et al., 1998].

The number of root types in a configuration model and the
number of root instances in a valid configuration may vary,
the typical specification being exactly one root type and in-
stance [Soininen et al., 2000], while other authors allow mul-
tiple root instances [Soininen et al., 1998; Kang et al., 1998].

Nivel The NIVEL representations of different approaches
to roots are represented in Figure 5. At the metalevel, Fig-
ure 5 (a) illustrates the case of a single root type (cardinality
constraint 1 at the root end) and instance (12), whereas Fig-
ure 5 (b) the case of multiple root types ([1..∗]1) but a single
root instance (12). The approach followed by [Soininen et
al., 1998] can likewise be represented using NIVEL, see Fig-
ure 5 (e).

3.5 Ports and connections
In addition to the compositional structure of components, it is
in many cases of interest to model the possibilities for inter-
actions between model elements. In product configuration,
points of interaction, typically termed ports, and connections
between these are standard means for capturing interactions
within configurable products.

Just as compositional structure, the points of interaction
and their interconnections may be either physical or logical
[Soininen et al., 1998]. Connection points may also have a
direction, as is the case in Koala [van Ommering et al., 2000]

Timo Asikainen and Tomi Männistö 13

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

part

hasPart2

name
cardinality
exclusive:Boolean

ComponentType2

(a) (b) (c)

(f)

AltitudePC

hd[1..3]
{exclusive}

IDE-HDSCSI-HD

AltitudePC
whole

IDE-HDSCSI-HD

part

:hasPart
name=hd
cardinality=1..3
exclusive=true

(d)

:SCSI-HD

TomsAltitude
:AltitudePC

hd

SCSI-HD IDE-HD

HD

AltitudePC

1..3

(g)

«AltitudePC»
TomsAltitude

:SCSI-HD

a
whole[1]

(e)

part[1]whole[1]

hasPart2

cardinality

ComponentType2
a

Figure 4: Representing compositional structure in NIVEL. (a) Definition of a part relation at the metalevel similar to found in
[Soininen et al., 1998]. Multiple possible part types may be defined. (b) A sample part definition in a configuration model.
(c) The same definition as above represented using custom notation. (d) In a configuration, TomsAltitude has an instance of
SCSI-HD as its part. (e)–(g) An alternative conception of compositional structure similar to [Felfernig et al., 2001]. (e) A part
definition has a single type for the part. (f) alternative type may be defined as subtypes of a common supertype. (g) Parts have
no role names in configurations.

and Koalish [Asikainen et al., 2003].
Just as for compositional hierarchy, an instance of a con-

nection point type (e.g., a port instance) may not typically ap-
pear in a valid configuration without being justified by being
a connection point of some entity.

As suggested by the term connection point, there may be
connections between connection points. In different con-
figuration modelling languages, different constraints apply
to the connections that must and may exist between con-
nection points. As an example, [Soininen et al., 1998] re-
quire that the types of connected ports must be compatible.
Also, there are differences in the number of connections a
connection point may participate in. Finally, connections
may either have a direction [van Ommering et al., 2000;
Asikainen et al., 2003] or no direction, which is the typical
case for physical and electronics products [Soininen et al.,
1998; Felfernig et al., 2001].

Nivel The NIVEL representation of connection points sim-
ilar to those in [Soininen et al., 1998] is demonstrated in Fig-
ure 6 (a). Hence, a connection point at the model level is char-
acterised by a name and a cardinality. Further, the definition
of connections at the metalevel is illustrated in Figure 6 (b).
Connections are symmetric in that the ports participating in
instances of the association both play the same (unnamed)
role. The role cardinality 2 of potency 2 implies that a con-
nection is between exactly two ports on the instance level.

Port definitions on the model level are illustrated in Fig-
ures 6 (c) and (d), using basic NIVEL notation and a notation
tailored for the purpose, respectively. Figures 6 (f) and (g)
illustrate component-port relationships at the instance level,
using a notation similar to Figure 6 (d). Figure 6 (h) shows a
connection between the ports of Figures 6 (f) and (g).

Note that, according to NIVEL semantics, in order for two
ports to be connected at the instance level, their respective
types must be associated through the connection association
at the model level. As an example, the association in Fig-
ure 6 (e) is needed to enable the connection in Figure 6 (f).
Such first-order instances of connection correspond to com-
patibility definitions of [Soininen et al., 1998].

An alternative definition of a connection relation is given
as Figure 6 (i). The definition resembles the notion of connec-
tions in Koala [van Ommering et al., 2000] and its derivative,
Koalish [Asikainen et al., 2003]. The defined connections are
antisymmetric, with the roles from and to.

3.6 Attributes and values
A type in a configuration model may be characterised by
attributes, also termed attribute definitions [Soininen et al.,
1998]. An attribute is typically characterised by a name and
an attribute value type, or domain, the term used in NIVEL.
In addition, an attribute may be characterised by a cardinal-
ity with semantics intuitively similar to the cardinality of a
part definition, see Section 3.3, or a binary necessity defini-
tion that allows distinguishing between mandatory and op-
tional attributes [Soininen et al., 1998]. An attribute that may
take more than one value is termed set-valued as opposed to
a single-valued attribute.

A valid instance of a type with an attribute definition has a
number of values corresponding to the attribute definition.

Nivel In NIVEL, the decision whether attributes may be
defined is made for each modelling concept separately at the
top level. As an example, Figures 4 (a) and (e) show how
attributes are enabled for component types using the symbol
“a” at the top-right corner. The default is that no attributes

Timo Asikainen and Tomi Männistö 14

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

SCSI-Slot

SCSI-Plug

:connection

(e)

component

port

ComponentType2

PortType2

12

hasPort2

name
cardinality

(a)

PortType2

port[22]

connection2

(b)

component

port

AltitudePC
:ComponentType

:hasPort
name=scsi
cardinality=0..1

SCSI-Slot
:PortType

(c)

SCSI-HD
:ComponentType

SCSI-Plug
:PortType

plug[1]

(d)

:SCSI-Slot

:SCSI-Plug

::connection

(h)

:SCSI-Plug

plug

:SCSI-HD

(g)

TomsAltitude
:AltitudePC

:SCSI-Slot

scsi

(f)

from

to
InterfaceType2

connection2

(i)

Figure 6: Representing ports and connections in NIVEL. (a) Definition of the hasPort relation between components and ports
at the metalevel. (b) The definition of the connection relation. (c) An example port definition. (d) Another port definition
represented using custom notation. (e) The port types SCSI-Slot and SCSI-Plug are compatible with each other. (f)–(g) Compo-
nents have ports in configurations. (h) A connection between components in a configuration. (i) An alternative, non-symmetric
definition of connections at the metalevel similar to the connections of Koala [van Ommering et al., 2000].

may be defined for instances of a type. Attributes are by de-
fault set-valued. However, attributes can be easily constrained
to be single-valued [Asikainen, 2008].

4 Discussion and comparison to previous
work

In this section, we reflect the work presented in this paper
with previous work on configuration modelling languages.

4.1 Evaluation
In this subsection, we discuss which aspects of configuration
modelling languages can be fully captured with NIVEL using
the kind of model fragments presented in Figures 4 through 6
and which aspects require additional constraints.

To begin with, the NIVEL semantics for the notions of gen-
eralisation, instantiation, attribute and value are as such ap-
plicable in configuration modelling languages. The seman-
tics cover both well-formedness rules for each of the above-
mentioned modelling concepts and their interrelations. Fur-
ther, NIVEL enables the concise representation of the ab-
stract syntax for compositional structure as well as connec-
tion points and connections.

On the other hand, some of the semantic aspects of compo-
sitional structure, connection points and connections are not
covered by NIVEL. In more detail, the notions of justifica-
tion discussed in Section 3.3 and the semantics of cardinality
attributes (cf. Figures 4 (a) and (e)) must be specified using
additional constraints; [Asikainen and Männistö, 2009] pro-
vide an example set of such constraints. The same applies to
the similar notions for connection points.

Further, the NIVEL semantics (for valid model) is more
general than the customary definition of configuration task,
i.e., finding a valid configuration of a configuration model

m matching a given set of customer requirements R. Con-
sequently, additional constraints are needed to restrict valid
NIVEL models to valid configurations. Also, given a config-
uration model m, a set of instances large enough to cover any
valid configuration of m must be generated; under suitable
restrictiong, this can be achieved using a simple algorithm as
has been shown by [Asikainen and Männistö, 2009].

Finally, certain kinds of configuration knowledge cannot
be represented in NIVEL at all, or at least not in a straight-
forward manner. These kinds include procedural knowledge
on the configuration task, or the derivation process, as the au-
thors [Hotz et al., 2006] call it; and resource-based modelling
originally suggested by [Heinrich and Jüngst, 1991] and
later incorporated in other approaches [Soininen et al., 1998;
Felfernig et al., 2001; Hotz et al., 2006].

4.2 Explicit knowledge representation
One of the contributions of this paper is to give more explicit
yet concise and easily understandable definitions of configu-
ration modelling languages. The contribution of such defini-
tions can be seen by comparing our approach with previous
conceptualisations of configuration knowledge.

In the configuration ontology of [Soininen et al., 1998],
only taxonomic relationships between concepts on the met-
alevel are represented using diagrammatic notation: al-
though it is said that Component type is a direct-subclass-of
Configuration type, the ways in which a component type or
component instance may relate to other configuration types is
only explained in natural language.

The conceptualisation by [Felfernig et al., 2001] is even
more parsimonious in describing the modelling concepts: the
reader is forced to infer much of the abstract syntax of the
conceptualisation from an example configuration model. In-
stead, emphasis is given on configuration knowledge based
construction and diagnosis.

Timo Asikainen and Tomi Männistö 15

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

5 Conclusions and further work
We have shown how configuration modelling languages can
be defined using a novel metamodelling language, NIVEL. In
contrast to most, if not all, previous work, NIVEL enables the
uniform representation at three levels of abstraction relevant
to configuration modelling—metalevel containing the defini-
tion of configuration modelling concepts, model level con-
taining configuration models, and instance level containing
configurations describing individual products. Consequently,
knowledge at all three levels can be explicitly represented.
We believe that this substantially facilitates both understand-
ing individual conceptualisations of configuration knowledge
and comparing such conceptualisations with each other.

Further work is required to bring the ideas presented in this
paper closer to practice. A suitable tool supporting NIVEL
can be used as a product configurator. Of course, matching
the level of usability and efficiency of the state-of-the-art con-
figurators may require crafting a generic NIVEL tool to bet-
ter support configuration purposes. On the other hand, such
a tool based on NIVEL could accommodate a wide range of
configuration modelling concepts. Hence, such a tool would
in itself be configurable.

Acknowledgements
We gratefully acknowledge the financial support from the
Technology Industries of Finland Centennial Foundation.

References
[Asikainen and Männistö, 2009] Timo Asikainen and Tomi

Männistö. Nivel—a metamodelling language with a for-
mal semantics. Software and Systems Modeling, in press,
2009.

[Asikainen et al., 2003] Timo Asikainen, Timo Soininen,
and Tomi Männistö. A koala-based approach for mod-
elling and deploying configurable software product fam-
ilies. In Frank van der Linden, editor, 5th International
Workshop on Product Family Engineering (PFE-5), vol-
ume 3014 of Lecture Notes in Computer Science, pages
225–249. Springer, 2003.

[Asikainen, 2008] Timo Asikainen. A Conceptual Modelling
Approach to Software Variability. PhD thesis, Helsinki
University of Technology, Department of Computer Sci-
ence and Engineering, 2008.

[Atkinson and Kühne, 2002a] Colin Atkinson and Thomas
Kühne. Profiles in a strict metamodeling framework. Sci-
ence of Computer Programming, 44(1):5–22, 2002.

[Atkinson and Kühne, 2002b] Colin Atkinson and Thomas
Kühne. Rearchitecting the UML infrastructure. ACM
Transactions on Modeling and Computer Simulation,
22(4):290–321, 2002.

[Atkinson and Kühne, 2003] Colin Atkinson and Thomas
Kühne. Model-driven development: A metamodeling
foundation. IEEE Software, 20(5):36–41, 2003.

[Atkinson and Kühne, 2007] Colin Atkinson and Thomas
Kühne. Reducing accidental complexity in domain

models. Software and Systems Modeling, 7(3), 2007.
DOI: 10.1007/s10270-007-0061-0.

[Chen, 1976] Peter P. Chen. The entity-relationship model—
toward a unified view of data. ACM Transactions on
Database Systems, 1(1):9–36, 1976.

[Felfernig et al., 2001] Alexander Felfernig, Gerhard
Friedrich, and Dietmar Jannach. Conceptual modeling for
configuration of mass-customizable products. Artificial
Intelligence in Engineering, 15(2):165–176, 2001.

[Gruber, 1992] Thomas R. Gruber. Ontolingua: A mech-
anism to support portable ontologies. Technical report,
1992.

[Heinrich and Jüngst, 1991] M. Heinrich and E. W. Jüngst.
A resource-based paradigm for the configuring of techni-
cal systems from modular components. In Seventh IEEE
Conference on AI Applications (CAIA), pages 257–264,
1991.

[Hotz et al., 2006] Lothar Hotz, Katarina Wolter, Thorsten
Krebs, Sybren Deelstra, Jos Nijhuis, and John MacGre-
gor. Configuration in Industrial Product Families—The
ConIPF Methodology. IOS Press, 2006.

[Kang et al., 1998] Kyo C. Kang, Sajoong Kim, Jaejoon Lee,
Kijoo Kim, Euiseob Shin, and Moonhang Huh. Form: A
feature-oriented reuse method with domain-specific ref-
erence architectures. Annals of Software Engineering,
5:143–168, 1998.

[Kühne, 2006] Thomas Kühne. Matters of (meta-) modeling.
Software and Systems Modeling, 5(4):369–385, 2006.

[Object Management Group, 2007] Unified Modeling Lan-
guage: Superstructure, version 2.1.1. Technical Report
formal/2007-02-05, Object Management Group (OMG),
2007.

[Simons et al., 2002] Patrik Simons, Ilkka Niemelä, and
Timo Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1-2):181–
234, 2002.

[Soininen et al., 1998] Timo Soininen, Juha Tiihonen, Tomi
Männistö, and Reijo Sulonen. Towards a general ontol-
ogy of configuration. Artificial Intelligence for Engineer-
ing Design, Analysis and Manufacturing, 12(4):357–372,
1998.

[Soininen et al., 2000] Timo Soininen, Ilkka Niemelä, Juha
Tiihonen, and Reijo Sulonen. Unified configuration
knowledge representation using weight constraint rules. In
ECAI’00 Workshop on Configuration, 2000.

[Thalheim, 1992] Bernhard Thalheim. Fundamentals of car-
dinality constraints. In Günther Pernul and A Min
Tjoa, editors, 11th International Conference on the Entity-
Relationship Approach (ER ’92), volume 645 of Lecture
Notes in Computer Science, pages 7–23, 1992.

[van Ommering et al., 2000] Rob van Ommering, Frank
van der Linden, Jeff Kramer, and Jeff Magee. The
koala component model for consumer electronics soft-
ware. IEEE Computer, 33(3):78–85, 2000.

Timo Asikainen and Tomi Männistö 16

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

A Simple Evaluation Process for Configurability

Andreas Falkner and Alois Haselböck
Siemens AG Österreich, 1030 Vienna, Austria

e-mail: {andreas.a.falkner,alois.haselboeck}@siemens.com

Abstract
During the design of products and product families
it is important as early as possible to balance the
costs for better configurability with the profits
which can be gained by it. For that purpose, we
propose a simple yet comprehensive process based
on an evaluation table containing configurable fea-
tures and configuration criteria.
In a quick first step, the necessity and the profit-
ability of each planned feature is estimated. In a
second step, the features with a low profitability
are analyzed in detail, resulting in a decision to
skip them or to redesign them. The goal is to re-
duce overall configuration costs without compro-
mising necessary requirements.

Motivation
Academic literature on the topic of product configuration
like the series of workshops on configuration systems ([Tii-
honen et al., 2008] and previous ones) focuses mainly on
techniques (like constraint solving), algorithms, tools, etc. -
generally speaking, on "doing things right". In praxis it is
equally important to use those techniques in a useful and
economic way - i.e. "doing the right things". Conferences on
mass customization (like [Blecker et al., 2007]) cope with
such topics, e.g. identification of configurable components,
designing product families, etc.

In [Riitahuhta et al., 2000], the subject of “design for con-
figuration” is comprehensively discussed. Designing modu-
lar systems starts with a study of the market, the potential
customers and the available technology. This analysis leads
to a product structure built from modular parts, where
modularization is established and enhanced using relational
matrices considering strategic and functional aspects of the
product.

Hence, configurability and design for configuration is a
broad topic with many important aspects. In this work, we
specifically focus on an aspect with a high economic poten-
tial: the interface between product design and configurator
design, reviewing the chosen flexibility/variability of the
product. To which extent shall the product and its compo-

nents be subject to configuration, i.e. customization to indi-
vidual customers' needs?
 The analysis of configurability and profitability shall be
light-weight. Otherwise it would consume too many res-
sources or would not be accepted by the involved persons.

Configuration costs
From an abstract point of view, configuration is the process
of discriminating a special solution from a set of possible
solutions. Typically, this discrimination process is done
stepwise in turn by the user and the configuration tool (i.e.
configurator application).

Costs arise for both implementing and using the tool. In-
vesting more into the tool can help significantly reduce the
efforts of the users for their configuration work.

If the user is an engineer who configures a complex tech-
nical system (like a railroad switching system or a factory)
as prerequisite of the delivery process, then the configura-
tion costs can be a significant part of the overall system
costs.

If the user is an end customer who - for example - config-
ures and orders a consumer product directly via an internet
application, then the number of inputs, the duration of the
order session, and the presentation of questions and result
contribute much to the user acceptance and to his decision
to buy the product in the first place.

In both cases, the configuration tool must guide the user
to or must generate solutions of acceptable quality. Bad so-
lutions will cause additional costs and – even worse - bad
reputation. So we demand that our configuration tool is do-
ing the “right” thing (ignoring here that there usually is a
range of possibilities how to guide the user and how to pre-
sent the options and results).

The configuration tool must take over those parts in the
solving process, which can be automatically derived. Essen-
tially, this is ruling out illegal solutions and making deci-
sions which are already determined in the current state of
the configuration. Costs for implementation and mainte-
nance of the configuration tool must not be underestimated
and should be part of the budget right from the beginning of
product development.

We can describe configuration as a decision tree. The
nodes are the parameters to be configured, and the arcs are

Andreas Falkner and Alois Haselböck 17

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

the possible values for the parameters. Decisions are made
alternately by the user and by the tool. Figure 1 shows such
a decision tree, which is, of course, a very simple example
with binary decisions only.

Figure 1: Configuration decision tree

The lowest level (the leafs) represents all possible combi-
nations of the configuration parameters. They are parti-
tioned into two groups: solutions and illegal combinations.
The user makes those decisions which discriminate the path
to his/her solution, while the tool makes those decisions
which rule out illegal branches. Usually, a configurator
should minimize the decisions to be made by the user and
should guide the user to an optimal solution reaching vari-
ous quality criteria, like fulfilling all the user requirements,
being economical, using state-of-the-art components, etc.

There are many techniques for how a configuration tool
can support the user and minimize her/his costs. E.g. it
could establish some degree of consistency (partial or full,
see [Bessiere, 2006]), and it may choose the order of pa-
rameters in an optimal way (see recommender systems
[Felfernig and Burke, 2008]).

Another cost criterion for complex technical systems is
optimization. If the decisions made by the user do not dis-
criminate a single solution but a set of solutions which all
meet the user's requirements, then the configuration tool
must find the best solution according to some defined opti-
mization criteria (e.g. minimum hardware costs, extendibil-
ity). This produces additional challenges and therefore costs
for design, implementation and maintenance of the configu-
rator.

A real-world example
One of our configurators in railroad safety domain allows to
plan ETCS systems (ETCS = European Train Control Sys-
tems). The basic units in ETCS are the so-called datapoints,
which lie between the track metals and transmit information
to the passing train about the properties of the forthcoming
section, like gradient and speed profile, signaling and stop
points.

A datapoint consists of at least one concrete sending unit,
a so-called balise. The size of a telegram a balise may send
is quite restricted due to the short passing time of fast trains.
Therefore, balises can be cascaded to increase the potential
telegram length.

One of our customers demanded to use only one single
balise per datapoint to save hardware and installation costs,
assuming to reduce the entire costs. But it turned out that
this optimization attempt didn't pay off.

At about a third of all datapoints, the telegrams where too
big and did not fit into a single balise. For these cases, a
second balise would have solved the problem in a simple
way. But in order to fulfill the single-balise requirement,
both configurator implementers and users had a lot of extra
work. The configurator rules and constraints had to be tuned
so that the telegrams were as small as possible. Addition-
ally, the users had to manually optimize several telegrams to
squeeze them into the balises.

Figure 2: Example of a requirement evaluation

An analysis of the costs for the single-balise optimization
is shown in figure 2. Costs are estimated for hardware, in-
stallation, maintenance and – this is the important point here
– configuration. In the left part of the requirement evalua-
tion graph, the version without the single-balise optimiza-
tion (the blue line) clearly outperforms the single-balise
optimization variant (the red line) because hardware costs
don’t play a dominant role in that region. From a certain
value (which is around 300 datapoints), the single-balise
optimization pays off because the hardware savings com-
pensate the higher configuration costs. Such an analysis in
an early phase of system design would have made this point
clear.

Evaluation of configuration complexity
The preceding example shows that it is not enough to take
the number of configuration parameters and decisions (i.e.
the size of the decision tree) into account to estimate the
costs for configuration user and tool. Rather must costs for
each feature (e.g. group of parameters, their dependencies,
and their optimization requirements) be evaluated sepa-
rately.

To avoid unnecessary costs for the configuration of a
product, or to prevent that expensive configuration costs eat
up the additional benefit of a certain product feature, con-
figuration architects should be involved in the product de-
sign in an early phase. Product and configurator designers
should together identify those parameters and dependencies,
which may be simplified or removed to reduce the overall
product costs.

The rough steps in the product life-cycle are the product
design and development, the tool design for logistics and
sales (e.g. the configurator), and the sales processes. Product
design, together with sales and marketing department, is
responsible for the planning of the product features, of the
hardware and software, and of the production, delivery, in-
stallation and sales processes. See also [Hvam et al., 2007].

parameter 1

parameter 3

parameter 2
user

user

tool

0 100 200 300 400 500 600 700

number of
datapoints

costs

single-balise
optimization

break-even

multiple balises

Andreas Falkner and Alois Haselböck 18

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Figure 3: Product life-cycle

Specifically, product design defines the requirements for
the product configurator, which represents the interface to
the customer. On the one hand, these requirements define
the building structures of the system, along with its variabil-
ity to provide the flexibility necessary for the customers'
needs. Configurator design now maps these structures to an
appropriate data model and to dependencies and restrictions
within this model (constraints, rules).

On the other hand, product design must provide – at least
to a certain degree – requirements on the configurator us-
ability and the optimization criteria. For example, for many
consumer products it is state-of-the-art that the customer
sees a picture of the current state of the product any time in
the configuration session. Such demands aim at improved
usability and acceptance of the configurator, and – eventu-
ally – of the product. But they may have high impacts on the
realization costs of the configurator.
 An early involvement of configurator designers in the
product design may identify and avoid cost-ineffective re-
quirements like in the real-world example above, thus in-
creasing the overall profitability. We see the profitability
here as the ratio of benefits or profits gained by the feature
in question versus its implementation costs in the configura-
tion tool - similar as seen in development processes like
Scrum for prioritizing the product backlog (see e.g. [Watts
and Haines, 2009]).

Figure 4: Product life-cycle with configurator
requirements evaluation

We propose the following process for the start phase of

configurator development:
• definition of the requirements of the product features,

usability and optimization criteria
• quick evaluation of those requirements to find candi-

dates which potentially may be simplified or removed
in order to increase profitability

• detailed evaluation of those candidates and estimation
of their cost-effectiveness

• re-design and final approval of the product features

Product design and configurator requirements
Product design must specify all requirements on the con-
figurator, so that data model, dependencies, constraints,
user-interface and input/output interfaces can be designed
and realized.

It is convenient to do this from the features point of view.
Features define the product how it can be designed and per-
sonalized by the customer. We take into account only fea-
tures which depend on configuration (configurable features).
They shall not be too small (so that we are not overwhelmed
by details) and the estimation of their profits and costs must
be reasonably possible. Examples:
• model type of a bicycle (mountain bike, city bike, or

racing bike)
• size and material of a T-shirt
• type and power of the CPU in an electronic railroad

interlocking system
A feature is implemented in the configurator data model

as one or more configuration parameters (whose values are
to be chosen by the customer during configuration), along
with some internal data structures which carry all necessary
information for a complete and consistent solution. Those
are descriptions of the provided hardware, assembly possi-
bilities, properties, costs, etc.

Dependencies and restrictions define the valid combina-
tions of the configuration parameters and internal variables
(e.g. choosing a certain module requires a special power
supply).

Sales and marketing provide requirements for the user-
interface. It must be specified, how the different features
and their choices are presented to the customer. Answers for
the following questions must be given:
• Is the configurator a web application or stand-alone?
• What are the skills of the customer (end customer, te-

chnical engineer)?
• Which widgets are to be used for the user-input?
• Are graphical representations and pictures necessary to

present a certain feature?
• Is a preview picture of the current product state to be

displayed?
• Are the current costs to be displayed?
• etc.

In addition, product design must specify all input/output
interfaces of the configurator. Mainly in complex technical
domains, a direct connection of the configurator to a PLM
system (e.g. SAP) is required. Typical export data are hard-
ware lists, assembly plans, and cost calculations.

All these requirements should be described in a schematic
and structured form, so that the subsequent review steps can
be managed efficiently.

Quick evaluation of configurator complexity
When a first version of the configurator requirement speci-
fication is available, product and configurator designers
should evaluate the required features together. This is neces-
sary to estimate benefits as well as cost needed to calculate
the profitability. One goal of this evaluation is to find those

product design tool design
(e.g. configurator)

sales processes
evaluation
&

 re-design

next product generation

product design tool design
(e.g. configurator)

sales processes

next product generation

Andreas Falkner and Alois Haselböck 19

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

requirements with a realistic chance that a re-design (a sim-
plification) cuts down the configuration costs without im-
pairing the overall product functionality.

We recommend the evaluation of the product features
along the following aspects:
• Is this feature necessary for the functioning of the prod-

uct? Is it necessary for sales or marketing reasons? If
the answer is a clear “yes”, a detailed (and expensive)
evaluation of this feature is not needed.

• What is the expected profit which this feature adds to
the product? Since it is not always easy to estimate this
value, we suggest to additionally specify the confidence
in this estimation.
Different to the costs criteria (see below), we have here
only one accumulated value “expected profit”. This
value will usually be forcasted by the design team or by
product management in a separate process step, taking
several factors into account. We omit details here as we
concentrate on the work of the configurator architect.

• What are the configurator costs for this feature?
o for the data model part
o for reasoning logics (constraints, rules)
o for optimization criteria
o for the user interface
o for communication and data interfaces
o for maintenance

An additional aspect to be considered is the costs for the
user of the configurator. This may not be relevant for simple
standard questions like “choose your preferred value from a
list of possible values”, but may be important for complex
technical domains, where data which are difficult to collect
must be provided by the user. Example from the railroad
domain: The input of the reference positions of signals is
required by certain accuracy. If this accuracy is in the range
of a few meters, the positions can be read off from existing
layout plans in a quite simple way. But if the required accu-
racy is decimeter, normally the track topology must be
measured anew which is very time-consuming and expen-
sive.

Suggested evaluation sheet
As an implementation and documentation for the process we
propose an evaluation sheet as shown in figure 5. It contains
all aspects mentioned in the previous section. Other aspects
which affect the costs significantly can be added easily by
extending the table when necessary - e.g. security (authori-
zation, authentication) when it is relevant for the applica-
tion.

The evaluation starts by writing the features which are
subject to configuration one after the other in the first col-
umn of the table. They need not be too detailed - but the
description must be clear enough for the participants to
know their meaning. The level of refinement resembles that
of a product backlog in Scrum style (see [Wikipedia:Scrum,
2009]). If necessary for accurate evaluation, the features
may be split to more detailed ones later.

In the example in figure 5, the product is an individual-
ized T-shirt which has an image or text printed on. Some
data for the shirt and for the image are configurable. In addi-
tion, the configurator shall comprise some constraints and
other features.

The next step is a quick assessment how necessary each
feature is, e.g. from a technical view (like required by the
product design), or by legal regulations, or by state-of-the-
art standards.

Like all the other values, this is done in a simple scale
coded as integer values: very large/high (4), large/high (3),
medium (2), small (1), very small or null (0). We could use
enumeration values like XL, L, M, S, and XS instead. Inte-
gers, however, have the advantage that they are easily or-
dered and can be summed and averaged (although we do not
do so at present). In order to reach a sufficiently wide span
of value sizes, we have chosen to use 5 values instead of
only 4 values as typically used in the House of Quality ap-
proach in Quality Function Deployment (QFD), see
[Wikipedia:HoQ, 2009].

Low values are marked by yellow or red, respectively -
thus indicating features which are not as necessary as others.

Feature

ne
ce

ss
ar

y

ex
pe

ct
ed

co
nf

id
en

ce

m
od

el

re
as

on
in

g

op
tim

iz
at

io
n

us
er

 in
te

rf
ac

e

da
ta

 in
te

rf
ac

es

m
ai

nt
en

an
ce

pr
of

ita
bi

lit
y

Comments

Shirt data (size, material, color, etc.) 4 not evaluated
Image (text, jpg, etc.) 4 not evaluated
Image data (size, color) 3 3 2 1 1 2 15
Different colors of image and shirt 3 2 4 0 1 1 20
Image size must fit to shirt 2 2 4 1 4 1 2 complicated image processing
Shirt on stock 4 not evaluated
Preview of configured shirt 3 4 3 1 1 1 1 40
Discount (amount, special offers) 1 3 3 2 2 1 2 2 5

Profit Costs

Evaluation of configurability costs and gains

Figure 5: Evaluation matrix

Product: Individualized T-Shirt values: 0 (very small) - 4 (very large)

Andreas Falkner and Alois Haselböck 20

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Those marked in red are the favorites to be evaluated in
depth. Features with the maximum value are absolutely nec-
essary and need not evaluated. By that, the scope of evalua-
tion is reduced significantly.

For the "red" and "yellow" features, the expected profit is
entered next, together with the confidence in its rating -
again in the scale 0-4 (XS, S, M, L, XL). High profits are
printed in bold - thus giving the user a hint that higher costs
could be accepted. In our example this is true for the feature
"Discount" which has a high profit with high confidence and
medium costs for various aspects.

Low and medium profits are marked with red and yellow,
respectively - thus giving a hint where to look for cost re-
duction first (i.e. for cancelling configurability for this fea-
ture). In our example those are the constraints concerning
color and size of shirts and images.

Now the configurator developers do a rough estimation of
the implementation costs separately for the main aspects of
the configurator - again in the scale 0-4 (XS, S, M, L, XL).
Here it is not yet important to get "real" costs (not even
story-points like in Scrum), but only a rough magnitude.
The scale is to be seen relatively to the size of the product
(meaning that large in the context of a small product would
be small in the context of a complex product). Again, high
values are marked with red, medium with yellow. The last
column is meant for comments on the important values - in
our example for the constraint on the size.
 As an additional measure, the profitability is calculated
by 10 * square of profit / sum of squares of each cost.
Squaring is done in order to weight high values significantly
higher - in analogy to the Quality of House values (0, 1, 3,
9). Nevertheless the value of the profitability is only a sym-
bolic one, with values less than 5 to be considered very
weak (marked red), values less than 10 weak (marked yel-
low) and those higher than 20 to be considered good (bold
font).

The color code and the simple scale make it easy to iden-
tify the features with a bad smell, i.e. those which are not
absolutely necessary, do not have a high profit, but have
high costs or low profitability. They have to be analyzed in
detail.

The following situations may arise:
• High profit, little costs, i.e. high profitability (like fea-

ture "Preview" in our example): no need to go into de-
tail, just implement.

• High profit, high costs (like feature "Discount" in our
example): verify profit expectations, estimate efforts in
detail.

• Low profit, high costs, i.e. low profitability (like con-
straint on size in our example): no need to go into de-
tail, discard feature (configurability). Only if it was
rated with a very high necessity, consider simplifying
(i.e. loosening the requirement for a "perfect" configu-
rator) or search for alternatives.

• Low profit, low costs (like constraint on color in our
example): consider implementation, if necessity is high
enough.

Deep evaluation of hotspots
The hotspot features identified in the quick review step
above (normally not more than a handful) must now be
evaluated in deep detail. Costs and benefits must be esti-
mated and compared. Often, this analysis depends on the
number of systems which are expected to be sold. If the
expected number of systems is below a certain break-even
point, the feature is cost-ineffective (see the real-world ex-
ample at the beginning).

If it turns out that an analyzed feature is cost-ineffective,
product design and configurator design should together find
an alternative. This could be either to completely abandon
the feature, or to simplify it, e.g. by simplifying the user-
interface design or by trimming down the possible options
(which, of course, leads to reduced product flexibility).

Summary and outlook
We proposed a process for finding a design for a configur-
able product with a high profitability or for reducing con-
figurator costs, respectively.
 The process supports early involvement of configurator
designers in product design thus identifying expensive fea-
tures. It relies on two phases: quick evaluation of all config-
urable features, deep evaluation of hotspots.

At present, we do not have figures concerning the bene-
fits of implementing this process for all our projects, but we
have used it successfully in several situations. Furthermore,
we are still adapting it to requirements and experiences aris-
ing in our project environments.

Areas of future work are:
• using a more detailed way for estimating the costs (e.g.

story-points as used in Scrum)
• balance the costs for implementing the configurator

and for users' configuration work (i.e. either invest
more into the tool or invest more into engineers who
use the tool)

• theoretical analysis of knowledge-base structures and
dependencies to find “bad designs”

• check-list for deep analysis
• configuration anti-patterns

References
[Bessiere, 2006] Christian Bessiere. Constraint Propagation.

In Handbook of Constraint Programming, pages 29-83.
Elsevier, 2006.

[Blecker et al., 2007] Th. Blecker, K. Edwards, G. Friedrich,
L. Hvam, F. Salvador. Innovative Processes and Prod-
ucts for Mass Customization. GITO 2007.

[Felfernig and Burke, 2008] Alexander Felfernig and Robin
Douglas Burke. Constraint-based recommender systems:
technologies and research issues. In Proceedings of the
10th international conference on Electronic commerce,
Innsbruck, Austria, August 2008.

Andreas Falkner and Alois Haselböck 21

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

[Hvam et al., 2007] Lars Hvam, Niels Henrik Mortensen,
Jesper Riis. Product Customization. Chapter Specifica-
tion Processes and Product Configuration, pages 17-41.
Springer 2007.

[Riitahuhta et al., 2000] A. Riitahuhta, A. Pulkkinen. Design
for Configuration. A Debate based on the 5th WDK
Workshop on Product Structuring. Springer 2000.

 [Tiihonen et al., 2008] Juha Tiihonen, Alexander Felfernig,
Markus Zanker, Tomi Männistö. Proceedings of the
Workshop on Configuration Systems. 18th European
Conference on Artificial Intelligence, July 2008.

[Watts and Haines, 2009] Geoff Watts and Jason Haines.
Priority markets - A Free Market Approach to Managing
the Product Backlog. http://www.scrumalliance.org/arti-
cles/117-priority-markets, February 2009.

[Wikipedia:HoQ, 2009] Wikipedia. House of Quality.
http://en.wikipedia.org/wiki/House_of_Quality, March
2009.

[Wikipedia:Scrum, 2009] Wikipedia. Scrum (development).
http://en.wikipedia.org/wiki/Scrum_(development),
March 2009.

Andreas Falkner and Alois Haselböck 22

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Construction of Configuration Models

Lothar Hotz
HITeC e.V.

Department of Computer Science
University of Hamburg

hotz@informatik.uni-hamburg.de

Abstract
In this paper, a novel approach for creating config-
uration models is supplied by introducing a meta-
knowledge base that enables the construction of
configuration models. The meta-knowledge base
represents all knowledge bases that can be ex-
pressed with a given configuration language, in the
case of this paper, with the Component Descrip-
tion Language CDL. The meta-knowledge base it-
self is again represented with CDL and thus, at the
metalevel it can use configuration tools that relay
on CDL. With this approach inference techniques
that are normally used for configuration of techni-
cal systems can be applied for the construction of
configuration model, i.e. during knowledge acqui-
sition and evolution.

1 Introduction
Knowledge-based configuration has its origin in the task of
configuring physical components like drive systems [Ranze
et al., 2002] or elevators [Marcus et al., 1988]. For example
in [Günter, 1995] configuration is defined as “the composi-
tion of technical systems from parameterisable objects to a
configuration, that fulfills a certain task” or Stefik defines in
[Stefik, 1995] configuration tasks as tasks that “select and ar-
range instance of parts from a set”. The focus is set on the
composition of parts to aggregates and thus, on the composi-
tional relation has-parts.

Naturally, in all approaches descriptions of objects are
composed, not the physical objects themselves. By doing
so, configuration can be understood as model construction
[Buchheit et al., 1995; Hotz and Neumann, 2005; Hotz,
2009]. From the configuration point of view model construc-
tion deals with the composition of arbitrary artifacts on the
basis of a logical theory. Where a strict separation of the log-
ical theory, i.e. the knowledge base or configuration model,
and the logical model, i.e. the configuration or better con-
struction is issued. Starting from a knowledge base a con-
figuration system composes a construction that is consistent
with the knowledge base, i.e. a logical model of the knowl-
edge base is created.

Following this understanding of the configuration task the
above mentioned has-parts relation is more a has rela-

tion, which is applied to various domains e.g. services [Ti-
ihonen et al., 2006], where e.g. a client has a certain in-
surance demand, or to software [Hotz et al., 2004], where
a software component has a certain feature, to scene inter-
pretation [Hotz, 2006], where a certain scene description has
observed or hypothized objects or actions. The has rela-
tion determines what part descriptions are to be integrated
in a resulting construction (i.e. a system description). By
taking up such a perspective sometimes considered concep-
tual mismatches [Tiihonen et al., 2006], which may come up,
when using configuration systems in non-physical domains,
are avoided.

Taking a further step, one may look at configuration models
as a type of software that is constructed during a knowledge-
acquisition process. Thus, the questions arise: “Can the con-
struction of configuration models be supported by configura-
tion tools?” or “What are the parts that are composed in such
an approach?” or “How does a configuration model that en-
ables the configuration of configuration models (i.e. a meta-
configuration model) look like?”.

An application of such a meta-configuration model is nat-
urally to support the knowledge-acquisition process needed
for knowledge-based configuration systems. In a first phase
of a knowledge-acquisition process the typically tacit knowl-
edge about a domain is extracted by applying knowledge-
elicitation methods and high interaction between a knowl-
edge engineer and the domain expert (knowledge-elicitation
phase). A model sketch is the result, which in turn is for-
malized during the domain-representation phase. During
this phase a configuration model is created. The configura-
tion model has to be expressed with the facilities of a con-
figuration language. The meta-configuration model can be
used to check such configuration models for being consistent
with the configuration language. Thus, by using the meta-
configuration model as a knowledge base of a configuration
system, the domain-representation phase can be supported
similarly to a configuration process.

In this paper, we will elaborate answers to the mentioned
questions by first presenting a construction language, i.e. the
Component Description Language CDL, which enables the
description of domain objects (see Section 2). We than in-
vestigate in a concept for a configurator that enables the con-
figuration of arbitrary configuration models, i.e. a meta con-
figurator and its meta-configuration model (Section 3). We

Lothar Hotz 23

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

partly implement such a meta configurator by using the con-
figuration system KONWERK [Günter and Hotz, 1999]. A
discussion and a summary is provided in Section 4 and Sec-
tion 5 respectively.

2 The Component Description Language
2.1 A Sketch of CDL
The Component Description Language CDL introduced here
is similar to existing other configuration languages as they
are described in [Soininen et al., 1998; Stumptner, 1997;
Felfernig et al., 2002; Cunis et al., 1991; Günter, 1995]. The
language mainly consists of two modeling facilities:

Concept Hierarchy Domain objects are described using
concepts, a specialization hierarchy (based on the is-a
relation), and structural relations. Concepts gather all
properties, a certain set of domain objects has, under a
unique name. A specialization relation relates a super-
concept to a sub-concept, where the later inherits the
properties of the first. The structural relation is given
between a concept c and several other concepts r, which
are called relative concepts. With structural relations a
compositional hierarchy based on the has-parts rela-
tion can be modeled as well as structural relationships
like has-feature or has-concept. Parameters spec-
ify domain-object attributes with value intervals, sets of
values (enumerations), or primitive values. Parameters
and structural relations of a concept are also referred to
as properties of the concept. Instances are instantiations
of the concepts and represent concrete domain objects.
When instantiated, the properties of an instance are ini-
tialized by the values or value ranges specified in the
concepts.

Constraints Constraints summarize conceptual constraints,
constraint relations, and constraint instance. Conceptual
constraints consists of a condition and an action part.
The condition part specifies a structural situation of in-
stantiated concepts. If this structural situation is fulfilled
by some instances (the instances match the structural sit-
uation), constraint relations that are formulated in the
action part are instantiated to constraint instances.1

Constraint relations can represent restrictions between
properties like all-isp or create-instance. Fig-
ure 1 shows the definition of the predefined constraint
relations used in the following. The constraint rela-
tions create-instance and integrate-instance
are later used for constructing structural relations and
thus, provide main facilities for creating resulting con-
structions.

Knowledge processing is done by the inference techniques
taxonomical reasoning, value-related computations like inter-
val arithmetic, establishing structural relations, and constraint
propagation. The structural relation as the main machinery

1Thus, conceptual constraints are similar to rules, except the ac-
tion part yields to instantiations of constraint relations not to changes
in objects like rules do.

integrate-instance <set1 instance1 instance2 set2>

Integrate instance1 into set2 and instance2 into
set1. instance1 and instance2 than have
established structural relations among them.

all-isp <set type>

Ensures that all objects in set are subtype of type.

Figure 1: Some predefined relations of CDL.

(define-relation :name has-elements
:inverse element-of
:mapping m-n)

(define-concept :name Door
:specialization-of Opening
:element-of
((:type Scene-Aggregate :min 0 :max 2)
:=
(:type Entrance :min 0 :max 1)
(:type Balcony :min 0 :max 1)))

(define-concept :name Entrance
:specialization-of Opening
:has-elements
((:type Scene-Object :min 1 :max 3)
:=
(:type Door :min 1 :max 1)
(:type Wall :min 0 :max 1)
(:type Roof :min 0 :max 1)
(:type Stairs :min 0 :max 1)))

(define-concept :name Balcony
:specialization-of Scene-Aggregate
:has-elements
((:type Scene-Object :min 1 :max 3)
:=
(:type Railing :min 1 :max 1)
(:type Window :min 0 :max 1)
(:type Door :min 0 :max 1)))

Figure 2: Example of a concept definition in CDL. The struc-
tural relation has-elements is defined, which relates one
aggregate with several parts and one part with several aggre-
gates. Furthermore, several concepts are defined with number
restricted structural relations. The right side of the operator
:= consists of the super-concept of all relative concepts and
the total minimal and maximal number of those concepts. The
left side restricts the number of each type.

causes the constructive notion of the language: if such a rela-
tion is given between a concept c and several relative concepts
r, depending on what exists first as instances in the construc-
tion (c or one or more of the relative concepts r), instances for
the other part of the relation are created and the construction
increases.

A configuration process (or better model-construction pro-
cess) applies these inference techniques in a certain way and
constructs step-by-step a construction. At each step a current
partial construction is issued. The knowledge needed for this
processing is modeled by further modeling facilities, i.e. a
task description and procedural knowledge. The task descrip-
tion is given in terms of an aggregate, which must be con-
figured (the goal), and possibly additional restrictions such
as choices of parts, prescribed properties, etc. Furthermore,
the configuration process provides a stepwise composition of
a construction. Each step is one of the following kinds of

Lothar Hotz 24

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

construction steps: top-down structuring (e.g. aggregate in-
stantiation), bottom-up structuring (e.g. part integration), in-
stance specialization, and parameterization. A step reduces
a property value of an instance to a subset or finally to a con-
stant. Procedural knowledge declaratively describes the se-
lection of those steps and the inference techniques to be used.

Thus, adding facilities for task descriptions and procedu-
ral knowledge to CDL one gets a complete configuration lan-
guage like the Configuration Knowledge Modeling Language
CKML described in [Hotz et al., 2006]. However, in this pa-
per we concentrate on the first mentioned modeling facilities
of concepts and constraints and try to express them with CDL
again. CDL is fully described in [Hotz, 2009].

2.2 Parts of the Metamodel of CDL
For expressing the goals of this paper, we give more details
for the definition of structural relations in CDL.

Concepts and constraints of CDL are given by an abstract
syntax (see Figure 3), a concrete syntax (see Figure 2 for an
example2), and several consistency rules.

For describing CDL with an abstract syntax, we introduce
three facilities: a knowledge element, a taxonomical relation
between knowledge elements, and a compositional relation
between knowledge elements. However, these facilities are
not to be mixed up with the above mentioned CDL facilities:
concepts, a specialization relation, and structural relations.
See Figure 3, a CDL concept is represented with a knowledge
element of name concept, a CDL structural relation is rep-
resented with the knowledge element relation-descriptor.
The fact that CDL concepts can have several structural rela-
tions is represented with a compositional relation with name
has-relations. Similarly parameters are represented. Thus,
the above mentioned modeling facilities of CDL are repre-
sented with these metalevel facilities.

In Figure 4 further parts of the metamodel are given for
representing structural relations. The fact that a concept is
related by a structural relation of other concepts (the relative
concepts) is represented with three knowledge elements and
three compositional relations in a cyclic manner.

Several consistency rules define the meaning of the syntac-
tic constructs. For the structural relation, one rule defines that
the types of the relative concepts of a structural relation have
to be sub-concepts of the concept on the left side of the opera-
tor := (rule-5). Additionally consistency rules are given that
check CDL instances, e.g. one rule defines when instances
match a conceptual constraint (rule-6).

3 A Concept for a Meta Configurator
3.1 What CDL provides
The main feature of CDL is given by the use of its inference
techniques like constraint propagation (see Section 2). By
representing the knowledge of a domain with modeling fa-
cilities of CDL (like concepts with specialization, structural,

2For the examples, the façade domain is used where the domain
objects are parts of houses like balcony, door, stories. The purpose
is to construct scene interpretations from façade images (see [Hotz,
2008]).

property

language construct

parameter descriptorrelation descriptor concept

concept instance

1..n
has-parametershas-relations

taxonomical relation knowledge element
name

has-superconcept

has-instances0..n

compositional relation with
name and defaults

1..1 1..1

1..n

Figure 3: Metamodel for a concept of CDL

concept

0..n 1..n structural specificator
minimum
maximum

relation descriptor
name

operator

has-relations
has-concept

has-spec

Figure 4: Metamodel for a structural relation of CDL

and constraint relations) those inference techniques can be
applied for model construction. This representation is basi-
cally a generic description of domain objects of a domain at
hand. For the representation of concrete domain objects this
description is instantiated. Such instances are related to each
other through the relations. Furthermore, instances can be
checked for concept membership.

What does this mean for the representation of CDL in
CDL? In this case, the domain consists of CDL knowledge
bases. A Meta-CDL knowledge base (Meta-CDL-KB) gener-
ically represents all knowledge bases that can be expressed
with CDL (see Section 3.2). Doing so, the above mentioned
inference techniques can be used for CDL knowledge bases.
For example, a knowledge base G for a certain domain D
(like the façde domain) can be created through instances of
concepts of the Meta-CDL-KB. Examples are concept-mm
for representing concepts and parameter-mm for represent-
ing parameters (see Figure 5). These concepts are related to
each other e.g. concept-mm has-parameters parameter-
mm. Through a configuration process, which applies the in-
ference techniques of CDL in a certain way, a knowledge base
G of a domain D can be created. Furthermore, a given knowl-
edge base can be checked, if it can be constructed in principal
with the Meta-CDL-KB, i.e. if it is a CDL knowledge base.
An architecture that supports these tasks is given in Section
3.3.

Lothar Hotz 25

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

3.2 CDL in CDL
For the presentation of CDL in Section 2 three facilities are
used, i.e. knowledge elements, taxonomical relation, and
compositional relation. Those are mapped to the CDL con-
structs concept, specialization relation, and structural re-
lation respectively. For example, the knowledge elements
for describing the CDL facilities in Figure 3 concept, rela-
tion, and parameters are represented with the metaconcepts
concept-mm, relations-descriptor-mm, and parameter-
mm (see Figure 5).

Furthermore, the consistency rules of CDL have to be rep-
resented. This is achieved by defining appropriate constraints,
which in turn use value-related computations (Section 2) for
computing appropriate values. In Figure 6 a conceptual con-
straint is represented, which checks the types of a structural
relation.3

Also instances can be represented on the metalevel by in-
cluding a metaconcept instance-mm for them. Through
these instances also conceptual constraints and their match-
ing instances can be represented (see Figure 7). Furthermore,
the fact that instances fulfill a certain conceptual constraint is
represented through establishing appropriate relations using
the constraint relation integrate-instance. Note, that
also self references can be described, e.g. a concept-mm is
related to itself via the has-superconcept-mm relation (see
also the loop in Figure 3).

3.3 A Meta-Knowledge Server
In this section, we describe the use of the Meta-CDL-KB for
the construction of a CDL knowledge base for arbitrary do-
mains. This use is realized by introducing a Meta-Knowledge
Server (MKS) for supervising the construction of the CDL
knowledge base. The MKS handles the current status of
the evolving CDL knowledge base during the knowledge-
acquisition process as well as the current status of CDL in-
stances during a configuration process.

In Figure 8, we sketch the first case. the MKS uses the
Meta-CDL-KB as configuration model M . Furthermore,
MKS uses the model-construction process for supervising
the construction of a configuration model G of a given do-
main. If e.g. a concept c of the domain is defined with
define-concept the MKS is informed. The MKS observes
the activities during the construction of the CDL knowledge
base, i.e. during the domain-representation phase. The MKS
• supplies services like check-knowledge-base, add-

conceptual-constraint,
• creates appropriate instances of Meta-KB-CDL meta-

concepts (e.g. concept-mm or conceptual-constraint-
mm),
• applies the typical model-construction process by using

procedural knowledge,
• uses constraint propagation for checking the consistency

rules,
• completes the CDL knowledge base by including

mandatory parts, and
3For a complete mapping of the CDL consistency rules to con-

ceptual constraints see [Hotz, 2009].

(define-concept :name concept-mm
:specialization-of named-domain-object-mm
:concept-of-dom-mm (:type domain-mm)
:superconcept-of-mm
(:type concept-mm :min 0 :max inf)
:in-some-mm (:type some-mm :min 0 :max inf)
:has-superconcept-mm
(:type concept-mm :min 0 :max 1)
:has-relations-mm
(:type relation-descriptor-mm :min 0 :max inf)
:has-parameters-mm
(:type parameter-mm :min 0 :max inf)
:has-instances-mm
(:type instance-mm :min 0 :max inf))

(define-concept :name relation-descriptor-mm
:specialization-of named-domain-object-mm
:relation-of-mm (:type concept-mm)
:has-left-side-mm (:type some-mm :min 1:max 1)
:has-right-side-mm (:type some-mm :min 0:max inf)
:has-relation-definition-mm
(:type relation-definition-mm :min 1:max 1))

(define-concept :name some-mm
:specialization-of domain-object-descriptor-mm
:parameters ((lower-bound [0 inf])

(upper-bound [0 inf]))
:in-relation-left-mm
(:type relation-descriptor-mm)
:in-relation-right-mm
(:type relation-descriptor-mm)
:some-of (:type concept-mm))

(define-concept :name instance-mm
:specialization-of named-domain-object-mm
:instance-of-dom-mm (:type domain-mm)
:instance-of-mm (:type concept-mm)
:matching-instance-of-mm
(:type conceptual-constraint-mm)
:has-relations-mm
(:type relation-descriptor-mm :min 0 :max inf)
:has-parameters-mm
(:type parameter-mm :min 0 :max inf))

Figure 5: Formalizing the knowledge elements shown in Fig-
ure 3 with CDL concepts.

• checks consistency of created parts of G.
The MKS integrates concepts of G as instances of meta-

concepts of M in the current partial construction, which
represents G at the metalevel. Changes in already de-
fined concepts are represented by backtracking on the met-
alevel model-construction process. By using backtracking
approaches, especially dependency-based backtracking (see
[Hotz et al., 2004; Ferber et al., 2002]), dependencies of mod-
eling decisions can be managed. Thus, changes of a CDL
configuration model (i.e. during the knowledge-acquisition
process or during evolution [Männistö and Sulonen, 1999])
are basically changes of G, i.e. changes of the currently con-
structed model on the metalevel. Evolution is backtracking
on the metalevel.

Besides this construction of CDL knowledge bases the
MKS can scrutinize CDL instances, which are created dur-
ing a model-construction process. For this task, MKS is sup-
plied with such instances (see Figure 9) and creates instances
of the metaconcept instance-mm. By doing so consistency
rules for instances represented as conceptual constraints on
the metalevel can be checked.

Looking from the MKS perspective the construction of a
CDL knowledge base can be seen as the interpretation of

Lothar Hotz 26

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

(define-conceptual-constraint :name consistency-rule-5
:structural-situation
((?c :name concept-mm)
(?rd :name relation-descriptor-mm

:relation-of-mm ?c)
(?svt :name some-mm

:in-relation-left-mm ?rd)
(?stdi :all :name some-mm

:in-relation-right-mm ?rd))
:constraint-calls
((all-isp ?stdi ?svt)))

Figure 6: A conceptual constraint representing consistency
rule 5. The concepts of the right side of a relation descriptor
has to be sub-concepts of the left side.

(define-concept :name conceptual-constraint-mm
:specialization-of named-domain-object-mm
:structural-situation
(:type concept-expression-mm :min 1 :max inf)
:constraint-calls
(:type constraint-call-mm :min 1 :max inf)
:matching-instances
(:type instance-mm :min 0 :max inf))

(define-conceptual-constraint
:name instance-consistency-rule-6
:structural-situation
((?cc :name conceptual-constraint-mm)
(?i :name instance-mm

:self (:condition
(instance-matches-cc-p *it* ?cc))))

:constraint-calls
((integrate-instance-relation ?i

(matching-instance-of ?i) ?cc
(matching-instances ?cc))))

Figure 7: Describing conceptual constraints with there
matching instances on the metalevel.

an external system similar to the interpretation of an outside
scene. MKS observes the construction of the CDL knowl-
edge base and tries to integrate the observations by using the
Meta-CDL-KB. This task is similar to scene interpretation
where evidence in a scene is interpreted by constructing an
interpretation on the basis of a model for anticipated scenes.
Thus, similar implementations can be applied for the MKS
like top-down and bottom-up structuring, spontaneous instan-
tiation, and merging (see also [Hotz and Neumann, 2005;
Hotz, 2006]).

We implemented parts of the meta configurator with the
configuration system KONWERK [Günter and Hotz, 1999].
The Meta-CDL-KB could be used for constructing knowl-
edge bases for a PC-domain. However, first experiments de-
mand the need of highly interactive facilities for visualizing
the complex relational structures of meta-level instances, e.g.
visualizing which some-mm instance belongs to the which
concept-mm during the configuration process.

4 Discussion
The model-construction view as it is emphasized in this work
is a systematic generalization of structure-oriented configu-
ration like it is provided by [Günter, 1995; Soininen et al.,
1998] and others. This is mainly achieved by focusing on the
structural relation, which ensures existence of instances in the
resulting construction. These instances build the constructed

Constructing domain model G
for domain D

Create instances of concept concept-mm

Process model construction including
checking the consistency rules for concepts

Provide completed domain model
as current partial construction

Meta knowledge server with
domain model M

Define CDL concepts for domain D

Accepting consistent concepts and
additional model parts

Concepts as evidence

Consistency results,
completed domain model

Figure 8: Meta-knowledge server applied to constructing a
configuration model.

Constructing of a configuration of a
technical system by using domain model G

Create instances of concept instance-mm
Process model construction including

checking the consistency rules for instances

Provide partial configuration for the technical
system as partial configuration of domain model M

Create CDL instances

Accepting consistenc instances

Instances as evidence

Consistency results

Meta knowledge server with
domain model M

Figure 9: Meta-knowledge server applied to constructing a
configuration.

model. This model is a description of the desired technical
system, which is used e.g. for the production process. In this
sense, also other configuration approaches like connection-
based [Mittal and Frayman, 1989], resource-based [Hein-
rich and Jüngst, 1991], or function-based [Najman and Stein,
1992] can be seen as model-construction approaches. This
view to configuration enables the concise application of con-
figuration tools in environments like services, software, or
like in this paper on metalevels. However, for model con-
struction seldom supported facilities are needed as there are:

• The representation and processing of cyclic relational
structures. Those techniques are sometimes avoided like
in [Magro et al., 2002; Arlt et al., 1999].

• Sophisticated control mechanisms like bottom-up and
top-down construction. Typically only top-down is em-
phasized in configuration systems.

• Connecting model construction with other external sys-
tems or the real world during the model-construction
process demands spontaneous instantiation of concepts.
In configuration systems only for creating the knowl-
edge base external data like databases are used and the
resulting configuration is exported for producing the
configured system.

The creation of a metamodel for CDL with the aid of CDL
has its tradition in self-referencing approaches like Lisp-in-
Lisp [Brooks et al., 1983] or the metaobject protocol, which
implements CLOS (the Common Lisp Object System) with
CLOS [Kiczales et al., 1991]. Such approaches demonstrated
the use of the respective language. In case of CDL the meta-
knowledge server is enabled. It makes strong use of the im-
plemented inference techniques of CDL like constraint prop-
agation.

The meta-knowledge server is basically an implementation
of a configuration tool on the basis of the Meta-CDL-KB, i.e.
of a configuration model. A typical configuration tool is im-
plemented with a programming language and an object model

Lothar Hotz 27

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

implemented with it. During this implementation one has to
ensure correct behavior of model construction and the infer-
ence techniques. By using CDL this behavior (e.g. the consis-
tency rules) is declaratively modeled, not implemented. The
bases for this realization are of course the implementation of
value-computation methods and constraint mechanisms.

The here introduced meta-knowledge base has some rela-
tions to metamodeling approaches like described in [OMG,
2006; 2007; Kühne, 2006; Hesse, 2006]. Thus, in the follow-
ing, we take a first glance to some aspects of metamodeling
(see also [Asikainen and Männistö, 2009] for a deeper anal-
ysis of metamodeling). The main task of metamodeling is
to specify modeling facilities that can be used for defining
models, see for example [OMG, 2007]: “A metamodel is a
model that defines the language for expressing a model”. Or
compiled to terms used here: “The Meta-CDL-KB is a con-
figuration model that defines CDL, which in turn is used for
expressing a configuration model” (see Figure 10). However,
the notion of modeling is still not finally fixed (see [Kühne,
2006; Hesse, 2006]), or as [Hesse, 2006] says: “A complete
and unanimously accepted theory of modeling is still emerg-
ing.”. Besides these theoretical issues, in our approach a more
pragmatical and operational view is taken, i.e. how to apply
a metamodel for supporting the use of the language the meta-
model defines. From this perspective, let us examine the Re-
quirements Specification Language RSL [Kaindl et al., 2007;
Śmiałek et al., 2007; Hotz et al., 2009]. A metamodel defines
elements typically used for specifying requirements as their
are use-cases, scenarios etc. A tool (RSL-Tool) enables a re-
quirements engineer to express her use-cases etc. through a
user interface and the tool constructs a requirements specifi-
cation expressed in RSL. Thus, the metamodel of RSL is used
by the implementor of the RSL-tool, which in turn ensures a
requirements specification that is compliant to the metamodel
of RSL (see Figure 10). However, the implementation is done
manually and specific for the RSL-metamodel. The creation
of metamodel compliant models can be supported by a con-
figuration tool.

A configuration tool supplies mainly three tasks:
1. It enables the expression of a configuration model that

is consistent with the configuration language, which the
tool implements. For this task, it performs consistency
checks of given configuration models (or parts of it) with
the language specification.

2. On the basis of the configuration model, the configura-
tion tool supports the creation of constructions that are
consistent with the configuration model. For this task,
the tool interprets the logical expressions of the con-
figuration model and creates constructions according to
these definitions.

3. The configuration tool supplies user interfaces for ex-
pressing the configuration model and for guiding the
construction process. The configuration model can be
typically given in textual forms or with graphical user
interfaces that enable the creation of concepts and con-
straints.

Thus, a configuration tool contains means for supporting
the step from a domain model to a system specific model (see

Figure 10). By introducing configuration models in the model
chain as presented in Figure 10, an additional level is intro-
duced, i.e. the domain-model level. This level represents all
systems of a domain. The model for a system is an instan-
tiation of the domain model. This instantiation is computed
by a configuration tool. In our metamodeling approach based
on the Meta-CDL-KB this instantiation facility is used for
supporting the step from the configuration language to the
domain model, i.e. the domain-representation phase. By ap-
plying the configuration tool to a domain model that contains
every model of a language, i.e. by applying it to the Meta-
CDL-KB, the construction of a domain model of an arbitrary
domain is supported. This is achieved because of the gen-
eral applicability of the language constructs of CDL, which
are based on logic (see Section 2). Furthermore, other advan-
tages of configuration tools, like a declarative representation
of the configuration model, or the use of the inference tech-
niques can thus applied to the Meta-CDL-KB.

A similar approach as supplied by the meta-knowledge
server is provided by [Kienzler, 2000] who uses meta plan-
ning. A primary construction process is supported by a sec-
ondary analysation process on the metalevel. The configura-
tion process is controlled by a meta planner. The meta planner
is strongly coupled with the configuration process. However,
it is realized by a further external implementation not in the
configuration language itself.

Other approaches like [Dietrich et al., 2004] also use a
meta-model approach for supporting the configuration pro-
cess. However, by using a configuration language for ex-
pressing the metamodel, in our approach a configuration tool
can directly applied for making use of the metalevel.

5 Summary
The paper shows how a configuration language can be ex-
pressed with its own representation facilities. Thus, the parts
that are composed in such a case are the modeling facilities
the configuration language supplies, i.e. concepts, parame-
ters, constraints etc. The configuration model contains con-
cepts, parameters, constraints that again represent concepts,
parameters etc. By doing so, inference techniques that are
provided by the language can be used for constructing config-
uration models and thus, support the knowledge-acquisition
process. In this case, the configuration tool is mainly used
for checking the consistency of the constructed configuration
models. Thus, the use of the inference techniques support
the formal basis of such processes. Further work will empha-
size user-interface tools that support the visualization and ma-
nipulation of highly structured relationships including cyclic
structures that occur on the metalevel.

References
[Arlt et al., 1999] V. Arlt, A. Günter, O. Hollmann, T. Wag-

ner, and L. Hotz. EngCon - Engineering & Configuration.
In Proc. of AAAI-99 Workshop on Configuration, Orlando,
Florida, July 19 1999.

[Asikainen and Männistö, 2009] T. Asikainen and
T. Männistö. A metamodelling approach to config-
uration knowledge representation. In Proc. of the

Lothar Hotz 28

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Metamodel Language Model in the LanguageMOF/UML:

RSL: RSL-Metamodel
given as
UML-Profile

RSL
Requirements model for
a certain domain (e.g. an
Emergency system)

Configuration model/
Model of a domainCDL view: Construction/

Model of a systemCDLMetamodel of CDL

Realized by RSL-specific tool

Realized by the CDL-specific configuration tool
that interprets the knowledge base representing
the configuration model

Realized by a knowledge engineer

Configuration model/
Model of a domainMeta-CDL view: Construction/

Model of a system
CDL represented
with Meta-CDL-KB Metamodel of CDL

Realized by CDL-specific
configuration tool

Realized by a requirements engineer with
support of the RSL-specific tool

Realized by a knowledge engineer with
support by the CDL-specific configuration
tool that interprets the Meta-CDL-KB
representing the metamodel of CDL

Realized by the CDL-specific configuration tool
that interprets the knowledge base representing
the configuration model

Realized by CDL-specific
configuration tool

defines

Metalevel Language level System-model levelDomain-model level

Figure 10: Relations between metamodels and domain models and their tool support.

Configuration Workshop on 22th European Conference on
Artificial Intelligence (IJCAI-2009), Pasadena, California,
2009.

[Brooks et al., 1983] R.A. Brooks, R.P. Gabriel, and
L. Steele Jr. Lisp-in-Lisp: High Performance and Porta-
bility. In Proc. of Fifth Int. Joint Conf. on AI IJCAI-83,
1983.

[Buchheit et al., 1995] M. Buchheit, R. Klein, and W. Nutt.
Constructive Problem Solving: A Model Construction Ap-
proach towards Configuration. Technical Report TM-95-
01, Deutsches Forschungszentrum für Künstliche Intelli-
genz, Saarbrücken, January 1995.

[Cunis et al., 1991] R. Cunis, A. Günter, and
H. Strecker (Hrsg.). Das PLAKON-Buch. Springer
Verlag Berlin Heidelberg, 1991.

[Dietrich et al., 2004] A.J. Dietrich, W. Hümmer, and Ch.
Meiler. Meta model based Configuration Approach for
mass-customizable Products and Services. In Proceedings
ot the 4th Workshop on Information Systems for Mass Cus-
tomization (ISMC 2004), Madeira Island, Portugal, 2004.

[Felfernig et al., 2002] A. Felfernig, G. Friedrich, D. Jan-
nach, M. Stumptner, and M. Zanker. A Joint Foundation
for Configuration in the Semantic Web. In Proc. of the
Configuration Workshop on 15th European Conference on
Artificial Intelligence (ECAI-2002), pages 89–94, Lyon,
France, July 21-26 2002.

[Ferber et al., 2002] A. Ferber, J. Haag, and J. Savolainen.
Feature Interaction and Dependencies: Modeling Features
for Re-engineering a Legascy Product Line. In Proc. of
2nd Software Product Line Conference (SPLC-2), Lecture
Notes in Computer Science, pages 235–256, San Diego,
CA, USA, August 19-23 2002. Springer Verlag.

[Günter and Hotz, 1999] A. Günter and L. Hotz. KON-
WERK - A Domain Independent Configuration Tool.
Configuration Papers from the AAAI Workshop, pages 10–
19, July 19 1999.

[Günter, 1995] A. Günter. Wissensbasiertes Konfigurieren.
Infix, St. Augustin, 1995.

[Heinrich and Jüngst, 1991] M. Heinrich and E. Jüngst. A
Resource-based Paradigm for the Configuring of Tech-
nical Systems from Modular Components. In Proc. of
7th IEEE Conf. on Artificial Intelligence for Applications
(CAIA’91), pages 257–264, Miami Beach, Florida, USA,
February 24-28 1991.

[Hesse, 2006] W. Hesse. More matters on (meta-)modelling:
remarks on thomas kühne’s ”matters”. Journal on Soft-
ware and Systems Modeling, 5(4):369–385, 2006.

[Hotz and Neumann, 2005] L. Hotz and B. Neumann. Scene
Interpretation as a Configuration Task. Künstliche Intelli-
genz, 3:59–65, 2005.

[Hotz et al., 2004] L. Hotz, T. Krebs, and K. Wolter. Depen-
dency Analysis and its Use for Evolution Task. In 18th

Lothar Hotz 29

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Workshop, New Results in Planning, Scheduling and De-
sign (PuK2004). University of Oldenburg, 2004.

[Hotz et al., 2006] L. Hotz, K. Wolter, T. Krebs, S. Deelstra,
M. Sinnema, J. Nijhuis, and J. MacGregor. Configuration
in Industrial Product Families - The ConIPF Methodol-
ogy. IOS Press, Berlin, 2006.

[Hotz et al., 2009] L. Hotz, K. Wolter, S. Knab, and A. Solth.
Ontology-based Similarity of Software Cases. In submit-
ted to International Conference on Knowledge Engineer-
ing and Ontology Development, 2009.

[Hotz, 2006] L. Hotz. Configuring from Observed Parts. In
C. Sinz and A. Haag, editors, Configuration Workshop,
2006, Workshop Proceedings ECAI, Riva del Garda, 2006.

[Hotz, 2008] L. Hotz. Modeling, Representing, and Config-
uring Restricted Part-Whole Relations. In J. Tiihonen, ed-
itor, Configuration Workshop, 2008, Workshop Proceed-
ings ECAI, Patras, 2008.

[Hotz, 2009] L. Hotz. Frame-based Knowledge Representa-
tion for Configuration, Analysis, and Diagnoses of tech-
nical Systems (in German), volume 325 of DISKI. Infix,
2009.

[Kaindl et al., 2007] Hermann Kaindl, Michał Śmiałek, Da-
vor Svetinovic, Albert Ambroziewicz, Jacek Bojarski,
Wiktor Nowakowski, Tomasz Straszak, Hannes Schwarz,
Daniel Bildhauer, John P Brogan, Kizito Ssamula Mukasa,
Katharina Wolter, and Thorsten Krebs. Requirements
specification language definition. Project Deliverable
D2.4.1, ReDSeeDS Project, 2007. www.redseeds.eu.

[Kiczales et al., 1991] G. Kiczales, J. des Rivieres, and D.G.
Bobrow. The Art of the Metaobject Protocol. The MIT
Press, Cambridge, MA, CA, 1991.

[Kienzler, 2000] F. Kienzler. Synthesis versus Analysis in
model-based AI-Planning Systems? DIAKON - a auto-
adaptive diagnostic Solution Approach for Action Plan-
ing and Configuration Problems (in German). PhD thesis,
University of Ulm, 2000.

[Kühne, 2006] T. Kühne. Matters of (Meta-)Modeling. Jour-
nal on Software and Systems Modeling, 5(4):369–385,
2006.

[Magro et al., 2002] D. Magro, P. Torasso, and L. Anselma.
Problem Decomposition in Configuration. In Configura-
tion Workshop, 2002, Workshop Proceedings ECAI, Lyon,
France, 2002.

[Männistö and Sulonen, 1999] T. Männistö and R. Sulonen.
Evolution of Schema and Individuals of Configurable
Products. In Proc. of ECDM’99 - Workshop on Evolu-
tion and Change in Data Management, Versailles, France,
November 15-18 1999. Springer Verlag.

[Marcus et al., 1988] S. Marcus, J. Stout, and J. McDermott.
VT: An Expert Elevator Designer that uses Knowledge-
based Backtracking. AI Magazine, pages 95–112, 1988.

[Mittal and Frayman, 1989] S. Mittal and F. Frayman. To-
wards a Generic Model of Configuration Tasks. In Proc.
of Eleventh Int. Joint Conf. on AI IJCAI-89, pages 1395–
1401, Detroit, Michigan, USA, 1989.

[Najman and Stein, 1992] O. Najman and B. Stein. A The-
oretical Framework for Configurations. In Proc. of In-
dustrial and Engineering Applications of Artificial Intelli-
gence and Expert Systems: 5th International Conference,
IEA/AIE-92, pages 441–450, 1992.

[OMG, 2006] OMG. Meta Object Facility Core Specifica-
tion, version 2.0, formal/2006-01-01. Object Management
Group, 2006.

[OMG, 2007] OMG. Unified Modeling Language: Infras-
tructure, version 2.1.1, formal/07-02-06. Object Manage-
ment Group, 2007.

[Ranze et al., 2002] C. Ranze, T. Scholz, T. Wagner,
A. Günter, O. Herzog, O. Hollmann, C. Schlieder, and
V. Arlt. A Structure-based Configuration Tool: Drive So-
lution Designer - DSD. In Eighteenth national conference
on Artificial intelligence, pages 845–852, Menlo Park, CA,
USA, 2002. American Association for Artificial Intelli-
gence.

[Śmiałek et al., 2007] Michał Śmiałek, Jacek Bojarski, Wik-
tor Nowakowski, Albert Ambroziewicz, and Tomasz
Straszak. Complementary use case scenario representa-
tions based on domain vocabularies. Lecture Notes in
Computer Science, 4735:544–558, 2007.

[Soininen et al., 1998] T. Soininen, J. Tiihonen, T. Männistö,
and R. Sulonen. Towards a General Ontology of Con-
figuration. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing (1998), 12, pages 357–372,
1998.

[Stefik, 1995] M. Stefik. Introduction to Knowledge Systems.
Morgan Kaufmann, San Francisco, CA, 1995.

[Stumptner, 1997] M. Stumptner. An Overview of
Knowledge-based Configuration. AI Communications,
10(2):111–126, 1997.

[Tiihonen et al., 2006] J. Tiihonen, M. Heiskala, K.-S. Palo-
heimo, and A. Anderson. Configuration of Contract Based
Services. In C. Sinz and A. Haag, editors, Configuration
Workshop, 2006, Workshop Proceedings ECAI, Riva del
Garda, 2006.

Lothar Hotz 30

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Combining Binary Decision Diagrams and Backtracking Search for Scalable
Backtrack-Free Interactive Product Configuration

Andreas Hau Nørgaard, Morten Riiskjær Boysen, Rune Møller Jensen
IT University of Copenhagen, Denmark
ahn@itu.dk, boysen@itu.dk, rmj@itu.dk

Peter Tiedemann
Configit A/S

pt@configit.com

Abstract
This paper demonstrates how to lower the average
response time of search-based interactive configu-
rators using over and under approximations of the
configuration problem represented by binary deci-
sion diagrams (BDDs) on problems where fast con-
figurators using monolithic BDDs are intractable.
The paper introduces several ways to build the ap-
proximations and our experimental evaluation on
industrial data shows that a search driven exten-
sion of the approximations substantially outper-
forms both purely search-based and purely BDD-
based interactive configurators.

1 Introduction
Configuration Problems (CPs) occur whenever a product that
can be configured needs to be tailored to specific require-
ments. Examples of this ranges from buying t-shirts or com-
puters online to configuring large wind turbines all the way
up to large data centers. These problems are a prime target
for AI techniques either because their complexity is so high
that even a trained user cannot oversee all requirements or
because a user is untrained and must be guided e.g. during a
purchase in an online store. Thus, in the case of the online
store, solving configuration problems is important because it
allows companies to use less resources for support, thus re-
ducing their cost, and because it can give them a competitive
advantage by making the purchase as simple and straightfor-
ward as possible. In the case where a trained person needs to
configure large machineries, configuration becomes a ques-
tion of increasing the productivity of the operator. Perhaps
even more importantly, configuration technology aids in pre-
venting costly invalid configurations by catching errors dur-
ing the configuration instead of after the manufacturing pro-
cess has begun when the cost of fixing the mistakes can be
very high.

1.1 Interactive Configuration
A special form of the Configuration Problem is Interactive
Product Configuration (IPC). In dealing with these problems,
a user is interfacing directly with the configurator and needs

to see the consequences of the choices he makes. This is in
contrast with an automated system where, e.g., a partial as-
signment is given and the configurator has to complete the
product. The requirements of interactive configuration are:

Complete Meaning that all valid configurations can be
reached by the user. If the configurator is not complete,
certain valid product configurations cannot be config-
ured. This is very unfortunate, e.g. if the configurator is
used to configure products in an online store as it would
mean that some valid product configurations cannot be
sold.

Backtrack Free Whenever the user selects a value, all val-
ues that cannot extend the current partial assignment to
a solution will be removed. This means that a partial
assignment is always extendable to a solution, hence the
user never needs to backtrack. This is not a strict require-
ment but it is a very desirable property of an interactive
configurator since backtracking can be very tedious to
the user.

Fast Response Times It is important to display the conse-
quences of an assignment to the user as fast as possible
so the user does not grow impatient with the configura-
tor. How fast this must happen depends on the type of
user and the environment the configurator is used in.

Arbitrary Order of Assignments The user must be allowed
to make assignments to the variables in any order the
user likes.

1.2 Search
Using backtracking search to solve various kinds of CSPs
(not just configuration) is a commonly used technique. When
performing the search, the solver chooses a variable and
branches on it, thereby obtaining a reduced problem, after
which the solver chooses a variable again to branch on, con-
tinuing in that fashion until either the CSP is proven unsatis-
fiable or a solution has been found. Much work has been put
into improving the basic search by using consistency tech-
niques and heuristics to reduce the search tree. These tech-
niques are invaluable in a modern solver. Unfortunately, since
the search tree is potentially exponential in size, these tech-
niques give very little guarantees on the performance with

Andreas Hau Nørgaard, Morten Riiskjær Boysen, Rune Møller Jensen, and Peter Tiedemann 31

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

respect to computation time.

1.3 Compiled Representations
Another way to solve a CP is through compilation: The en-
tire set of solutions to the problem is stored in some compact
form. This is the preferred technique for interactive configu-
ration since the representation of solutions only has to be built
once and can be shared by users afterwards. There are many
ways to store the solution space, including Binary Decision
Diagrams (BDDs) [Bryant, 1986], Multi-valued Decision Di-
agrams (MDDs) [Kam et al., 1998], and Cartesian Product
Tables (CPTs) [Møller, 1995].

There exists polynomial time algorithms to do valid do-
main calculations on these data structures, thus giving good
guarantees on the performance. However, there is no such
thing as a free lunch; since CPs are NP-complete, the com-
pilation phase might take exponential time, and, even worse,
the output might take up exponential space. It can be shown
that BDDs and MDDs require exponential space for the all-
different constraint [van Hoeve, 2001], which is vital in
modeling configuration problems involving placement.

The main contribution of this paper is to show a way to
implement a complete backtrack free interactive configurator
capable of handling configuration problems with better run-
time performance than a purely search-based configurator or
a BDD-based configurator on a realistic problem inspired by
a real-world data center configuration problem. In this paper,
we show that it is possible by using a combination of both
techniques.

The results were obtained by combining the Gecode
solver [Schulte et al., 2009] with CLab [Jensen, 2004], which
is a BDD-based configuration library. We used BDDs for
storing approximations of the configuration problem that
makes it possible to eliminate some of the searches performed
by the solver in the valid domain computation. Our compu-
tational results are on industrial data from Configit A/S [An-
dersen and Hulgaard, 2007] and show that a substantial lower
average response time of the configurator can be achieved in
this way compared to a purely BDD-based or a purely search-
based approach.

The idea to use approximations to speed up interactive con-
figurations was first presented in [Tiedemann, 2008], but the
author did not provide any tests or implementation. A pre-
vious study in [Subbarayan et al., 2004] compared a purely
search-based configurator with a BDD-based configurator,
showing that the latter had better run-time performance in
most cases. However, the study did not involve global con-
straints and all problem instances could be represented in a
monolithic BDD. Furthermore, some ideas were presented in
the study for creating an efficient search-based configurator;
these ideas are extended in this paper. Previous research has
been conducted in extracting no-goods from constraints rep-
resented as BDDs [Subbarayan, 2008] but the paper does not
mention the use of search results for building the BDDs. It
focuses entirely on extracting small no-goods from a static
BDD. In [Subbarayan et al., 2006] the authors used BDDs to
build a hybrid SAT solver. However, the work does not in-
clude configuration problems, nor does it use BDDs to store
the results of time consuming searches. Thus, the main con-

tributions of this paper are the implementation and test of
a hybrid configurator using BDDs for good- and no-good
recording (good-recording is described in [Cheng and Yap,
2006]) and a solver for problems that are intractable to be
represented entirely as BDDs.

The remainder of this paper is organized as follows: In
Section 2, we present the concept of interactive configura-
tion and show two different ways of implementing it. One
uses a search-based solver the other uses BDDs. In Section 3
we show how to combine a solver with BDDs to obtain bet-
ter run-time performance than what is possible if using each
technique alone. Section 4 shows how to use and build the ap-
proximations and Section 5 show an alternative way to build
the approximations by using the search results. In Section 6
we show the empirical results obtained and, finally, Section 7
concludes on the results. These results are obtained on a
data center configuration example, provided by Configit, that
models the configuration of a large-scale data center.

2 Backtrack Free Interactive Configuration
A configuration problem C is a triple (X, D, F), where

- X is a set of variables x1, x2, . . . , xn

- D is the Cartesian product of their finite domains D =
D1 ×D2 × . . .×Dn

- F = {f1, f2, . . . , fm} is a set of propositional formulas
over atomic propositions xi = v, where v ∈ Di, specifying
the conditions that the variable assignments must satisfy.
Each formula is inductively defined by f ≡ xi = v | f ∧
g | f ∨ g | ¬f

Furthermore, the solution space S of C is defined as the set
of all complete assignments that satisfy all requirements. In
other words, S is a set containing all the valid configurations
to the configuration problem.

An interactive product configurator (IPC) enables the
configuration process as described in Section 1.1. The
main task of an IPC is to compute the set of valid do-
mains VD for a configuration problem where VD =
{VD1 ,VD2 , . . . ,VDn}. VDi denotes the valid domain for
variable xi where VDi ⊆ Di. Thus, any assignment {(xi =
v) | v ∈ VDi} will never require the user to backtrack. How-
ever, a user might choose to remove an assignment if the con-
sequences of the assignment are not desirable, thus allowing
manual backtracking.

Let VDi denote the valid domain for variable xi, then
VDi ⊆ Di. Thus, any assignment {(xi = v) | v ∈ VDi}
will never lead to the user backtracking.

These are the assignments that are guaranteed to be ex-
tendable to a solution. Once the valid domains have been
computed the user can make a valid assignment. These two
steps are repeated until the product has been configured (all
variables have been assigned), see Algorithm 1.

2.1 Search-based Configuration
The simplest way, albeit very naive, to calculate the valid do-
mains using a search based solver is shown in Algorithm 2.
This algorithm enumerates all possible assignments (xi =

Andreas Hau Nørgaard, Morten Riiskjær Boysen, Rune Møller Jensen, and Peter Tiedemann 32

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Algorithm 1 An informal definition of the IPC algorithm
1: procedure IPC
2: read and process configuration problem
3: while not all variables assigned do
4: VD ← COMPUTEVALIDDOMAINS
5: user makes a valid assignment

vij) where {(xi, vij) |xi ∈ X, vij ∈ VD ′i}. Before the as-
signments are enumerated, the solver is instructed to prune
as many values as possible using the PROPAGATE procedure.
This runs all propagators to fix-point, thereby possibly re-
moving values that are never part of the solution. Since the
propagators do not generally yield generalized arc consis-
tency with respect to the conjunction of all constraints there
can still be values left in VD ′ that cannot be part of a solution.
An assignment is added to the existing configuration problem
where after this augmented problem is tested for satisfiabil-
ity. If the augmented problem is satisfiable it is known that
vij ∈ VDi . This step is repeated for all possible assignments.
This method performs a search for all (xi, vij) that might be
valid. Hence it performs

∑n
i=1 |Di| searches. In Section 3

we describe several ways to improve this initial algorithm.

Algorithm 2 A naive way to determine the valid domains
1: procedure CVD-NAIVE(C)
2: VD ′ ← PROPAGATE(C)
3: for all xi ∈ X do
4: VDi ← ∅
5: for all vij ∈ VD ′i do
6: if C|xi = vij is satisfiable then
7: VDi = VDi ∪ vij

2.2 BDD-based Configuration
A binary decision diagram (BDD) is a rooted directed acyclic
graph. A BDD has one or two terminal nodes1, labeled 1 or 0,
and a set of variable nodes. The terminal node labeled 0 is de-
noted by T0 and the terminal node labeled 1 is denoted by T1.
Each variable node is an internal node in the BDD and has
exactly two outgoing edges marked low and high. A BDD
represents a boolean function f on a set of n boolean vari-
ables f : Bn → B. The value of the boolean function, given
an assignment of the variables, can be found by recursively
traversing the BDD. The traversal begins at the root and con-
tinues to a terminal node. Whenever a variable is assigned to
true the high branch of the corresponding node along the path
is taken. If a variable is assigned to false the low branch of
the corresponding node is taken. If the path ends at a terminal
labeled 1 the assignments means the value of the function is
true. If the path ends at a terminal labeled 0 the value of the
function is false. An introduction to BDDs and some of the
basic algorithms used on them can be found in [Andersen,].

A reduced ordered binary decision diagram (ROBDD)
[Bryant, 1986] is a BDD with the two additional properties
of being ordered and reduced. A BDD is said to be ordered

1A terminal node has out-degree zero

when all paths from the root node to a terminal node respect
a given variable ordering, meaning that the variables associ-
ated with the nodes will be met in the order defined. A BDD
is said to be reduced when all nodes where the low and high
branches leading to the same node are removed and when
all nodes are unique. A node is unique if no other node ex-
ists that has the same associated variable and branches to the
same destinations on the high and low branches respectively.
If such a duplicate node exist it can be removed by collapsing
the two nodes into a single node. In the rest of this paper we
only use ROBDDs and since it is a De facto standard to use
the abbreviation BDD to mean a reduced ordered binary deci-
sion diagram we will follow the convention and consequently
write BDD from now on when we refer to a reduced ordered
binary decision diagram.

BDDs have been widely used in verification, but it was
later discovered that they are also well suited for configura-
tion problems [Hadzic et al., 2004]. However, a configura-
tion problem can have variables with finite integer domains
whereas a BDD only has boolean variables. Fortunately, an
integer variable xi can be encoded efficiently in a BDD using
ki = dlog2|Di|e boolean variables x0

i , . . . , x
ki−1
i . Further-

more, these variables are places in layers so all boolean vari-
ables encoding the same finite domain variable are placed in
the same layer and all finite domain variables define a unique
layer. The BDD nodes comprising the layer i are denoted by
Vi.

Example: A simple example of a CP is shown in Figure 1.
The constraints corresponds to the relations x1 < x2, x1 <
x3 and x2 6= x3.

X = {x1, x2, x3}
D = {{1, 2, 3}, {1, 2, 3}, {1, 2, 3}}
C = {((x1, x2), {(1, 2), (1, 3), (2, 3)}),

((x1, x3), {(1, 2), (1, 3), (2, 3)}),
((x2, x3), {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)})}

Figure 1: A simple CP

This simple example can be represented by a BDD as seen
in Figure 2.

2.3 BDD-based Valid Domain Computation
In order to use BDDs for IPC we need to be able to perform
assignments and compute the valid domains. Assignments
can be made by using the standard APPLY BDD operation
by conjoining the BDD representing xi = v onto the BDD
G1 representing the current solution space restricted by the
assignments made so far in the configuration process. The
complexity of the restriction operation for variable xi in BDD
G1 is thus O(|G1| · dlog2 |Di|e).

The Compute Valid Domains (CVD) operation determines
from a BDD representing a configuration problem what val-
ues that are guaranteed to be in the solution space and extensi-
ble to a full assignment. The valid domain computation works

Andreas Hau Nørgaard, Morten Riiskjær Boysen, Rune Møller Jensen, and Peter Tiedemann 33

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Figure 2: The CP from Figure 1 encoded as a BDD with high
edges shown as solid lines and low edges shown as dashed
lines. The integer variables are encoded in little-endian for-
mat and the variable ordering is x0

1 < x1
1 < x0

2 < x1
2 < x0

3 <
x1

3. The layers are shown as the horizontal dashed lines.

by probing the layers. Each value v ∈ Di is tested by travers-
ing the i’th layer from all nodes in Vi with incoming edges
from the preceding layers until support has been found or all
nodes in a layer have been probed. If all traversals for v end
in T0 there is no support for v, so v /∈ VDi . To avoid probing
the same nodes while checking for support for v, all nodes are
checked if they have already been probed with v. If a node
has already been checked, the traversal is stopped since the
traversal will end in T0 (Since it has been probed earlier, that
probe failed. Otherwise, support would have been found and
the probing for v would stop). The checking ensures that a
node in vi is only checked once for each v ∈ Di. Thus, the
worst case complexity of the compute valid domains opera-
tion over a BDD is O(

∑n
i=1 |Vi| · |Di|). For a detailed expla-

nation of the algorithms used for computing valid domains
over a BDD see [Hadzic et al., 2007].
Example: Assume that a valid domain computation is per-
formed on the BDD from Figure 2 and that the algorithm is
about to test the valid domain of x3. First, the value 1 is
tested. There are two nodes with incoming edges from pre-
ceding layers. The probing starts from the left-most node with
the binary encoding of 1. In this probing, the traversal ends
up in T0 after having gone though the node labeled x1

3. The
right-most node in the layer is then probed, but with the bi-
nary encoding of 1, this leads directly to T0. Thus, 1 /∈ VD3 .
When probing for support for 2, the left most node is again
chosen as the start, but this leads directly to T0. The right-
most node is then used to start a traversal, and after pass-
ing through the node labeled x1

3 the traversal ends in T1, so
2 ∈ VD3 . When checking for the value 3 the traversal be-
ginning from the left-most node ends in T1, so there is also
support for 3. The result of the probing is that VD3 = {2, 3}.

3 BDD and Search-based Hybrid
Configurator

To be able to make a fair comparison between the perfor-
mance of a search-based configurator and our hybrid con-
figurator, the algorithm behind the search-based configurator
needs to be improved. In the following we will present a se-
ries of improvements to the naive algorithm shown in Algo-
rithm 2.

Only a very small part of the information provided by the
solver in Algorithm 2 is actually used, namely whether a sin-
gle value is part of the valid domain of a variable or not. The
search result has a lot more information than that; all the as-
signments in the search result are part of the valid domains
of their respective variables. The naive algorithm can there-
fore be improved in two ways. Firstly, the result is traversed
and all assignments are stored as part of the valid domains.
Secondly, before a search is started it is checked whether the
value vij has already been verified to be part of VDi . If it is
the search is simply skipped.

Additionally, we can use former valid domain results to
speed up the valid domain computation since when an as-
signment is made the solution space can never grow, meaning
that S|xi=vij

⊂ S. This implies that a search is redundant if
an assignment (xi = vij) has been discovered as invalid by
a previous search but has not been pruned by propagation yet

Andreas Hau Nørgaard, Morten Riiskjær Boysen, Rune Møller Jensen, and Peter Tiedemann 34

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

because of the non-increasing property of the solution space.
This information can be fed back to the solver and propa-
gation mechanism by posting the unary inequality constraint
xi 6= vij whenever a search fails. The value vij is thus re-
moved from the current domain of xi and hence augments
the solver with information that propagation alone could not
detect. This can improve propagation and increase the search
performance for other variables.

Finally, it is an invariant in the configurator that once the
domain has size 1 it cannot shrink any more. If it could, the
configurator would not be backtrack free. It is therefore pos-
sible to skip the search if all but the last value vlast

i in VD ′i
has been found to be invalid. Therefore, xi = vlast

i must be a
valid assignment.

3.1 Hybrid Configurator
The search preventing hybrid configurator utilizes a combi-
nation of BDDs and search-based techniques. The basic idea
is to avoid as many searches as possible by using BDD-based
approximations.

Over- and Under-Approximations
An over-approximation of a CP with solution space S is a
CP with solution space So ⊇ S. An under-approximation
of a CP with solution space S, is a CP with solution space
Su ⊆ S. Given an over-approximation CPo of a CP and a
partial assignment (PA), CPo can be used to determine if PA
is not extendable to a solution in CP. However, it cannot be
used to determine whether it is extendable to a solution. Con-
versely given an under-approximation CPu of a CP, CPu can
be used to determine if a partial assignment PA is extendable
to a solution in CP but CPu cannot be used to determine if PA
is not extendable to a solution. Thus, if the two approxima-
tions are used together a search is only needed when neither
approximation is able to determine whether PA is definitely
extendable to a solution or definitely not.

This relation is shown in Figure 3. The picture shows the
Cartesian product of the domains of the variables in a CP. The
grey area to the left of the curved line represents the solution
space and the white area to right of the curved line represents
the non-solutions (the set of full assignments that violate one
or more constraints). The box with the bold dashed line rep-
resents the under-approximation and the box with the bold
solid line represents the over-approximation. As the drawing
shows we need to perform a search for elements in the set
So\Su.

Figure 3: The relation between the solution space and the
over- and under-approximation for a CP.

4 Using the Approximations
As described in Section 2.1 a search-based configurator uses
a two-step approach, by first propagating and then search-
ing whenever an assignment has been made and you want
to find the new valid domains. Using an over-approximation
changes the two-step approach into what we could call a two-
and-a-half-step approach because we need to utilize the over-
approximation after the propagation step in order to avoid
the search step as often as possible. As mentioned, we can
avoid a search for all values not in the valid domains of the
over-approximation restricted to the current partial assign-
ment since these will clearly not be in the domain of the
CP. Furthermore, all values in the valid domain of the under-
approximation restricted to the current partial assignment can
be added to the valid domains of the CP before the search
phase because Su ⊆ S.

The valid domain computation including all the optimiza-
tion from Section 3 and the approximations can be seen
in Algorithm 3 where BDDo is the BDD representing the
over-approximation and BDDu is the BDD representing the
under-approximations.

Algorithm 3 Solver-based valid domain computations algo-
rithm using an over- and under-approximation

1: procedure CVD-SP(C)
2: VD ′ ← PROPAGATE(C)
3: VDo ← COMPUTEVALIDDOMAINS(BDDo)
4: VDu ← COMPUTEVALIDDOMAINS(BDDu)
5: VD ← VDu

6: for all xi ∈ X do
7: if |VD ′i | = 1 then
8: VDi = VD ′i
9: continue

10: for all vij ∈ VD ′i do
11: if vij ∈ VDi then
12: continue
13: else if VDi = ∅ ∧ vij = vlast

i then
14: VDi ← {vij}
15: else if vij /∈ VDo

i then
16: continue
17: else if C|xi=vij

is satisfiable then
18: S ← solution to search
19: for all (xk, vk) ∈ S do
20: VDk = VDk ∪ vk

21: else
22: C ← C|xi 6=vij

23: VD ′ ← PROPAGATE(C)

4.1 Constructing an Over-Approximation
Given a CP with solution space S, an over-approximation of
this is also a CP (which we call CP′). Since we represent
our over-approximation by a BDD, a simple way to construct
CP′ is by removing all constraints from the original CP that
are intractable to represent in a BDD. This would make CP′
less restricted than the original CP and therefore S ⊆ So,
which was the requirement.

Andreas Hau Nørgaard, Morten Riiskjær Boysen, Rune Møller Jensen, and Peter Tiedemann 35

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

4.2 Constructing an Under-Approximation
We construct the under-approximation CP′′ by putting ad-
ditional constraints on the CP we are approximating. As
mentioned, alldifferent constraints put an exponential
lower bound on the number of nodes in a BDD. Since the
under-approximation needs to be at least as strict as the orig-
inal CP we cannot remove the alldifferent constraint
from the under-approximation. We have therefore investi-
gated what additional restrictions to add to a CP that contains
an alldifferent constraint in order to limit the amount
of nodes generated in the BDD. The way we have attained
this is by limiting the combinations of values the variables in-
volved in an alldifferent constraint can have. This is
done by limiting the domain of each variable in such a way
that the union of the limited domain of all the variables is still
the complete domain.
Example: If, for example, we have 10 variables with Di =
{1, 2, . . . , 10}, we can slice off one value from each vari-
able so the domains become D1 = {1, 2, . . . , 9}, D2 =
{1, 2, . . . , 8, 10}, D3 = {1, 2, . . . , 7, 9, 10}, etc. If we con-
tinued with the example and we wanted to do a domain
slice of half the values, the domains would become D1 =
{1, 2, . . . , 5}, D2 = {2, 3, . . . , 6}, D3 = {3, 4, . . . , 7}, etc.
To avoid making the under-approximation too narrow, we al-
ways construct the complement set of values when we slice
off values of the domains. In the last example given, the
complement domain values would be D′1 = {6, 7, . . . , 10},
D′2 = {1, 7, . . . , 10},
D′3 = {1, 2, 8, 9, 10}, etc. After slicing the domains, the
alldifferent constraint becomes

Alldiff(x1, x2, . . . , xn)∧
(x1 ∈ D1 ∧ x2 ∈ D2 ∧ . . . ∧ xn ∈ Dn∨
x1 ∈ D′1 ∧ x2 ∈ D′2 ∧ . . . ∧ xn ∈ D′n)

5 Search Driven Approximations
An alternative way of constructing the approximations is by
building it over time. We can achieve this by noting each time
we perform a search to find a solution in the CP given a par-
tial assignment (PA) that takes an excessive amount of time
and does not find a solution. Each time this happens, we can
conjoin an additional constraint on to the over-approximation
of the form ¬PA. By doing this we are using the over-approx-
imation as a way of performing no-good recording [Hawkins
and Stuckey, 200].

In the case of the under-approximations, we are interested
in the case where we perform a search that takes an excessive
amount of time and actually finds a solution. In this case
we can extend the under-approximation by setting it equal to
the disjunction of the solution found and the existing under-
approximation.

6 Results
In this section we compare the search-preventing configura-
tor(s) with the purely search-based configurator. When build-
ing the over- and under-approximations for the various prob-
lems using the search results as described above, we added
all results that took more than 10 ms.

The different configurators use these abbreviations:

CVD-S The purely search-based configurator.

CVD-R The search-preventing hybrid configurator de-
scribed using the statically built over- and under approx-
imations.

CVD-CB The search-preventing hybrid configurator using
over- and under-approximations built purely from search
results.

CVD-WB The search-preventing hybrid configurator using
the statically built over- and under approximations aug-
mented with results gathered while performing search.
This configurator is thus a combination of the two de-
scribed above.

We have not made experiments with a purely BDD-based
configurator since it is intractable to represent all but the
smallest problems in a monolithic BDD.

One of the problems we have tested the hybrid configurator
on is the data center configuration problem. The data center
configuration problem is a modular problem in the sense that
we are configuring a data center that consists of a series of
racks, that each consists of a series of servers, that each con-
sists of a series of boards. The problem contains alldif-
ferent constraints to ensure that specific pieces of hard-
ware are placed only once. In particular, each of the servers
in a rack can only be placed once, and each of the boards of
a particular server can only be placed once. Furthermore, the
data center configuration problem contains local constraints
to ensure the right configuration of specific hardware pieces.
For our purpose we have focused on the configuration of a
single rack.

We have performed tests with 5 differently sized data cen-
ter configuration problems. The sizes are 4, 6, 8, 10 and 11
servers. For each of the problem instances we have created
the under-approximation by slicing half of the domains of the
variables in the alldifferent constraint representing the
constraint that each server can only be used once. It is worth
noting that the maximum number of servers we can have in
a monolithic BDD representing the data center configuration
problem is 10. For this reason, we have tried to see how lit-
tle we could slice of the domains in the under-approximation
representing the data center configuration problem with 11
servers, and still be able to contain it in the under-approxi-
mation BDD. The limit we found is 4 values sliced of each
domain of 11 values. The problem instances in the experi-
mental results are listed as dcNN-SS where NN denotes the
number of servers in the problem instance and SS denotes
the number of values sliced from the domains. All tests were
performed on an Intel Core 2 Duo 6600 2.4 GHz Dual Core
Processor workstation with 2 GB RAM running Windows XP
Professional SP3.

The result of these tests are shown in 3 tables where Table 1
shows the maximum valid domain computation times. As can
be seen, CVD-CB performs the best overall. We attribute this
to the fact that CVD-CB cuts of all those searches that takes
too long and has a relatively small size BDDs compared to
the BDDs used by CVD-WB and CVD-R.

The average valid domain computation times are shown in

Andreas Hau Nørgaard, Morten Riiskjær Boysen, Rune Møller Jensen, and Peter Tiedemann 36

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Table 2. It is apparent that for the smallest problems the over-
head of using BDDs is not made up by the searches skipped.
We see, however, that when the problem size grows it more
than makes up for it. CVD-CB and CVD-WB perform best.
Furthermore, we see that purely search-based (CVD-S) and
CVD-Reg are about the same.

In Table 3 we see as expected that the maximum number of
searches is performed in CVD-S and the least is performed in
CVD-WB. If we assume that the searches skipped are evenly
distributed among those that are fast and those that are slow
then this is an important fact since it decreases the likelihood
that CVD-WB run into a search that takes an extremely long
time.

Max CVD time [ms]

Problem CVD-S CVD-R CVD-CB CVD-WB

dc4-2 16 16 16 16
dc6-3 31 32 32 32
dc8-4 47 63 47 47
dc10-2 94 63 47 157
dc10-5 79 79 78 63
dc11-4 110 172 78 329
dc11-5 125 157 79 188

Table 1: Max time of the valid domain computations of the
search preventing CVD algorithms.

Average CVD time [ms]

Problem CVD-S CVD-R CVD-CB CVD-WB

dc4-2 2 4 6 5
dc6-3 7 11 10 11
dc8-4 17 22 16 15
dc10-2 28 25 21 24
dc10-5 28 33 24 22
dc11-4 44 55 31 42
dc11-5 44 54 30 35

Table 2: Average time of the valid domain computations of
the search preventing CVD algorithms.

Searches performed

Problem CVD-S CVD-R CVD-CB CVD-WB

dc4-2 1082 785 927 578
dc6-3 2116 2110 1138 1183
dc8-4 3796 3800 1406 1281
dc10-2 5222 3016 1601 1084
dc10-5 5358 5268 1656 1477
dc11-4 7560 7362 1690 1622
dc11-5 7560 7384 1543 1444

Table 3: Searches performed of each of the search preventing
CVD algorithms.

7 Conclusion
This paper has introduced three new algorithms that com-
bine BDDs and backtracking search for backtrack-free inter-
active configuration. Our results show that the performance
of these algorithms dominate purely search- or BDD-based
approaches.

7.1 Directions and Future Work
Another approach to constructing hybrid configurators is to
augment a propagator-centric solver by BDD-based propaga-
tors. The idea is that several constraints can be represented
by a single BDD and thereby improve propagation strength
since there is strong n-consistency between the constraints in
the BDD.

We tested this idea of implementing a BDD-propagator in
Gecode but no improvement of runtime was achieved even
though we did get stronger propagation.

Future work could go into exploring new ways of con-
structing the approximations, which enable them to be as
close to the original problem as possible and at the same
time limit the amount of space needed to represent them. To
achieve this, new data structures could be tested for repre-
senting the approximations. Interesting data structures could
be MDDs [Kam et al., 1998], Tree-of-BDDs [Subbarayan,
2005], and cartesian product tables [Møller, 1995]. It could
also be investigated whether it would be beneficial to use dif-
ferent data structures for two approximations. Furthermore,
experiments should be done on other problems to further val-
idate the techniques used in the paper.

References
[Andersen,] Henrik Reif Andersen. An intro-

duction to binary decision diagrams. http:
//www.configit.com/fileadmin/Configit/
Documents/bdd-eap.pdf.

[Andersen and Hulgaard, 2007] Henrik Reif Andersen and
Henrik Hulgaard. Configit software, 2007.

[Bryant, 1986] Randal E. Bryant. Graph-Based Algorithms
for Boolean Function Manipulation. IEEE Transactions
on Computers, C-35(8):677–691, aug 1986.

[Cheng and Yap, 2006] Kenil C. K. Cheng and Roland H. C.
Yap. Maintaining generalized arc consistency on ad-
hoc n-ary boolean constraints. In Gerhard Brewka, Sil-
via Coradeschi, Anna Perini, and Paolo Traverso, editors,
ECAI, pages 78–82. IOS Press, 2006.

[Hadzic et al., 2004] Tarik Hadzic, Sathiamoorthy Sub-
barayan, Rune Møller Jensen, Henrik Reif Andersen, Hen-
rik Hulgaard, and Jesper Møller. Fast backtrack-free prod-
uct configuration using a precompiled solution space rep-
resentation. In Proceedings of the International Confer-
ence on Economic, Technical and Organizational aspects
of Product Configuration Systems, pages 131–138. DTU-
tryk, 2004.

[Hadzic et al., 2007] Tarik Hadzic, Rune Møller Jensen,
and Henrik Reif Andersen. Calculating valid do-
mains for BDD-based interactive configuration. CoRR,

Andreas Hau Nørgaard, Morten Riiskjær Boysen, Rune Møller Jensen, and Peter Tiedemann 37

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

abs/0704.1394, 2007. informal publication; informal pub-
lication.

[Hawkins and Stuckey, 200] Peter Hawkins and Peter J.
Stuckey. A hybrid BDD and SAT finite domain constraint
solver. In P. Van Hentenryck, editor, Proceedings of the
Practical Applications of Declarative Programming, 8th
International Symposium, volume 3819 of LNCS, pages
103–117. Springer, 200.

[Jensen, 2004] Rune M. Jensen. CLab: A C++ library for
fast backtrack-free interactive product configuration. In
Mark Wallace, editor, Principles and Practice of Con-
straint Programming - CP 2004, 10th International Con-
ference, CP 2004, Toronto, Canada, September 27 - Octo-
ber 1, 2004, Proceedings, volume 3258 of Lecture Notes
in Computer Science, page 816. Springer, 2004.

[Kam et al., 1998] T. Kam, T. Villa, R. K. Brayton, and
A. L. Sangiovanni-Vincentelli. Multi-valued decision dia-
grams: Theory and applications. International Journal on
Multiple-Valued Logic, 4:9–62, 1998.

[Møller, 1995] Gert Møller. On the Technology of Array
Based Logic. PhD thesis, Technical University of Den-
mark, Lyngby, Denmark, 1995.

[Schulte et al., 2009] Christian Schulte, Mikael Lagerkvist,
and Guido Tack. Gecode. Software download and online
material, 2009. http://www.gecode.org.

[Subbarayan et al., 2004] Sathiamoorthy Subbarayan,
Rune M. Jensen, Tarik Hadzic, Henrik R. Andersen, and
Henrik Hulgaard. Comparing two implementations of a
complete and backtrack-free interactive configurator. In
Proceedings of the CP-04 Workshop on CSP Techniques
with Immediate Application, pages 97 – 111, aug 2004.

[Subbarayan et al., 2006] Sathiamoorthy Subbarayan, Lucas
Bordeaux, and Youssef Hamadi. On hybrid SAT solving
using tree decompositions and BDDs. Technical Report
MSR-TR-2006-28, Microsoft Research (MSR), March
2006.

[Subbarayan, 2005] Sathiamoorthy Subbarayan. Integrating
csp decomposition techniques and bdds for compiling con-
figuration problems. In Roman Barták and Michela Mi-
lano, editors, CPAIOR, volume 3524 of Lecture Notes in
Computer Science, pages 351–365. Springer, 2005.

[Subbarayan, 2008] Sathiamoorthy Subbarayan. Efficient
reasoning for nogoods in constraint solvers with BDDs.
In Paul Hudak and David Scott Warren, editors, Practi-
cal Aspects of Declarative Languages, 10th International
Symposium, PADL 2008, San Francisco, CA, USA, Jan-
uary 7-8, 2008, volume 4902 of Lecture Notes in Com-
puter Science, pages 53–67. Springer, 2008.

[Tiedemann, 2008] Peter Tiedemann. Compiled Data Struc-
tures and Global Constraints in Constraint Processing.
PhD thesis, ITU, 2008.

[van Hoeve, 2001] Willem Jan van Hoeve. The alldifferent
constraint: A survey. CoRR, cs.PL/0105015, 2001. infor-
mal publication.

Andreas Hau Nørgaard, Morten Riiskjær Boysen, Rune Møller Jensen, and Peter Tiedemann 38

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Industrial requirements for interactive product configurators

Matthieu Quéva∗ and Christian Probst∗ and Per Vikkelsøe†
∗DTU Informatics, Technical University of Denmark

{mq,probst}@imm.dtu.dk
†Microsoft Development Center Copenhagen

pvikkels@microsoft.com

Abstract
The demand for highly customized products at low
cost is driving the industry towards Mass Cus-
tomization. Interactive product configurators play
an essential role in this new trend, and must be able
to support more and more complex features. The
purpose of this paper is, firstly, to identify require-
ments for modern interactive configurators. Exist-
ing modeling and solving technologies for config-
uration are then reviewed and their limitations dis-
cussed. Finally, a proposition for a future product
configuration system is described.

1 Introduction
Increasing market demand concerning customization and
market pressure from competitors force enterprises to adapt
their production and selling processes. Indeed, today’s cus-
tomers demand products with lower prices, higher quality,
and faster delivery, but they also want products customized to
match their unique needs. In many industrial areas, Mass Pro-
duction is nowadays replaced by Mass Customization [Pine,
1993], which provides customers with highly customized
products and low unit costs. One of the essential tools en-
abling Mass Customization is a product configuration system.
In a product configuration system, a configurable product is
defined by a set of components, options, or more generally
attributes that can be chosen by the user. Some of these at-
tributes are bound together by constraints limiting the num-
ber of possible combinations. The configuration task thus
takes as input a model representing the structure and the con-
straints of the product (product knowledge), and aims at find-
ing a configuration satisfying all the constraints defined in
the model, as well as the requirements given by the end-user.
It can also output a price, or a specification of the product
to be manufactured, usually as a bill-of-materials and oper-
ations routes. Interactive configurators display the possible
combinations of the product’s components and options to an
end-user. When the user chooses among the possibilities, the
configurator computes the consequences of these choices on
the possible values available for the other attributes for exam-
ple. In this paper, we will focus on this type of configurators.
Two main challenges arise when dealing with interactive
product configuration. At modeling time, there is a need to

find efficient and easy-to-use ways for the design engineers to
express the product knowledge. The more complex the prod-
uct is, the more important this phase is. The second issue
concerns how to solve, at configuration time, the constraints
expressed at modeling time. When the different attributes of
the product are instantiated, there is a need for an efficient
solving engine, capable of solving all types of constraints de-
fined previously. In such an interactive process, the end-user
should be assisted through meaningful explanations and in-
dications on how to satisfy his requirements in the case the
solution is not directly available.
Solving the configuration problem has received a lot of at-
tention from the research area [Amilhastre et al., 2002; Mail-
harro, 1998; Mittal and Falkenhainer, 1990], while the mod-
eling problem has been less covered [Aldanondo et al., 2003;
Felfernig et al., 2002]. In this paper, we aim at identifying
requirements for industrial use of product configurators. We
then present a review of different techniques and technologies
currently available for both modeling and solving the configu-
ration problem. Finally, we propose new directions to explore
for building state-of-the-art configurators.

2 Requirements analysis
In this chapter, we use a Home Multimedia Station (HMS) as
a case study to discuss the requirements analysis for product
configurators. The requirements are derived from various lit-
erature as well as discussion with industrial partners. We first
present general requirements in the first section, followed by
more specific features. For most of the requirements, an ex-
ample is given through the case study.

2.1 General modeling requirements
A modeling environment for product configuration should:

• be easy-to-use: The persons that will interact with the
modeling environment are usually design engineers, of-
ten possessing only basic programming skills. The mod-
eling environment should therefore be accessible with-
out advanced training in programming, and support easy
development through tools for a fast implementation.
Also, the terms used should be based on a widely ac-
cepted terminology, e.g. following Soininen et al.’s on-
tology of configuration [1998].

Matthieu Quéva, Christian Probst, and Per Vikkelsøe 39

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Figure 1: Structure of the Home Multimedia Station (HMS) case study1

• support object-oriented modeling: This approach has
been favored by many researchers ([Hvam et al., 2008;
Rossi et al., 2006]): it is indeed very suitable for product
modeling, as product components can naturally be seen
as objects. The object-oriented structure of the Home
Multimedia Station can be seen in Figure 1.

• provide a graphical representation: This is important to
the user for an easy understanding and a lower mainte-
nance effort [Janitza et al., 2003]. Graphical modeling
languages will be presented in Section 3.

• be extensible: Companies use many applications around
configurators. The system should provide an easy inte-
gration of CAD tools, databases, ERP or other systems
in the configuration process.

2.2 Structure modeling
One part of modeling in configuration deals with represent-
ing the structure of the product. Several key features can be
highlighted:

• (dynamic) partonomy (or part-of) relations define a sub-
component hierarchy in the product model. The multi-
plicity of these relations corresponds to the number of
subcomponents to consider, which allows the reuse of
component models. The possibility of specifying an un-
bound multiplicity permits to have a dynamic structure.
The indefinite maximum in the “accessories” partonomy
in the Home Multimedia Station models the possibility
of adding a potentially unlimited number of accessories
depending on the user’s requirements.

• taxonomy (or kind-of/specialization) relations permit the
use of generic base components to group features that
are common to several subcomponents, which makes
modeling and maintenance of the model much easier.
Both the wireless and the classical mouses are special-
izations of the mouse component in the case study.

1Part-of relations are represented with UML-like aggregations
symbols and multiplicity, while taxonomy relations are represented
using plain arrows. Dashed arrows represent use of resources.

• component groups are a simple yet important feature
in product modeling when it comes to product mainte-
nance. Indeed, this makes it much easier to organize
product knowledge data, as it allows to structure the
model and its components according to specific crite-
ria. The HMS model could be split into three groups:
Computer Parts, Accessories, and Input Devices.

• definition of units: A product can be complex and can
contain more than one data type with a specific unit. It
should then be possible to declare different units, in or-
der to make the model more realistic and the mainte-
nance easier. The “price” of the Computer would be in
dollars, while the “size” of the Internal HD would be in
inches, although they are both real numbers.

• connection ports represent non-hierarchical relations be-
tween components that can be located in different sub-
trees of the model. Specific data can also be added to
these relations, like the Cable component for the con-
nection between the “RJ-45 Connector” and the “RJ-45
Port” in the HMS model.

• default values permit to provide the end-user with a ca-
pable default configuration very quickly, while still al-
lowing the user to change some attributes.

• hidden and locked attributes: Using locked attributes to
provide read-only information to the end-user or hidden
attributes for internal computations offer increased flexi-
bility to the model designer while reducing the complex-
ity of the model for the customer.

• production attributes: Industrial product configurators
are usually meant to be integrated with production man-
agement software, like ERPs. This includes mapping the
configuration output to Bill-Of-Materials (BOMs) and
operations routes that can be used in sales and manufac-
turing. Allowing the definition of production attributes
that model how the BOMs and routes will be constructed
from the product model’s components is a great step to-
wards an automatic generation of these production data.

Matthieu Quéva, Christian Probst, and Per Vikkelsøe 40

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

2.3 Constraint modeling
Another important aspect of product modeling is the defini-
tion of constraints on the model. Requirements for constraint
modeling include:
• a panel of built-in functions and constraints available to

the modeler: aside from simple arithmetic and logical
constraints, advanced functions (e.g. sum), constraints
(e.g. allEqual) or quantification (e.g. forAll) provide a
much greater support to the product modeler.
• table constraints: More and more real product data

is coming from tables representing allowed combina-
tions of attributes/components. The ability to declare
table constraints (or product catalogs) directly (instead
of more complex formulas) simplifies by far the creation
and usability of the model.
• Continuous domains for attributes give a much more

precise representation of specifically tailored products
for example, or just attributes involved in advanced
arithmetic formulas.
• Products are often configured according to the resources

they produce/consume. The modeling of these resources
and how they increase/decrease must be defined to han-
dle such cases. The HMS model involves a resource
called “HD Capacity”, which is produced by the hard
drives and consumed by both wireless devices’ drivers
and software packages.
• Soft (or prioritized) constraints are constraints that may

be violated if they are overridden by a user selection or
indirectly as a consequence of a constraint with higher
priority. Modeling with soft constraints permits to in-
troduce a notion of uncertainty that can be used by the
modeler to guide the configuration process with recom-
mendation or simulate preferences for example. Such a
constraint could be used in the HMS case study to rec-
ommend the user to choose a bigger internal hard drive
if a specific software package is chosen.
• layout constraints: The same combination of compo-

nents can result in different configurations when their
layout is involved. One-dimensional positioning can be
needed in the HMS model to order the list of cards in
the computer, while more advanced positioning (2-D or
3-D) can be required to organize the disposition of the
parts inside the computer box. Even more complex lay-
out problems can be solved by an interaction with CAD
tools [Aldanondo et al., 2001].
• Defining optimization (or cost) functions helps the mod-

eler specify how to calculate a value that then can be
minimize or maximize at some point of the configura-
tion, once the other user requirements are met. One cost
function (to be minimized) declared in the HMS repre-
sents the overall price of the Home Multimedia Station
as a function of the price of the components chosen.

2.4 Development and runtime support
Aside from product modeling, configurators also need to pro-
vide convenient tools to help understanding and solving the
constraints defined in the model:

• The task of creating a product model is not only about
defining the structure and constraints. Most of the mod-
elers’ time is usually spent in debugging the model, so
that it behaves as it is intended to. Providing a conve-
nient way to debug product configuration models is thus
a priority for a product configurator.

• A must-have feature for a good configurator is the abil-
ity to provide explanations at configuration time. These
explanations are given to the end-user when the config-
uration is over-constrained, or to provide guidance if he
wants to force the selection of a value that is not allowed
by the solving engine.

3 Product Knowledge Modeling
Product Knowledge Modeling represents a significant part in
the configuration process. It consists in defining the model of
a product family that will then be configured by the end-user.
Development and maintenance of product knowledge bases
are of primary importance, and the representation formalism
must be thoroughly considered when choosing a product con-
figuration system. Major vendors of configuration systems
already use declarative knowledge modeling [Moller et al.,
2001].
Modeling languages are used to represent knowledge in a
structured way. They can be categorized into two types:
graphical and textual languages. Graphical languages use di-
agrams with symbols to express the different concepts, while
textual languages use standardized keywords to structure the
knowledge representation, that is then interpreted in an ab-
stract syntax.
In the next sections, we will discuss two graphical languages,
UML and SysML, both accompanied by a constraint textual
language called OCL, as well as the textual modeling lan-
guage EXPRESS.

3.1 UML and OCL
The Unified Modeling Language (UML) is an international
standard defined in 1997 by the Object Management Group
(OMG). This general-purpose object-oriented language is
very well-known as it is widely used in industrial software
development, and so is of prime choice for configuration.
The UML class diagram is worth our interest, as product
modeling in configuration mainly deals with the structure and
the constraints of the product. Several UML relations are of
interests for configuration: the association, that establishes
a semantical relationship between two components, and
can be used to model connection ports; the composition (or
composite aggregation), a parent-child relationship that can
represent partonomy relations; and the generalization, used
to model inheritance in UML for data and code reuse, and
that can represent taxonomy relations in configuration.
Secondly, UML 2.0 contains an extension mechanism called
stereotypes. A stereotype allows designers to extend UML
by creating new model elements from existing ones. The new
nodes are then stereotyped, which is reflected graphically
by adding a name enclosed by guillemets above the name of
another element. A stereotype can contains attributes, called
tagged values.

Matthieu Quéva, Christian Probst, and Per Vikkelsøe 41

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Figure 2: UML representation in the HMS case study

The Object Constraint Language (OCL) is an extension
to UML that allows to write standardized constraints. It
is actually a textual language that provides constraints
and object query expressions that cannot be expressed
using notations-like diagrams. OCL is a pure specification
language, which means that an OCL expression will not
have any side effects. Indeed, when an OCL expression is
evaluated, it simply returns a value, and does not change
anything in the model.

Product modeling using UML and OCL. Several re-
searchers have showed interest in UML associated with prod-
uct configuration. For example, UML is used by Hvam
et al. [2008] in their “Procedure for building product mod-
els”, along with another representation called Product Variant
Master. They mainly focus on defining the object-oriented
structure of the product model using UML, while more in-
depth data (such as attributes and constraints) are stored in
tables called CRC cards.
Felfernig et al. [2002] go further by defining a UML meta
model architecture, i.e. a formalism to represent product
configuration concepts and constraints using both UML and
OCL. They automatically translate their model into an exe-
cutable logical architecture, using the XML Metadata Interex-
change (XMI) format - an XML-based OMG standard for the
exchange of UML models.
The UML representation of a part of the Home Multimedia

Station defined in Section 2 can be seen in Figure 2. This
figure shows three partonomy and two taxonomy relations in
the sub-model of the Computer. The OCL language can be
used to describe constraints, e.g. that a computer that has a
(primary) graphical card with 512 Mo of memory must cost
at least 500 dollars:
context Computer inv:
self.graphicalCard.videoMemory = ’’512Mo’’
implies self.price >= 500

UML exhibits other interesting features for configuration,
such as the use of packages. This allows the user to de-
compose its model into different groups of elements, thus
permitting a better structure in the model.

UML/OCL limitations. The association UML/OCL pro-
vides an interesting object-oriented modeling experience, and
the notoriety of UML among industry makes it an ideal can-
didate for product knowledge representation. As a graphical
language, it also gives the design engineer a clear overview of
the product model, making it more easy to see relationships
between different components.
However, UML and OCL are not designed specifically for
product modeling (and configuration), and thus miss interest-
ing features. Although it is possible to adapt it to product
configuration through the use of stereotypes, UML concepts
are aimed at software engineering, and the transition can be
difficult for the modeler. For example, it is not possible to de-
clare units, and OCL falls a bit short when it comes to define
table or soft constraints.
Finally, as a graphical language, its interpretation remains an
issue. Indeed, the model must be interpreted in order to be
integrated into a knowledge base and a configuration system.
The work of [Felfernig et al., 2002] goes in this direction,
but more remains to be done in order to provide strong model
checking and debugging facilities to the modeler.

3.2 SysML
The Systems Modeling Language (SysML) [SysML, 2001] is
a recent modeling language developed as a joint initiative of
OMG and the International Council on Systems Engineering
(INCOSE). It is actually a UML profile, and thus inherits the
characteristics of UML. The aim of SysML is to represent
systems and product architectures, as well as their behavior
and functionalities, where UML was used for software
engineering. The development team of SysML aimed
on the first hand at limiting the concepts too close from
software engineering, and on the other hand at simplifying
UML original notations by limiting the number of diagrams
available, in order to make it easier to use.

Product Modeling using SysML. Modeling using SysML
is very similar than doing so with UML, except that almost
no user-defined stereotype is needed. Along with everything
imported from UML, SysML defines units and dimensions. It
is also possible to define objective (or optimization) functions
and parametrized constraints using Parametric diagrams in
SysML. This allows to represent constraints in diagrams
where the parameters can be linked to the different attributes
of the model’s components, although the constraints’ text
still has to be expressed using OCL.
Finally, due to its full list of product-oriented diagrams,
SysML gives the modeler the possibility to integrate the
configuration model into a much wider product model, as
UML does with software.

SysML limitations. Although SysML brings new capabil-
ities relative to product modeling compared to UML, it still
suffers from similar issues. For example, the constraints are
still defined using OCL, and the matter of the interpretation
of the model for model checking and debugging remains the
same. The SysML extension provides more diagrams pre-
stereotyped for product modeling (e.g. block, units, optimiza-
tion functions,...), but still lacks some essential product con-

Matthieu Quéva, Christian Probst, and Per Vikkelsøe 42

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

figuration concepts like resources for example.

3.3 STEP and EXPRESS
This section introduces the International Standard ISO
10303, which is referenced as STEP (STandard for the
Exchange of Product data). STEP was first released in 1994,
and is published as a series of Parts. The goal of STEP is
to allow the exchange of data describing a product between
Computer Aided system (CAD, CAM, ...etc). It uses the
EXPRESS language to formalize the semantics of the data,
and the 20 series of Parts specify the standard data exchange
mechanisms (e.g., data file or API access).
EXPRESS [EXPRESS, 2004] is thus an object-oriented data
modeling language standardized as the Part 11 of STEP. It
consists of two different representations: textual, or graphical
(called EXPRESS-G). However, EXPRESS-G is not able
to represent all details that can be formulated in the textual
form, on which we will concentrate in this part.

Product Modeling using EXPRESS. Models in EX-
PRESS are organized according to schemas. These schemas
permit to group the different elements of the model in rel-
evant scopes, in the same way as UML packages. Compo-
nents in EXPRESS are defined as entities, and are composed
by attributes, that can be of basic types or entities themselves
(partonomy). Taxonomy relations can also be represented
through abstract classes and subtypes:
SCHEMA HomeMultimediaStationFactory;
USE FROM ComputerParts;...
ENTITY HomeMultimediaStation;
price: DOLLAR;
computers: SET[1:?] OF Computer; ...

END_ENTITY;
ENTITY Card ABSTRACT SUPERTYPE; ... END_ENTITY;
ENTITY GraphicalCard SUBTYPE OF (Card); ... END_ENTITY;
...

END_SCHEMA;

Finally, named types and units can also be declared, clarifying
the meaning and context of the variables of these types. Con-
straints can also be associated to each entities or types/units,
through a WHERE clause.
TYPE DOLLAR = INTEGER;
WHERE SELF >= 0;
END_TYPE;

Although few built-in functions are available, EXPRESS
allows user-defined functions using a full procedural pro-
gramming language.

EXPRESS limitations. EXPRESS is a powerful language
for product modeling, suitable for many product configura-
tion problems. It contains nice features, such as units and
constants declarations, as well as dynamic multiplicity or the
possibility to define functions. However, the EXPRESS lan-
guage is too general and is not suitable for knowledge engi-
neers that are not expert in the language itself, mainly because
of its lack of configuration-specific keywords. The defini-
tion of functions requires advanced programming skills, and
writing a complex model without these functions can be very
difficult or impossible, as a lot of functions are not built-in
(min/max, sum, ...).

3.4 Discussion
Choosing a modeling language for product configuration is
not a trivial task. Although graphical languages such as UML
(and SysML) provide a clear and well-known representation
of the product structure, interpreting the model is an issue,
and advanced verification mechanisms may not be easy to
built upon them. On the other hand, textual languages like
EXPRESS provide a flexible formalism for modeling, but
may be difficult to apprehend for a product modeler with
few programming skills. Finally, specific features for prod-
uct configuration are often missing, such as product catalogs
and production attributes integration, or complex constraints
(layout, soft, optimization functions, ...).

4 Solving the configuration
Proposing a language expressive enough to ideally model
product families is not sufficient: the configuration system
must be able to support this language and propose sufficient
solving mechanisms. The combinatorial nature of configura-
tion problems has led towards a wide use of Constraint Satis-
faction Problems (CSP).
Others topics of interest are model debugging and explana-
tions. Indeed, both the modeler and the end-user must be as-
sisted when using an interactive configurator. Modeler should
be able to have a clear view of the running model and its con-
straints during design phase, while help should be provided to
the end-user when he wants to force a value selection or when
the configurator has reached an over-constrained choice with
no solution.
In this section, we first recall the original definition of CSP
and compare several dynamic extensions. We then review the
trends in explanation generations and debugging.

4.1 Constraint Satisfaction Problems
The original CSP is a triple P = 〈X, D, C〉 where:
• X is an n-tuple of variables X = 〈x1, x2, ..., xn〉,
• D is a corresponding n-tuple of domains D =
〈D1, D2, ..., Dn〉, representing, for each variable xi, the
set of possible values it can take,
• C is a t-tuple of constraints C = 〈C1, C2, ..., Ct〉 re-

stricting the values that the variables can simultaneously
take.

Such problems are usually solved using search and con-
sistency techniques. Search techniques are used to explore
the solution space of the problem, the most famous one be-
ing backtracking, where the algorithm assigns each variable,
tests for all the constraints, and then backtracks if no solution
is to be found. Consistency techniques are used to reduce
the domains of the variables during the solving, while keep-
ing the problem consistent with the constraints. The most
used consistency algorithm is arc-consitency (AC) 3, that re-
search has been going on trying to improve (e.g. AC-3.3 in
[Lecoutre et al., 2003]). Other types of consistency tech-
niques have also been investigated: path- [Bessière et al.,
2005] or k-consistency - although the complexity of the algo-
rithms goes increasing. These techniques are aimed at prob-
lems on finite domains: working with continuous domains is

Matthieu Quéva, Christian Probst, and Per Vikkelsøe 43

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

often more perilous [Benhamou et al., 1999]. Finally, hybrid
techniques can be used to improve the efficiency of consis-
tency algorithms. Such techniques involve sharing of com-
mon subexpressions within the constraints [Hentenryck et al.,
1997], reshaping of the constraint network into a DAG (Direct
Acyclic Graph), or reformulation of constraints [Benhamou
and Granvilliers, 1997].

4.2 Extensions to CSP
Extensions to the classical CSP have been developed to per-
mit the resolution of dynamic problems like product config-
uration. Mittal and Falkenhainer [1990] define a Dynamic
Constraint Satisfaction Problem (DCSP), where some vari-
ables are initially active while other not, and constraints are
classified in two categories: activity constraints, that activate
or deactivate variables, or compatibility constraints (similar
to the constraints in the classic CSP).
This formulation includes algorithms only based on back-
tracking techniques, and has served as a basis for several oth-
ers frameworks:
• a revision of the DCSP by [Soininen and Gelle, 1999],

equivalent in complexity to the original CSP, and where
activity constraints are generalized.
• Composite CSP (CCSP) [Sabin and Freuder, 1996] have

been introduced to model a hierarchical structure be-
tween variables or constraints, using metavariables as
placeholders for subproblems.
• In CSPe [Véron and Aldanondo, 2000], a state attribute

is associated to each variable, giving the possibility to
represent the activity of the variable, but can be also used
for other purposes. The advantage of this formulation is
that it can be solve using classic algorithms.
• More advanced algorithms for DCSP (renamed Cond-

CSP) are developed in [Gelle and Faltings, 2003; Sabin
et al., 2003], and even further by Geller and Veksler
[2005] with the ACSP.

Although well-studied, these dynamic CSP can only repre-
sent optional variables, and thus problems with an unbound
number of variables cannot be solved with those methods.
Two different approaches have thus been studied to solve that
problem. Stumptner et al. [1998] describe the Generative
CSP (GCSP), where constraints with metavariables can be
used to express generic relations. Mailharro [1998] defines
another framework, capable of satisfying on-demand genera-
tion of component in configuration. His approach is based on
constrained set variables, which can contain a special value
(wildcard) that represents the set of all components that have
not been instantiated yet. Although a solving methodoly is
presented, optimal algorithms in the number of value queries
could be investigated.
One noticeable difference in these propositions is the rep-
resentation of the product model using constraint satisfac-
tion. Mailharro’s approach focus on exploiting the compo-
nent structure of the problem during solving. This kind of hy-
brid structure-based and constraint-based approach produces
a constraint model much closer to the product model itself.
This permits to design solving mechanisms specific to con-
figuration, and that can reason on the structure of the product.

It could also be of great help for giving debugging feedback
to the modeler, thanks to its expressiveness.
The algorithms for solving these different problem represen-
tations are not always optimal, while time is a very important
factor when dealing with interactive configuration. Precompi-
lation techniques have thus been studied to circumvent those
issues. The idea is to preprocess the constraint model at com-
pile time into an efficient representation, using Binary Deci-
sion Diagrams [Hadzic et al., 2004] or automata [Amilhastre
et al., 2002; Fargier and Vilarem, 2004]. However, generative
problems or continuous domains are still an issue.

5 Explanations and Debugging
An efficient solving is not the only feature a constraint solver
for interactive configuration should provide. Explanations
and debugging support are necessary to help the user react
intelligently when confronted to the modeling and configura-
tion of a product.
Explanations are used to assist the end-user when answering
the following questions: if there is a conflict, what are the
reasons for inconsistency? Why is this feature selected by
the solver engine? Why is this feature unavailable? Research
work on explanations has recently increased, with the devel-
opment of the QuickXplain algorithm by Junker [2004], that
computes the minimal conflict set of a problem. In [2004],
Friedrich proposes an improvement in the definition and the
computation of the explanations in order to avoid the problem
of spurious explanations. Recently, other approaches such as
corrective [O’Callaghan et al., 2005] and representative ex-
planations [O’Sullivan et al., 2007] have been developed to
provide more intuitive explanations to the users.
Debugging support must also be provided to the user when it
comes to test the product model. Indeed, an important part
in the development of a model is actually verifying whether
the model does what it is expected to do. Constraint debug-
ging has been well studied in the research world, including
visualization tools [Der, 2000] or the generic trace format
from the OADymPPaC project [2007]. But few of these tech-
niques have been specially targeted at product configuration,
and are thus difficultly accessible to a classic design engineer.
The concept of model-based diagnosis has been adapted to
configuration by Felfernig et al. [2004] in order to tests the
knowledge base with positive and negative test cases. Re-
cently, Krebs [2008] proposed algorithms to identify relevant
and irrelevant components for a specific product type (using
segmentation of the product model tree), as well as detecting
reachable component, using preprocessing to reduce the al-
gorithm’s complexity in some cases.
We strongly believe that research should focus on adapting
debugging tools for product configuration, in order to allevi-
ate the work of product modelers and testers, and limit the
amount of time they spent on debugging their models.

6 Towards a future configuration system
In this section, we explore propositions for a new product
configuration framework, based on the state-of-the-art tech-
nologies and the implementation of a new modeling language
(Fig. 3).

Matthieu Quéva, Christian Probst, and Per Vikkelsøe 44

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Figure 3: Product configuration framework

6.1 A new modeling language
As mentioned earlier, the language supporting the modeling
of the product is of great importance for the configuration
process. We propose the creation of a new declarative lan-
guage that would be:
• textual: that type of language facilitates the interpreta-

tion and techniques like static analysis and optimization
of the implemented model. Those techniques could for
example be applied to perform model-checking, or pro-
pose correction of the model (e.g. by detecting unreach-
able values in attributes’ domain). Integration with other
systems such as a CAD software or a database would
also be easier with such a language.
• accessible for model designers: the language should in-

tegrate keywords derived from configuration terminol-
ogy, such as “product”, “component”, “constraint”, “at-
tribute” or even “BOM”.
• providing a graphical representation: an export to a

graphical language such as UML (or SysML) using the
XMI format would permit to give a clear view of the
model representation to the modeler, along with favoring
the exchange of modeling data. Data about the model’s
constraints could be converted in OCL (when possible),
or exported as text.
• designed according to the modeling requirements from

Section 2, so that the language provides as many neces-
sary features as possible for the model designer.
• aimed at enhancing designers’ productivity: firstly,

working with a textual language is often faster than
through user interfaces, especially in an industrial envi-
ronment where models are complex and contain a rela-
tively big amount of data; secondly, such a language can
be integrated in a development environment such as Mi-
crosoft Visual Studio, providing language services such
as syntax-highlighting, code auto-completion, struc-
tured projects and many others. Last but not least, using
a product modeling specific language would ease the in-
tegration with existing systems like ERPs or other tools
(Word/Excel, ...).

6.2 Solving engine
The solving engine supporting the modeling language should
at least implement the Generative CSP framework. Indeed,
the dynamic possibilities of this framework are necessary to
ensure the broadest panel of options available for the model.
On the other hand, such a framework may not be as fast as
simpler ones, and that is why other solutions may be envis-
aged. An interesting idea would be to perform an analysis of
the model and determine what framework would be the most
appropriate to use, improving execution times when possible.
An explanation generation module will have to be integrated
into the solving system. Such a module should integrate the
recent state-of-the-art techniques, such as the QuickXplain al-
gorithm [Junker, 2004] but could also experiment with cor-
rective and representative explanations for example.

6.3 Advanced debugging support
Model-based diagnosis [Felfernig et al., 2004] could pro-
vide interesting debugging options when designing a prod-
uct model. The test cases could be gathered from previous
configuration runs to make sure new model’s additions do not
create inconsistencies with old configurations. It is also worth
investigating the automatic generation of the test cases: just
after the creation of the model, by looking for potential weak-
nesses (e.g. targeting special values such as 0, infinity, or con-
structs like dynamic aggregations), or from a model proven
correct, in order to test future modifications.
We also propose the exploration of debugging through break-
points. The development of the model in an advanced envi-
ronment such as Visual Studio gives the possibility to easily
assign breakpoints to some parts of the model. Those break-
points could target attributes and/or constraints, and be trig-
gered when the attributes are modified, or the constraints pro-
voke a change in the other assignments. A graphical overview
of the constraint system could then be presented to the user.

7 Conclusion
Product configuration is a recent field of interest for both re-
search and industry. As a consequence, the features and tech-
nologies needed for configuration systems are always evolv-
ing. We presented in this article a list of requirements for
state-of-the-art product configuration systems, illustrated by
a case study. We also described major existing modeling
languages in the context of configuration, and discuss their
limitations when it comes to configuration-specific features.
Graphical languages fall short when it comes to automatic
validation of the model. On the other hand, textual languages
like EXPRESS are powerful but not suited for configuration
model designers with few programming skills.
We then reviewed existing techniques for solving configura-
tion problems, highlighting the need for advanced debugging
support integrated with product modeling. As a solution, we
made some propositions for a future product configuration
framework, based on a new textual product modeling lan-
guage integrated into a development environment. The de-
velopment of this framework is the main objective of future
work, associating static analysis, constraint solving and con-
straint debugging.

Matthieu Quéva, Christian Probst, and Per Vikkelsøe 45

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

References
[Aldanondo et al., 2001] M. Aldanondo, J. Lamothe, and

K. Hadj-Hamou. Configurator and cad modeler:gathering
the best of 2 worlds. IJCAI Configuration Workshop, 2001.

[Aldanondo et al., 2003] M. Aldanondo, K. Hadj-Hamou,
G. Moynard, and J. Lamothe. Mass customization
and configuration: Requirement analysis and constraint
based modeling propositions. Integr. Comput.-Aided Eng.,
10(2):177–189, 2003.

[Amilhastre et al., 2002] J. Amilhastre, H. Fargier, and
P. Marquis. Consistency restoration and explanations in
dynamic csps—-application to configuration. AI, 135(1-
2):199–234, 2002.

[Benhamou and Granvilliers, 1997] F. Benhamou and
L. Granvilliers. Automatic generation of numerical
redundancies for non-linear constraint solving. Reliable
Computing, 3(3):335–344, 1997.

[Benhamou et al., 1999] F. Benhamou, F. Goualard,
L. Granvilliers, and J.-F. Puget. Revising hull and box
consistency. Proc. ICLP, pages 230–244, 1999.

[Bessière et al., 2005] C. Bessière, J.-C. Régin, R. HC Yap,
and Y. Zhang. An optimal coarse-grained arc consistency
algorithm. AI, 165 (2):165–185, 2005.

[Der, 2000] Analysis and Visualization Tools for Constraint
Programming, Constraint Debugging (DiSCiPl), 2000.

[EXPRESS, 2004] EXPRESS. 10303-11 ISO - Part 11: The
EXPRESS language reference manual, 2004.

[Fargier and Vilarem, 2004] H. Fargier and M.-C. Vilarem.
Compiling csps into tree-driven automata for interactive
solving. Constraints, Vol. 9 Issue 4:263–287, 2004.

[Felfernig et al., 2002] A. Felfernig, G. Friedrich, D. Jan-
nach, and M. Zanker. Configuration knowledge represen-
tation using uml/ocl. LNCS, Jan 2002.

[Felfernig et al., 2004] A. Felfernig, G. Friedrich, D. Jan-
nach, and M. Stumptner. Consistency-based diagnosis of
configuration knowledge bases. AI, 152:213–234, 2004.

[Friedrich, 2004] G. Friedrich. Elimination of spurious ex-
planations. Proc. ECAI’04, 2004.

[Gelle and Faltings, 2003] E. Gelle and B. Faltings. Solving
mixed and conditional constraint satisfaction problems.
Constraints, 8(2):107–141, 2003.

[Geller and Veksler, 2005] F. Geller and M. Veksler.
Assumption-based pruning in conditional csp. Proc.
CP’05, 3709:241–255, Oct 2005.

[Hadzic et al., 2004] T. Hadzic, S. Subbarayan, R. M.
Jensen, H. R. Andersen, J. Møller, and H. Hulgaard. Fast
backtrack-free product configuration using a precompiled
solution space representation. Proc. PETO’04, 2004.

[Hentenryck et al., 1997] P. Van Hentenryck, L. Michel, and
Y. Deville. Numerica: a Modeling Language for Global
Optimization. 1997.

[Hvam et al., 2008] L. Hvam, N. H. Mortensen, and J. Riis.
Product customization, volume XII. 2008.

[Janitza et al., 2003] D. Janitza, M. Lacher, M. Maurer,
U. Pulm, and H. Rudolf. A product model for mass-
customisation products. LNCS, 2774:1023–1029, 2003.

[Junker, 2004] U. Junker. Quickxplain: preferred explana-
tions and relaxations for over-constrained problems. Proc.
AAAI’04, pages 167–172, 2004.

[Krebs, 2008] Thorsten Krebs. Debugging structure-based
configuration models. Proc. ECAI’08, 2008.

[Lecoutre et al., 2003] C. Lecoutre, F. Boussemart, and
F. Hemery. Exploiting multidirectionality in coarse-
grained arc consistency algorithm. Proc. CP’03, pages
480–494, 2003.

[Mailharro, 1998] D. Mailharro. A classification and
constraint-based framework for configuration. AI EDAM,
12:383–395, Sep 1998.

[Mittal and Falkenhainer, 1990] S. Mittal and B. Falken-
hainer. Dynamic constraint satisfaction problems. 1990.

[Moller et al., 2001] J. Moller, H. R. Andersen, and H. Hul-
gaard. Product configuration over the internet, 2001.

[OADymPPaC, 2007] OADymPPaC. Generic Trace Format
for Constraint Programming - Version 2.1, Jan 2007.

[O’Callaghan et al., 2005] B. O’Callaghan, B. O’Sullivan,
and E. C. Freuder. Generating corrective explanations for
interactive constraint satisfaction. Proc. CP’05, 2005.

[O’Sullivan et al., 2007] B. O’Sullivan, A. Papadopoulos,
B. Faltings, and P. Pu. Representative explanations for
over-constrained problems. Proc. CP’07, 2007.

[Pine, 1993] B. J. Pine. Mass Customization - The New Fron-
tier in Business Competition. Harvard Business School
Press, 1993.

[Rossi et al., 2006] F. Rossi, P. van Beek, and T. Walsh.
Handbook of Constraint Programming. 2006.

[Sabin and Freuder, 1996] D. Sabin and E. C. Freuder. Con-
figuration as composite constraint satisfaction. pages 153–
161, 1996.

[Sabin et al., 2003] D. Sabin, E. C. Freuder, and R. J. Wal-
lace. Greater efficiency for conditional constraint satisfac-
tion. LNCS - CP 2003, pages 649–663, 2003.

[Soininen and Gelle, 1999] T. Soininen and E. Gelle. Dy-
namic constraint satisfaction in configuration. Proc. of
AAAI Workshop on Configuration, Jan 1999.

[Soininen et al., 1998] T Soininen, J Tiihonen, T Männistö,
and R Sulonen. Towards a general ontology of configura-
tion. AI EDAM, 12(4):357–372, 1998.

[Stumptner et al., 1998] M. Stumptner, G. Friedrich, and
A. Haselböck. Generative constraint-based configuration
of large technical systems. AI EDAM, 12(4):307–320,
1998.

[SysML, 2001] SysML. OMG Systems Modeling Language
(OMG SysML) v1.0 Specification, 2001.

[Véron and Aldanondo, 2000] M. Véron and M. Aldanondo.
Yet another approach to ccsp for configuration problem.
Proc. ECAI’00, pages 59–62, 2000.

Matthieu Quéva, Christian Probst, and Per Vikkelsøe 46

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Argumentation based constraint acquisition

Kostyantyn Shchekotykhin and Gerhard Friedrich
University Klagenfurt, Austria

Department of Intelligent Systems and Business Informatics
firstname.lastname@ifit.uni-klu.ac.at

Abstract
Efficient acquisition of constraint networks is a key
factor for the applicability of constraint problem
solving methods. Current techniques ease knowl-
edge acquisition by generating examples which are
classified by a domain expert. However, in addi-
tion to this classification, an expert can usually pro-
vide arguments why examples should be rejected
or accepted. Generally speaking domain special-
ists have partial knowledge about the theory to be
acquired which can be exploited for knowledge ac-
quisition. Based on this observation we discuss the
various types of arguments a knowledge engineer
can formulate. For the processing of these types
of arguments we developed a knowledge acquisi-
tion algorithm which gives the knowledge engineer
the possibility to input arguments in addition to the
classification of examples. The result of this ap-
proach is a significant reduction of the number of
examples which must be classified.

1 Introduction
Constraint networks are among the most successful technolo-
gies for the implementation of knowledge based systems in
various domains, such as configuration and recommender
systems. The positive aspect of this technology is an explicit
knowledge representation, which can be exploited for vali-
dation and explanation generation. However, the downside is
the significant engineering effort required for knowledge base
formulation and maintenance. In order to ease this problem,
[Bessière et al., 2007] proposed a knowledge acquisition pro-
cess that generates examples to be classified by a knowledge
engineer. These examples are produced s.t. (roughly speak-
ing) the number of possible knowledge bases contained in the
learning space is reduced by half. While this is a major step
towards efficient knowledge acquisition, the acquisition pro-
cess can be further improved by exploiting additional knowl-
edge. Usually the domain expert is not only able to classify
an example but can also provide pieces of knowledge (which
we call arguments) that justify the classification.

In our solution we follow the approach of [Bessière et al.,
2007] by characterizing the version space (i.e. the set of all
possible constraint networks for a given vocabulary) using a

propositional theory but introduce arguments for constraint
acquisition. Note, arguments for learning classification rules
were pioneered in [Mozina et al., 2007]. We borrow the
idea that additional knowledge about examples improves the
learning process. However, since both the underlying learn-
ing method and the target language are different we follow an
other route for constraint acquisition. In particular, our novel
contributions are: First, we show the broad range of possi-
ble types of arguments a domain expert can formulate. Com-
plete positive and negative examples in the sense of [Bessière
et al., 2007] are treated as special cases in this generalized
view. Next, we show the consequences on the version space
depending on the type of argument. Finally, we provide a
constraint network acquisition algorithm based on a general-
ized view of arguments. This algorithm generates examples
by employing the method proposed in [Bessière et al., 2007].
In addition to [Bessière et al., 2007] the knowledge engineer
has the possibility to provide a set of arguments which are
exploited to reduce the version space thus reducing the num-
ber of examples that must be evaluated by the knowledge
engineer. E.g. our experimental study shows a reduction by
roughly 50% to 75% for two arguments per example.

The paper is structured as follows. In Sec. 2 we provide
an introduction to constraint learning. The types of possible
arguments, their relation to examples, and their consequences
on the version space is described in Sec. 3. The implemen-
tation of our method is presented in Sec. 4 followed by the
results of our experiments in Sec. 5.

2 Constraint learning overview
In order to be able to learn a target problem description an
expert should define the underlying formal language of the
learner. In the case of constraint network learning an expert
has to specify a vocabulary that includes a set of variables
X : {x1, . . . , xn} along with a (finite) set of domain values
D and a set of allowed constraints L : {b1, . . . , bm}. Each
constraint b ∈ L with arity n can be defined on a set of vari-
ables Xb ⊆ X where |Xb| = n specifies a restriction on the
allowed combination of domain values for the set of variables
Xb.

For simplicity hereafter we assume that every constraint
considered by the learning algorithm is binary, that is |Xb| =
2. For example, given a constraint libraryL : {≥} and a set of
variables X : {x1, x2} one can define a constraint ≥1,2 that

Kostyantyn Shchekotykhin and Gerhard Friedrich 47

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

specifies a “greater than” relation between variables x1 and
x2. Note, this assumption does not affect the generality of
the proposed approach since every high-order finite-domain
constraint can be reduced to a set of binary constraints.

Constraints from the library L together with the set of vari-
ables X define the inductive bias of the learning algorithm
B. A bias B is a subset of {bij,k} for all 1 ≤ j, k ≤ n,
1 ≤ i ≤ m. For instance, given the library L : {≤,≥, 6=}
together with the set X : {x1, x2} an expert can construct the
bias B : {≤1,2,≤2,1,≥1,2,≥2,1, 6=1,2}.

A training set Ef is the second required input required for
the constraint acquisition algorithm. Such a set should be
formed by an expert and consists of a set of instancesE (train-
ing examples) and a classification function f : E → {0, 1}.
The classification function partitions the given instances into
positive e+ and negative e− examples.

Each instance e ∈ E is a mapping from the set of all vari-
ables X to the set of domain values e(xj) ∈ D. If a pair
(e(xj), e(xk)) is an element of a binary constraint bj,k ∈ B
then we say that the instance e satisfies the constraint bj,k. In
the opposite case the instance is rejected by the constraint. An
instance e is called a solution for a set of constraintsC ⊆ B if
it satisfies all constraints in C and a non-solution otherwise.

[Bessière et al., 2005] define the constraint network ac-
quisition problem as generating a constraint set C ⊆ B that
correctly classifies all training examples inEf , i.e. every pos-
itive example e+ ∈ Ef is a solution and every negative exam-
ple e− ∈ Ef is a non-solution of C. In this case C is termed
to be consistent with the training set Ef .

CONACQ [Bessière et al., 2005] is a SAT-based algorithm
that uses version spaces [Mitchell, 1982] to acquire constraint
networks. The hypothesis space corresponds to the bias.
Given a bias B and a set of training examples Ef the version
space VB(Ef) is defined as the set of constraint networks
C ⊆ B which are consistent with Ef .

CONACQ encodes the version space VB(Ef) as a proposi-
tional theory K. The propositional variables of K are sym-
bols b ∈ B representing constraints of the bias B. In an
interpretation of K a propositional variable b with truth value
1 indicates that the constraint b is included in a constraint net-
work. Truth value 0 represents the exclusion of constraint b.
models(K) denotes the set of all models of K. A function
φ(m) transforms a model m of K to a constraint network by
mapping propositional symbols with truth values of 1 to cor-
responding constraints. All constraints which correspond to
symbols with truth value 0 are omitted. Therefore negative
facts ¬b in K should be understood not as the negation of
constraint b itself, but as a description that b is absent in all
constraint networks characterized byK. Thus,models(K) is
used to represent all possible constraint networks consistent
with Ef .

The constraint acquisition algorithm takes the bias B and
a set of examples as an input. For each example e CONACQ
finds a set κ(e) of constraints b ∈ B where b is unsatisfi-
able with example e. If e is a positive example then the unit
clauses {¬b} are added to K for all b ∈ κ(e). In the case e
is a negative example then the clause {∨b∈κ(e) b} is added.
Each learning step finishes by applying unit propagation to

Table 1: Clauses learned after processing the training set EfT

EfT Clauses added to K
e+1 (1, 2, 3) ¬ ≥1,2 ∧¬ ≥1,3 ∧¬ ≥2,3

e−2 (1, 2, 1) 6=1,3 ∨ ≤2,3

Table 2: Clauses learned from generated examples EfG
Propositional clauses Constraints

EfG added to K fixed by K
e−3 (1, 3, 2) ≤2,3 ∨ ≥1,2 ∨ ≥1,3 ≤2,3

e+4 (1, 2, 2) ¬ 6=2,3 ∧¬ ≥1,2 ∧¬ ≥1,3 ¬ 6=2,3

e+5 (2, 1, 3) ¬ ≤1,2 ∧¬ ≥1,3 ∧¬ ≥2,3 ¬ ≤1,2

e+6 (2, 1, 2) ¬ 6=1,3 ∧¬ ≤1,2 ∧¬ ≥2,3 ¬ 6=1,3

e+7 (3, 1, 2) ¬ ≤1,3 ∧¬ ≤1,2 ∧¬ ≥2,3 ¬ ≤1,3

e−8 (1, 1, 2) 6=1,2 ∨ ≥1,3 ∨ ≥2,3 6=1,2

simplify the propositional theoryK and to check consistency.

Example 1 Assume that an expert provided a constraint li-
brary L = {≥,≤, 6=} along with a set of variables X =
{x1, x2, x3} and a domain D = {1, 2, 3}. The constraint
bias B is defined as {≥i,j ,≤i,j , 6=i,j} for all 1 ≤ i < j ≤
3. Furthermore, the expert defined a training set EfT =
{e+1 , e−2 } (see Table 1) aiming to acquire a target constraint
network CT that contains two constraints {6=1,2 ∧ ≤2,3}. Af-
ter processing these examples CONACQ will output the propo-
sitional theory K presented in Table 1.

Example 1 shows that due to incompleteness of the pro-
vided training set EfT various different constraint networks
are consistent with the examples. [Bessière et al., 2007] sub-
sequently suggest an algorithm to generate missing examples
until all b ∈ B are fixed, that is either b or ¬b is entailed by
K. From the given propositional theory K and a set of con-
straints L the algorithm iteratively generates extensions of K
s.t.: (a) K is satisfiable and (b) there exists m ∈ models(K)
such that constraint network φ(m) has at least one solution.
Such a solution is then presented as an example to an expert,
who classifies it as positive or negative. Under the best per-
forming optimistic-in-expectation strategy the algorithm iter-
atively generates such examples, which in the best case fix
exactly one constraint b ∈ L, thus reducing the version space
by half, regardless of user classification.

Example 2 For the case given in Example 1 the algorithm
generates examples that fix at least one constraint bi,j . The
generated examples and the learned clauses are presented in
Table 2. Note, unit propagation will reduce clauses s.t. after
removing the clause generated for e−2 from K after e−8 all
elements of the bias are fixed.

However, experts may give arguments to supplement ex-
amples. E.g. for e−2 the expert may give the constraint ≤2,3

as a reason why this example is negative. These arguments
represent additional information and can be easily formulated
by an expert in the validation step. In the following section
we will provide a general definition of arguments and their
impact on the version space.

Kostyantyn Shchekotykhin and Gerhard Friedrich 48

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

3 Argumentations and examples
The task of argumentation based learning is to generate a log-
ical theory C based on a set of arguments ARG provided
by a knowledge engineer. In our case this logical theory is
a set of constraints. Consequently, we define an argument
arg as a set of constraints, i.e. an argument is a subset of
the bias and the set of all possible value assignments, i.e.
arg ⊆ B ∪ {xi = vi|xi ∈ X, vi ∈ D}. Since an exam-
ple can be represented as a set of constraints xi = vi where
xi is a variable and vi is an element of the domain D, we
can treat both examples and arguments uniformly. In the fol-
lowing we require that arguments are satisfiable. Arguments
and constraints are interpreted w.r.t. a vocabulary. An inter-
pretation for a vocabulary is an assignment of a value of the
domain to each variable of the vocabulary. The concepts of
models, satisfiability, and entailment are defined as usual.
Definition 1 Given a set of arguments ARG and a logical
theory C. C is valid w.r.t. ARG iff C is consistent and the
following conditions hold for all arguments of ARG:

1. C ∪ arg+ satisfiable where arg+ is called a positive
argument forC. The set of positive arguments is denoted
by ARG+.

2. C ∪ arg− unsatisfiable where arg− is called a nega-
tive argument for C. The set of negative arguments is
denoted by ARG−.

3. C |= argN where argN is called a necessary argument
for C. The set of necessary arguments is denoted by
ARGN .

4. C 6|= arg−N where arg−N is called too-strong for C.
The set of too-strong arguments is denoted by ARG−N .

5. argS |= C where argS is called a sufficient argument
for C. The set of sufficient arguments is denoted by
ARGS .

6. arg−S 6|= C: arg−S is called too-weak for C. The set
of too-weak arguments is denoted by ARG−S .

The set of argumentsARG isARG+∪ARG−∪ARGN ∪
ARG−N ∪ARGS ∪ARG−S .

By exploiting negation, the third case is equivalent to the
second by verifying if C ∪¬argN is unsatisfiable. Likewise,
the forth case can be reduced to the first case by verifying
if C ∪ ¬arg−N is satisfiable. Therefore, if the negation of
constraints is supported by a reasoning system only Cases 1
and 2 need to be considered. The set of necessary and too-
strong arguments can be included in ARG− and ARG+.

In the following we specify for each argument type the
clauses added to the propositional theory K characterizing
the version space. For this characterization we employ the
concept of conflicts.
Definition 2 The set of constraints B′ for a bias B is a con-
flict for argument arg (set of constraints) where B′ ⊆ B iff
B′∪arg is unsatisfiable. A minimal conflict is a conflict which
does not contain a proper subset which is a conflict.

Property 1 If arg+ is a positive argument and B′ ⊆ B is a
conflict for arg+ then K contains the clause

∨
b∈B′ ¬b. It is

sufficient to consider only minimal conflicts B′.

This property ensures that every set of conflicting con-
straints are excluded by adding corresponding clauses to K
since arg+ can be empty.

Given the vocabulary defined in Example 1, if a user spec-
ifies a positive argument arg+ to be {x1 = 1, x3 = 2} then
the minimal conflicts are {≥1,3}, {≥1,2,≥2,3}, {≥1,2, 6=1,2

}, {≥2,3,≤2,3, 6=2,3}, {6=1,2,≤2,3, 6=2,3}. Consequently,
clauses like {¬ 6=1,2 ∨ ¬ ≤2,3 ∨ ¬ 6=2,3} are added to K.

Note, we can construct cases where the number of all min-
imal conflicts can increase exponentially in the size of the
bias. However, if some minimal conflicts are not added to K
then the domain expert should validate more examples, thus
computational costs can be traded for knowledge acquisition
costs.
Property 2 If arg− is a negative argument and
CONF is the set of minimal conflicts for arg− then∨
B′∈CONF

∧
b∈B′ b is contained in K.

If a user specifies the previous example argument as nega-
tive then the shown conflicts are interpreted as a conjunction
and connected by a disjunction. However, Property 2 can be
reformulated in order to avoid the disjunction of all minimal
conflicts.
Property 3 If arg− is a negative argument and B′ ⊆ B s.t.
arg− ∪ (B − B′) is satisfiable then the clause

∨
b∈B′ b is

contained in K. It is sufficient to consider only sets B′ where
for each B′′ ⊂ B′, arg− ∪ (B −B′′) is unsatisfiable.

If for the example given above a user specifies the negative
argument {x1 = 1, x3 = 2} then the clauses {≥1,3 ∨ ≥1,2

∨ ≤2,3}, {≥1,3 ∨ ≥1,2 ∨ 6=2,3}, and {≥1,3 ∨ ≥2,3 ∨ 6=1,2}
can be added to K. Note, such clauses correspond to the
minimal hitting sets of the conflicts. As previously stated not
all clauses need to be added to K since example generation
proceeds until all b in B are fixed.

As in [Bessière et al., 2005] examples may be specified
completely, i.e. every variable of X is assigned a value. In
the case that arg− is a complete example then the previous
property can be simplified since minimal conflicts are single-
tons. Consequently, the previous property corresponds to the
case in [Bessière et al., 2005] where the complete example is
a negative one.
Property 4 If argS is a sufficient argument and b ∈ B and
argS 6|= b then the clause ¬b is contained in K.

Let us assume that the user knows that x1 = 2 and x2 =
1 together with the domain constraint on x3 is a sufficient
argument, i.e. in case x1 = 2 and x2 = 1 all values of x3

are allowed. In this situation {¬ ≤1,2}, {¬ ≥2,3}, {¬ 6=2,3},
{¬ ≤1,3}, {¬ ≥1,3}, {¬ 6=1,3} are added to K.

Note, complete specified examples correspond to sufficient
arguments. If eS is a completely specified example then eS |=
C. Consequently, the previous property corresponds to the
case in [Bessière et al., 2005] where the complete example is
a positive one.
Property 5 If arg−S is a too-weak argument and B′ is the
set of all b ∈ B where arg−S 6|= b then add

∨
b∈B′ b to K.

If a user specifies a too-weak argument arg−S to be {x1 =
1, x3 = 1} then the following clause {6=1,2 ∨ ≥1,2 ∨ 6=2,3 ∨

Kostyantyn Shchekotykhin and Gerhard Friedrich 49

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Table 3: Clauses learned from argued examples ARGT pro-
vided by an expert

ARGT Clauses added to K

argS1 (1, 2, 3) ¬ ≥1,2 ∧¬ ≥1,3 ∧¬ ≥2,3

argN1 (6=1,2) 6=1,2 ∨ ≥1,3 ∨ ≥2,3

arg−N1 (≤1,3) ¬ ≤1,3 ∧(¬ ≤1,2 ∨¬ ≤2,3)
arg−S2 (1, 2, 1) ≥1,2 ∨ 6=1,3 ∨ ≤2,3

argN2 (≤2,3) ≤2,3 ∨ ≥1,2 ∨ ≥1,3

arg−N2 (6=1,3) ¬ 6=1,3

≤2,3 ∨ 6=1,3} is added to K. Every negative argument is a
too-weak argument. In case the too-weak argument is a com-
pletely specified example then this argument is also a nega-
tive argument. Because of this one-to-one relation in case of
complete examples, complete examples can be treated either
as sufficient or too-weak arguments.

Example 3 Assume that the same constraint biasB was pro-
vided as in Example 1. Instances in training set Ef are com-
plete examples and are processed as sufficient and too-weak
arguments. Moreover, for each example the expert provided
two arguments argN and arg−N defined in terms of bias con-
straints. Note, the negation of each argN in ARGN is added
to ARG− and the negation of each arg−N in ARG−N is
added to ARG+.

The learning algorithm exploits the arguments according
to the properties given above. Clauses inserted by the learner
into the propositional theory K for each argument are pre-
sented in Table 3. For necessary arguments argN and too-
strong arguments arg−N we depict only those clauses needed
for fixing the constraints in the bias. Note, in practical set-
tings, if K entails ¬b then the constraint b is removed from
the bias and thus clauses become smaller. E.g. in the second
line of Tab. 3 clause {6=1,2 ∨ ≥1,3 ∨ ≥2,3} is simplified to
{6=1,2}.

The resulting theory K obtained after unit propagation is
¬ ≥1,2 ∧¬ ≥1,3 ∧¬ ≥2,3 ∧ 6=1,2 ∧¬ ≤1,3 ∧ ≤2,3 ∧¬ ≤1,2

∧¬ 6=1,3. The example generation algorithm will generate
only one complete example for this theory, e.g. (1, 2, 2) which
we assume to be classified as a positive argument. By pro-
cessing this example the argumentation-based learning al-
gorithm can fix the last missing constraint ¬ 6=2,3 and the
method outputs the constraint network CT = {6=1,2,≤2,3}.

4 Implementation
The argumentation-based constraint acquisition algorithm de-
scribed in this section relies on two general algorithms:
QUICKXPLAIN [Junker, 2004] and HS-TREE [Reiter, 1987].
Given a set B of possibly unsatisfiable constraints and a set
BK of constraints considered to be correct, QUICKXPLAIN
returns: (a) consistent in the case when the set B ∪ BK is
consistent, (b) ∅ if BK is inconsistent, or (c) a minimal con-
flict BC ⊆ B. On each call QUICKXPLAIN computes only
one minimal conflict. Since a set of constraints B may con-
tain more than one minimal conflict we can use the HS-TREE
algorithm to find: (a) the set of all minimal conflicts CONF ,

Algorithm 1: Iterative learning algorithm
Input: set of constraints B
Output: set of constraints C
CONF ← CONFLICTS(HS-TREE(B, ∅))1
if CONF 6= ∅ then2

K ← ∧
BC∈CONF

(∨
b∈BC

¬b
)

3

else K ← ∅4
K ← SIMPLIFY(K,B)5
LS ← {B}6
while HASUNFIXEDCONSTRAINTS(B,K) do7

S ← GENERATEEXAMPLE(K,LS,B)8
if S = ∅ then return “inconsistency”9
ARG← VALIDATE(S)10
K ← LEARNCONSTRAINTS(ARG,K,B)11
if K = ∅ then return “inconsistency”12
LS ← GETDISJUNCTIONS(K)
if LS = ∅ then LS ← {B}13

return CREATECONSTRAINTS(K)14

and (b) the set HS of all minimal hitting sets of conflicts.
The computation of minimal conflicts within HS-TREE is
done by QUICKXPLAIN and therefore both algorithms take
the same inputs [Friedrich and Shchekotykhin, 2005]. Each
minimal hitting set BHS ∈ HS is a set of constraints s.t.
(B \BHS)∪BK is satisfiable. During computation the gen-
eration of conflicts and hitting sets can be limited for avoiding
combinatorial explosion. This strategy is sufficient since the
constraint acquisition algorithm continues to generate solu-
tions until all the constraints in the given bias are fixed.

The constraint acquisition algorithm (see Algo. 1) takes the
set of bias constraints B generated from the given vocabu-
lary as input. In the first step the consistency of the bias is
verified by applying HS-TREE. For an inconsistent bias HS-
TREE outputs a set CONF of minimal conflicts. According
to Prop. 1 for each conflict BC ∈ CONF the algorithm adds
corresponding clauses to the propositional theory K. Addi-
tional constraints are fixed in K by applying SIMPLIFY. This
procedure exploits unit propagation, redundancy rules, and
backbone detection as proposed by [Bessière et al., 2005] in
order to fix bias constraints and to reduce the size and number
of clauses in K. Next, the algorithm initializes an ordered set
of sets LS by inserting the bias into it. During the learning
processLS is used to store sets of unfixed constraints, namely
all constraint sets corresponding to non-unary disjunctions in
K. Hence, the elements of LS are constraint sets.

The main loop (Line 7) of Algo. 1 includes three stages:
generation of an example (Line 8), validation of the solution
by an expert (Line 10), and learning of the version space (Line
11). The algorithm stops when all bias constraints are fixed.

Complete examples are generated by GENERATEEXAM-
PLE which implements the example generation algorithm pre-
sented in [Bessière et al., 2007] (see Sec. 2 for the basic idea).
Note, GENERATEEXAMPLE outputs complete examples or ∅.
If ∅ is returned by GENERATEEXAMPLE then the provided
arguments exclude all possible constraint networks hence in-
consistency is returned by Algo. 1. The complete example is

Kostyantyn Shchekotykhin and Gerhard Friedrich 50

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Algorithm 2: LEARNCONSTRAINTS algorithm
Input: set of arguments ARG, set of clauses K, set of

constraints B
Output: set of clauses K
foreach argument a ∈ ARG do1

if a ∈ ARG− ∨ a ∈ ARGN then2
if a ∈ ARG− then3
BHS ← HITTINGSET(HS-TREE(B, a))
else BHS ← HITTINGSET(HS-TREE(B,¬a))4

K ← K ∧
(∨

b∈BHS
b
)

5

if a ∈ ARG+ ∨ a ∈ ARG−N then6
if a ∈ ARG+ then7
BC ← QUICKXPLAIN(B, a)
else BC ← QUICKXPLAIN(B,¬a)8

K ← K ∧
(∨

b∈BC
¬b
)

9

if a ∈ ARGS ∨ a ∈ ARG−S then10
B′ ← {b ∈ B : a ∪ {b} unsatisfiable}11

if a ∈ ARGS then12

K ← K ∧
(∧

b∈B′ ¬b
)

13

else K ← K ∧
(∨

b∈B′ b
)

14

K ← SIMPLIFY(K,B)15
return K16

classified by an expert in the validation step (VALIDATE) and
added either to ARGS or ARG−S . Furthermore, the set of
arguments ARG can be extended by the expert by specifying
additional arguments justifying the classification decision.

Next, Algo. 1 calls LEARNCONSTRAINTS(ARG,K,B)
which processes all given arguments one by one. For each
argument, Algo. 2 introduces changes to the propositional
theory K as defined in Sec. 3. Depending on processing re-
quirements we invoke either HS-TREE or QUICKXPLAIN to
identify a minimal conflict or a minimal hitting set in the bias
B given an argument as a background theory. If an argu-
ment provided by an expert is inconsistent then both QUICK-
XPLAIN and HS-TREE return ∅. Hence, inconsistent argu-
ments are ignored by the constraint acquisition algorithm.
During the final step the algorithm calls SIMPLIFY(K,B) to
validate and to simplify the generated propositional theory.

The last steps of the main loop update the set LS so that
the new set includes all constraint sets that correspond to
non-unary positive disjunctions of the propositional theory
K. The bias is added in case LS is empty. Note, the actual
implementation deletes those b from B where K entails ¬b.
When all constraints b ∈ B are fixed, the algorithm returns
the target constraint network CT to the expert.

5 Experimental results
The main goal of the evaluation was to show the impact of
argumentation-based constraint acquisition on the number of
questions posed. Therefore, in our experiments we compared
the number of examples generated to learn a desired con-
straint network using the original approach of [Bessière et
al., 2007] with the approach presented in this paper. Further-

more, we evaluated how the number of arguments influences
the number of generated examples.

Similar to [Bessière et al., 2007] the argumentation-based
learner was applied to three problems: random binary prob-
lems, Sudoku puzzle and Schur’s lemma. In order to gen-
erate the random binary problem the system created a con-
straint bias given the library {≤, <,=, 6=, >,≥} and a set
of 14 integer variables with domain size |D| = 20. Next
the generator randomly selected a constraint and added it
to the network. If the network had solutions the generator
randomly added another constraint. The iterations contin-
ued until a given size of a soluble network was achieved.
The resulting network was used as the target network for
the learner. The second problem implements a standard
9 × 9 grid Sudoku puzzle and a reduced 4 × 4 (em-
ployed in [Bessière et al., 2007]). Both Sudoku prob-
lems were evaluated using a constraint library {≥,≤, 6=}.
The constraint library for Schur’s lemma1 was defined as a
set of ternary constraints just as in [Bessière et al., 2007]
{ALLDIFF,ALLEQUAL,NOTALLDIFF,NOTALLEQUAL}.

For each problem we performed multiple tests in order to
get average results describing the approximate performance.
The generation of arguments as well as validation of ex-
amples was implemented using task-specific checkers which
were aware of the target constraint network and thus were
able to validate generated examples. Moreover, the checkers
provided a given or maximum possible number of arguments
for each example. The later is done to simulate expert’s ac-
tions during the argumentation process. We randomized the
argumentation as follows: first the validation system gener-
ates a set of possible arguments for a given example using
elements of the bias as necessary or too-strong arguments.
Then the system randomly selects the required number of ar-
guments and returns them to the learner. In order to com-
pute a set of possible arguments for a positive example, the
checker gets all unfixed constraints UC that are accepting
the example. If c ∈ UC is included in the target constraint
network then c is possible for ARGN else c is possible for
ARG−N . For a negative example the algorithm generates
the possible arguments as previously described with the ex-
ception that UC is the set of all unfixed constraints that are
rejecting the example.

Example 4 Consider the Sudoku learning problem, where
a generated complete example includes the following con-
straints ei : {x1,1 = 1, x1,2 = 2, x1,3 = 3, . . .}. The val-
idation system evaluates this example as positive and ran-
domly generates the arguments aN1 : {x1,1 6= x1,2} and
a−N1 : {x1,1 ≤ x1,3}.

The implementation of the presented approach uses the
SAT4J and CHOCO CSP solver. The example generation pa-
rameters were set to values that correspond to the optimal-in-
expectation strategy.

Figure 1 shows the performance of the argumentation-
based approach in terms of the number of examples to be
validated and arguments provided for the described prob-
lems. The case with zero arguments is equivalent to the ap-

1Problem 15 of CSPLib available from: http://www.csplib.org

Kostyantyn Shchekotykhin and Gerhard Friedrich 51

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

!"

#!"

$!"

%!"

&!"

'!"

(!"

!" #" $" %" &" '"

)*+,-."/0-123." 4567089"23..*"

47,-:7"&;&" 47,-:7"<;<"

!"#

$%!#

%""#

%&!#

'!"#

(%!#

!""#

"# $# %# '# (# !#

)*+,-*#./.#

!"

#!"

$!"

%!"

&!"

'!"

(!"

!" #" $" %" &" '"

)*+,-."/0-123." 4567089"23..*"

47,-:7"&;&" 47,-:7"<;<"

!"#

$%!#

%""#

%&!#

'!"#

(%!#

!""#

"# $# %# '# (# !#

)*+,-*#./.#

!"

#!"

$!"

%!"

&!"

'!"

(!"

!" #" $" %" &" '"

)*+,-."/0-123." 4567089"23..*"

47,-:7"&;&" 47,-:7"<;<"

!"#

$%!#

%""#

%&!#

'!"#

(%!#

!""#

"# $# %# '# (# !#

)*+,-*#./.#

!"

#!"

$!"

%!"

&!"

'!"

(!"

!" #" $" %" &" '"

)*+,-."/0-123." 4567089"23..*"

47,-:7"&;&" 47,-:7"<;<"

!"#

$%!#

%""#

%&!#

'!"#

(%!#

!""#

"# $# %# '# (# !#

)*+,-*#./.#

!"

#!"

$!"

%!"

&!"

'!"

(!"

!" #" $" %" &" '"

)*+,-."/0-123." 4567089"23..*"

47,-:7"&;&" 47,-:7"<;<"

!"#

$%!#

%""#

%&!#

'!"#

(%!#

!""#

"# $# %# '# (# !#

)*+,-*#./.#

!"

#!"

$!"

%!"

&!"

'!"

(!"

!" #" $" %" &" '"

)*+,-."/0-123." 4567089"23..*"

47,-:7"&;&" 47,-:7"<;<"

!"#

$%!#

%""#

%&!#

'!"#

(%!#

!""#

"# $# %# '# (# !#

)*+,-*#./.#

!"

#!"

$!"

%!"

&!"

'!"

(!"

!" #" $" %" &" '"

)*+,-."/0-123." 4567089"23..*"

47,-:7"&;&" 47,-:7"<;<"

!"#

$%!#

%""#

%&!#

'!"#

(%!#

!""#

"# $# %# '# (# !#

)*+,-*#./.#

!"

#!"

$!"

%!"

&!"

'!"

(!"

!" #" $" %" &" '"

)*+,-."/0-123." 4567089"23..*"

47,-:7"&;&" 47,-:7"<;<"

!"#

$%!#

%""#

%&!#

'!"#

(%!#

!""#

"# $# %# '# (# !#

)*+,-*#./.#

!"

#!"

$!"

%!"

&!"

'!"

(!"

!" #" $" %" &" '"

)*+,-."/0-123." 4567089"23..*"

47,-:7"&;&" 47,-:7"<;<"

!"#

$%!#

%""#

%&!#

'!"#

(%!#

!""#

"# $# %# '# (# !#

)*+,-*#./.#

!"

#!"

$!"

%!"

&!"

'!"

(!"

!" #" $" %" &" '"

)*+,-."/0-123." 4567089"23..*"

47,-:7"&;&" 47,-:7"<;<"

!"#

$%!#

%""#

%&!#

'!"#

(%!#

!""#

"# $# %# '# (# !#

)*+,-*#./.#

Number of arguments

N
u
m

b
e
r

o
f
g
e
n
e
ra

te
d
 e

x
a
m

p
le

s

Figure 1: Performance of the learner in terms of the numbers
of required examples and given arguments. Random Problem
(|X| = 14, |CT | = 40), Sudoku 4 × 4 (|X| = 16, |CT | =
72), Sudoku 9 × 9 (|X| = 81, |CT | = 864), and Schur’s
lemma (|X| = 8, |CT | = 12).

proach presented in [Bessière et al., 2007]. As it can be
seen from Figure 1, the number of examples to be classi-
fied by an expert decreases considerably depending on the
number of provided arguments. The experiment shows, how-
ever, that increasing the number of arguments (cases with 4
or more arguments per example) does not guarantee a con-
stant improvement in performance. Regarding the runtime
performance we can report that the generation of an example
(GENERATEEXAMPLE) together with the processing of argu-
ments (LEARNCONSTRAINTS) for our largest test problem
(i.e. the 9 × 9 Sudoku) requires in average 16 sec. for the 2
argument case. Other average runtimes are: 7 sec. for 0 arg.,
10.4 sec. for 1 arg., 18.7 sec. for 3 arg., 22.9 sec. for 4 arg.,
and 27.6 sec. for 5 arg. These results indicate the applicability
of the proposed approach in interactive settings.

6 Related work
As discussed above our approach extends the work
of [Bessière et al., 2007] in order to allow the domain ex-
pert to provide arguments during the knowledge acquisition
process. Arguments are also exploited in the area of learning
classification rules introduced in [Mozina et al., 2007]. In this
approach the expert can provide “because of” and “despite
of” arguments in addition to the usual attribute/classification
vector. This arguments are exploited by an enhanced version
of the CN2 rule generation algorithm. The main differences
to our approach is the underlying learning approach and the
language exploited to express a theory.

The work of [Rossi and Sperduti, 2004] aims at the acquisi-
tion of preferences. We regard this as important step for effec-
tive knowledge acquisition. However, learning preferences is
beyond the scope of this paper. In particular, we leave it as

an open problem to investigate argumentation techniques for
enhancing the acquisition of preferences.

7 Conclusions
Our work was motivated by the fact that efficient knowledge
acquisition is still an important problem to be solved in order
to make knowledge based systems competitive. Since con-
straint based systems are among the most successful problem
solving approaches in many application domains, we focused
on the acquisition of constraints. In particular, we built on the
version space approach pioneered by [Bessière et al., 2007].
We enhanced this method by giving the domain expert the
ability to provide arguments, since specialists are not only
able to classify examples but to formulate partially the desired
knowledge base. We investigated various types of arguments
and discussed the consequences on the version space in case
such arguments are given. Based on this analysis we have
presented the implementation of a learning method where the
expert can provide arguments in addition to classification in-
formation. We validated our method based on the test prob-
lems formulated in [Bessière et al., 2007]. Our tests have
shown a significant reduction of the number of examples a
knowledge engineer has to classify depending on the number
of arguments provided.

References
[Bessière et al., 2005] Christian Bessière, Remi Coletta,

Frédéric Koriche, and Barry O’Sullivan. A sat-based ver-
sion space algorithm for acquiring constraint satisfaction
problems. In ECML, pages 23–34, 2005.

[Bessière et al., 2007] Christian Bessière, Remi Coletta,
Barry O’Sullivan, and Mathias Paulin. Query-driven con-
straint acquisition. In International Joint Conferences on
Artificial Intelligence (IJCAI), pages 50–55, 2007.

[Friedrich and Shchekotykhin, 2005] Gerhard Friedrich and
Kostyantyn Shchekotykhin. A General Diagnosis Method
for Ontologies. Proceedings of the 4th International Se-
mantic Web Conference (ISWC-05), pages 232–246, 2005.

[Junker, 2004] Ulrich Junker. QUICKXPLAIN: Preferred
explanations and relaxations for over-constrained prob-
lems. In Association for the Advancement of Artificial In-
telligence, pages 167–172, San Jose, CA, USA, 2004.

[Mitchell, 1982] Tom M. Mitchell. Generalization as search.
Artificial Intelligence, 18(2):203–226, 1982.

[Mozina et al., 2007] Martin Mozina, Jure Zabkar, and Ivan
Bratko. Argument based machine learning. Artificial In-
telligence, 171(10-15):922–937, 2007.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from
first principles. Artificial Intelligence, 23(1):57–95, 1987.

[Rossi and Sperduti, 2004] Francesca Rossi and Allesandro
Sperduti. Acquiring both constraint and solution pref-
erences in interactive constraint systems. Constraints,
9(4):311–332, 2004.

Kostyantyn Shchekotykhin and Gerhard Friedrich 52

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

On Solving Complex Rack Configuration Problems using CSP Methods
Wolfgang Mayer and Marc Bettex and Markus Stumptner

University of South Australia
Advanced Computing Research Centre

Adelaide, Australia
ciswma|bettex|mst@cs.unisa.edu.au

Andreas Falkner
Siemens AG Österreich

Vienna, Austria
Andreas.A.Falkner@siemens.com

Abstract
Constraint Satisfaction Techniques have been
widely applied to the configuration of complex sys-
tems in various domain. While much progress has
been achieved on algorithms and theoretical char-
acterisations of special cases that can be solved
efficiently, many of these results make strong as-
sumptions. In this paper we investigate different
modelling and search techniques to assess their
suitability for on-line configuration of a complex
prototypical configuration problem. We found that
CSP solving techniques perform poorly on our prob-
lem, while local search and repair techniques may
achieve good performance while permitting simpler
constraint formalisms.

1 Introduction
Assembly and configuration of larger systems from individual
modular parts has been a central topic of interest, leading
to a number of different technical solutions to address this
problem in a variety of domains (Stumptner and Soininen;
2003). Constraint satisfaction based search techniques have
been particularly successful in solving this task in certain
domains, such as the telecommunications sector (Fleischanderl
et al.; 1998), where entire switching systems are assembled
from racks and modules.

Similar techniques have recently been employed to address
other domains. For example, the design and planning of rail-
way systems and the underlying infrastructure also requires
that the results adhere to legal requirements and technical
constraints. Similarly, the composition and configuration of
distributed service processes can be phrased as a configuration
problem (Thiagarajan et al.; 2009).

Typically, modular (“object-oriented”) knowledge represen-
tation techniques are applied to capture the relevant properties
of components and their related constraints, which may then
be used to check configurations for compliance and extend par-
tial configurations with additional components (Fleischanderl

et al.; 1998). Modular knowledge representation is convenient
for knowledge acquisition and is complemented with a custom-
built constraint solving implementation that may be used to
reason about configurations (Fleischanderl et al.; 1998).

While custom constraint frameworks are easily imple-
mented to check a (partial) configuration for consistency with
given constraints, completing a partial configuration (“solv-
ing”) or altering a configuration to repair constraint violations
is a challenging problem. Since some of the newer applica-
tion areas have significantly more complex constraints than
earlier applications, traditional solving approaches that are
based only on backtracking or back jumping algorithms are
no longer effective and may lead to inefficient exploration
of the space of possible configurations. Instead, advanced
Constraint Satisfaction techniques would be desired that can
handle complex arithmetic expressions, relations, graphs, and
other approximations. In the configuration context, a combi-
nation of advanced domain reduction and search procedures
allows a solver to detect infeasible configurations early and
focus search. For example, using integer linear programming
techniques to better estimate the number of required compo-
nents may allow to prune the search space more efficiently.
Similar combinations of multiple CSP techniques has already
led to significant results in other domains (Van Hentenryck
and Michel; 2005).

While advanced CSP technology has great potential to im-
prove configuration efficiency, it remains challenging to imple-
ment the necessary algorithms within the custom configuration
system. Rather, ways to exploit existing implementations, for
example the ECLiPSe suite (Apt and Wallace; 2007), would
be desired. Hence, methods to express selected aspects of
the configuration task as standard CSP problem have been
developed (Kızıltan and Hnich; 2001; Narodytska and Walsh;
2007). In particular, the elimination of equivalent solutions
due to symmetries —in our context typically caused by inter-
changeable components or permutations of components— has
been thoroughly researched in the CSP community.

However, most representations of configuration problems
address only a small subset of the entire configuration do-

Wolfgang Mayer, Marc Bettex, Markus Stumptner, and Andreas Falkner 53

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

main and must be extended to cover complex configuration
problems. Moreover, existing symmetry reduction techniques
typically require strong assumptions that may not hold for
configuration problems in practice.

In this paper, we investigate different ways to encode a pro-
totypical configuration problem as a standard CSP to assess
which techniques are suitable for semi-interactive configu-
ration. Our sample problem revolves around a toy example
that is derived from a real-world configuration problem and
includes complex constraints that are challenging to handle for
most constraint solvers. Complex global constraints together
and global cost function that should be optimised render this
problem interesting from both a theoretical and a practical
perspective.

Our results indicate that constraint technology is no silver
bullet and must be applied carefully. Unsurprisingly, standard
CSP heuristics alone are often insufficient to derive useful solu-
tions and must be complemented with domain-specific heuris-
tics. More surprisingly, symmetry reduction techniques that
have shown significant improvements on other benchmarks
exhibit poor performance when applied to our configuration
domain. In contrast to our expectations, advanced symmetry
reduction strategies designed to focus search lead to perfor-
mance that is significantly worse than solvers not exploiting
this information. We also report that traditional backtrack-
ing solvers scale poorly on any encoding, while incremental
refinement-based solvers can quickly arrive at solutions that
are close (within 25%) to the (estimated) optimum. Hence, we
advocate the use of heuristics combined with iterative repair-
based search procedures to attack semi-interactive configura-
tion where configurations need not be optimal but must be
delivered timely. We also show that replacing complete search
procedures with incomplete heuristics does not necessarily
sacrifice the quality of the resulting configurations.

The remaining paper is organised as follows: in Section 2
we introduce the problem used throughout our case study. In
Section 3 we evaluate matrix-based translations of our prob-
lem, followed by a tailored CSP representation that more
directly encodes the modular KB constraints in Section 4. We
then discuss local search procedures in Section 5 before con-
cluding the paper by summarising our findings and avenues
for further work in Section 6.

2 Showcase Problem
Our investigations are based on the “Showcase House” config-
uration problem where a given list of items (“Things”) must be
allocated to Cabinets in different Rooms while respecting cer-
tain constraints and preference criteria (Falkner and Schreiner;
2008). While the problem seems trivial at first, it is interesting
because it incorporates constraints and properties that can also
be found in more technical domains like design and assembly
of complex systems and software processes.

A conceptual model of the problem is shown in Figure 1.
In this domain, a house (of given size) contains a number of
Rooms where each can accommodate multiple Persons and
Cabinets. Cabinets are used to store “Things” and have a
fixed capacity. Cabinets may be either low or high, where
low Cabinets may be stacked on other (low) Cabinets. Each

Figure 1: House Configuration Model

Thing is characterised by its size, whether it is clean or dirty,
and whether it can be stored in an upper Cabinet. Cabinets
may contain only clean or only dirty Things to ensure dirty
Things cannot soil clean ones, and lower Cabinets cannot ac-
commodate big Things. Furthermore, restrictions on the floor
level where a thing can be stored apply. Each thing belongs
to a Person. Since floor space and Cabinets are expensive,
Things should be allocated to as few Cabinets as possible,
while respecting the allocation constraints.

In addition to the mandatory constraints, a good solution
not only minimises the number of Cabinets used, but also
adheres to certain preference criteria. In particular, a thing
should be stored in the Room of its owner, and, should this be
impossible, in a vacant Room. The option where a Thing is
stored in another Person’s Room is least preferred, since this
is likely to cause many disruptions.

The requirements and preferences can be expressed formally
in a CSP framework. For example, assume a model where
each entity is uniquely identified by some identifier and where
properties of entities as well as relations between entities are
represented as functions. Then, the constraint that a Cabinet
may contain either only clean or only dirty Things can be
expressed as a logical sentence as follows (Bettex; 2009):

∀t1, t2 ∈ T : t1 6= t2 ∧ dirty(t1) 6= dirty(t2)
⇒ cabinet(t1) 6= cabinet(t2)

The remaining requirements can be formalised similarly.
While this logical representation can be derived directly from
the problem statement, it may may not be best-suited to the
configuration task. Since the logical model can only express
“hard” constraints, it is difficult (or at best inefficient) to handle
the preference criteria. Here, (soft) CSP satisfaction methods
may be more suitable.

In the following sections we investigate different constraint-
based modelling approaches that have been proposed for simi-
lar configuration tasks to assess which approaches are suitable
to capture complex domain constraints like the above.

3 Configuration as Matrix CSP
A variety of constraint satisfaction techniques have been pro-
posed to address the configuration problem of modular elec-
tronic systems, where modules of different types must be
consistently assembled into a (the smallest) set of racks of dif-
ferent kinds. In particular, Kızıltan and Hnich (2001) compare

Wolfgang Mayer, Marc Bettex, Markus Stumptner, and Andreas Falkner 54

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

bi
g

di
rty

c1 c2 c3

t1 : 0 1
0
B@

1 0 0
1 0 0
0 0 1
0 1 0

1
CAt2 : 0 1

t3 : 1 0
t4 : 1 1

WA

high :
`
0 1 1

´

cDirty :
`
1 1 0

´

(a) Model A

n bi
g

di
rty

c1 c2 c3

T1 : 2 0 1
0
@

2 0 0
0 0 1
0 1 0

1
AT3 : 1 1 0

T4 : 1 1 1
WB

high :
`
0 1 1

´

cDirty :
`
1 1 0

´

(b) Model B

Figure 2: Two Matrix Models

and combine different complementary models in order to fo-
cus the search for solutions. Racks and modules correspond to
Cabinets and Things in our problem. In this section, we adapt
two of their models to our problem domain and summarise
our empirical results.

We consider a simplified variant of the configuration prob-
lem, where the number of Cabinets are minimised but the pref-
erence constraints related to Persons and associated Rooms
are left aside. This simplification may lead to solutions that
are not optimal in the full problem. We refrain from extend-
ing the matrix CSPs to the more detailed representation since
our experiments showed that even the simplified version is
computationally intractable. The poor performance of the
matrix CSP for the simplified representation discouraged us
from attempting to formalise the problem in full; this would re-
quire a multi-dimensional matrix, which, we conjecture, would
prohibit the solving efficiency required for (semi-)interactive
configuration of large problem instances. The full problem is
addressed in Section 4.

3.1 Model
Matrix-like CSP models are a special class of CSP models
that have been proposed to model relationships between enti-
ties (Kızıltan and Hnich; 2001). In matrix models, the proper-
ties of entities are typically expressed as variables indexed by
entity type (or even entity instance), while a matrix W = (wij)
represents the associations between entities. In this framework,
a given configuration problem is translated into a matrix CSP
problem and is subsequently solved using a standard CSP
solver; the solution of the CSP problem determines the config-
uration.

Kızıltan and Hnich (2001) discuss two different modelling
approaches:

(A) Rows and columns of W represent single entity instances,
where the elements of W range over {0, 1} to indicate a
relationships between entity instances i and j.
We adapt this models for our house configuration problem
as follows; a similar representation was also described in
Falkner (2009):
Each row w·j of W represents a single Thing, whose
properties are represented as constants. Figure 2a shows
an example, where four things (t1...4) are placed in three
cabinets (c1...3). The properties of concrete things are

represented as constant vectors. For our case study, the
properties big and dirty are modelled.
Each column wi· of W represents a unique Cabinet,
where wij = 1 iff ti is placed in cj . A Cabinet’s proper-
ties are modelled as constraint variables, whose values are
constrained by the wi·. We use variable highj to indicate
that a Cabinet contains big Things, and cDirtyj to reflect
that at least one dirty Thing is placed in cj . Constraints
ensure that each Thing is assigned to one Cabinet

∑

j

wij = 1

and that Things with incompatible properties (clean/dirty)
are assigned to different Cabinets (columns):

cDirtyj = max
i

(wijdirtyi),

cDirtyj 6= dirtyi ⇒ wij = 0

Other constraints are modelled similarly. Preferences are
expressed as minimisation criterion, where the number of
Cabinets (columns) where at least one thing is placed is
minimal:

arg min
W

∑

j

sign(
∑

i

wij).

(B) Rows of W represent entity types, where each element
wij ∈ N denotes the number of entities (modules, Things)
i that are related to an instance of the entity (racks, Cabi-
nets) represented by column j.
For example, the first row of matrix WB shown in Fig-
ure 2b represents two indistinguishable things of type T1.
Each row wi· of W represents a set of ni Things that
share the same properties. In contrast to model A, only
one row is required to represent multiple instances. The
representation of columns (Cabinets) remains the same
as in the previous model. The constraint that each Thing
must be allocated to some Cabinet, while not exceeding
the Cabinet’s capacity, is captured as follows:

∑

j

wij = ni,
∑

i

wij ≤ sizej

Since each row represents potentially many Things, the
constraint model is likely to be smaller than the previous
one. The compact representation may also allow to solve
more efficiently, since equivalent solutions where rows
corresponding to equivalent Things are interchanged need
not be explored separately.

3.2 Symmetry Reduction
While the models can be solved using standard finite-domain
constraint solvers, both suffer from inefficient search caused
by different representations of semantically equivalent vari-
able assignments. This “symmetry” problem is well-known
in the CSP literature and a number of techniques have been
developed to reduce this effect (Frisch et al.; 2003). Typically,
symmetries are eliminated from the search by imposing ad-
ditional constraints that enforce an ordering on the variable
assignments to eliminate equivalent solutions.

Wolfgang Mayer, Marc Bettex, Markus Stumptner, and Andreas Falkner 55

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Both models introduced in the previous section suffer from
many redundancies, stemming from indistinguishable Things
and Cabinets. Following Kızıltan and Hnich (2001), we im-
pose restrictions on the Cabinet’s assignments such that (in
this order) (i) high Cabinets must occupy columns with smaller
indexes than low Cabinets, (ii) “dirty” Cabinets must come
before “clean” ones, and (iii) adjacent Cabinets of the same
type are ordered with increasing free space. For example, the
latter constraint is expressed as follows:

highj = highj+1 ∧ cDirtyj = cDirtyj+1

⇒
∑

i

sizeiwij ≥
∑

i

sizeiwi,j+1

In addition, one could enforce a lexicographic ordering on
the columns of W (Frisch et al.; 2003). Since this additional
constraint slowed search considerably (see next section), we
decided to not use it in our experiments. Kızıltan and Hnich
(2001) argue that neither model is strictly better than the other
and show that a combined approach can significantly improve
symmetry elimination (although not all symmetries could be
eliminated). Their best model backtracks only ≈ 5K times,
down from 164M for the original Model A. However, their
improved model does not directly apply to our problem do-
main, since different requirements on entity types and their
constraints prohibit the same symmetry elimination in our
problem domain.

3.3 Results
Similar to the experiments described by Kızıltan and Hnich
(2001), Falkner (2009) reported that Model A outlined above
performed poorly on all but the most trivial house configura-
tion instances. While a solution for 10 Things could be found
in a few seconds, problems for 20 Things could not be solved
in 30 seconds.

We reimplemented both models in the ECLiPSe CLP frame-
work (Apt and Wallace; 2007) to investigate whether sym-
metry reduction techniques could help to increase efficiency,
and whether different labelling heuristics had a significant
impact on the solving process. We chose the ECLiPSE CLP
implementation since it offers an integrated framework where
a variety of different CSP solving libraries can simultaneously
be combined with logic programming and other search pro-
cedures. This was advantageous in particular for the model
described in Section 4, where constraints of different type must
be considered in unison. Based on earlier experiences with
CSP libraries such as Minion and Choco, we are confident
that the implementation used in our work is of comparable
efficiency as other state-of-the-art generic CSP solvers. En-
codings using SAT solvers are also expected to perform poorly
due to a large number of global and arithmetic constraints
increases clause sizes.

Our evaluation was based on a test suite of over 200 gener-
ated problem instances of varying size (from 10–450 Things).
We focused our investigations on Model B, which showed
better performance on our example problem.

Our results are summarised in Figure 3:1 It can be seen
that without symmetry reduction, a solution to problems of

1The vertical bars represent minimum and maximum values.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400

T
im

e
 i
n
 s

e
co

n
d

s

Number of Things

Without Symmetry Red.
With Symmetry Red.

Figure 3: Results for the Matrix CSP model, Approach B

size up to 450 Things can be solved in a few seconds. Larger
problems could not be investigated due to memory exhaustion
(> 256Mb).

However, we were able to prove for only three of all prob-
lems that the solution found by our solver was indeed optimal.
In all other cases, optimality could not be established within
the set time limit of two minutes per problem. Instead, we
estimated the quality of our solutions by comparing each with
a lower bound for each solution.2 We found that the solutions
are almost all within factor 1.25 of the lower bound. Hence,
for configuration problems where an absolute optimum is not
required, matrix representations without symmetry reduction
may be an appropriate CSP representation.

From the discussion in Kızıltan and Hnich (2001), we an-
ticipated that adding symmetry reduction constraints would
significantly boost the efficiency of our solver. However, our
experiments contradicted our expectations: while the sym-
metry breaking constraints removed much of the redundant
assignments, the overhead of evaluating the necessary con-
straints by far outweighed the benefit for all but the most trivial
examples. Most symmetry-breaking constraints are “global”
for each column or row and must therefore be evaluated fre-
quently. This overhead by far outweighs the benefit for larger
examples. Using symmetry reduction, we could prove opti-
mality in 14 cases (up from 3), but could not find solutions for
most problems exceeding 50 Things. Note that Figure 3 only
shows times for successfully solved problem instances; cases
where no solution could be found within the time limit have
been omitted. Hence the graphs for solving with and without
symmetry reduction appear similar, while the number of suc-
cessfully solved cases actually drops to around 15% compared
to the “plain” CSP. Hence, in practice, symmetry reduction for
this complex constraint optimisation problem does not lead to
any improvement.

Furthermore, we confirmed that the labelling strategies used
by the CSP solver have considerable impact. In our experi-
ments, we used a variable and value selection strategy that
explores variables of W column-wise, with smaller domain
values first. This strategy has shown the best results for this
problem.3 This can be explained by the fact that this strat-

2This can easily be computed from the total size of all clean (dirty)
Things and the fixed Cabinet capacity.

3Row-wise labelling produces exactly the same results. Using

Wolfgang Mayer, Marc Bettex, Markus Stumptner, and Andreas Falkner 56

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

egy partly incorporates the symmetry reduction constraints
(empty/full Cabinets before full/empty ones) without incur-
ring the same overhead as explicit constraints. In fact, we
found this strategy to be backtrack-free for most problems.
Surprisingly, the well-known “most-constrained” variable se-
lection heuristic performed poorly; we believe that is due to
the large number of global constraints and the additional over-
head necessary to search for a suitable variable. Similarly,
the “anti-first-fail” variable selection strategy that selects the
variable that is least constrained required excessive time and
failed to solve many instances.

4 Custom Symmetry Reduction
While rephrasing the configuration problem as a standard CSP
has the advantage that available off-the-shelf solvers can be
applied, our experiments indicate that this approach may not
be the best solution for complex problems.

In this section, we pursue a different approach that is more
closely aligned with the conceptual model introduced in Sec-
tion 2, but applies partial symmetry reduction by transforming
the problem. In contrast to the previous section, we include
preference constraints into our model.

4.1 Transformed Problem
The case study given in Section 2 exhibits the following sym-
metries (other than those introduced by the matrix-like repre-
sentation):

(i) Rooms on the same floor not occupied by a Person are
indistinguishable;

(ii) The identity of Cabinets is insignificant. Swapping any
two Cabinets (together with their properties, such as
low/high, clean/dirty, etc.) results in an equivalent solu-
tion;

(iii) Cabinets of the same type (low/high, clean/dirty, up-
per/lower) within a Room are indistinguishable; their
contents can be swapped or mixed without changing the
quality of the solution.

We eliminate Symmetries i and ii by restructuring the model
into an equivalent representation that does not exhibit such
equivalent solutions. We did not attempt to address Symme-
try iii, but it is believed that imposing constraints on the order
and number of some Things allocated to Cabinets in a Room
may eliminate redundancy further.

The structure of our revised conceptual model is shown in
Figure 4. The Cabinets and their properties that are explicitly
represented in the conceptual model in Figure 1 have been
transformed into attributes of Rooms and Things. For each
Room, the number of each type of Cabinet is represented as an
attribute, with constraints enforcing that a lower Cabinet exists
for each upper one, and that the Cabinets can fit within a Room.
While the number of Cabinets is represented, their specific
positions within a Room are not, hence reducing Symmetry ii.

To address Symmetry i, Rooms that are unoccupied are
merged into a single empty Room per floor, with the Room
size being the sum of all merged Rooms.

domain splitting or maximal domain values instead also results in the
same solutions but requires up to three times as much time.

Thing

Room

cRoom
cType

cPosition

nbLowerCabinets nbUpperCabinetsnbBigCabinets

Room lower capacities Room upper capacities

Thing bigness

Lower cabinets

big

forUpper

minFloor

maxFloor

Floor restriction

0..n

1

Cabinet existence 1

1

Cabinet capacities

3

Cabinet emptiness

rSize

cSize

Dirty

tSize

floor

2
Thing cleaness

1

0..n
1..n

1..n

1..n
1

0..n

1..n

Figure 4: Symmetry-reduced CSP (Bettex; 2009)

Associations between Things and Cabinets are represented
as attributes of Thing, capturing the Room, Cabinet type and
index within a Room. The constraints are adjusted accordingly.
For example, the constraint that clean and dirty Things must
be stored in different Cabinets is enforced by a constraint
operating on the attributes of Thing:

dirty(t1) 6= dirty(t2)⇒ cRoom(t1) 6= cRoom(t2)∨
cType(t1) 6= cType(t2) ∨ cPos(t1) 6= cPos(t2)

Additional constraints are necessary to ensure the Cabinets oc-
curring in attributes of Thing actually exist in the Rooms, and
that empty Cabinets should be prohibited (to ensure minimal-
ity of the solution). The former constraint for lower Cabinets
can be formalised as follows:

type(t) = lower⇒ nbLowerCab(cRoom(t)) ≥ cPos(t)

Note that this constraint can only be evaluated if attribute
cRoom of a Thing has been assigned. Our implementa-
tion uses techniques that are similar to Constraint Handling
Rules (Frühwirth; 1998) to suspend such indirect constraint
until they can be evaluated. Our implementation does not
apply domain reduction to the index part of such constraints
(cRoom(t) in the example), and only checks consistency once
variables have been instantiated sufficiently.

We represent the preference criteria for optimal solutions
as a lexicographic ordering over the number of Cabinets, the
number of Things stored in a Room occupied by someone else
than the Thing’s owner, and the number of Things stored in
vacant Rooms.

Since many of our constraints rely on certain variables being
instantiated, variable and value ordering heuristics are critical
for solving. The structure of the constraints (Things rely on
their Room assignment, and Cabinets in a Room are deter-
mined by the Things assigned to them) and initial empirical
results lead to a strategy that instantiates the variables belong-
ing to a Thing together without intervening other assignments.
Within a Thing, its Room and type of Cabinet are assigned
first, where the owner’s Room and lower Cabinets are tried
first. At this point most constraints relating Things to Rooms
can be evaluated to check consistency and prune the possible
values of attributes in Room. Once the Things’ variables have
been assigned, we proceed with the Rooms, with lower values
first.

Wolfgang Mayer, Marc Bettex, Markus Stumptner, and Andreas Falkner 57

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Figure 5: Results for the Custom CSP model

4.2 Results
We attempted to solve our CSP model using a standard back-
tracking solver using the interval domain and constraint sus-
pension (Rossi et al.; 2006) to obtain a baseline for further
evaluation with different search techniques (presented in Sec-
tion 5). The results are shown in Figure 5. Note that the scale
of the ordinate is logarithmic.

It can be seen that this approach does not scale; even for
trivial problems with four Rooms and twelve Things, prob-
lems can take up to several hours to solve optimally. The
figure also shows that some (possibly sub-optimal) solution
is found quickly; however, the problem instances are very
small and this observation may not uphold for larger instances.
Regarding the quality of the solutions, we find that the (non-
exhaustive version of our) backtracking solver produces solu-
tions that are approximately 1.6 times worse than the estimated
optimum.

Overall, as informed readers may have expected, complete
search techniques based on backtracking are insufficient to
devise solutions from our model. This is most likely due
to weak consistency enforcement and delayed pruning due
to constraint suspension. We investigate alternative search
procedures using the same model in the next section.

5 Local Search
The constraint representation outlined in the previous sec-
tion is effective only for checking a candidate solution assign-
ment, where the values of the variables in Thing and Rooms
are known. While building such an assignment using finite-
domain CSP techniques has proven ineffective (see previous
section), it may be possible to use the same constraint rep-
resentation to improve a given solution. In this section, we
investigate whether local search techniques (Van Hentenryck
and Michel; 2005) that iteratively improve an invalid assign-
ment may be suitable to address this problem.

Constraint-based local search and optimisation techniques
arrive at an (optimal) solution by altering fully instantiated
but possibly invalid assignments to reduce the constraint vio-
lations or to improve the overall cost. Many variations of the
general scheme exist, with each employing different strategies

to navigate from one assignment to the other and to stop the
overall process (Van Hentenryck and Michel; 2005).

The variant used in our work is similar to Simulated Anneal-
ing (Russel and Norvig; 2003), where probabilistic thresholds
are applied to guide exploration. Starting with an initial solu-
tion, constraint satisfaction techniques are employed to find
minimal sets of constraints that imply infeasibility of a solu-
tion (“conflicts”). Once conflicts have been identified, one or
more of the involved variables are chosen and assigned differ-
ent values. Suitable values are determined by domain-specific
heuristics. As a result, the previously violated constraint is
satisfied, but other constraints may be violated in the new
assignment. Hence, the overall quality of a solution may dete-
riorate rather than improve in a single step.

If the quality of the resulting candidate solution is better
than that of the previous assignment it is used as the basis for
further exploration. Otherwise, it may be kept (with some prob-
ability), or another alternative assignment may be explored.
This process continues until all constraints are satisfied and no
improvement could be achieved over a number of iterations,
or until a threshold on the number of iterations (or time) has
been reached.

Since this approach does not require to consider partial as-
signments, the drawback of delayed and suspended constraint
evaluations observed with the backtracking solver are not an
issue. The restriction to complete assignments also is not a
limitation on the problems that can be handled. Partial configu-
rations and dynamically expanding problems can be addressed
by using techniques where the relevant scope of variables and
constraints is expanded incrementally, as for example in the
generative CSP framework (Fleischanderl et al.; 1998).

5.1 Solving Heuristics
To generate the initial solution, we leverage the Best Fit De-
creasing heuristics from the related class of Bin Packing Prob-
lems (Lodi et al.; 2002). We consider the Things in order
of high before low and in decreasing size. Starting with all
Rooms empty, we assign each Thing to a Cabinet in a Room
such that all constraints remain satisfied, possibly creating a
new Cabinet if no suitable Cabinet can be found. Ties be-
tween cost-equivalent Cabinet assignments are resolved by
minimising the remaining space in a Cabinet. Otherwise, the
Thing is placed in a random location, disregarding any vio-
lated constraint. As a result, an initial solution is created that
may contain violated constraints and that may not be minimal.

To improve upon the initial solution, heuristics that re-
pair constraint violations are applied iteratively. Conflicts
implied by the given candidate assignment are identified using
ECLiPSe’s conflict monitoring mechanisms (Cheadle et al.;
2003–2006). For each constraint we identify possible repair
actions. For example, the constraint that Room capacities must
not be exceeded is repaired by selecting and moving cabinets
to other Rooms until the capacity constraint is satisfied. Simi-
larly, to ensure only clean or only dirty Things are in a Cabinet,
the clean or dirty Things must be moved to another location.

Since local repair choices may critically influence the fur-
ther progress of the overall optimisation process, we allow our
solver to spend considerable time choosing between possible
repair actions. In particular, we apply local constraint prop-

Wolfgang Mayer, Marc Bettex, Markus Stumptner, and Andreas Falkner 58

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Figure 6: Results for the Custom CSP model

agation for different alternative repair assignments to deter-
mine the number of conflicts in each assignment. The locally
conflict-minimal assignment is then chosen as basis for the
subsequent iteration.

While this process is not guaranteed to result in an opti-
mal solution, our results indicate that, typically, good-quality
solutions within factor 1.2 of the estimated optimum can be
found.

While the repair heuristics incorporate domain-specific
knowledge, such as preferred ordering of Rooms, the local
minimisation approach allows us to reduce the domain-specific
aspects compared to imperative domain-specific solving algo-
rithms. By utilising constraints that are close to the concep-
tual domain model rather than encodings tailored to low-level
finite-domain CSP representations, we are able to largely struc-
ture repair actions in terms of domain concepts, which may be
an advantage when considering the maintenance of knowledge
bases that evolve over time. Using the local repair paradigm,
constraints can be used to assess validity of a configuration and
repair actions can often be designed and considered without
considering the entire minimisation problem. It is not neces-
sary to explicitly factor the search and minimisation strategies
into the solving algorithms; this aspect is instead covered by
the local exploration strategy that searches for combinations
of repair actions that are suitable for achieving a goal or for
finding a close assignment.

5.2 Results
Figure 6 summarises the results for our example problem. For
this experiment, we selected five batches of example problems
from our library, where problems in batch n contained n floors
with 6n Rooms, 2n Persons, and 20n Things. We report the
averages over five repeated runs.

For each problem an initial candidate assignment was de-
vised using the Bin Packing heuristics introduced in Sec-
tion 5.1. We then identified conflicts and repeated the repair
process until either a conflict-free assignment was found, or
up to a maximum of 2500 iterations.

While we always accept assignments with better cost val-
uation, the probability that an assignment is accepted that
contains more conflicts or that has a worse cost estimate is

Figure 7: Conflict evolution

0.75. Compared to traditional probabilistic optimisation tech-
niques, this value may seem unusually high; however, since
we consider only a single repair action at a time, resolving
one conflict often requires to create a number of intermediate
invalid configuration before another, better configuration can
be reached. Figure 7 depicts the evolution (arithmetic mean
and variance) of conflicts as the search progresses. It can be
seen that while the initial solution may suffer from a consider-
able number of conflicts, this number drops quickly but keeps
oscillating until a solution is found.

Figure 6 summarises the time required for our algorithm.
The case where only a valid solution is sought is labelled
“first”, whereas the algorithm that continues for 2500 iterations
is labelled “best”. It is observed that the time required for each
solver increases polynomially with the problem size; hence
the algorithm scales well to non-trivial problems. Furthermore,
since the time required to find the first solution is little and
scales well with problem size, the local search strategy can
also be used in an “anytime” framework where the solving
process can still provide a good solution even if stopped early.

Comparing the absolute time values with those reported in
Section 3 is difficult, since the matrix representation of the
problem captured only a subset of all constraints. Furthermore,
our current implementation is not optimal. We are aware that
our local search implementation currently suffers from exces-
sive constraint checking that could be eliminated by using
advanced implementation techniques and different constraint
systems that handle global constraints more efficiently.

Comparing the quality of the solutions derived by the “best”
and the “first” algorithms, we observe that both are virtually
indistinguishable, with both being within 10% of the esti-
mated optimum. Both are much better than the non-complete
backtracking-based solver (which produced solutions exceed-
ing by as much as 60%). Since differences between the “first”
and “best” solution are negligible, the effort required to pursue
further optimisation may not be justified in practice.

6 Discussion and Conclusion
We investigated three approaches to solving a prototypical
configuration problem by using finite-domain constraint satis-

Wolfgang Mayer, Marc Bettex, Markus Stumptner, and Andreas Falkner 59

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

faction and constraint optimisation techniques. While there is
considerable work on efficiently solving particular classes of
problems, our configuration domain includes constraints and
irregularities that render many of those techniques inapplica-
ble. Our experiments aimed at assessing the suitability of CSP
technology for the configuration of complex problems that do
not fit squarely in the categories researched previously. Our
findings can be summarised as follows:

• The globally optimal solution cannot be found in reason-
able time for most non-trivial problem instances. (More
precisely, it cannot be proved in reasonable time that the
derived solution is indeed optimal.)

• Adding constraints for symmetry reduction seems inef-
fective for this type of problem. While the backtracking
behaviour is indeed much reduced, the overhead caused
by non-local constraints that span many variables make
this approach slow and unsuitable in practice.

• Heuristic search techniques together with heuristics
adapted from Bin Packing problems are able to arrive
at good solutions quickly for medium to large-sized prob-
lems. However, considerable transition periods between
regions of feasible configurations and the evaluation of
global constraints remain the critical factors in this pro-
cess.

• The first valid solution that is found with local search is
often close to the optimum, and further search may be
limited if time is critical.

• Specifying local repair actions for constraints in com-
bination with generic conflict-driven optimisation pro-
cedures can yield an effective configuration framework
where complex imperative solving strategies need not
be asserted explicitly. Furthermore, this formalism may
be more amenable to devising constraint representations
that closely follow the domain entities instead of requir-
ing complex translations to structurally different finite-
domain CSPs.

• The time required by local search procedures can be pre-
dicted more easily than that of conventional CSP search
algorithms. Hence, this technique may be preferred for
interactive configuration scenarios.

From our experiments we identify the following areas where
progress may be most beneficial for future improvements:

• The synthesis of local repair actions from declarative
knowledge bases, in particular from domain constraints
and optimisation criteria.

• On-line tuning and learning approaches to help choos-
ing suitable algorithm parameters (probabilities, thresh-
olds) and to focus more effectively on promising repairs,
depending on non-local contexts and properties of the
configuration instance under consideration.

• The identification of criteria which can be used to select
a “good” CSP encoding for a problem described by a
structured, “object-oriented” knowledge base that is close
to the conceptual domain models.

References
Apt, K. R. and Wallace, M. (2007). Constraint Logic Pro-

gramming using Eclipse, Cambridge University Press, New
York, NY, USA.

Bettex, M. (2009). House configuration problem using con-
straint optimization, Master’s thesis, School of Computer
and Information Science, University of South Australia,
Adelaide, Australia. Joint work with the Aritificial Intelli-
gence Laboratory, Swiss Federal Institute of Technology.

Cheadle, A. M., Harvey, W., Sadler, A. J., Schimpf, J., Shen,
K. and Wallace, M. G. (2003–2006). ECLiPSe – A Tutorial
Introduction, Cisco Systems, Inc.

Falkner, A. (2009). Choco implementation (partly) of
s’upreme showcase house, Technical report, Siemens AG,
PSE, Vienna, Austria.

Falkner, A. and Schreiner, H. (2008). Two decades’ experi-
ence in developing product configurators – mastered chal-
lenges and remaining issues, in J. Tiihonen, A. Felfernig,
M. Zanker and T. Männistö (eds), Proceedings of the Work-
shop on Configuration at the 18th European Conference on
Artificial Intelligence, Patras, Greece.

Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H.
and Stumptner, M. (1998). Configuring large-scale systems
with generative constraint satisfaction, IEEE Intelligent Sys-
tems 13(4).

Frisch, A. M., Jefferson, C. and Miguel, I. (2003). Constraints
for breaking more row and column symmetries, in F. Rossi
(ed.), CP, Vol. 2833 of Lecture Notes in Computer Science,
Springer, pp. 318–332.

Frühwirth, T. W. (1998). Theory and practice of constraint
handling rules, Journal of Logic Programming 37(1-3): 95–
138.

Kızıltan, Z. and Hnich, B. (2001). Symmetry breaking in a
rack configuration problem, IJCAI’01 Workshop on Mod-
elling and Solving Problems with Constraints, Seattle, WA.

Lodi, A., Martello, S. and Monaci, M. (2002). Two-
dimensional packing problems: A survey, European Journal
of Operational Research 141(2): 241–252.

Narodytska, N. and Walsh, T. (2007). Constraint and variable
ordering heuristics for compiling configuration problems, in
M. M. Veloso (ed.), Proceedings International Joint Conf.
on AI, pp. 149–154.

Rossi, F., Beek, P. v. and Walsh, T. (2006). Handbook of
Constraint Programming (Foundations of Artificial Intelli-
gence), Elsevier Science Inc., New York, NY, USA.

Russel, S. and Norvig, P. (2003). Artificial Intelligence A
Modern Approach, 2 edn, Prentice Hall.

Stumptner, M. and Soininen, T. (2003). Special issue on
configuration, Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 17(1).

Thiagarajan, R., Mayer, W. and Stumptner, M. (2009).
Generative composition of web services, CAiSE Forum,
CEUR Workshop Proceedings, Amsterdam, The Nether-
lands. Forthcoming.

Van Hentenryck, P. and Michel, L. (2005). Constraint-Based
Local Search, The MIT Press.

Wolfgang Mayer, Marc Bettex, Markus Stumptner, and Andreas Falkner 60

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Configuring Models for (Controlled) Languages

Mathias Kleiner (INRIA) and Patrick Albert (ILOG)∗ and Jean Bézivin (INRIA)

Abstract
Conceptual schemas (CS) are core elements of in-
formation systems knowledge. A challenging issue
in the management processes is to allow decision
makers, such as business people, to directly de-
fine and refine their schemas using a controlled lan-
guage. The recently published Semantics for Busi-
ness Vocabulary and Rules (SBVR) is a good can-
didate for an intermediate layer: it offers an abstract
syntax able to express a CS, as well as a concrete
syntax based on structured English. In this article,
we propose a method for extracting a SBVR termi-
nal model out of an English text and then transform
it into a UML class diagram. We describe a model-
driven engineering approach in which constraint-
programming based search is combined with model
transformation. The use of an advanced resolution
technique (configuration) as an operation on mod-
els allows for non-deterministic parsing and lan-
guage flexibility. In addition to the theoretical re-
sults, preliminary experiments on a running exam-
ple are provided.

1 Introduction
Conceptual schemas (CS) are widely used in industry as for-
mal representations of information system’s knowledge. A
CS is often the central element on which relies a set of oper-
ations: validation, simulation, usecases generation, etc. The
UML/OCL combination is the de-facto standard for speci-
fying a CS. However, designing, maintaining and refining a
CS currently requires important technical skills. Stakeholders
rely on IT-specialists to model their requirements. A recent
trend in software engineering (requirements engineering) is to
propose ways to facilitate this communication, by allowing
decision makers to express their needs in natural language,
which can then be transformed into a formal representation.

In the business context, the Object Management Group
(OMG) has recently published the SBVR (Semantics for
Business Vocabulary and Rules) recommandation. SBVR
provides a metamodel for business concepts and statements
which can be used to define a CS. The specification also

1Partially funded by the French ANR IdM++ project

proposes a structured English form. However parsing nat-
ural language into a SBVR model is a difficult problem.
In particular, if one wishes to build domain specific lan-
guages using non context-free grammars, the different in-
terpretations that can be made for one sentence disquali-
fies tools based on deterministic algorithms, such as exist-
ing model driven engineering (MDE) tools (ATL[Jouault and
Kurtev, 2005], QVT[QVT, 2008]) or most controlled lan-
guages parsers (ACE[Schwitter and Fuchs, 1996]). Instead,
the problem requires to search for a solution using advanced
AI techniques.

This article describes an automatic translation of controlled
English into a SBVR concrete model and a UML model of
the described CS, allowing to build flexible domain specific
languages. The originality of our approach is that it com-
bines constraint programming techniques with model trans-
formation tools in a MDE framework. It is composed of three
main operations. The first task is a syntactical and grammat-
ical analysis of the text, which is directly related to the well-
known and challenging field of language parsers: we describe
a parser based on the configuration of a constrained model.
The second task is the transformation of the resulting model
into a SBVR model. The third task is the transformation of
the SBVR model into a UML model of the CS. The integra-
tion of configuration in MDE as an advanced transformation
tool is an important and innovating contribution of this work.

Plan of article
Section 2 briefly introduces the technologies involved in our
approach. We also present an overview of the whole process
and a running example. Section 3 introduces the language
parser. Section 4 shows how the resulting model is trans-
formed into a SBVR model. Section 5 proposes a transfor-
mation from SBVR to UML. Validation, implementation and
experiments are presented in Section 6. Finally, we discuss
related work in Section 7 and conclude.

2 Context of the work
2.1 Brief introduction to SBVR
SBVR is an OMG standard [SBVR, 2008] intended to be the
basis for describing business activities in natural languages. It
is an attempt to build the bridge between Business Users and
software artifacts, enabling non-IT specialists parameterize
and evolve the business logic embedded into applications.

Mathias Kleiner, Patrick Albert, and Jean Bézivin 61

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

SBVR standardizes a set of concepts for the definition
of business specific Controlled Languages (declarative lan-
guages whose grammar and lexicon have been limited in or-
der to eliminate part of the ambiguity. See [Schwitter and
Fuchs, 1996] as a historical paper, or more recently [Kalju-
rand, 2008]). Business Rules Systems (ILOG JRules, Drools)
are popular controlled languages used to explicitly model the
business logic in a growing number of applications.

We will not describe SBVR exhaustively in this article.
However a look at the Figures 1 and 2 might provide a feeling
of the sophistication of the meta-model and of the approach
that nicely separates logical formulations from Meanings.

2.2 Brief introduction to MDE and model
transformation

Model Driven Engineering is an emerging research area that
considers the main software artifacts as typed graphs. This
comes from an industrial need to have a regular and homoge-
neous organization where different facets of a software sys-
tem may be easily separated or combined.

In MDE, models are considered as the unifying concept.
The MDE community has been using the concepts of terminal
model, metamodel, and metametamodel for quite some time.
A terminal model is a representation of a system. It captures
some characteristics of the system and provides knowledge
about it. MDE tools act on terminal models expressed in pre-
cise modeling languages. The abstract syntax of a modeling
language, when expressed as a model, is called a metamodel.
A language definition is given by an abstract syntax (a meta-
model), one or more concrete syntaxes, and a definition of its
semantics. The relation between a model expressed in a lan-
guage and the metamodel of this language is called conform-
sTo. This should not be confused with the representationOf
relation holding between a terminal model and the system it
represents. Metamodels are in turn expressed in a modeling
language called metamodeling language. Its conceptual foun-
dation is itself captured in a model called metametamodel.
Terminal models, metamodels, and metametamodel form a
three-level architecture with levels respectively named M1,
M2, and M3. A formal definition of these concepts may
be found in [Jouault and Bézivin, 2006]. The principles of
MDE may be implemented in several standards. For exam-
ple, OMG proposes a standard metametamodel called Meta
Object Facility (MOF).

The main way to automate MDE is by providing transfor-
mation facilities. The production of model Mb from model
Ma by a transformation Mt is called a model transformation.
When the source and target metamodels are identical (MMa =
MMb), we say that the transformation is endogenous. When
this is not the case (MMa 6= MMb) we say the transformation
is exogenous. In this work we use ATL (AtlanMod Trans-
formation Language), a QVT-like model transformation lan-
guage [Jouault and Kurtev, 2005] allowing a declarative ex-
pression of a transformation by a set of rules.

2.3 Brief introduction to configuration
Configuring is the task of composing a complex system out of
generic components [Junker, 2006]. Components, also called

objects or model elements in the sequel, are defined by their
types, attributes, and known mutual relations. The accept-
able systems are further constrained by the request: a set
of problem-specific and/or user-specific requirements, repre-
sented by a fragment of the desired system (i.e interconnected
objects). From a knowledge representation perspective, con-
figuration can be viewed as the problem of finding a graph (i.e
a set of connected objects) obeying the restrictions of an ob-
ject model under constraints. From a model driven approach,
it can be viewed as the problem of finding a finite model that
conforms to a metamodel. More precisely, we consider the
process as a model transformation where the source model is
the request and the target model is the solution. The configu-
ration model acts as the target metamodel. A relaxed version
of this metamodel acts as the source metamodel. This relaxed
metamodel is obtained by the removal of all constraints: min-
imum cardinalities are set to zero, attributes are optionals and
OCL constraints are removed. The request, which is thus a
set of target model elements with incomplete knowledge (for
instance linked elements and attributes values are undefined),
is therefore conformant to the source metamodel. In this con-
text, the configurator searches for a target model, completing
the source and creating all necessary model elements so that
the result (if any) is conformant to the target metamodel.

Various technical approaches have been proposed to handle
configuration problems: extensions of the CSP (Constraint
Satisfaction Problem) paradigm [Stumptner and Haselböck,
1993; Sabin and Freuder, 1996], knowledge-based ap-
proaches [Stumptner, 1997], logic programming [Soininen
et al., 2001], object-oriented approaches [Mailharro, 1998;
Junker and Mailharro, 2003]. Configuration has traditionally
been used with success in a number of industry applications
such as manufacturing or software engineering. More re-
cently, the expressive power of configuration formalisms has
proven their usefulness for artificial intelligence tasks such as
language parsing [Estratat and Henocque, 2004]. A deeper
introduction to configuration can be found in [Junker, 2006].

In the sequel we propose to use Ilog JConfigurator [Junker
and Mailharro, 2003] as a language parser for SBVR. In this
model-oriented approach, a configuration model (in our con-
text, the target metamodel) is well-defined as a set of classes,
relations and constraints. The UML/OCL language combina-
tion may be used to this purpose [Felfernig et al., 2002].

2.4 Process overview
Figure 3 sketches the overall process in a model-driven en-
gineering framework. The input is an English text, close
to the form of structured English that has been proposed in
the SBVR specification [SBVR, 2008]. The text is injected
into a model thanks to a simple metamodel for sentences and
words annotating the position of words in the text. A sim-
ple transformation uses a lexicon to label each word with a
set of possible syntactical categories. We have then defined
a metamodel, called Syntax, where we adapted configura-
tion grammars[Estratat and Henocque, 2004] to SBVR and
the model-driven engineering context. The text (as labeled
words) is fed into a constraint-based configurator using the
relaxed version of Syntax. The result of the configuration
process, acting as a syntax and grammar analysis, is a finite

Mathias Kleiner, Patrick Albert, and Jean Bézivin 62

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Representation

Designation

-value

Text

Meaning

Concept

NounConcept

ObjectType DataType

-value

NonNegativeIntegerString

FactType

AssociativeFactType

IsPropertyOfFactType

Role FactTypeRole

CategorizationFactTypeIndividualConcept
specializes

generalizes

1..* {ordered}1

1

1

Figure 1: Extract of the SBVR metamodel: meanings

LogicalFormulation

BindableTarget

Variable

AtomicFormulation

NounConcept FactType

RoleBinding FactTypeRole

Quantification

UniversalQuantification

AtMostNQuantification

AtLeastNQuantification

ExactlyNQuantification

-value

NonNegativeInteger

NecessityFormulation

1 bindsTo

1 cardinality 1 rangesOver

1scopesOver

1isOf

1 introducedVariable 1 isbasedOn

1..*

Figure 2: Extract of the SBVR metamodel: logical formulations

model that conforms to the Syntax metamodel. This model
is then transformed with a usual model transformation tool
(here, ATL) to a model conforming to the SBVR metamodel
through a set of rules using the grammatical dependencies
found during configuration. This SBVR terminal model may
then be processed again with ATL to obtain a corresponding
UML model.

2.5 Running example
An example will be used throughout the paper to illustrate the
approach. The considered text is composed of three sentences
defining a simple CS:

(1) Each company sells at least one product.
(2) Each product is sold by exactly one company.
(3) A software is a product.

This relatively simple example still embeds many important
concepts. From the language parsing viewpoint it uses nouns,
active and passive verbs, as well as different quantifiers. From
the modeling viewpoint it shows the notions of classes, inher-
itance and relations with cardinalities. In the following Sec-
tions, we will show how each main task is applied on those
sentences.

3 Parsing English language for SBVR
Parsing natural languages is one of the major challenges of
AI. Considering the difficulty of the task, many efforts have
been focused on the more accessible field of controlled lan-
guages [Kittredge, 2003], where ambiguities are discarded
from the language. Among the existing approaches, [Estratat
and Henocque, 2004] shows how property grammars [Blache
and Balfourier, 2001] can be captured into a configuration
model in order to parse a subset of French with a constraint-
based configurator. The resulting parser does not inherit the
deterministic behaviour of most parsers and is designed to
be adapted to different grammars. We have modified and
extended this method for English and SBVR. In our MDE
approach, the proposed configuration model is defined as a
metamodel called Syntax.

3.1 Syntax metamodel
A fragment of this metamodel (most classes and relations) is
presented in Figure 4. Syntax captures three main informa-
tions from the input text: syntactical categories, grammatical
dependencies and SBVR semantics.

Syntactical categorization
In order to obtain a syntactic tree from a sentence, we
have adapted the property grammar model from [Estratat and

Mathias Kleiner, Patrick Albert, and Jean Bézivin 63

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Figure 3: Process overview

Henocque, 2004] to English. The main class of the model is
Cat, which denotes a syntactical category. A category is ter-
minal when it is directly associated to a single word. Such
categories include NCat (noun), VCat (verb) or DCat (deter-
miner). Those categories may be further specialized: a verb
is either transitive (TVCat) or intransitive (ITVCat). The pos-
sible categories of a given word are obtained with the lexicon
in the previous transformation. A category is non-terminal
when it is composed of other categories. SentenceCat (sen-
tence), NPCat (noun phrase), VPCat (verb phrase) are the
main non-terminal categories. A set of constraints further de-
fines the acceptable categorizations. Such constraints involve
for instance the categories constituents or relative positions.
Here are some example constraints specified in OCL:

• Each verb phrase for which the verb is transitive is com-
posed of at least one noun phrase. This constraint ap-
plies to the relation isComposedOf of a category:
c o n t e x t VPCat
inv : head . o c l I s T y p e O f (TVCat)

i m p l i e s isComposedOf−>
e x i s t s (e l t . o c l I s T y p e O f (NPCat))

• A verb phrase is always preceded by a noun phrase. The
constraint applies to the attributes begin and end of cat-
egories, obtained from their associated word(s):
c o n t e x t S e n t e n c e C a t
inv : isComposedOf−>e x i s t s (

e l t . o c l I s T y p e O f (NPCat)
and e l t . end < vp . b e g i n)

Grammatical dependencies
We have extended the syntactic model so that grammatical
dependencies appear as explicit relations between categories.
Similarly to the syntactical part, a set of constraints defines
the acceptable constructions. Here are some example con-
straints specified in OCL:

• The subject of an active verb occurs before the verb
phrase:

c o n t e x t VPCat
inv : (head . v o i c e = ’ a c t i v e ’)

i m p l i e s head . s u b j e c t . end < b e g i n

• The head of a verb’s subject shares the same plural:
c o n t e x t VCat
inv : p l u r a l = s u b j e c t . head . p l u r a l

SBVR semantics
We have extended the metamodel with the main concepts of
the SBVR metamodel. SBVR semantics are assigned to syn-
tactical categories through the expresses relation. Again, a
set of constraints governs the possible assignments. Here are
some examples:

• A transitive verb expresses a fact type.:
c o n t e x t TVCat
inv : not e x p r e s s e s . o c l I s U n d e f i n e d ()

and e x p r e s s e s . o c l I s K i n d O f (Fac tType)

• The head of a subject of a verb expresses either an object
type or an individual concept:
c o n t e x t VCat
inv : s u b j e c t . head . e x p r e s s e s .

o c l I s K i n d O f (Objec tType)
or s u b j e c t . head . e x p r e s s e s .

o c l I s K i n d O f (I n d i v i d u a l C o n c e p t)

About SBVR concepts singularity A critical issue in as-
signing SBVR semantics to categories is the one of concepts
singularity. More precisely, the same SBVR concept may be
expressed in different sentences (or even in the same sen-
tence). Consider for instance the first two sentences of our
running example: the concepts “Company”, “Product” and
“To sell” are expressed multiple times. We obviously wish
to avoid creating duplicate SBVR elements in the resulting
model. A set of constraints forces the uniqueness of SBVR
elements based on equivalency statements. In the case of ele-
ments of class ObjectType, the disambiguation is done on the
words base designation:

Mathias Kleiner, Patrick Albert, and Jean Bézivin 64

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Text Sentence

-position : int

Word

-begin : int
-end : int

CatSentenceCat

VPCat NPCat

-plural
-genre

NCatVCat DCat

TVCatITVCat

QCat

QUnvaluedCatQValuedCat

NumeralCat

Designation

SBVRElement

0..1

10..* isComposedOf

0..1

determiner

1

baseDesignati...
0..*

0..1

expresses

1 1

head

1

head

1

value

1

object

0..*

1

directObject

1

subject

meanings

-voice
-plural

0..*

vp

Figure 4: Extract of the Syntax metamodel: syntax and grammar

inv : NCat . a l l I n s t a n c e s ()−>
f o r A l l (n1 , n2 : NCat |
(n1 . word . b a s e D e s i g n a t i o n =

n2 . word . b a s e D e s i g n a t i o n)
= (n1 . e x p r e s s e s = n2 . e x p r e s s e s))

Note that since the base designation is used, different forms of
the same word are still recognized (i.e “products” and “prod-
uct” are matched). The same principle is applied to other
SBVR elements such as fact types.

3.2 Parsing process and result
As explained previously, the input of the configuration pro-
cess is a model of a relaxed version of the target metamodel.
In our context, the input is a set of interconnected objects of
type Text, Sentence, Word, Designation and Cat. Indeed, for
each word, the preceding transformation, using the lexicon,
has provided its properties (plural, voice, etc.), base desig-
nation (the base designation of the word “has” is “to have”),
and candidate syntactical categories (the word “one” may be
a noun, a numeral or an adjective).

The result of the configuration process is one (or more)
terminal model(s) satisfying the configuration model con-
straints, when such a model exists. Figure 5 shows (a frag-
ment of) the generated model for the first sentence.
It should be noted that this parsing process is not determin-
istic: due to language ambiguities, multiple solutions may be
valid for the same request. For instance, consider the sentence
“MyCode is a software”. Without other sentences or lexi-
con information, it may not be possible to decide whether the
NounConcept “MyCode” is an ObjectType (a specialization
of Software) or an IndividualConcept (an instance of Soft-
ware). Rather than arbitrary deciding on one model, search
allows to generate all valid solutions which can be later com-
pared, or even to optimize the target model based on some

preferences. In this regard, our approach offers a higher flex-
ibility than most existing parsers.

4 Transforming the syntactical model into a
SBVR model

The model produced by the parsing process exhibits the
SBVR semantics expressed by (groups of) words. Using
this information together with grammatical dependencies be-
tween elements, we are able to construct a complete SBVR
model of the input text. This is achieved with model transfor-
mation using the ATL language [Jouault and Kurtev, 2005].
Presenting each rule of this transformation in details is out-
side the scope of this article. However we propose an
overview of its main principles.1

4.1 Mapping overview
A first straightforward mapping is obvious: each SBVREle-
ment of the Syntax metamodel has its counterpart in the
SBVR metamodel and therefore implies the creation of the
target model element. However the relations between SBVR
model elements are not exhibited in the source model and
may require additional (intermediate) SBVR elements. A set
of rules therefore allows to derive them from the grammatical
relations of the source model.

As an example, consider the following rule that generates
a (binary) AssociativeFactType and its roles from a transitive
verb, its subject and direct object. It may be informally ex-
pressed as follows: “For an AssociativeFactType B expressed
by a verb V in the source model, create an AssociativeFact-
Type B’ in the target model, with two roles R1 and R2, where

1Source code and documentation of all presented transforma-
tions have been submitted as a contribution to the Eclipse ATL
project and are available on http://www.eclipse.org/m2m/atl/

Mathias Kleiner, Patrick Albert, and Jean Bézivin 65

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

 : Sentence

Each : Word company : Word sells : Word at least : Word one : Word product : Word

 : QUnvaluedCat

genre = neutral
plural = false

 : NCat

plural = false
voice = active

 : TVCat : QValuedCat : NumeralCat

genre = neutral
plural = true

 : NCat

 : NPCat : VPCat : NPCat

 : SentenceCat

 : UniversalQuantification : ObjectType : AssociativeFactType : AtLeastNQuantification : NonNegativeInteger : ObjectType

composedOf

objectobject determiner

directObject

subject

head

value

headdeterminer head

Figure 5: Running example: fragment of a Syntax terminal model

R1’s nounConcept is the target NounConcept of V’s sub-
ject, and R2’s nounConcept is the target NounConcept of V’s
direct object”. The rule creates intermediate elements (the
roles) and uses them to relate SBVR elements. Note that
some of these elements (target NounConcepts of the subject
and direct object) are created by a different rule.

Moreover, the transformation allows to create attribute val-
ues from a source information having a different datatype.
Indeed, consider the word “one” in the first sentence of our
running example. In the source model, the word is associ-
ated to the category NumeralCat, expressing a non-negative
integer in SBVR semantics. The rule that creates the target
model element is able to assign a value to the attribute value
of type Integer.

4.2 Transformation process and result
Once the transformation is complete, we obtain a model that
conforms to SBVR, leaving aside the syntactical and gram-
matical information of the text. Figure 6 shows a fragment
of the generated SBVR model for the first sentence of our
running example.

5 Transforming the SBVR model into a UML
model

Once a valid SBVR model has been generated, it is possible
to transform it into a corresponding UML model of the CS
using ATL. The target metamodel is of UML class diagrams.

5.1 Mapping overview
Some examples of the mapped concepts are presented in Ta-
ble 1 where the dotted notation is used to navigate classes
attributes and relations. The correspondence between con-
cepts is quite natural: an ObjectType becomes a Class, an
AssociativeFactType becomes an Association, a Categoriza-
tionFactType denotes inheritance (Generalization in UML),
an IsPropertyOfFactType refers to an attribute, an Individ-
ualConcept becomes an InstanceSpecification, etc. Linked

company : ObjectType

product : ObjectType

 : AssociativeFactType

 : Designation

value = company

 : Text

 : Designation

value = product

 : Text

 : FactType...

 : FactType...

 : AtomicFormulation

 : AtLeastNQuantification

value = 1

 : NonNegativeInteger

 : RoleBinding

 : RoleBinding

 : Variable

 : UniversalQuantification

 : Variable

 : Designation

value = to sell

 : Text

bindsTo

scopesOver

rangesOver

rangesOver

bindsTo

scopesOver

isOf

isOf

isBasedOn

minimumCardinality

Figure 6: Running example: fragment of the SBVR terminal
model

concepts and values are also quite explicit. However, most
of the rules do not realize a straight one-to-one mapping but
imply additional conditions, target elements from other rules,
etc. For instance, consider the mapping for the SBVR con-
cept AtLeastNQuantification. The Property for which lower-
Value is assigned is the one obtained by transforming the As-
sociativeFactType that is target of the relation AtLeastNQuan-
tification.scopesOver.isBasedOn. Ordered relations also play
a role: the first role of a categorization denotes the general
class, whereas the second one refers to the specific class.

5.2 Transformation process and result
Once the transformation is complete, we obtain a UML spec-
ification of the CS. Figure 7 shows a UML terminal model

Mathias Kleiner, Patrick Albert, and Jean Bézivin 66

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

SBVR concept UML Concept

ObjectType Class
ObjectType.Designation.Text.value Class.name

DataType DataType
IndividualConcept InstanceSpecification

AssociativeFactType Association
AssociativeFactType.Designation.Text.value Association.name

AssociativeFactType.FactTypeRole#1 Property (Association.memberEnd)
AssociativeFactType.FactTypeRole#1.nounConcept Property.classifier

CategorizationFactType Generalization
CategorizationFactType.FactTypeRole#1 Generalization.general

AtLeastNQuantification.minimumCardinality.value Property.lowerValue
AtMostNQuantification.maximumCardinality.value Property.upperValue

Table 1: Excerpt of the mapping from SBVR metamodel con-
cepts to UML metamodel concepts

obtained for our running example.

name = to sell

 : Association

lowerValue = 1
upperValue =
aggregation = none
name = sells

 : Property

name = Product

 : Class

lowerValue = 1
upperValue = 1
aggregation = none
name = is sold by

 : Property

name = Company

 : Class

 : Generalization

name = software

 : Class
specific general

Figure 7: Running example: fragment of the UML model

6 Implementation and experiments
6.1 Implementation
The proposed approach has been integrated into an Eclipse-
based model-driven engineering framework. To those aims,
each presented metamodel has been defined using the KM3
metamodelling language [Jouault and Bézivin, 2006], which
offers an automatic conversion to the EMF’s ECore for-
mat [ECORE, 2009]. These ECore metamodels are source
and target metamodels of the proposed ATL transformations.
The configuration tool JConfigurator has its own modelling
language and currently offers only XML inputs and out-
puts. Therefore the Syntax metamodel is also defined directly
within the tool as the configuration model. At runtime, the
configuration request model is projected to XML in order to
be parsed, and the XML representation of the solution is then
injected into a model. This model (in XMI format) is passed
over to the remaining ATL transformations.

6.2 Experiments
We provide early experiments on the running example, con-
ducted on an Intel Core2Duo 3Ghz with 3GB of RAM. Table
6.2 shows the results. We first parsed each sentence sepa-
rately and then multiple sentences at once. Only the config-
uration step is displayed since ATL transformations run in
negligible times (less than 0.2 seconds).

Parsing is efficient for separated sentences but the time re-
quired for the search task quickly increases with the whole
text. This is due to the size of the source model which directly
impacts the search space of the configurator. On the other
hand, the ATL transformations are able to handle larger mod-
els. Splitting the tasks is thus positive for performance and
could be investigated further so as to reduce the complexity of

sentence(s) Text to Syntax
Time Vars Constraints

(1) 0.26 527 1025
(2) 0.20 526 1022
(3) 0.19 475 885

(1)+(2) 0.38 973 2819
(1)+(2)+(3) 1.41 1328 5312

Table 2: Experiments on the example (times in seconds)

the configuration model to the minimum required for syntac-
tical analysis. We currently focused on a straightforward in-
tegration of the configurator with a configuration model cov-
ering the whole Syntax metamodel. Future steps are, on the
one hand, to extract the combinatorial core of the metamodel,
and on the other hand, to allow a further specified request
through different relaxation levels of the source metamodel.
It should however be emphasized that these are early exper-
imental results on a known hard problem. No optimizations
have been applied to the configuration engine such as heuris-
tics or symmetry breaking techniques, which are known to
drastically reduce the computation times. Another alternative
envisioned is to perform an incremental parsing of the text,
sentence by sentence, and then use the ATL multiple source
capabilities to unify the resulting SBVR models. The suc-
cessful parsing of our example however proves the feasibility
of our approach.

7 Related work
In [Cabot et al., 2009], a procedure for performing the reverse
transformation is described: from a UML/OCL description
of a CS, the authors show how it can be transformed into a
SBVR terminal model using ATL, and then paraphrased with
structured English text. Combining the two approaches is
thus promising. Indeed, designing a CS often requires several
discussions between stakeholders for refinements, and main-
taining a CS leads to frequent evolutions. The combination
would allow to switch from one representation to another au-
tomatically.
There have been previous research on using constraint pro-
gramming techniques in MDE, mostly about animation of re-
lational specifications or model verification. [Cabot et al.,
2007] transforms UML/OCL specifications into a constraint
satisfaction problem in order to check satisfiability. [Dinh-
Trong et al., 2006] proposes a similar method, although the
underlying solver (Alloy [Jackson, 2000]) is based on SAT.
Both approaches inherit the limitations of the target formal-
ism in which specifications must be translated, whereas the
configuration paradigm is expressive enough to directly cap-
ture models representation. Moreover, to the best of our
knowledge, this is the first time that a constraint-based search
is embedded in MDE as a model transformation tool.
With respect to the domain of controlled language parsers,
our approach differs from most existing methods (such as
ACE[Schwitter and Fuchs, 1996]). Indeed these parsers
do not accept ambiguous grammars (i.e not context-free),
whereas we are able to parameterize the level of accepted

Mathias Kleiner, Patrick Albert, and Jean Bézivin 67

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

ambiguities, thus allowing to define a trade-off between lan-
guage coverage and computation efficiency.

8 Conclusion and future research
We have described a method which allows parsing a CS spec-
ification expressed in English text into a UML class dia-
gram. To those aims, we proposed SBVR as an interme-
diate layer. The originality of our approach is the use of
an advanced object-oriented constraint-programming search
technique (configuration) as a model transformation tool in-
tegrated in a MDE environment. Early experiments are pro-
vided as a proof-of-concept. Moreover, the proposed parser
is flexible with respect to language coverage and disambigua-
tion, allowing to build domain specific languages that are not
restricted to context-free grammars. There are many perspec-
tives to this work. First, the metamodels can be extended to
capture an increased portion of English and SBVR. The ex-
pressed meanings will then probably require to generate OCL
constraints in addition to UML. Other target formalisms can
also be considered such as OWL or Rule Systems. The ex-
periments clearly show that there is a need for performance
improvement in the search-based transformation. The lead-
ing direction is to reduce the search space by isolating the
metamodel’s combinatorial core, thus further decomposing
the problem. Finally, the described use of configuration as
a model transformation could benefit to other complex trans-
formations that require searching for a target model instead
of applying deterministic rules to the source model.

References
[Blache and Balfourier, 2001] Philippe Blache and Jean-

Marie Balfourier. Property grammars: a flexible
constraint-based approach to parsing. In IWPT. Tsinghua
University Press, 2001.

[Cabot et al., 2007] Jordi Cabot, Robert Clarisó, and Daniel
Riera. Umltocsp: a tool for the formal verification of um-
l/ocl models using constraint programming. In ASE, pages
547–548. ACM, 2007.

[Cabot et al., 2009] Jordi Cabot, Raquel Pau, and Ruth
Ravents. From uml/ocl to sbvr specifications: a challeng-
ing transformation. Information Systems Elsevier, 2009.

[Dinh-Trong et al., 2006] Trung T. Dinh-Trong, Sudipto
Ghosh, and Robert B. France. A systematic approach to
generate inputs to test uml design models. In ISSRE, pages
95–104. IEEE Computer Society, 2006.

[ECORE, 2009] EMF : http://www.eclipse.org/modeling/emf/,
2009.

[Estratat and Henocque, 2004] Mathieu Estratat and Laurent
Henocque. Parsing languages with a configurator. In Pro-
ceedings of the European Conference for Artificial Intelli-
gence ECAI’2004, pages 591–595, August 2004.

[Felfernig et al., 2002] Alexander Felfernig, Gerhard
Friedrich, Dietmar Jannach, and Markus Zanker. Config-
uration knowledge representation using uml/ocl. In UML,
volume 2460 of LNCS, pages 49–62. Springer, 2002.

[Jackson, 2000] Daniel Jackson. Automating first-order re-
lational logic. In SIGSOFT FSE, pages 130–139, 2000.

[Jouault and Bézivin, 2006] Frédéric Jouault and Jean
Bézivin. Km3: A dsl for metamodel specification.
In FMOODS, volume 4037 of LNCS, pages 171–185.
Springer, 2006.

[Jouault and Kurtev, 2005] Frédéric Jouault and Ivan Kurtev.
Transforming Models with ATL. In MoDELS Satellite
Events, volume 3844 of LNCS, pages 128–138. Springer,
2005.

[Junker and Mailharro, 2003] Ulrich Junker and Daniel
Mailharro. The logic of (j)configurator : Combining
constraint programming with a description logic. In
proceedings of IJCAI’03. Springer, 2003.

[Junker, 2006] Ulrich Junker. Configuration, volume Hand-
book of Constraint Programming, chapter 26. Elsevier,
2006.

[Kaljurand, 2008] Kaarel Kaljurand. Ace view - an ontol-
ogy and rule editor based on controlled english. In In-
ternational Semantic Web Conference (Posters & Demos),
volume 401 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008.

[Kittredge, 2003] R. I. Kittredge. Sublanguages and con-
trolled languages. Oxford University Press, 2003.

[Mailharro, 1998] Daniel Mailharro. A classification and
constraint-based framework for configuration. AI in Engi-
neering, Design and Manufacturing, (12), pages 383–397,
1998.

[QVT, 2008] Object Management Group. Meta Object Fa-
cility (MOF) 2.0 Query/View/Transformation (QVT) Spec-
ification, version 1.0, 2008.

[Sabin and Freuder, 1996] Daniel Sabin and Eugene C.
Freuder. Composite constraint satisfaction. In Artificial
Intelligence and Manufacturing Research Planning Work-
shop, pages 153–161, 1996.

[SBVR, 2008] Semantics of Business Vocabulary
and Business Rules (SBVR) 1.0 specification:
http://www.omg.org/spec/SBVR/1.0/, 2008.

[Schwitter and Fuchs, 1996] Rolf Schwitter and Norbert E.
Fuchs. Attempto controlled english (ace) a seemingly in-
formal bridgehead in formal territory (poster abstract). In
JICSLP, page 536, 1996.

[Soininen et al., 2001] Timo Soininen, Ilkka Niemela, Juha
Tiihonen, and Reijo Sulonen. Representing configuration
knowledge with weight constraint rules. In Proceedings
of the AAAI Spring Symp. on Answer Set Programming,
pages 195–201, 2001.

[Stumptner and Haselböck, 1993] Markus Stumptner and
Alois Haselböck. A generative constraint formalism for
configuration problems. In Advances in Artificial In-
telligence: Proceedings of AI*IA’93, pages 302–313.
Springer, 1993.

[Stumptner, 1997] Markus Stumptner. An overview of
knowledge-based configuration. AI Communications,
10(2):111–125, June 1997.

Mathias Kleiner, Patrick Albert, and Jean Bézivin 68

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Abstract

Characterization of configuration problems has
remained limited. This work characterizes 26
configuration models with numerous indicators of
size and degree of application of modeling
mechanisms including inheritance and application
of advanced compositional structure. The original
goal of modeling was to evaluate and demonstrate
the applicability of WeCoTin configurator and
PCML modeling language to industrial
configuration problems. The main contribution of
the paper is in providing probably the first multi-
faceted detailed characterization of a relatively
large number of configuration problems.
Additionally, aspects for characterizing
configuration models were identified.

1 Introduction
Due to active research in the configuration domain, several
formalisms for representing configuration knowledge have
been proposed, and configurators are used to support day-to-
day business in many companies. However, characterization
of practical configuration problems has remained limited in
the literature. Of course, a number of individual cases have
been documented thoroughly, most importantly the
R1/XCON [Barker, et al. 1989] and the VT/Sisyphus
elevator configuration problem [Schreiber, et al. 1996], not
forgetting characterizing the domain and configuration
models when describing configurator implementations, e.g.
[Fleischanderl, et al. 1998]. Further, classification of
configuration tasks has been proposed [Wielinga, et al.
1997, Haag. 2008], which requires characterization of the
tasks as a basis for classifications.

There are several reasons why configuration tasks should
be characterized. These include enabling evaluation of
effectiveness of specific representation formalisms and
modeling constructs, gaining understanding on the nature of
different configuration tasks, which in turn could enable
supporting tools that better match practical problems and
facilitates development of benchmarks, and enabling
classification of configuration tasks. Configuration models,
related configuration tasks and their IT support could be
characterized from several perspectives. These include the

size of the models, computational performance, and
complexity, effectiveness of specific modeling techniques
related to specific configuration tasks as defined by the
company offering. Less technical views cover aspects of
practical interest such as the proportion of cases covered by
the configuration models, completeness of the models in
terms of business requirements, usability and different
aspects of utility provided and sacrifices required.

This work reports a part of evaluation of the WeCoTin
configurator [Tiihonen, et al. 2003] and especially its
modeling capabilities. 26 configuration models were created
to evaluate and demonstrate the applicability of WeCoTin
and PCML to real industrial configuration problems, which
demonstrates the high-level efficacy of the constructs. The
models will be characterized with numerous indicators of
size and degree of application of different modeling
constructs. Five tables provide characterizations models.
This paper is structured as follows. In Section 2 the applied
modeling language will be described. Section 3 gives an
overview of the configuration models and their background.
Section 4 describes component type hierarchy, overall
configuration model size, and price modeling. Section 5
details the compositional structure of the models, Section 6
attributes, and Section 7 constraints. Finally, discussion,
future work and conclusions are presented in Section 8.

2 Product Configuration Modeling Language
The configuration models have been modeled with PCML
(Product Configuration Modeling Language) [Tiihonen, et
al. 2003, Peltonen, et al. 2001]. PCML is object-oriented,
declarative and it has formal implementation-independent
semantics. The semantics of PCML is provided by mapping
it to weight constraint rules [Soininen, et al. 2001]. The
basic idea is to treat the sentences of the modeling language
as short hand notations for a set of sentences in the weight
constraint rule language (WCRL) (Soininen et al. 1998).
PCML covers a practically important subset of a
synthesized ontology of configuration knowledge [Soininen,
et al. 1998].

The main concepts of PCML are component types, their
compositional structure, properties of components, and
constraints. Component types define the parts and

Characterization of 26 configuration models

Juha Tiihonen
Department of Computer Science and Engineering

Helsinki University of Technology
Juha.Tiihonen@tkk.fi

Juha Tiihonen 69

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Model Company & Description
 Status and validation

1
Compre
ssor FM

 Gardner Denver. Compressor family FM series. 18-40kW compressors. Internal view for sales persons. Demonstrated integration
to automatic manufacturing completion (EDMS2), and e-commerce site Intershop 4. Delivery time calculation.
 Complete model. Demonstrations to company with expert and focus group validation on matching company view of product
configurability. Company workers had a few dozen configuration sessions over the web. Model used in empirical performance
testing. Manually analyzed the number of possible configurations, which matches the number of answer sets (configurations)
generated by the inference engine.

2Compr
FM sc

Gardner Denver. Model 1 Compressor FM above augmented with 13 pre-selection packages to represent agreed-on customer
standards with their defaults, usually enforced with soft constraints. Behaves as intended.

3
Compr
FS

Gardner Denver compressor family, 11-18 kW FS series compressors. Internal view for sales persons.
 Complete model. Demonstrations to company with expert and focus group validation on matching company view of product
configurability. In addition, company workers had configuration sessions over the web. Model used in empirical performance
testing. The manually analyzed number of possible configurations matches the number generated by the inference engine.

4
Compr
FX

Gardner Denver compressor family, 4-10kW FX series compressors. Internal view for sales persons.
 Complete model. Demonstrations to company with expert and focus group validation on matching company view of product
configurability. In addition, company workers had configuration sessions over the web. Model used in empirical performance
testing. The manually analyzed number of possible configurations matches the number generated by the inference engine.

5Compr
FL

Gardner Denver compressor family, 45-80 kW FL series compressors. Internal view for sales persons.
Complete model, seems to work, no validation in company.

6Compr
M

Gardner Denver compressor family. 75-160kW M series compressors. Internal view for sales persons.
Complete model, seems to work, no validation in company.

7
KONE
old

KONE maintenance service contracts, older company offering. Some additional options that can be specified after contract made
(billing options, e-notification). Some one-time service extras like long-term maintenance plan, condition check. Extensive on-
line help texts for salespersons developed together with company, shown with the description mechanism.
 Complete model with extras. Demonstrations to company with expert and focus group validation on matching company view of
product configurability. Installed to product manager computer for test use.

8
KONE
new

KONE maintenance service contracts. Options of newer maintenance service contracts. Additional options that can be specified
after contract made (billing options, extensive e-services). Some one-time service extras like long-term maintenance plan,
condition check. Extensive on-line help texts for sales persons.
 Complete model with extras. Demonstrations to company with expert and focus group validation on matching company view of
product configurability. Installed to product manager computer for test use.

9 Bed Not public 1. Real hospital bed product line based on order forms and additional information.
 Complete model. Demonstration to company and focus group on matching company view of product configurability.

10Firep
lace

Not public 2. Modular fireplace. Technology demonstration with CAD vendor. Simple product. Integrated with 3D CAD to
visualize configuration changes. Complete model. Validation with CAD vendor.

11
Patria
Pasi

Patria Vehicles. Military vehicle. For company internal systematic documentation of available productized options.
 Complete model with respect to standardized offering. Demonstrations to company with expert and focus group validation on
matching company view of product configurability. Configuration model validated in internal test use in company.

12
Dental

Not public 3. Real integrated dental unit and patient chair. Most difficult to configure product of the company.
 Complete model. Demonstration to company, brief focus group, expert validation.

13 X-
ray

Not public 3. Real X-ray unit for dentists. Product designed with ease of configuration in mind.
 Complete model. Demonstration to company, brief focus group, expert validation.

14
Vehicle

Not public 4. Self-moving machine industry product. Real product based on order forms and interviews. Partial model for
demonstration purposes representing about half of the sales view of the product. Numerous optional parts and some simple
constraints were excluded. Despite omissions the model reflects quite well the nature of sales configuration of this vehicle.
 Test-used by company stakeholders over the web. Functionality found satisfying "better than our commercial product". The
manually analyzed number of possible configurations matches the number generated by the inference engine.

15 Insur
1

Tapiola group. Insurance coverage for families (persons, travel, car, home, cottage) as a combination of insurance products.
 Demonstration model with a subset of the whole offering, Discretized large domain specification attributes.
 Demonstrations to company.

16 Insur
2

Tapiola group. Comprehensible insurance coverage for family's person related risks. Non-traditional risk-oriented (not insurance
product oriented) way of asking which coverage is desired. These selections are satisfiable with a combination of real products.
Mapping to products not performed in model.
 Demonstration model. Demonstration to company and focus group.

17 Insur
3

Tapiola group. Experimented 4-world model objects-world questions. Solution-world with detailed model of real offered car-
related insurance coverage. HUT internal, no company validation.

18 Insur
4

Tapiola group. Comprehensive insurance coverage for families and property. Tested some 4-worlds model ideas. Objects:
persons, home, leisure-time apartment, vehicles (cars, motorcycle, boat), forest, domestic animals (dogs, horses, cats). Solutions
corresponding real insurance products and their availability, modeled in detail. However, risks coverage for home and cottage is
selectable with excessively small granularity. HUT internal, no company validation.

Juha Tiihonen 70

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

19 Mob
Subscr
1

Elisa (Radio-linja). Demonstration on configuring mobile subscription and its value-added services while taking into account
phone capabilities. Model covers only aspects considered interesting for the demonstration. Information acquired from public
company web-site. Demonstration model, demonstrated to company stakeholders.

20 Mob
Subscr
2

Elisa. Real mobile subscription + phone bundle as basis. Reverse-engineered from company web site + added needs analysis
questions to identify suitable product options with soft constraints
 HUT internal validation against offering., presentation in an open seminar for the Finnish industry.

21 Mob
Subscr
3

Telia-Sonera. Demonstration on selecting mobile subscription and some value-added services based on usage characteristics.
Implemented with hard and soft constraints. Based on public information from company website.
 No validation. Behaves as intended by the modeler.

22
Broadb
and

Telia-Sonera. Real broadband subscription product line. 4 worlds model demonstration. Re-engineered from company website,
added customer and needs analysis questions, and aspects of delivery process that are configured based on selected options. Soft
constraints warn when selections do not correspond to needs.
 Complete model with extras. Demonstration to the company.

23
Linux

Debian Linux Familiar distribution configuration model over 6 points of time and several software versions. Information gathered
from Debian Linux version compatibility lists, configuration model generated via script by mapping package descriptions into
PCML [Kojo, et al. 2003]. A newer version than that in Kojo et al. was characterized.
 No validation, "seems and behaves right", although with slow performance.

24 Iced None. Demonstration: minimal fictive car model for ICED conference article describing WeCoTin configurator.
 No validation. Behaves as intended by the modeler.

25Weco
tin car

BMW. Demonstration model based on a subset of a real car, identified configuration rules from company website
 No validation. Behaves as intended by the modeler.

26
CarDiss

BMW. Demonstration model based on 25 WeCoTin Car, with some extra fictive features to demonstrate higher cardinality.
 No validation. Behaves as intended by the modeler.

Table 1. Identification, description, status and validation of the configuration models.

properties of their individuals that can appear in a
configuration. A component type defines its compositional
structure through a set of part definitions. A part definition
specifies a part name, a non-empty set of possible part types
(allowed types for brevity) and a cardinality indicating the
possible number of parts. A component type may define
properties that parametrize or otherwise characterize the
type. A property definition consists of a property name, a
property value type and a necessity definition indicating if
the property must be given a value in a complete
configuration. Component types are organized in a class
hierarchy where a subtype inherits the property and part
definitions of its supertypes in the usual manner. When a
type inherits data from a supertype, the type can use the
inherited data “as such” or it can modify the inherited data
by means of refinement. Refinement is semantically based
on the notion that the set of potential valid individuals
directly of the subtype is smaller than the set of valid
individuals directly of the supertype. A component type is
either abstract or concrete. Only an individual directly of a
concrete type can be used in a configuration. Constraints
associated with component types define conditions that a
correct configuration must satisfy. A constraint expression
is constructed from references to parts and properties of
components and constants such as integers. These can be
combined into complex expressions using relational
operators and Boolean connectives.

3 Model background, identification,
characterization, status and validation

PCML and WeCoTin have been used to model and
configure the complete sales view of 14 real products or
services, and partial sales view of 8 products or services. In
the complete sales views all known configurable options of

the products or services have been modeled. Configuration
models of some products or services contained extra
features that are not normally taken into account during
sales configuration. Three additional demonstration models
are included in the characterizations. Some configuration
models were created in early phases of WeCoTin
construction, some after completion of the development
project.

In most cases, order forms, brochures, and other
documentation were used as a basis for modeling, and
company representatives were contacted for additional
information before showing the results as demonstrations. In
some cases it was possible to re-engineer configuration
model information from company websites.

 The WeCoTin modeling tool was instrumented to
provide the characterizing metrics based on static
configuration model analysis presented in Tables 2-5. The
configuration models come from the following domains:
 Eight models are from machine industry and come

from three companies (5 compressors (1 twice), an
undisclosed vehicle, and one military vehicle).

 Three models from two companies are from healthcare
domain (2 dentist equipment product families, a
hospital bed family.)

 Four models from two companies are from
telecommunications domain (3 mobile and 1
broadband subscriptions).

 Three models from one company are from insurance
domain.

 Two models from one company represent two
generations of maintenance contracts of elevators.

Juha Tiihonen 71

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

 One model is software configuration (Debian Linux
Familiar with package versions).

 One model demonstrates configuration of a modular
fireplace.

 Three models are pure demonstration models – two are
based on a subset of a real car, and one is fictional.

Table 1 identifies the models and briefly characterizes the
domain of each configuration model. Each configuration
model is identified with a unique numeric identifier that
remains the same in each table. Model names have been
abbreviated in later tables due to space constraints.

Table 2 details the degree of configuration model
completeness and model validation status. Five models from
three companies have been test-used by company
representatives. In addition, configuration demonstrations
and immediately following focus groups have been used for
validation of additional seven configuration models.

4 Taxonomy, model size, and pricing
Table 2 provides characterization of component type
hierarchy used in the models, overview of model size, and
.information on price modeling.

One model (23, Linux) was significantly larger than
others and semi-automatically generated. Discussions on
model characterizations exclude this model, but averages
and totals are calculated with and without it.

Numbers of abstract, concrete, and total component types
contribute to the size of a configuration model, and are
shown in corresponding columns of Table 2. The total
number of component types varied from one 1 to 626, the
median was 9 and average was 24. The number of direct
subtypes of abstract types (other than root of component
type hierarchy Component) (“Subtypes”) characterizes
the number of component types organized in a type
hierarchy. Interpreted as a percentage “% as subtypes”, the
figure varied from 0% to 100%, with average without Linux
being 59% and median 46%.

Each selectable attribute or part of a component
individual being configured generates a question during a
configuration process. The number of questions in a
configuration model (“Questions”) roughly characterizes the
size of each configuration model and the related
configuration task. In a typical configuration model without
redundant concrete component types, each question might
have to be answered while configuring a product. All
possible questions may not be asked in a configuration
session, because an individual of a specific type is not
necessarily selected into a configuration, or if some
attributes or parts are defined to be invisible to the user or to
have a fixed value. On the other hand, if several individuals
of a component type are in a configuration, the number of
questions may be multiplied. The average was 61 questions
per configuration model, and roughly 5.4 questions per
concrete type (excluding Linux).

Model T
otal types

A
bstract types

C
oncrete types

S
ubtypes

%
 as subtypes

Q
uestions

%
 questions in

root

C
onstraints

P
rice

1 C FM 9 2 7 4 44 31 58 17 adv
2 CFm sc 9 2 7 4 44 31 58 17 adv
3 C FS 3 0 3 0 0 24 88 14 adv
4 C FX 1 0 1 0 0 20 100 23 adv
5 C FL 9 2 7 4 44 28 64 13 no
6 C M 3 0 3 0 0 23 91 14 no
7 KO old 5 0 5 0 0 28 79 13 no
8 Ko new 15 3 12 7 47 77 4 1 no
9 Bed 31 8 23 27 87 34 76 10 basic
10 Firepl 7 1 6 4 57 4 75 0 no
11 Pasi 5 1 4 2 40 79 95 13 no
12 Dental 64 11 53 43 67 109 3 36 no
13 X-ray 11 2 9 4 36 37 41 3 no
14 Vehicl 28 4 24 9 32 24 75 7 basic
15 Ins 1 8 2 6 5 63 30 20 4 no
16 Ins 2 62 13 49 56 90 49 20 0 no
17 Ins 3 11 3 8 5 45 41 29 14 no
18 Ins 4 37 11 26 34 92 242 5 84 no
19 Mob 1 4 0 4 0 0 18 56 6 basic
20 Mob 2 39 9 30 38 97 65 25 28 basic
21 Mob 3 5 1 4 3 60 21 38 6 no
22 Broad 66 15 51 64 97 485 1 43 no
23 Linux 626 1 625 624 100 4369 14 2380 no

24 Iced 8 2 6 5 63 4 75 3 basic
25 Wcar 6 1 5 2 33 10 60 3 basic
26CarDis 10 2 8 5 50 12 58 3 basic
Total 1082 96 986 949 5985 2755

Total no
Linux

456 95 361 325 1526 375

Average 18 4 14 13 48 227 50 106

Avg no
Linux

24 5 19 18 59 61 52 15

Median 9 2 7 5 46 31 58 13
Min 1 0 1 0 0 4 1 0
Max 626 15 625 624 100 4369 100 2380

Table 2. Use of pricing mechanisms, company look, and
component type hierarchy in the configuration models.

Especially simpler models were often centered on the
configuration type that is the root of the compositional
hierarchy. The degree of such concentration is characterized
by the proportion of questions defined in the configuration
type. Column “% questions in root” specifies this
proportion. On the average about half (50%), and median
58% of questions were in the root component type, with a
large scale of variation.

The total number of constraints (“Constraints”) specified
in the component types of each configuration model varied

Juha Tiihonen 72

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

largely, but usually remained in a few dozen at maximum.
More details will be given in Section 2.5.

Column “Price” indicates which of two price calculation
mechanisms, if any, was used. The “basic” mechanism
considers additive prices: each component individual can
have a base price determined by its type, and each attribute
value can specify additional price. The sum of component
individual and their attribute value prices is the price of the
configuration. Four real products and three demonstration
models applied this pricing mechanism.

A more advanced calculation mechanism (“adv”)
[Nurmilaakso. 2004] performs definable calculations as
function of the current configuration, configuration model,
and external data. Values are provided to calculations when
condition expressions examining a configuration evaluate to
true. Three products were priced with this mechanism.

Prices were often omitted either due to indicated
sensitivity or to constrain resource usage. The simple
mechanism would have been sufficient for other products
except compressors and insurance products.

5 Compositional structure
Table 3 exhibits details of applying compositional structure
in the modeled cases. An indication on the number of parts
in a configuration model is given by the number effective
parts in concrete types of the model. The number of
effective parts (“Effective parts”) is the sum of inherited and
locally defined parts in concrete types. The average number
of effective parts per concrete component type (“Eff. parts /
concrete”) characterizes the breath of the configuration tree
and average application of the compositional structure as a
modeling mechanism. On the average, 10 parts were defined
in each configuration model. Median was 4. The average of
0.6 effective parts in each concrete type indicates moderate
usage of the compositional structure.

Inheritance in the compositional structure was used on the
average less frequently than direct part definitions in
concrete types: Eight models applied inheritance of parts
whereas parts were introduced in 25 models. On the
average, seven part definitions were defined in concrete
types (“Part def in concrete”), and one part per
configuration model was defined in abstract types (“Part def
in abstract”). Four of the effective 10 part definitions were
inherited. Three inherited part definitions were applied as
such (“Non-refined inherited”), and one was refined, e.g. to
restrict the set of allowed types (“Refined inherited”). Some
models applied part inheritance significantly more. For
example, in model 12 Dental, 26 (79%) of 33 effective part
definitions were inherited (“% inherited parts”). Out of these
6 were refined. The eight models applying part inheritance
had 31% (80) of their 257 effective part definitions
inherited.

Many configuration models concentrated part definitions
on the configuration type. An average configuration type
contained 4 part definitions (“Part def in conftype”). In 12
models all parts were defined in the configuration type. The
average percentage of part definitions in the configuration
type was 70% (“% part def in conf type”).

The cardinality of a part definition defines how many
component individuals must realize the part in a consistent
and complete configuration. On the average, 6 part
definitions were optional, that is, with cardinality with 0 to 1
(“0 to 1 cardinality”), and 2 part definitions were obligatory
with cardinality 1 to 1 (“1 to 1 cardinality”). Only one
demonstration model contained one part definition with a
larger maximum cardinality than one (“max cardinality
2+”).
Model E

ffective parts

E
ff. parts / concrete

 P
art def in concrete

t P
art def in abstract

t P
art def in conf type

%
 part def in conftype

N
on-refined inherited

t

R
efined inherited

%
 inherited parts

 0 to 1 cardinality

1 to 1 cardinality'

m
ax cardinality 2+

E
num

erated allow
ed

t E
ffective allow

ed
t %

 allow
ed saved

M
ax allow

ed

1 C FM 4 0.6 2 1 2 50 1 1 50 0 3 0 6 6 0 2
2 C Fm sc 4 0.6 2 1 2 50 1 1 50 0 3 0 6 6 0 2
3 Com FS 1 0.3 1 0 1 100 0 0 0 0 1 0 2 2 0 2
4 com FX 0 0.0 0 0 0 - 0 0 - 0 0 0 0 0 - 0
5 com FL 4 0.6 2 1 2 50 1 1 50 0 3 0 6 6 0 2
6 com M 1 0.3 1 0 1 100 0 0 0 0 1 0 2 2 0 2
7 KO old 2 0.4 2 0 2 100 0 0 0 1 1 0 4 4 0 2
8 Ko new 19 1.6 10 3 2 11 5 4 47 11 2 0 14 17 18 3
9 Bed 3 0.1 3 0 3 100 0 0 0 0 3 0 5 32 84 12
10 Firepla 2 0.3 2 0 2 100 0 0 0 1 1 0 2 5 60 4
11 Pasi 2 0.5 2 0 2 100 0 0 0 1 1 0 3 3 0 2
12 Dental 33 0.6 7 13 1 3 20 6 79 18 2 0 33 80 59 8
13 X-ray 5 0.6 3 1 2 40 0 2 40 3 1 0 8 8 0 3
14 Vehicl 16 0.7 16 0 12 75 0 0 0 12 4 0 20 24 17 3
15 Insur 1 10 1.7 10 0 6 60 0 0 0 9 1 0 10 10 0 1
16 Insur 2 30 0.6 22 4 10 33 8 0 27 24 2 0 26 29 10 4
17 Insur 3 12 1.5 12 0 11 92 0 0 0 10 2 0 13 13 0 2
18 Insur 4 53 2.0 30 5 12 23 27 0 51 35 0 0 35 46 24 4
19 Mob 1 3 0.8 3 0 3 100 0 0 0 3 0 0 3 3 0 1
20 Mob 2 13 0.4 13 0 12 92 0 0 0 8 5 0 15 27 44 5
21 Mob 3 1 0.3 1 0 1 100 0 0 0 1 0 0 3 3 0 3
22 Broad 32 0.6 30 1 4 13 2 0 6 10 21 0 32 53 40 15
23 Linux 62

4
1.0 62

4
0 62

4
100 0 0 0 62

4
0 0 62

4
62

4
0 1

24 Iced 2 0.3 2 0 2 100 0 0 0 0 2 0 2 5 60 3
25 Car 2 0.4 2 0 2 100 0 0 0 1 1 0 3 4 25 2
26 CarDis 3 0.4 3 0 3 100 0 0 0 1 1 1 4 7 43 3
Total 88

1
80
5

30 72
4

 65 15 77
3

61 1 88
1

10
19

Total no
Linux

25
7

18
1

30 10
0

 65 15 14
9

61 1 25
7

39
5

Average 34 0.7 31 1 28 72 3 1 16 30 2 0 34 39 19 4
Avg no li 10 0.6 7 1 4 70 3 1 17 6 2 0 10 16 20 4
Median 4 0.6 3 0 2 92 0 0 0 1 1 0 6 7 0 3
Minimum 0 0.0 0 0 0 3 0 0 0 0 0 0 0 0 0 0
Maximu
m

62
4

2.0 62
4

13 62
4

100 27 6 79 62
4

21 1 62
4

62
4

84 15

Table 3. Compositional structure of the configuration models.

Juha Tiihonen 73

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

A part is realized with individuals(s) of allowed types. A
part definition explicitly enumerates the allowed types. The
number of directly enumerated allowed types (“Enumerated
allowed”) is often smaller than the number of effectively
allowed component types (“Effective allowed”), because
specifying a supertype as an allowed type effectively
specifies the concrete subtypes as allowed types. An average
configuration model directly specified 10 and effectively 16
component types in the average 8 part definitions. The
average percentage of “savings” was 20% (“% allowed
saved”). The relatively low number of allowed types is
partially explained by relatively often occurring optional
parts with only one effective allowed type. The maximum
number of effective allowed types in a part definition (“Max
allowed”) was on the average and median 4 types, and
maximally 15.

6 Attributes
Table 4 exhibits details of applying attributes in the modeled
cases. A rough indication on the number of attributes in a
configuration model is given by the number effective
attributes of the configuration model. The number of
effective attributes (“Effective attributes”) is the sum of
inherited and locally defined attributes in concrete types.
Concrete types had a total of 1269 effective attributes.
Average without the Linux model was 51 effective
attributes and the median was 25. The average of average
number of effective attributes per concrete component type
(“Effective / concrete”) was 4.8, and median of averages
was 3.7.

Inheritance of attributes was applied more frequently than
inheritance of parts, but less frequently than direct attribute
definitions in concrete types: 16 models applied inheritance
of attributes whereas all 26 models defined attributes.

On the average a model contained 26 attribute definitions
in concrete types (“Defs in concrete”). The 5 attribute
definitions in abstract types (“Defs in abstract”) expanded to
an average of 25 effective attributes in concrete types. The
average percentage of inherited attributes in concrete types
(“% Inherited”) was 23%. Some models applied attribute
inheritance more significantly, e.g. 44 - 89% of effective
attributes were inherited in some larger models.

Of the 1269 effective attributes, 51% (642) were defined
locally (“Defs in Concrete”), and the remaining 49% (627)
were inherited. 122 attribute definitions in abstract types
(“Defs in abstract”) were inherited as such into 537
attributes in subtypes (“Non-refined inherited”), and into
168 attributes in refined form (“Refined inherited”), a total
of 705 inherited attributes.1 Often attribute definitions were
concentrated on the configuration type, 54% (14) of the 26
models specified at least 50% of effective attribute
definitions there. An average configuration type defined 11
attributes (“Def in config type”). The average percentage of
attribute definitions in the configuration type was 46%. (“%
part def in conf type”).

1 The 705 inherited attributes includes 78 (705-627)
attributes inherited to abstract types.

Model

 E
ffective attributes

E
ffective / concrete

%
 Inherited

A
ttr. definitions

D
efs in concrete

 D
efs in abstract

D
ef in config type

B
oolean

E
num

erated string
Integer
R

efined inherited
N

on-refined inherited
O

ptional attr. defs
M

axim
um

 dom
ain

D
om

ain 1
D

om
ain 2 to 3

D
om

ain4 to 10
D

om
ain 11+

1 FM 27 3.9 22 24 21 3 16 7 13 4 2 4 0 61 0 17 6 1
2 Fm sc 27 3.9 22 24 21 3 16 7 13 4 2 4 0 61 0 17 6 1
3 FS 23 7.7 0 23 23 0 20 5 13 5 0 0 0 51 0 16 6 1
4 FX 20 20.0 0 20 20 0 20 5 10 5 0 0 0 44 0 12 7 1
5 FL 24 3.4 17 22 20 2 16 7 12 3 2 2 0 20 0 13 7 1
6 M 22 7.3 0 22 22 0 20 5 14 3 0 0 0 15 0 11 8 1
7 K old 26 5.2 0 26 26 0 20 8 9 4 0 0 0 7 2 14 5 0
8 k new 58 4.8 81 29 11 18 1 12 7 2 23 24 0 4 0 18 3 0
9 Bed 31 1.3 0 31 31 0 23 17 13 1 0 0 2 7 0 26 5 0
10 Fire 2 0.3 0 2 2 0 1 0 2 0 0 0 0 2 0 2 0 0
11 Pasi 77 19.3 3 76 75 1 73 39 37 0 0 2 0 5 0 67 9 0
12 dent 76 1.4 70 48 23 25 2 28 19 1 3 50 8 10 0 41 7 0
13 xray 32 3.6 44 25 18 7 13 10 7 8 2 12 2 4 8 16 1 0
14Vehi 8 0.3 0 8 8 0 6 3 4 1 0 0 0 22 0 5 2 1
15 Ins1 20 3.3 10 19 18 1 0 4 6 9 0 2 0 11 1 9 8 1
16 Ins2 19 0.4 58 12 8 4 0 4 2 5 0 11 0 4 5 4 2 0
17 Ins3 29 3.6 0 29 29 0 1 17 6 4 0 0 3 5 4 20 3 0
18 Ins4 18

9
7.3 26 15

9
14

0
19 0 14

4
3 2 0 49 1 5 2 14

6
1 0

19 Mo1 15 3.8 0 15 15 0 7 10 2 3 0 0 2 13 0 10 2 3
20 Mo2 52 1.7 29 40 37 3 4 25 10 2 15 0 1 5 0 35 2 0
21 Mo3 20 5.0 60 12 8 4 7 12 0 0 0 12 0 2 0 12 0 0
22
Broa

45
3

8.9 89 81 51 30 0 51 12 3 11
9

36
1

1 43
6

5 58 1 2

23 Linu 37
45

6.0 67 12
53

12
49

4 1 0 12
48

3 12
48

12
48

0 6 55
1

69
1

9 0

24 Iced 2 0.3 0 2 2 0 1 0 1 1 0 0 0 2 0 2 0 0
25Wcar 8 1.6 25 7 6 1 4 4 3 0 0 2 0 5 0 5 2 0
26 Diss 9 1.1 22 8 7 1 4 5 3 0 2 2 0 5 0 6 2 0
Total 50

14
20
17

18
91

12
6

27
6

42
9

14
69

73 14
16

17
85

20 57
8

12
73

10
4

13

Tot. no
Linux

12
69

76
4

64
2

12
2

27
5

42
9

22
1

70 16
8

53
7

20 27 58
2

95 13

Averag
e

19
3

4.8 25 78 73 5 11 17 57 3 54 69 1 31 22 49 4 0

Avg no
Linux

51 4.8 23 31 26 5 11 17 9 3 7 21 1 32 1 23 4 0

Median 25 3.7 19 24 21 1 5 7 8 3 0 2 0 7 0 15 3 0
Minim
um

2 0.3 0 2 2 0 0 0 0 0 0 0 0 2 0 2 0 0

Maxim
um

37
45

20.0 89 12
53

12
49

30 73 14
4

12
48

9 12
48

12
48

8 43
6

55
1

69
1

9 3

Table 4. Attributes in the configuration models.

Attribute value types were distributed as follows: of
average 31 attribute definitions per configuration model, 17
were Boolean (“Boolean”), 9 were enumerated strings
(“”Enumerated string”), 3 integers (“Integer”), and 2
unconstrained strings. In total there were 56% (429)

Juha Tiihonen 74

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Boolean, 29% (221) enumerated string, 9% (70) integer, and
6% (44) unconstrained string attribute definitions.
Unconstrained strings specified additional details such as
customer names, addresses, etc. aspects that do not require
inference.

Attribute domain sizes remained quite small. A domain of
at least 11 possible values (“Domain 11+”) was present in
about 2% (13) of 717 attribute definitions with a fixed
domain. The maximum domain size (“Maximum domain”)
varied significantly – the largest domain was 436 possible
values, in this case enumerated string values. The most
common domain size was 2 to 3 possible values (“Domain 2
to 3”) in 81% (582) of attribute definitions. 13% (104) of
attribute domains were of size 4-10 (“Domain 4 to 10”).
Domain of size 1 (“Domain 1”) was encountered in 4% (27)
of cases, mostly created through attribute value refinements.

20 attributes were defined as optional, (“Optional attr.
defs”) meaning that it is possible to specify in a complete
configuration that no value will be assigned to the attribute.

7 Constraints
The number of constraints varied significantly from 0 to 84
(2380 with Linux), an average of 15 per model. The median
was 13. On the average, two of the constraints were soft,
and the rest were hard. Totally 44 constraints were defined
in abstract component types, of these 40 were hard and 4
soft. As with other modeling constructs, definition of a
constraint in a supertype causes inheritance to subtypes.

It is not trivial to characterize complexity of constraints.
A simple syntactic metric based on parse tree complexity of
the resulting constraint expression was calculated. For
example, consider the following a constraint:
Active_Cruise_Control_Requires_BiXenon
(Cruise_control = true) implies
($config.Headlights individual of BiXenon)

The “complexity” of the example constraint is seven (7).
Complexity of a literal, a constant, a variable, a component
type reference, element access, an ID-expression, or an
element reference in the expression is one. Each operator
application counts one plus complexity of each argument.

Typical constraints were small, almost half (45%) of the
constraints were of roughly the same complexity as the
example constraint above, and 36% a bit more complex.
 12% (45) of constraints had complexity 0-5

 45% (170) of constraints had complexity 6-10

 36% (135) of constraints had complexity 11-20

 4% (14) of constraints had complexity 21-50

 1% (4) of constraints had complexity 51-100

 1% (4) of constraints had complexity 101-1000

 1% (3) of constraints had complexity over 1000

Maximum constraint complexity varied significantly. The
median was as low as 13, and average without Linux was
235. The maximum complexity was 1319. All the
compressor models had a large table constraint specifying
feasible combinations of values of 5 attributes, each with a

relatively large number of rows, which explains the high
average.

8 Discussion, future work, and conclusions

8.1 Limitations
Modeling and evaluation of modeling mechanisms contains
author bias. All modeling was performed by researchers
who were involved in development of the system.

The companies whose products were modelled were
either existing or potential research partners. In other words,
the sample of companies was not selected e.g. to cover most
challenging cases such as telecommunications networks.

8.2 Modeling mechanisms
Some partial models were created due to resource
constraints, or when the purpose of modeling was attainable
with partial modeling. In other words, capabilities of PCML
or WeCoTin did not limit the scope of modeling. However,
Floats, fixed point numbers or integers with very large
domain would have been useful in the insurance and
compressor domains. In the insurance case some
specification variables such as a desired amount of
monetary coverage were specifiable with arbitrary monetary
amounts, which can lead to very large domains. Apartment
size and desired coverage were discretized in model “16
Insur 1”. In compressor models, the company had calculated
and validated combinations of specification variable values
that produce a specific nominal capacity, represented in a
table constraint. Further, a specific percentage of capacity
loss is encountered in high altitude use environments.
Calculating this would have been more convenient with
floating or fixed point arithmetic.

Application of the compositional structure was important
but less frequent than anticipated. A partial explanation is
that it was often considered more practical to model
alternative or optional components as enumeration or
Boolean attributes rather than as a part, if there was no need
to configure details of the selected component individuals.

Part definitions with cardinality were useful: the
mechanism provides a convenient way to model selecting at
most one or exactly one component individual to a role in
product structure out of several alternatives. This capability
prevents the need for a number of extra constraints. For
example, some commercial systems require that each
alternative is specified as optional, and a mutual exclusivity
constraint is required [Damiani, et al. 2001]. However,
sometimes the mechanism was a bit clumsy: in case of an
optional part (cardinality 0 to 1), and exactly one allowed
type, it was difficult to invent a name for the component
type and for the part. A bit surprisingly, large cardinalities
were not needed in these configuration models.

Applying inheritance saved modeling effort in larger
models significantly. Almost half (49%) of effective
attributes were inherited, and one definition in a supertype
created in average 4.4 effective attributes. Refinement of
inherited attributes and parts was a useful mechanism for

Juha Tiihonen 75

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

limiting the domain of allowed values or allowed types.
created through statistics. Refinement facilitated the
application of inheritance also in cases where some subtypes
have a narrower range of allowed values or types.
Inheritance related to compositional structure was also
useful, but was applied only in about 31% of the models.
This mechanism was generally used in larger models, where
almost a third of part definitions were inherited.

There was no need for explicit resource balancing or
satisfaction in the modeled cases. There was no need for
topological modeling, e.g. ports in our modeled cases.
However, when modeling services and their delivery
processes [Tiihonen, et al. 2007], there was a need to assign
different stakeholders as resources that participate in
different service activities. This assignment can be
somewhat clumsily modeled with attributes. However,
allocation of responsibilities to different, dynamically
defined stakeholders could be more naturally modeled as
connections between the activities and stakeholders.

8.3 Future work
The amount of work required to create a configuration
model depended to a large extent on the knowledge
acquisition and validation work. Collecting reliable statistics
on total effort of creating and maintaining configuration
models remains future work.

Performance evaluations are important characterization of
configuration models. In previous work, performance of
some of the models has been evaluated, and was found
satisfactory[Tiihonen, et al. 2002]. However, performance
should be tested with a larger and more representative set of
configuration models.

8.4 Conclusions
The main contribution of this paper is providing, to our
knowledge, the first multi-case in-depth characterization of
configuration models and analysis of utility of modeling
mechanisms. A combination of taxonomic hierarchy with
inheritance and strict refinement, compositional structure
with the concept of part definitions, attributes, and
constraints for expressing consistency requirements of a
configuration seem to be able to effortlessly capture a
significant subset of sales configuration problems. The
utility of inheritance in configuration was shown through
significant application of the mechanism, especially when
related to attributes, and to a lesser but still significant
extent to parts.

In addition, this work provides an initial proposal for a
framework for characterizing configuration models.

Acknowledgements
We thank A. Anderson, A. Martio, J. Elfström, K. Sartinko,
M. Heiskala, M. Pasanen, and T. Kojo for modeling and
knowledge acquisition; A. Martio and R. Sulonen for
acquisition of the cases; Gardner Denver Finland, KONE,
Patria,Tapiola Group for sharing product information; and
TEKES for funding WeCoTin, ConSerWe, and Cosmos

References
Barker, V. E., O'Connor, D. E., Bachant, J., & Soloway, E.

(1989). Expert systems for configuration at digital:
XCON and beyond. Communications of the ACM,
32(3), 298-318.

Damiani, S. R., Brand, T., Sawtelle, M., & Shanzer, H.
(2001). Oracle configurator developer User’s guide,
release 11i Oracle Corporation.

Fleischanderl, G., Friedrich, G., Haselbock, A., Schreiner,
H., & Stumptner, M. (1998). Configuring large systems
using generative constraint satisfaction. Intelligent
Systems and their Applications, IEEE [See also IEEE
Intelligent Systems], 13(4), 59-68.

Haag, A. (2008). What makes product configuration viable
in a business? Proceedings of ECAI 2008 Workshop on
Configuration Systems, Patras, Greece. 53-54.

Kojo, T., Männisto, T. And Soininen, T. (2003). Towards
Intelligent Support for Managing Evolution of
Configurable Software Product Families. In Software
Configuration Management (ICSE Workshops SCM
2001 and SCM 2003 Selected Papers), 86-101.

Nurmilaakso, J. (2004). WeCotin.calc documentation.
Unpublished manuscript.

Peltonen, H., Tiihonen, J., & Anderson, A. (2001).
Configurator tool concepts and model definition
language. Unpublished manuscript.

Schreiber, A. T., & Birmingham, W. P. (1996). Editorial:
The Sisyphus-VT initiative. International Journal of
Human-Computer Studies, 44(3-4), 275-280.

Soininen, T., Niemelä, I., Tiihonen, J., & Sulonen, R.
(2001). Representing configuration knowledge with
weight constraint rules. Proceedings of the AAAI Spring
Symp.on Answer Set Programming: Towards Efficient
and Scalable Knowledge, , 195–201.

Soininen, T., Tiihonen, J., Mannisto, T., & Sulonen, R.
(1998). Towards a general ontology of configuration. AI
EDAM, 12(04), 357-372.

Tiihonen, J., Heiskala, M., Paloheimo, K., & Anderson, A.
(2007). Applying the configuration paradigm to mass-
customize contract based services. Paper presented at the
Extreme Customization: Proceedings of the MCPC 2007
World Conference on Mass Customization &
Personalization, Massachusetts Institute of Technology,
MA, USA. paper ID MCPC-134-2007, section 7.5.3.

Tiihonen, J., Soininen, T., Niemelä, I., & Sulonen, R.
(2003). A practical tool for mass-customising
configurable products. Paper presented at the
Proceedings of the 14th International Conference on
Engineering Design, Stockholm, Sweden. Paper 1290.

Tiihonen, J., Soininen, T., Niemelä, I., & Sulonen, R.
(2002). Empirical testing of a weight constraint rule
based configurator. Proceedings of the Configuration
Workshop, 15th European Conference on Artificial
Intelligence, Lyon, France, 2002. 17–22-17-22.

Wielinga, B., & Schreiber, G. (1997). Configuration-design
problem solving. Expert, IEEE [See also IEEE
Intelligent Systems and their Applications], 12(2), 49-56.

Juha Tiihonen 76

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Interactive Configuration and Time Estimation of Civil Heli copter Maintenance

É. Vareillesa, C. Belera, E. Villeneuve(a,b), M. Aldanondoa and L. Genesteb
a: Université de Toulouse - Mines d’Albi
b: Université de Toulouse - ENI de Tarbes

Corresponding author: elise.vareilles@mines-albi.fr

Abstract

This communication is a prospective study which
looks at the possibility of configuring the main-
tenance of civil helicopters and of estimating the
maintenance time during the pre-check phase. This
study is one part of a project calledHelimainte-
nance, funded by the French Government with the
agreement of theAerospace ValleyAssociation. It
involves academic laboratories and SMEs. In the
first section we present the problem and one of the
solution investigations. In the second section, we
present a configuration model based on constraints,
relevant to maintenance configuration and time es-
timation. In the third and final section we present
the first possibility we have identified for coupling
this model to a CBR. Through out the paper we use
one particular example to illustrate our proposal.

1 Introduction
The aim of this communication is to present a prospective
study on the development of a configuration system which
will simultaneously enable the interactive configuration of,
and time estimation for civil helicopter maintenance. This
problem originates from a French project calledHelimain-
tenancewhich aims, using experts’ know-how and process
optimization, to reduce the cost of civil helicopter mainte-
nance by 30%. The first step of our work package will be to
model the maintenance of civil helicopters following the con-
structors’ documentation and to estimate the time needed by
taking into account the life of the helicopter and the workload
of the maintenance outfit.

1.1 The Problem of Helimaintenance
According to [Norme NF X60012, 2006], maintenance
means any of the operations required to maintain or re-
establish a product in a specified state or to guarantee a pre-
determined service. In the aeronautic field average mainte-
nance costs during the life of a craft are higher than the ini-
tial purchase costs for the products. We must notice that he-
licopter maintenance cost represents 45% of the overall life
cycle cost. In order to reduce the cost of maintenance, some
constructors are trying to control these costs right from the
initial development phase of the products[Poncelin and al.,

2006]. The goal of theHelimaintenanceproject is to optimize
the maintenance process and reduce the cost of maintenance
by capitalizing on and reusing experts know-how.

Figure 1: Helicopter example

The essential point of civil helicopter maintenance is that,
in order to maintain the airworthiness of a craft, theMainte-
nance Report Boardor MRBgiven by the constructors must
be follow absolutely to the letter. TheMaintenance Report
Board defines the general cycle of maintenance for a family
of helicopters, see Fig. 1: it specifies the time interval be-
tween maintenance operations, the type of maintenance oper-
ation, and the exact record describing each maintenance op-
eration for a given type of helicopter, with all its possibleop-
tions.

The maintenance schedules are established by the con-
structors in terms of exposure to the conditions that can cause
failures. The most widely used usage parameters are:

• calendar time (weeks, months, years) to take into ac-
count fatigue due to the helicopter age,

• and usage factors (number of landings and take-offs,
flight cycles, flight hours) to take into account part fail-
ures particular to the use of helicopters.

There are normally three types of maintenance services:

• complete serviceCS: a helicopter is completely disman-
tled and all of the parts are tested and replaced if neces-
sary,

• interim serviceIS: only the critical parts are tested and
changed if necessary (blades, rotor, for example),

• mini serviceMS: the less critical parts are tested and
replaced if necessary (air-conditioning, seats or oil
changes for example).

Every service records give an indication of the time needed
to carry out the associated maintenance. In theory, the con-

Élise Vareilles, Cedrick Beler, E. Villeneuve, Michel Aldanondo, and Laurent Geneste 77

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

structors can estimated the time for all the helicopter config-
urations.

Our aim is firstly to remodel theMRB with a specific he-
licopter and its maintenance processes and options in mind,
and secondly, to help those who maintain it to estimate the
time needed by taking into account the life and use of he-
licopter and also some information relative to the workshop
where it will be maintained.

The time estimation is critical in order to give a correct
quote for a maintenance operation, to deal with any possible
risks caused by the operations itself and more importantly,to
avoid keeping the helicopter out of service any longer than
necessary.

1.2 Solution Investigations

According to[D.C. Brown, 1985] and[Coyne and al., 1990],
product design can be characterized with respect to a degree
of recurrence in: creative, innovative and routine design.In
the case of extreme routine design called configuration, all
design possibilities can be investigated completely. Manyau-
thors such as[Tsang, 1993], [Sabin and Freuder, 1996] have
shown that product configuration could be efficiently mod-
eled and aided when considered as a CSP (Constraints Satis-
faction Problem).

In the same way, we can consider the maintenance of heli-
copters as configuration problems by the fact that all mainte-
nance operations have already been identified and character-
ized in theMRB. TheMRBhas to be personalized depending
on the options, the life of the helicopter and its use: the type
of service and the set of service records describing each op-
eration of maintenance have to be determined. Thanks to the
description of a helicopter (for instance, its age, its type, its
set of options: air-conditionning, winch, additionnal seats)
and theMRB, the maitenance operators determine the subset
of operations to be done: they configure theMRB.

The time estimation of a maintenance operation can also
be represented by a continuous CSP by the fact that theMRB
gives a therotical time to carry each maintenance operation
for the different helicopter types. This theoritical time is usu-
ally lower than the real time spent to carry out the mainte-
nance because of several factors such as unforseen events,
workshop capacity, etc. The experts in maintenance are able
to give an idea of the real time and the parameters that have
an impact on it.

A CSP is defined by a set of variables, a set of finite do-
mains (one for each variable) and a set of constraints link-
ing the variables[Montanari, 1974]. The variables can be
either discrete or continuous. The constraints can either be of
compatibility, when defining the possible or forbidden com-
binations of values for a set of variables (lists of compatible
values, mathematical expressions, temporal relations), or of
activity, when allowing for the activation of a subset of vari-
ables and constraints[Mittal and Falkenhainer, 1990].

As we are at the initial state of the project, the example
used to illustrate our proposition is the time estimation of
the maintenance of three types of helicopters (thePuma, the
Gazelleand theDolphin) after customize of theMRBand the
theoretical time needed to carry out the maintenance.

1.3 Organization of the paper

The aim of this communication is therefore to propose a
global approach based on CSP to estimate the time of main-
tenance of helicopters. The rest of the paper is organized as
follows. In the second section we present the configuration
model of the maintenance time estimation. We show that dif-
ferent kinds of constraints are necessary in order to make this
model. In the third section we put forward some ideas on the
coupling of aCase Based Reasoningand the CSP model in
order to validate, extract and update maintenance knowledge.

2 Maintenance Time Estimation

The aim of this section is to present the maintenance time
estimation of a helicopter. The model is described as a CSP
and outlines the kind of variables and constraints necessary
to make it.

2.1 Theoretical Maintenance Time Estimation

Up to the present time, very few parameters have been iden-
tified to evaluate the theoretical time of helicopter mainte-
nance. There are many reasons why only critical parameters
have been modeled from now:

• the MRB for a helicopter family is so large that it can
take several filing cabinets,

• all that exists at the moment are paper versions of the
MRB. An Enterprise Resource Planningwill be going
to be deployed in the SMEs to manage several enterprise
processes and theMRBs,

• in our study we have concentrated on the time estima-
tion of a maintenance service, we take into considera-
tion only the parameters directly linked to the theoretical
time: the type of helicopter and the type of service.

In order to determine the theoretical maintenance time
given by theMRB, we need to know:

• the helicopter type: a symbolic variableHT for the heli-
copter type must be defined. Its domain is{Puma, Tiger,
Dolphin},

• the kind of service: a symbolic variableST for service
type must be defined. Its domain is{MS, IS, CS} with
MS meaning mini service, IS meaning interim service
and CS, complete service,

• the theoretical time: a continuous variableTT for theo-
retical time must be defined. Its domain is [120, 2000]
hours according to theMRB of the considered heli-
copters.

Compatibility constraints represent the permissible or for-
bidden combinations of parameter values. These kinds of
constraints can be described as tables of permissible values
or as mathematical expressions. In our case, a compatibility
table exists expressing the relation between the type of he-
licopter, variableHT, the type of visit, variableVT and the
theoretical time to carry the maintenance, variableTT, as de-
scribed in table 1.

Élise Vareilles, Cedrick Beler, E. Villeneuve, Michel Aldanondo, and Laurent Geneste 78

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Table 1: Example of theoretical maintenance time estimation
HT ST TT

Puma MS ≤ 140
Dolphin MS ≤ 140
Gazelle MS ≤ 120
Puma IS ≤ 140

Dolphin IS 0
Gazelle IS [140, 550]
Puma CS [600, 1200]

Dolphin CS [800, 2000]
Gazelle CS [1200, 1800]

2.2 Real Maintenance Time Estimation
The theoretical time estimation can be modulated by a large
number of factors, some of them relevant to the use of the
helicopter and the risk of an unforeseen event during mainte-
nance, and the others down to the workload of the workshops.

The final or real maintenance time estimationFT results
from the multiplication of the theoretical time extracted from
the MRB by two modulation parameters: the first one,c1 is
linked to the use of the helicopter and the second onec2 to
the workload of the workshop.

The final maintenance time is computed by:

FT = TT ∗ c1 ∗ c2

Parameters characterizing the Risk of an Unforeseen
Event
The experts in helicopter maintenance have identified 2 exter-
nal parameters which have an impact on the real maintenance
time:

• the type of flight condition, which can be normal or se-
vere,

• the conditions in use, which can be normal or unusual.

These two parameters are used to qualify the severity of the
atmosphere, which can be high, medium or normal. This par-
ticular parameter is used in the computation of the final main-
tenance time. The experts have associated to each of its sym-
bolic value a numerical value: hihg matches with number 3,
medium with number 2 and normal with number 1.

So we have then introduced into the model:

• a symbolic variableFC for the flight condition. Its do-
main is{normal, severe},

• a symbolic variableUC for the conditions in use. Its
domain is{normal, unusual},

• a numerical variableAS for the severity of the atmo-
sphere. Its domain is{1, 2, 3}.

The relation between the flight, variableFC, the conditions
in use, variableUC and the severity of the atmosphere, vari-
ableAS, is described in table 2.

The experts have also decided to give more influence to:

• the age of the helicopter,

• the number of flight hours.

As these parameters are used to compute the final mainte-
nance time, we have modeled them with continuous variables:

Table 2: Characterization of the severity of the atmosphere
FC UC AS

normal normal 1
normal unusual 2
severe normal 2
severe unusual 3

• a variableHA for the helicopter age. Its domain is{1, 2,
3}, 1 meaning that the helicopter age is under 5 years, 2
meaning that it is between 5 and 25 years, and 3 meaning
that it is more than 25 years.

• a variableFH for the number of flight hours. Its domain
is {1, 2, 3}, 1 meaning that the helicopter has flown less
than 1000 hours, 2 meaning that it has flown between
1000 and 5000 hours and 3 meaning that it has flown
longer than 5000 hours.

These scales of age and flight hours have been defined by
the experts.

The risk of an unforeseen event is calculated by a math-
ematical formula linking the previous numerical parameters.
The experts have given more importance to the atmosphere
severity than to the two other aspects. The risk of an unfore-
seen event is the continuous variableURand is then computed
by :

UR = 2 ∗ AS + HA + FH

Its domain is therefore{[4, 12]}.
The unforeseen event risk is linked to the modulation pa-

rameterc1 by a continuous compatibility table, as shown in
table 3.

Table 3: First modulation parameter values
UR c1

[4, 6] [1, 1.05]
[6, 10] [1.05, 1.2]
[10, 12] [1.2, 1.3]

Parameters characterizing the Workshop Capacity
The workload of the workshop has an enormous impact on
the real time necessary for a maintenance operation. If the
mechanics are too busy or if the tools or machines are un-
available, the time it takes to maintain one helicopter or a fleet
of helicopters will increase. In order to take these factorsinto
account, we have added to our model some information rela-
tive to the workload in the workshop.

The experts in helicopter maintenance have identified 2 ex-
ternal parameters which have an impact on real maintenance
time:

• the average mechanics’ availability, which can be busy
or free,

• the average machines availability, which can be busy or
free.

We have modeled them with symbolic variables:

• a variableHA for the average human availability. Its do-
main is{busy, free},

Élise Vareilles, Cedrick Beler, E. Villeneuve, Michel Aldanondo, and Laurent Geneste 79

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

• a variableMA for the average machines availability. Its
domain is{busy, free}.

These two parameters are directly linked to the second
modulation parameterc2 by a compatibility table, as shown
in table 4.

Table 4: Second modulation parameter values
HA MA c2

free free [1, 1.1]
free busy [1.1, 1.35]
busy free [1.1, 1.35]
busy busy [1.35, 1.5]

Final Maintenance Time Estimation
As we have already said, the final maintenance time estima-
tion FT results from the multiplication of the theoretical time
given by theMRBby two modulation parametersc1 andc2.

Its domain is then computed thanks to in-
terval analysis, proposed by [Moore, 1966]:

FT = TT ∗ c1 ∗ c2

= ([1, 550][600, 2000])
⊗

[1, 1.3]
⊗

[1, 1.5]
= [1, 3900]

We can see that taking into account the use of the heli-
copter characterizing the risk of an unforeseen event, and the
workload of the workshop the final maintenance time can be
effectively multiplied by two compared to the theoretical time
given by the constructors.

The general constraints model is shown in figure 2. The
squares represent the variables and the lines the constraints
(the bold lines represent the numerical ones).

FT

Use modulation Workshop modulation

MRB

ST HT

TT

FC

AS

UC FH HA

UR

MAHA

FT = TT ∗ c1 ∗ c2

UR = 2 ∗ AS + FH + HA

c1 c2

Figure 2: General architecture of model

Even if our first model is quite simple,it has shown that this
kind of tool is of great interest for the industrialists involved
in the project. Such a tool could help speed up decision time
in quoting for any maintenance delay. Nevertheless, to be
really efficient, the model must be upgraded by more knowl-
edge provided by theMRB and workshop know-how. Once
we have finally tuned our model, it must be validated under
real conditions.

3 Coupling CSP and CBR

In Case-Based Reasoning orCBR [Maheret al., 1995], ex-
pertise is embodied in a library of past cases, rather than be-
ing encoded in classical rules. Each case typically contains
a description of the problem, plus a solution and/or the out-
come. The knowledge and reasoning process used by experts
to solve the problem is generally not recorded, but is implicit
in the solution. In order to find a solution to a new problem,
the user describes her/his problem through a list of parame-
ters and after all the user’s inputs, the problem described is
matched against the cases in the base.

A similarity function [Kolodner, 1993] makes it possible
to detect and classify the most similar or the most adaptable
cases. We must point out that if the user’s problem does not
match with any past cases, the system will return the nearest
possible ones. The cases retrieved provide ballpark solutions
that must actually be adapted by the user to fit her/his current
problem.

In the Helimaintemanceproject, each maintenance visit
represents a particular case to stock, re-use and adapt. In that
respect, we need to have a specific parameter corresponding
to the time really spent to maintain a given helicopter in a
given situation in order to have an idea about the time usually
spent on a given maintenance.

As CSP and CBR are close enough, at least in their formu-
lation, we have considered and are about to investigate differ-
ent approaches associating CSP and CBR.

3.1 Sequential estimating process: CBR first then
CSP

In this first situation, the CSP could help the user to adapt
her/his case to the current problem, as has been proposed in
[Geneste and Ruet, 2001], [Weigel R and Torrens, 1998] and
[L., 1998]. This could be useful in re-estimating the time
needed using the example of a previous situation which may
be only very slightly to a current one. For this situation, the
set of variables used for CBR and CSP is roughly the same.
To this purpose, the constraint model can be used to make
small changes in the variable values in order to get close to
the investigated case, as shown in Fig. 3.

Case Base

CBR

Constraints models

CSP

Figure 3: CBR-CSP sequencing

3.2 Sequential estimating process: CSP first then
CBR

This situation is the opposite of the first one and considers
that the known variable values (setKV) that should be in-
putted in the CBR process are not numerous enough to dis-
criminate efficiently between cases, as shown in Fig. 4. The
idea is therefore to use the domain knowledge captured by the

Élise Vareilles, Cedrick Beler, E. Villeneuve, Michel Aldanondo, and Laurent Geneste 80

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

constraints of the CSP model in order to process some prun-
ing of variables with some constraint filtering. The remain-
ing variable values are still consistent with the inputs andthe
variables that have a single value domain can be added to set
KV . The previous set (KV) increases and that provides a
more efficient retrieval step of the CBR process.

Case Base

CBR

Constraints models

CSP

Figure 4: CSP-CBR sequencing

3.3 Building or tuning CSP cased based model
This situation considers the elaboration of the CSP model
used in the previous section. Constraints used in CSP models
correspond to domain knowledge that is obtained most of the
time from human experts or scientific or technical publica-
tions. The domain knowledge for time estimation problem is
very weak, it is therefore necessary to consider other knowl-
edge sources. The idea is to consider the knowledge embed-
ded in each case. The proposition is, using different compu-
tation techniques: pattern recognition, regression analysis or
data mining techniques, to extrapolate from past cases, rules
or mathematical relations which enable to estimate mainte-
nance duration, as shown in Fig. 5.

Constraints models

CSP

Case Base

CBR

Figure 5: Building or tuning CSP

3.4 Checking case validity with a CSP
This situation considers a new occurrence of an effective
maintenance operation with associated time estimation. In
order to strength the quality of the case base, the idea is to
check each case validity before storing, as shown in Fig. 6.
To this purpose, the idea is to use the knowledge embedded in
the constraint model to validate the new case. All the variable
values describing the case are progressively inputted intothe
CSP in order to be sure that the new problem is conformed
the model. At the end of the process, it is quite probable that
the final variable values will not fit exactly due to the natural
variance of the estimation.

3.5 Dealing with incomplete knowledge
Our final idea of associating CBR and CSP based reasoning
is relevant to the possibility of processing with partial knowl-
edge, as shown in Fig. 7. This means for CBR dealing with
stored cases that are incomplete: some variable values can not

Case Base

CBR

Constraints models

CSP

Figure 6: Checking cases validity

be provided because they have been manually lost, deleted,
erased. For the CSP model, this means that some variables,
important for describing the case, are not linked with the oth-
ers by constraints (rules not defined, unstable relation, no
clear correlation)[Inakoshi H. and N., 2001]. Two ideas are
considered. The first considers the cases in order to replacea
missing constraint. Let us assume an estimation problem de-
scribed with 20 variablesVi, I = [1, 16] and two constraints
networks linkingVj , j = [1, 8] andVk, k = [9, 16]. It is clear
that some knowledge between the two is missing. The idea is
to use retrieved cases in order to link the two constraint prob-
lems. The aim of the second one is to be able to operate on
incomplete stored cases. Let us assume an estimation prob-
lem described with 20 variables and a case where a value for
five of them is not given while the 15 others fit rather well.
The case retrieved and the constraint model can be used to
provide the five missing values.

Case Base

CBR

Constraints models

CSP

Figure 7: Adding knowledge

This kind of approach seems very interesting for the me-
chanics because they will be able to capitalize and re-use old
experiments easily. But they must still keep in mind that hav-
ing formalized knowledge as in the CSP model is useful in
order to understand why a particular effect has such an im-
pact on the maintenance process. That’s why, we think that
having both these tools, and coupling them together could
help reduce the cost of the civil helicopter maintenance.

4 Conclusion
The aim of this communication has been to present a prospec-
tive study on the time estimation of civil helicopter mainte-
nance.

Firstly, we have presented our problem and one of the so-
lution investigations. Then we have suggested a way of re-
modeling maitenance documentation to give a more accurate

Élise Vareilles, Cedrick Beler, E. Villeneuve, Michel Aldanondo, and Laurent Geneste 81

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

idea of the theoritical time needed to carry out a given main-
tenance operation and have shown a method of remodulating
this time by considering several factors linked to the use ofthe
helicopter and the workload of the workshop, seen as CSP.

In the final section we have put forward some ideas about
the coupling of CSP approaches with CBR approaches in or-
der to take advantage of both to improve the way of estimat-
ing the maintenance time.

All the propositions have been validated by the main-
tainers. The example is available athttp://cofiade.
enstimac.fr/cgi-bin/cofiade.plunder the name
Helimaintenance.

As we are still in the very earliest stage of the project, some
improvements and updating of the model will be necessary.
The next phase of our work package, is to model the part
of the MRB which corresponds to the determination of the
theoretical time, to develop the CBR tool able to stock main-
tenance cases, to improve the CSP model of time-estimation
and to investigate the coupling of the CSP and the CBR.

Acknowledgments
The authors wish to acknowledge theAerospace ValleyAs-
sociation and all partners in the project, and in particularthe
experts of IXAIRCO for their involvement in the building of
the CSP model.

References
[Coyne and al., 1990] R.D. Coyne and al.Knowledge-Based

Design Systems. Addison-Wesley, 1990.

[D.C. Brown, 1985] B. Chandrasekaran D.C. Brown. Ex-
pert systems for a class of mechanical design activity. In
Computer-Aided Design, pages 259–282, North-Holland,
1985.

[Geneste and Ruet, 2001] L. Geneste and M. Ruet. Experi-
ence based configuration. InInternational Joint Confer-
ence on Artificial Intelligence Workshop on Configuration,
Seattle, USA, 2001.

[Inakoshi H. and N., 2001] Ohta Y. Inakoshi H., Okamoto S.
and Yugami N. Effective decision support for product con-
figuration by using cbr. InWorkshop ICCBR, 2001.

[Kolodner, 1993] J. Kolodner.Case-Based Reasoning. Mor-
gan Kaufmann Publisher, 1993.

[L., 1998] Purvis L. A cbr integration from inception to pro-
ductization. InAAAI Technical Report, 1998.

[Maheret al., 1995] M. Maher, D. Zhang, and M. Balachan-
dran. Case-Based Reasoning in Design. Lawrence Erl-
baum Associates, 1995.

[Mittal and Falkenhainer, 1990] S. Mittal and B. Falken-
hainer. Dynamic constraint satisfaction problems. In
AAAI, pages 25–32, Boston, US, 1990.

[Montanari, 1974] U. Montanari. Networks of constraints:
fundamental properties and application to picture process-
ing. In Information sciences, volume 7, pages 95–132,
1974.

[Moore, 1966] R.E. Moore.Interval Analysis. Prentice-Hall,
1966.

[Norme NF X60012, 2006] Norme NF X60012, 2006. Main-
tenance. - Termes et dfinitions des lments constitutifs des
biens et de leur approvisionnement.

[Poncelin and al., 2006] Guillaume Poncelin and al.Product
Life Cycle Aspects, chapter Design to maintenance cost
by the control of the products environment, pages 95–
107. Springer, December 2006. DOI: 10.1007/978-2-287-
48370-7.

[Sabin and Freuder, 1996] D. Sabin and E.C. Freuder. Con-
figuration as composite constraint satisfaction. InArtificial
Intelligence and Manufacturing Research Planning Work-
shop, pages 153–161, 1996.

[Tsang, 1993] E. Tsang.Foundations of constraints satisfac-
tion. Academic Press, London, 1993.

[Weigel R and Torrens, 1998] Faltings B.V Weigel R and
M. Torrens. Interchangeability for case adaptation in con-
figuration problem. InAAAI Technical Report, 1998.

Élise Vareilles, Cedrick Beler, E. Villeneuve, Michel Aldanondo, and Laurent Geneste 82

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

Author Index
A
Albert, Patrick . 61
Aldanondo, Michel . 77
Asikainen, Timo. 9

B
Beler, Cedrick . 77
Bettex, Marc . 53
Boysen, Morten Riiskjær . 31
Bézivin, Jean . 61

F
Falkner, Andreas . 17, 53
Friedrich, Gerhard . 47

G
Geneste, Laurent . 77

H
Haselböck, Alois . 17
Hotz, Lothar . 23

J
Jensen, Rune Møller . 31

K
Kleiner, Mathias . 61

M
Männistö, Tomi . 9
Mayer, Wolfgang . 53

N
Nørgaard, Andreas Hau . 31

P
Probst, Christian . 39

Q
Quéva, Matthieu . 39

S
Shchekotykhin, Kostyantyn. .47
Stumptner, Markus . 53

T
Tiedemann, Peter . 31
Tiihonen, Juha . 69

V
Vareilles, Élise . 77
Vikkelsøe, Per . 39
Villeneuve, E. 77

Markus Stumptner and Patrick Albert, Editors.
Proceedings of the IJCAI–09 Workshop on Configuration (ConfWS–09),
July 11–13, 2009, Pasadena, CA, USA.

	Foreword
	Workshop Organization
	Contents
	A Metamodelling Approach to Configuration Knowledge Representation
	A Simple Evaluation Process for Configurability
	Construction of Configuration Models
	Combining Binary Decision Diagrams and Backtracking Search for Scalable Backtrack-Free Interactive Product Configuration
	Industrial requirements for interactive product configurators
	Argumentation based constraint acquisition
	On Solving Complex Rack Configuration Problems using CSP Methods
	Configuring Models for (Controlled) Languages
	Characterization of 26 configuration models
	Interactive Configuration and Time Estimation of Civil Helicopter Maintenance
	Author Index

