
Online Resource Allocation Using Decompositional Reinforcement Learning

Gerald Tesauro
IBM TJ Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532, USA
gtesauro@us.ibm.com

Abstract

This paper considers a novel application domain for rein-
forcement learning: that of “autonomic computing,” i.e. self-
managing computing systems. RL is applied to an online re-
source allocation task in a distributed multi-application com-
puting environment with independent time-varying load in
each application. The task is to allocate servers in real time
so as to maximize the sum of performance-based expected
utility in each application. This task may be treated as a com-
posite MDP, and to exploit the problem structure, a simple lo-
calized RL approach is proposed, with better scalability than
previous approaches. The RL approach is tested in a realistic
prototype data center comprising real servers, real HTTP re-
quests, and realistic time-varying demand. This domain poses
a number of major challenges associated with live training in
a real system, including: the need for rapid training, explo-
ration that avoids excessive penalties, and handling complex,
potentially non-Markovian system effects. The early results
are encouraging: in overnight training, RL performs as well
as or slightly better than heavily researched model-based ap-
proaches derived from queuing theory.

Introduction
As today’s computing systems are rapidly increasing in size,
complexity and decentralization, there is now an urgent need
to make many aspects of systems management more au-
tomated and less reliant on human system administrators.
As a result, significant new research and development ini-
tiatives in this area, commonly referred to as “Autonomic
Computing” (Kephart & Chess 2003), are now under way
within major IT vendors as well as throughout academia
(ICAC 2004). The goals of such research include develop-
ing systems that can automatically configure themselves, de-
tect and repair hardware and software failures, protect them-
selves from external attack, and optimize their performance
in rapidly changing environments.

This paper considers the use of reinforcement learning
(RL) techniques for the important problem of optimal on-
line allocation of resources. Resource allocation problems
are pervasive in many domains ranging from telecommu-
nications to manufacturing to military campaign planning.
In autonomic computing, resource allocation problems are

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

faced in large-scale distributed computing systems respon-
sible for handling many time-varying workloads. Inter-
net data centers, which often utilize hundreds of servers to
handle dozens of high-volume web applications, provide a
prime example where dynamic resource allocation may be
extremely valuable. High variability in load for typical web
applications implies that, if they are statically provisioned to
handle their maximum possible load, the average utilization
ends up being low, and resources are used inefficiently. By
dynamically reassigning servers to applications where they
are most valued, resource usage can be much more efficient.

The standard approach to resource allocation in comput-
ing systems entails developing a system performance model
using an appropriate queuing-theoretic discipline. This of-
ten requires a detailed understanding of the system design
and the patterns of user behavior. The model then predicts
how changes in resource affect expected performance. Such
models perform well in many deployed systems, but are of-
ten difficult and knowledge-intensive to develop, brittle to
various environment and systems changes, and limited in ca-
pacity to deal with non-steady-state phenomena.

Reinforcement learning, by contrast, offers the potential
to develop optimal allocation policies without needing ex-
plicit system models. RL can in principle deal with non-
trivial dynamical consequences of actions, and moreover,
RL-based policies can continually adapt as the environment
changes. Hence RL may be naturally suited to sequential re-
source allocation tasks, provided that: (1) the effects within
an application of allocating or removing resources are ap-
proximately Markovian, given a suitable state representa-
tion; (2) there is a well-defined reward signal for each ap-
plication that RL can use as its training signal. In this case,
the proper objective of sequential resource allocation, find-
ing the optimal allocation policy that maximizes the sum of
cumulative discounted reward for each application, is well-
suited to RL methods.

Note that in many computational resource allocation sce-
narios, a current allocation decision may have delayed con-
sequences in terms of both expected future rewards and ex-
pected future states of the application. Such effects can arise
in many ways, for example, if there are significant switch-
ing delays in removing resources from one application and
reassigning them to a different application. Despite the com-
plexity of such effects, RL should in principle be able to deal

AAAI-05 / 886



Resource
Arbiter

Application Environment 1

Router ServersServersServers
ServersServersServers

U1(S,D)
Application
Manager

V1(R) V2(R)

Application Environment 2

Router ServersServersServers
ServersServersServers

U2(S,D)
Application
Manager

Figure 1: Data center architecture.

with them, as they are native to its underlying formalism. On
the other hand, such delayed effects are more difficult to treat
in other frameworks such as steady-state queuing theory.

Resource Allocation Scenario
We begin by describing a prototype Data Center scenario
for studying resource allocation, which generally follows
the approach outlined in (Walshet al. 2004). As illus-
trated in Figure 1, the Data Center prototype contains a num-
ber of distinct Application Environments, each of which has
some variable number of dedicated servers at its disposal
for processing workload. In this scenario, each application
has its ownservice-level utility function Ui(S,D) expressing
the value to the Data Center of delivering service levelS to
the application’s customers at demand levelD. This utility
function, which we use as the RL reward signal, will typi-
cally be based on payments and penalties as specified in a
Service Level Agreement (SLA), but may also reflect other
customer relationship considerations such as the Data Cen-
ter’s reputation for delivering consistently good service. The
service levelS may consist of one more performance met-
rics relevant to the application (e.g. average respone time
or throughput). We assume that each application’sUi is in-
dependent of the state of other applications, and that allUi
functions share a common scale of value, such as dollars.

The decision to reallocate servers amongst applications is
periodically made by a Resource Arbiter, on the basis of re-
source utility curvesVi(Ri) received from each application.
These express the expected value of receivingRi servers, and
ultimately derive from the corresponding service-level util-
ity functions. The Arbiter’s allocation decision maxmizes
the sum of resource utilities:R∗ = argmaxR ∑i Vi(Ri), where
the feasible joint allocations cannot exceed the total number
of servers within the Data Center. This can be computed for
A applications andS homogeneous servers in time∼ O(AS2)
using a simple Dynamic Programming algorithm.

Prototype System Details
A typical experiment in the Data Center prototype uses two
or three distinct Application Environments, five servers de-
voted to handling workloads, plus an additional server to
run the system management elements (Arbiter, Application
Managers, etc.). The servers are IBM eServer xSeries ma-
chines running RedHat Enterprise Linux.

Two types of workloads are implemented in the system.
One is “Trade3” (2004), a standard Web-based transactional
workload providing a realistic emulation of online trading.
In the Trade3 simulation a user can bring up Web pages for
getting stock quotes, submitting buy and sell orders, check-
ing current portfolio value, etc.. In order to run Trade3, the
servers make use of WebSphere and DB21. User demand in
Trade3 is simulated using an open-loop Poisson HTTP re-
quest generator with an adjustable mean arrival rate. To pro-
vide a realistic emulation of stochastic bursty time-varying
demand, a times series model of Web traffic developed by
Squillante et al. (1999) is used to reset the mean arrival rate
every 2.5 seconds. (An illustration of the model’s behavior
is given later in Figure 5.) The other workload is a CPU-
intensive, non Web-based “Batch” workload meant to rep-
resent a long-running, offline computation such as Monte
Carlo portfolio simulation.

The SLA for Trade3 specifies payment as a function of
average response time over a five second interval in terms of
a sigmoidal function centered at 40 msec with width∼ 20
msec. High payments are received for short response times,
while very long response times receive a negative penalty.
The Batch SLA is a simple increasing function of the num-
ber of servers currrently assigned. The relative amplitudes
of the two SLAs are chosen so that Trade3 is somewhat more
important, but not overwhelmingly so. The Arbiter requests
resource utility curves from each application every five sec-
onds, and thereupon recomputes its allocation decision.

Decompositional RL Approch
We now consider ways to use RL in this scenario. Since the
impact of an allocation decision is presumed to be Marko-
vian within each application, we can regard the Arbiter’s
problem as a type of MDP, and can implement a standard
RL procedure such as Q-learning within the Arbiter. The
state space for this MDP is the cross product of the local ap-
plication state spaces, the action space is the set of feasible
joint allocations, and the reward function is the sum of local
application rewards. Such an approach, while presumably
correct, fails to exploit problem structure and should scale
poorly, since the state and action spaces scale exponentially
in the number of applications. This should lead to curse of
dimensionality problems when using standard lookup table
Q-functions. While this can be addressed using function
approximation or sample-based direct policy methods, one
nonetheless expects the problem to become progressively
more difficult as the number of applications increases.

An alternative approach is to use a decompositional for-
mulation of RL that exploits the structure of the Arbiter’s
problem. This general topic is of considerable recent in-
terest, and structured RL approaches have been studied,
for example, in hierarchical (Dietterich 2000) and fac-
tored (Kearns & Koller 1999) MDPs. The scenario here
may be characterized formally as acomposite MDP (Singh
& Cohn 1998; Meuleauet al. 1998), i.e. a set ofN inde-
pendent MDPs that are coupled through a global decision

1WebSphere and DB2 are IBM software platforms for manag-
ing Web applications and databases, respectively.

AAAI-05 / 887



maker, with constraints on the allowable joint actions (oth-
erwise each MDP can be solved independently).

One recent approach we might consider is Q-
decomposition of Russell and Zimdars (2003), in which
subagents learn local value functions expressing cumulative
expected local reward. While the reward is decomposed
in this approach, the state and action spaces are not: each
learning agent observes the full global state and global
action. Hence this approach again faces exponential scaling
in the number of agents. Another approach is Coordinated
Reinforcement Learning of Guestrin et al. (2002), which
learns local value functions by exploiting a coordination
graph structure. This may be of interest when there is no
global decision maker. However, there are no local rewards
in this approach, and it does not appear well-suited for
resource allocation problems as the requisite coordination
graph is fully connected, and each agent potentially must
observe the actions and states of all other agents.

In contrast to the above approaches, this paper proposes a
simple but apparently novel fully decompositional formula-
tion of RL for composite MDPs. Each Application Manager
i uses a localized version of the Sarsa(0) algorithm to learn
a local value functionQi according to:

∆Qi(si,ai) = α[Ui +γQi(s′i,a
′
i)−Qi(si,ai)], (1)

wheresi is the application’s local state,ai is the local re-
source allocated by the Arbiter, andUi is the local SLA-
specified reward. When the Arbiter requests a resource util-
ity curve, the application then reportsVi(ai) = Qi(si,ai). The
Arbiter then chooses a feasible joint action maximizing the
sum of current local estimates, i.e.,a∗ = argmaxa ∑Vi(ai).
As in all RL procedures, the Arbiter must also perform
a certain amount of non-greedy exploration, which is de-
tailed below. We note, along with Russell and Zimdars, that
an on-policy rule such as Sarsa is needed for local learn-
ing. Q-learning cannot be done within an application, as its
learned value function corresponds to a locally optimal pol-
icy, whereas the Arbiter’s globally optimal policy does not
necessarily optimize any individual application.

Scaling and Convergence
Perhaps surprisingly, purely local RL approaches have not
been previously studied for composite MDPs. Certainly the
scalability advantages of such an approach are readily ap-
parent: since local learning within an application does not
observe other applications, the complexity of local learning
is independent of the number of applications. This should
provide sufficient impetus to at least empirically test local
RL in various practical problems to see if it yields decent
approximate solutions. It may also be worthwhile to investi-
gate whether such behavior can be given a sound theoretical
basis, in at least certain special-case composite MDPs.

With the procedure described above, we obtain favorable
scaling possibly at the cost of optimality guarantees: the pro-
cedure unfortunately lies beyond the scope of standard RL
convergence proofs. One can argue that, if the learning rates
in each application go to zero asymptotically, then all local
value functions will become stationary, and thus the global
policy will asymptotically approach some stationary policy.

However, this need not be an optimal policy for the global
MDP. Russell and Zimdars argue that their local Sarsa learn-
ers will correctly converge under any fixed global policy.
However, this depends critically on the local learners being
able to observe global states and actions. From the perspec-
tive of a learner observing only local states and actions, a
fixed global policy need not appear locally stationary, so the
same argument cannot be used here.

A simple counter-example suffices to establish the above
point. Consider two local applications,A andB, that are pro-
vided resources by the global decision maker. Suppose that
A’s need for resource is governed by a stationary stochas-
tic process, whileB’s has a simple daily periodicity, e.g.,B
is a stock-trading platform that needs many resources while
the market is open, and minimal resources otherwise. Un-
lessA has time of day in its state description, it will fail to
capture the temporal predictability of the global policy, and
thus the value function that it learns with local RL will be
suboptimal relative to the function that it could learn were it
provided with the additional state information.

The extent to which local state descriptions may be prov-
ably separable without impacting the learning of local value
functions is an interesting issue for future research in de-
compositional RL. Most likely the answer will be highly
domain-specific. One can plausibly envision many problems
where the impact of local MDPs on global policy is a station-
ary i.i.d. process. Also, their temporal impact may be learn-
able by other MDPs if they are intrinsically correlated, or
by using simple state features such as time of day. In other
problems, no effective decomposability may be attainable.
In the remainder of the paper, we consider convergence as a
matter to be examined empirically within the specific appli-
cation. We also adopt the practitioner’s perspective that as
long as RL finds a “good enough” policy in the given appli-
cation, it may constitute a practical success, even though it
may not find the globally optimal policy.

Important Practical Issues for RL
Many significant practical issues need to be addressed in ap-
plying RL to the complex distributed computing system de-
scribed above. One of the most crucial issues is the design of
a good state-space representation scheme. Potentially many
different sensor readings (average demand, response time,
CPU and memory utilitization, number of Java threads run-
ning, etc.) may be needed to accurately describe the system
state. Historical information may also be required if there
are important history-dependent effects (e.g. Java garbage
collection). The state encoding should be approprate to
whatever value function approximation scheme is used, and
it needs to be sufficiently compact if a lookup table is used.

Another important issue arises from the physical time
scales associated with live training in a real system. These
are often much slower than simulation time scales, so that
learning must take correspondingly fewer updates than are
acceptable in simulation. This can be addressed in part
by using a compact value function representation. We also
employ, as detailed below, the use of heuristics or domain
knowledge to define good value function initializations; this
can make it much easier and faster for RL to find the asymp-

AAAI-05 / 888



Figure 2: Operation of RL in the Application Manager.

totic optimal value function. In addition, we advocate “hy-
brid” training methods in which an externally supplied pol-
icy (coming from, for example, model-based methods) is
used during the early phases of learning. In this system hy-
brid training appears to hold the potential, either alone or in
conjunction with heuristic initialization, to speed up training
by an order of magnitude relative to standard techniques.

A final and perhaps paramount issue for live training is
that one cares about not only asymptotic performance, but
also rewards obtained during learning. This may be unac-
ceptably low due to both exploration and a poor initial pol-
icy. The latter factor can be addressed by clever initialization
and hybrid training as mentioned above. In addition, one
expects that some form of safeguard mechanism and/or in-
telligent exploration (e.g. Boltzmann or Interval Estimation)
will be needed to limit penalties incurred during exploration.
Perhaps surprisingly, this was unnecessary in the prototype
system: a simpleε-greedy rule withε = 0.1 incurs negli-
gible loss of expected utility. Nevertheless, intelligent/safe
exploration should eventually become necessary as our sys-
tem increases in complexity and realism.

RL Implementation Details
The implementation and operation of RL within the Trade3
application manager is shown in Figure 2. The RL module
learns a value function expressing the long-range expected
value associated with a given current state of the workload
and current number of servers assigned by the arbiter. RL
runs as an independent process inside the Application Man-
ager, and uses its own clock to generate discrete time steps
every 2.5 seconds. Thus the RL time steps are not synchro-
nized with the Arbiter’s allocation decisions.

While there are many sensor readings that could be used
in the workload state description, for simplicity we use
only the average demandD in the most recent time inter-
val. Hence the value functionQ(D,R) is a two-dimensional
function, which is represented as a two-dimensional grid.
The continous variableD has an observed range of 0-325
(in units of page requests per second), which is discretized
into 130 grid points with an interval size of 2.5. The number
of serversR is an integer between 1 and 5 (by fiat we pro-
hibit the arbiter from assigning zero servers to Trade3), so
the total size of the value function table is 650.

At each time step the RL module observes the demand
D, the resource levelR given by the arbiter, and the SLA

paymentU which is a function of average response time
T . The value table is then updated using Sarsa(0), with dis-
count parameterγ = 0.5, learning rateα = 0.2, and using
a standard decay of the learning rate for celli by multi-
plying by c/(c + vi), wherevi is the number of cell visits
and the constantc = 80. From time to time the Application
Manager may be asked by the Arbiter to report its current
resource value function curveV (R) at the current demand,
and may also receive notification that its assigned servers
have changed.

It’s important to note that the distribution of cell visits is
highly nonuniform, due to nonuniformity in both demand
and resource allocations. To improve the valuations of in-
frequently visited cells, and to allow generalization across
different cells, we use soft monotonicity constraints that
encourage cell values to be monotone increasing inR and
monotone decreasing inD. Specifically, upon RL updat-
ing of a cell’s value, any monotonicity violations with other
cells in its row or column are partly repaired, with greater
weight applied to the less-visited cell. Monotonicity with
respect to servers is a very reasonable assumption for this
system. Monotonicity in demand also seems reasonable, al-
though for certain dynamical patterns of demand variation,
it may not strictly hold. Both constraints yield significantly
faster and more accurate learning.

Results
This section presents typical results obtained using RL in
this system. The issues of particular interest are: (1) the
extent to which RL converges to stationary optimal value
functions; (2) how well the system performs when using RL
value estimates to do resource allocation; (3) how well the
system scales to greater numbers of servers or applications.

Empirical Convergence
We now examine RL convergence by two methods. First,
identical system runs are started from different initial value
tables to see if RL reaches similar final states. Second, a
learning run can be continued for an additional overnight
training session with the cell visit counts reset to zero; this
reveals whether any apparent convergence is an artifact of
vanishing learning rates. While one would ideally assess
convergence by measuring the Bellman error of the learned
value function, this is infeasible due to the system’s highly
stochastic short-term performance fluctuations (the most se-
vere of which are due to Java garbage collection). The num-
ber of state-transition samples needed to accurately estimate
Bellman error vastly exceeds the number that can be ob-
served during overnight training.

Figure 3(a) shows RL results in an overnight run in the
standard two-application scenario (Trade3 + Batch) with five
servers, using a simple but intelligently chosen heuristic ini-
tial condition. The heuristic is based on the intuitive notion
that the expected performance and hence value in an appli-
cation should depend on the demand per server,D/R, and
should decrease asD/R increases. A simple guess is linear
dependence, and the five straight lines are the initial con-
ditions Q0 = 200− 1.2(D/R) for R = 1 to 5. The overall

AAAI-05 / 889



-100

-50

0

50

100

150

200

0 50 100 150 200 250 300

E
xp

ec
te

d 
va

lu
e

Page requests per second

(a)   RL Value Table vs. Demand, 30000 Updates

1- 2-
3- 4- -5

1server
2servers
3servers
4servers
5servers

-100

-50

0

50

100

150

200

0 50 100 150 200 250 300

E
xp

ec
te

d 
va

lu
e

Page requests per second

(b)   RL Value Table vs. Demand, 60000 Updates

1server
2servers
3servers
4servers
5servers

-100

-50

0

50

100

150

200

0 50 100 150 200 250 300

E
xp

ec
te

d 
va

lu
e

Page requests per second

(c)   RL Value Table vs. Demand, 60000 Updates

1server
2servers
3servers
4servers
5servers

Figure 3: (a) Trade3 value function trained from heuristic initial condition, indicated by straight dashed lines. (b) Continuation
from (a) with visit counts reset to zero. (c) Value function trained from uniform random initial condition.

0

25

50

75

100

125

150

UniRand Static QuModel RL

A
vg

. u
til

. p
er

 a
llo

c.
 d

ec
is

io
n

Two Applications: Average Utility

Trade3
Batch
Total

Bound

Figure 4: Performance of RL and other strategies in scenario
with two applications.

performance during this entire run is high, even including
the 10% random arbiter exploration.

Figure 3(b) shows results when training is continued from
(a) for an additional overnight session with visits counts
reset to zero so that the learning rates would again start
from maximal values. We see relatively little change in the
learned value function, suggesting that it may be close to the
ideal solution. (One can’t be sure of this, however, as the
number of visits to non-greedy cells is quite small.)

Figure 3(c) shows results in an equivalent amount of train-
ing time as (b), but starting from uniform random initial con-
ditions. The solution found is for the most part comparable
to (b), with differences being mainly attributable to infre-
quently visited non-greedy cells. This provides additional
evidence of proper RL convergence, despite the radically
different initial state and extremely poor initial policy in the
random case.

Performance Results
Figure 4 shows the performance of RL (specifically the
run shown in Figure 3(a)), in the standard two-application
scenario. Performance is measured over the entire run in
terms of average total system utility earned per arbiter al-
location decision. This is compared in essentially identi-
cal scenarios, using identical demand generation, with three
other allocation strategies. The most salient comparison is

with “QuModel,” which uses an open-loop parallel M/M/1
queuing-theoretic performance model, developed by Ra-
jarshi Das for this prototype system with significant research
effort, that estimates how changes in assigned servers would
affect system performance and hence SLA payments. It
makes use of standard techniques for online estimation of
the model’s parameters, combined with exponential smooth-
ing tailored specifically to address the system’s short-term
performance fluctuations. Development of this model re-
quired detailed understanding of the system’s behavior, and
conforms to standard practices currently employed within
the systems performance modeling community.

To establish a range of possible performance values, we
also plot two inferior strategies: “UniRand” consists of uni-
form random arbiter allocations; and “Static” denotes the
best static allocation (three servers to Trade3 and two to
Batch). Also shown is a dashed line indicating an analyti-
cal upper bound on the best possible performance that can
be obtained in this system using the observable information.

Note that the RL performance includes all learning and
exploration penalties, which are not incurred in the other ap-
proaches. It is encouraging that, in an eminently feasible
amount of live training, the simple RL approach used here
can obtain comparable performance to the best-practice ap-
proach for online resource allocation, while requiring sigi-
ficantly less system-specific knowledge to do so. Both RL
and the queuing model approach are reasonably close to the
maximum performance bound, which is a bit generous and
most likely can be tightened to lie below the 150 level.

Scaling to Additional Applications
We have also used RL is a more complex scenario containing
three applications: one Batch plus two separate Trade3 envi-
ronments, each with an independent demand model, shown
in Figure 5. This is more challenging as there are now mul-
tiple interacting RL modules, each of which induces non-
stationarity in the other’s environment. However, using the
same heuristic demand per server initialization as before,
we observe no qualitative difference in training times, ap-
parent convergence, or quality of policy compared to previ-
ous results. Performance results in this scenario are plotted
in Figure 6. Once again RL performance is comparable to
the queuing model approach (about 1% better, in fact), and
both are quite close to the maximum possible performance.

AAAI-05 / 890



0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ag

e 
re

qu
es

ts
 p

er
 s

ec
on

d

Arbiter allocation decisions

Trade3 Demand vs. Time

demand_0
demand_1

Figure 5: Two independent time-varying Trade3 demand
models, used in scenario with three applications.

0

50

100

150

200

250

UniRand Static QuModel RL

A
vg

. u
til

. p
er

 a
llo

c.
 d

ec
is

io
n

Three Applications: Average Utility

Trade3a
Trade3b

Batch
Total

Bound

Figure 6: Performance of RL and other strategies in scenario
with three applications.

While this does not establish scalability to an arbitrary num-
ber of applications, the results are encouraging and suggest
that decompositional RL may well be a viable alternative
to model-based approaches for real-world problems of this
type. Note that global RL would be infeasible here, as the
required table size would be 0.5∗ 6502 = 211K instead of
650, and most cells would be unvisited in an overnight run.

Conclusions
The empirical results presented in this paper provide evi-
dence that decompositional RL may be a viable and prac-
tical method for online server allocation in real computing
systems. RL can eliminate the need for explicit system per-
formance models, while the decompositional approach may
enable scaling to many applications, which would be infea-
sible with global Q-Learning. The evidence also plausibly
suggests that such methodology may be more generally use-
ful in other workload management scenarios, for example,
when the allocated resources are storage devices or database
access instead of servers.

One might have expected RL in real computing systems
to require exorbitant training times, complex state descrip-
tions and nonlinear function approximation, and to perform

poorly initially and while exploring. However, in the current
prototype system, RL has turned out better than expected in
all of these respects. With extremely simple state descrip-
tions (average demand only), value function representation
(a uniform grid), exploration schemes (10% random allo-
cations), and initialization schemes (linear in demand per
server), RL achieves performance comparable to our best
efforts within the model-based framework, and does so in a
quite feasible amount of training time.

Our current work examines effects arising when there are
significant delays in reallocating servers — these are negli-
gible in the current system. As delayed rewards are central
to RL’s basic formalism, it should continue to perform well
in this case. We also continue to study scalability of applica-
tions, servers, and state descriptions, and plan to address this
in part using nonlinear value function approximators. Hy-
brid training and intelligent exploration will also be used to
obtain high initial performance and safe action exploration.

There is also much interesting analysis to be done in es-
tablishing conditions under which decompositional RL con-
verges to correct value functions, and if not, what is the min-
imal state-space augmentation that would enable it to do so.
One case where purely local Sarsa may be provably conver-
gent is if the other applications provide stationary additive
noise to the value function optimized by the global policy.

References
Dietterich, T. G. 2000. Hierarchical reinforcement learning with
the MAXQ value function decomposition.J. of AI Research
13:227–303.

Guestrin, C.; Lagoudakis, M.; and Parr, R. 2002. Coordinated
reinforcement learning. InProceedings of ICML-02, 227–234.

ICAC. 2004. Proceedings of the First International Conference
on Autonomic Computing. IEEE Computer Society.

Kearns, M. J., and Koller, D. 1999. Efficient reinforcement learn-
ing in factored MDPs. InProceedings of IJCAI-99, 740–747.

Kephart, J. O., and Chess, D. M. 2003. The vision of autonomic
computing.Computer 36(1):41–52.

Meuleau, N.; Hauskrecht, M.; Kim, K.-E.; Peshkin, L.; Kael-
bling, L.; Dean, T.; and Boutilier, C. 1998. Solving very large
weakly coupled Markov Decision Processes. InProceedings of
AAAI-98, 165–172.

Russell, S., and Zimdars, A. L. 2003. Q-decomposition for rein-
forcement learning agents. InProceedings of ICML-03, 656–663.

Singh, S., and Cohn, D. 1998. How to dynamically merge Markov
Decision Processes. In Jordan, M. I.; Kearns, M. J.; and Solla,
S. A., eds.,Advances in Neural Information Processing Systems,
volume 10, 1057–1063. MIT Press.

Squillante, M. S.; Yao, D. D.; and Zhang, L. 1999. Internet
traffic: Periodicity, tail behavior and performance implications. In
Gelenbe, E., ed.,System Performance Evaluation: Methodologies
and Applications. CRC Press.

Trade3. 2004. Websphere benchmark sample.http:
//www.ibm.com/software/webservers/appserv/
benchmark3.html.

Walsh, W. E.; Tesauro, G.; Kephart, J. O.; and Das, R. 2004.
Utility functions in autonomic systems. In1st IEEE International
Conference on Autonomic Computing, 70–77.

AAAI-05 / 891


