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Abstract— Robust object detection is a critical skill for
robotic applications in complex environments like homes and
offices. In this paper we propose a method for using multiple
cameras to simultaneously view an object from multiple angles
and at high resolutions. We show that our probabilistic method
for combining the camera views, which can be used with
many choices of single-image object detector, can significantly
improve accuracy for detecting objects from many viewpoints.
We also present our own single-image object detection method
that uses large synthetic datasets for training. Using a dis-
tributed, parallel learning algorithm, we train from very large
datasets (up to 100 million image patches). The resulting
object detector achieves high performance on its own, but also
benefits substantially from using multiple camera views. Our
experimental results validate our system in realistic conditions
and demonstrates significant performance gains over using
standard single-image classifiers, raising accuracy from 0.86
area-under-curve to 0.97.

I. INTRODUCTION

Detecting classes of objects reliably remains a highly

challenging problem in robotics. Robotic systems require

extremely high accuracy for a large variety of object classes

in order to perform even simple tasks (such as taking

inventory of a few objects in a lab environment [1]) but off-

the-shelf vision algorithms that achieve the necessary level

of performance do not yet exist. Robots, however, have a

number of advantages that are ignored by most detection

systems. For instance, robots are able to view a real scene

from multiple angles and can view interesting objects up

close when necessary [2], [3], yet most existing algorithms

cannot directly leverage these tools. In this work, we will

present a method for improving detection accuracy by using

multiple viewing angles and high resolution imagery that

may be obtained either from multiple cameras or by moving

the robot. We will show that this method significantly boosts

detection accuracy and is a valuable tool for detecting objects

whose appearance differs significantly with viewpoint.

Even considering a single object class from a single

viewpoint (i.e., the same side of the object is always facing

the camera), detecting classes of objects remains a daunt-

ing unsolved problem. Off-the-shelf vision algorithms can

achieve good results for a handful of well studied classes,

such as faces, cars, and pedestrians [4], [5], [6], [7], but even

these detectors can have high false positive rates when high

recall is required. A key problem with single-image object

detection is the number of genuinely novel combinations of

shape and texture that can appear in cluttered environments.

Classifiers that are hand-engineered or trained on only a

small number of examples are ill-equipped to deal with all
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of these variations: sooner or later, one of the countless

variations in shape or texture will be mistaken for a positive

instance. Meanwhile, lighting, contrast, and poor viewing an-

gle can often make it difficult to distinguish legitimate object

instances from other random clutter. These factors combined

make single-viewpoint object detection quite difficult on its

own, and multiple-viewpoint detection (where the object may

be seen from many different angles) is regarded as even more

difficult.

Fig. 1. A challenging detection task: Even in the absence of occlusion,
objects like hammers can be difficult to identify when viewing conditions
obscure their key features.

A major complication in object detection with multiple

potential views is the variation of an object’s appearance with

changes in the viewpoint. Even detectors achieving state-

of-the-art performance for a well-defined object class can

turn out to be poor performers when applied to objects with

many differing views. Good performance has been demon-

strated for a handful of existing object classes, such as cars

and pedestrians, whose geometric structure appears fairly

consistent as the object rotates. For instance, pedestrians

can often be identified by clusters of vertical edges [7],

[8] that are consistent regardless of whether the camera is

in front or behind them. The side view of a car, which

is essentially planar (and the same on both sides), tends

to undergo simple perspective distortions as the car rotates

relative to the viewer. Thus, classifiers for these objects can

often perform quite well over a broad range of views. In

contrast, a more “exotic” object such as a claw hammer,

like the one shown in Figure 1, can be surprisingly difficult.

As the hammer rotates, not only do the various parts move

relative to the image center but the key visual features of

the object can appear dramatically different. The claw can

be hidden when viewed edge-on, or may be difficult to

recognize due to poor contrast with the background behind

it (which is often shadowed by the hammer itself). These
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types of objects may need to have separate classifiers for

many different viewpoints to achieve good performance.

Unfortunately, even if we succeed in building reasonably

strong classifiers for each of N different views of the object, it

can turn out that combining them is non-trivial. In particular,

for N classifiers, it is common practice to simply label an

object using the output of the classifier whose response

is maximal. This implies, however, that the set of false

positives for the combined classifier includes all of the false

positives of the individual classifiers—potentially increasing

the number of false positives by a factor of N. For difficult

objects with many differing views this can seriously degrade

performance.

Thus, to identify objects from many different views, we

would like to solve two main difficulties: (i) the high error

rates of single-image, single-viewpoint detectors, and (ii) the

factor of N blowup in false positives if we naively combine

these detectors into a multiple-viewpoint detector. In this

paper, we will explore several complementary solutions to

these problems.

First, recent work [9], [10], [11] has demonstrated that

improved accuracy can be obtained by using relatively simple

learning algorithms trained from very large datasets. In

our previous work, we have demonstrated that using large

numbers of negative examples (up to 1 million) can improve

results for object detection [12]. Intuitively, by training our

classifiers on huge numbers of examples, we can reduce the

likelihood that a classifier will encounter a genuinely unique

example about which it is confused. This will allow us to

reduce the error rates of our single-image, single-viewpoint

detectors to a level that is tolerable. In this work, we will

show the effect of training on up to 100 million examples (10

million positives) on single-viewpoint detection performance.

Our final multi-view detector will use 18 classifiers trained

on 6 million examples each.

While our large dataset approach will give us classifiers

that perform reasonably well, these classifiers will not be

perfect. For instance, it is common for our detectors to

miss some objects that are viewed from difficult angles

(for instance, when the claw of the hammer blends in

with desk clutter). More frustrating still are the numerous

false positives where an “unlucky” combination of shapes

or viewing conditions have conspired to inexplicably fool

the detector. Each of these types of errors might disappear

if the image had been taken from a different angle. The

errors made by the detector in two different images of

the same scene are often different, suggesting that their

results can be combined to yield higher accuracy. Based on

this observation, we present a method for probabilistically

combining the outputs of multiple object detectors, allowing

us to use multiple cameras in conjunction with almost any

choice of base detection algorithm. We show that this can

significantly improve the accuracy of the base detector.

In addition to the above, we also explore the use of high

resolution imagery in our object detection system as another

avenue for reducing the number of mistakes made by single-

image classifiers. Though it has been shown that humans are

capable of identifying objects in image fragments as small as

32 by 32 pixels [9], this makes the task far more difficult than

perhaps necessary. Our system uses pan-tilt-zoom cameras

that allow us to zoom in and acquire “close up” views of

objects that reveal much more detail, often revealing features

that were difficult to see in the original image. We will use

this capability in Section V to verify object detections with

higher accuracy than would otherwise be possible.

We will begin by surveying work related to both our

single-image object detection algorithm and our work with

multiple cameras in Section II. We will then present the three

major components of our detection system: our detection

algorithm based on large synthetic training sets in Section III,

our method of combining detections from multiple cameras

in Section IV, and our use of high resolution images in

Section V. We will present our experimental results in

Section VI, demonstrating the performance of the combined

system.

II. RELATED WORK

Our single-image object detector builds on the system

presented in [12]. Our system uses the patch-based features

described by Torralba et al. [13] and the Histogram of

Oriented Gradient (HoG) features of Dalal and Triggs [7].

These features have been used for object detection (using

boosting in [13]) and pedestrian detection (using a template-

matching method in [8]). In our work, both are treated as

“black box” feature generators and tossed into our large-

scale learning algorithm. In many ways, our use of the

patch-based features from [13] combined with machine

learning algorithms resembles the work of Schneiderman

and Kanade [14]. They have used wavelet-based features and

boosted decision trees to perform detection of faces and cars

from multiple viewpoints. Their system also uses separate

classifiers for each viewpoint, combined subsequently to

form a single output. They also use synthetic variations

of hand-labeled training examples (a common practice in

vision applications) to obtain better generalization. Synthetic

data, as we will use for our classifier, has also been used

successfully in prior work to generate large datasets useful

for computer vision work. LeCun et al. [15], for instance,

used synthetic data to train algorithms that perform well on

difficult recognition tasks.

Object detection from multiple cameras, in contrast to the

closely related problem of detecting objects with multiple

potential views, has been studied less well in robotics litera-

ture. Multiple camera detection algorithms have been used in

surveillance applications to keep track of moving objects or

people as they pass between camera views [16], and to locate

faces of users in smart rooms [17]. More similar to our work,

multiple cameras have been used by Alahi et al. [18] to locate

a known object (observed by a fixed camera) in the views of

other cameras, including mobile ones. Multiple cameras are

used in [19] to locate soccer players in video captured from

several cameras during a game, allowing their system to deal

with occlusions and overlap that would otherwise require an

advanced person detector. The application of this technique

to general object detection when a high-accuracy single-
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image detector is available has not been explored, perhaps

due to the inherent difficulty in building even a modestly

accurate single-image object detector. Our own system is

motivated by the same apparent advantages as prior work

on multi-camera detection and tracking, but is more closely

integrated with a high-performance object detection method

that allows us to apply this approach to the hard task of

object detection in robotics.

Use of high resolution imagery for object detection has

also been considered previously in combination with zoom-

ing cameras. In particular, “peripheral-foveal” systems have

been developed that mimic human uses of peripheral vision

for coarse scanning of a scene, combined with high resolu-

tion “foveal” vision for detection of objects [20], [21], [22].

Our system similarly leverages the use of high resolution

images for object detection, but does not use the “attention”

models used in previous work. Instead, we use our object

detection system (boosted by the use of multiple cameras)

to select the regions where we will perform high resolution

detection.

III. SINGLE-IMAGE, SINGLE-VIEW DETECTION

Our detection system uses a base classifier that can be

executed independently for each camera view to find an

object in a specific pose. While using multiple cameras

will ultimately improve our accuracy, this base detector

must perform relatively well on its own. A poor detection

algorithm that tends to miss objects frequently or make large

numbers of mistakes (especially mistakes that are correlated

across object views) will not benefit much from the use of

multiple cameras. We achieve high performance by learning

our classifier from an extremely large training set. Our

classifier is based on boosted decision trees and uses a

distributed training system capable of handling up to 100

million training examples [12], far more than most off-the-

shelf systems.

In previous work, we have achieved good performance

using a large corpus of negative examples and a small set of

hand-labeled positive examples for each object class but the

lack of positive examples made it difficult to handle objects

whose appearance can vary significantly due to lighting

(especially specular reflections) or intra-class variation. In

this paper, we use synthetic positive examples instead of

hand-labeled ones allowing us to artificially generate many

variations of each object. By training on a large number

of variations we can achieve greater robustness of the final

classifier.

We have experimented with training sets as large as 100

million examples.1 Figure 2 shows the effect of training

a single-viewpoint detector on larger and larger datasets.

Performance increases dramatically up to several millions

of examples, and continues to increase all the way up to 100

million examples. We note that our final experiments will use

6 million examples for each single-view classifier (roughly

the limit of performance illustrated in Figure 2), and that this

1Each example is a 320 by 240 image patch containing either the target
object, centered and cropped to the same scale, or random background
imagery.

TABLE I
DATASETS SIZES

Dataset Positive examples per class

Coates et. al, 2009 [12] ≤ 730
Caltech 101 [23] ≤ 800
Caltech 256 [24] ≤ 827
LabelMe (Pedestrian) [25] 25330
NORB [15] 38880

Our single-view detector 1 × 10
6

Our multi-view detector 18 × 10
6

is two orders of magnitude more data than typical detection

and recognition datasets (Table I).
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Fig. 2. The performance (area under precision-recall curve) of a single-
viewpoint classifier for claw hammers trained on up to 100 million exam-
ples. (10 to 1 negatives-to-positives ratio.)

A. Preliminaries

Formally, we will assume that we are given a training

set composed of labels yi ∈ {0, 1} and example images

Ii. (We will describe the generation of the positive example

images briefly in Section III-B.) In addition, we will assume

for every positive example that we know the rotation αi of

the object relative to some canonical pose. For example, an

object facing directly away from the camera might have αi =
0◦ while another example of the object with its side facing

the camera would have αi = 90◦. We then split the positive

examples into 18 overlapping bins based on their pose. So,

for instance, all positive examples with αi ∈ [0◦, 24◦) would

be grouped together and those with αi ∈ [20◦, 44◦) would

form another group.2 A separate feature bank is constructed

for each bin using the method described in Section III-C, and

the feature values are computed for every positive example

image in the bin, as well as for all negative example images.3

For each bin we now have a training set of labels yi, feature

vectors xi and, for positive examples, poses αi. We then use

the training algorithm described in Section III-D to learn

a separate classifier for each bin. This classifier estimates

P (y = 1|I;α) for a new example image I (this is the

probability that I is an image of the target object in pose

α). As we will show in our experiments (Section VI), these

pose-specific classifiers achieve high performance.

Given an input image, we apply our classifiers using

the standard “sliding window” approach [7], [4], [26]. We

2The extra 4
◦ overlap ensures that there are enough positive examples

with poses near the bin limits that we do not end up with “gaps” in poses
covered by all of the classifiers.

3Our negatives also include small, incomplete snippets cut from positive
example images. This has the effect of forcing the classifier to learn to label
full objects and avoid relying on just a few parts.
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evaluate all of the classifiers independently on a series of

windows of varying sizes spaced at uniform intervals over

the image to detect objects at all locations, scales, and poses.

Thus, for each sub-region Ii of an image I, our classifiers

output the probability that the target object is contained in

the sub-region at the pose for which the classifier was trained

(P (yi = 1|Ii;α)). Normally, these results would be collected

and the classifier with maximal response at each location

would be selected as the final output of the system. However,

we will use these probability estimates later to improve our

detection accuracy using multiple cameras. We now briefly

describe the sub-components of our classification system in

more detail.

B. Training Data Synthesis

Ideally we always want to train on the same kinds of

data on which we will test our classifier. However, if large

amounts of data are needed to learn good classifiers, collect-

ing real data for training becomes arduous if not infeasible.

For example, in order to train detectors that are invariant

to lighting, exposure, and distortions we must either hand-

engineer features and algorithms that take these into account

or otherwise find examples of our object that exhibit all

of these variations in different combinations. Synthetic data

offers us the ability to train our classifier to be robust

to different types of variations by simply generating new

examples that demonstrate the kinds of variations that might

be seen in reality.

For our system, we acquire large numbers of positive ex-

amples by synthesizing them using a “green screen” method

similar to those used in [15] and [27]. A typical image

captured from this system is shown in Figure 3a.

Using the (known) background color, a mask is computed

that covers the object in the image frame (Figure 3b). Using

the captured image and mask, we then apply a series of

photometric and geometric distortions to generate new pos-

itive examples. These distorted examples attempt to capture

variations that frequently appear in real data. These include:

(i) random backgrounds (placed behind the object using the

object’s mask for blending), (ii) random perspective distor-

tions, (iii) non-linear lighting changes (simulating under- and

over-exposed images), and (iv) blurring.

Figure 3c shows an example of a claw hammer synthesized

using this approach. In addition to the synthesized image,

our system also determines the pose of the object from the

location of a fiducial marking located on the green screen

surface, and thus we obtain the necessary αi value needed

to group the examples for training. In our experiments, each

classifier is trained on 1 million positive examples generated

in this way.

C. Features

Once we have a set of positive and negative example

images (from a single orientation bin), we compute feature

vectors for each. We use two types of features: (i) the patch-

based features first described in [13], and (ii) Histogram of

Oriented Gradient descriptors [7]. We review them here only

briefly.

We begin by constructing a dictionary from small image

fragments. Each fragment g is randomly extracted from

the image channels (intensity and edges) of our synthetic

positive examples. Each patch is annotated with a rectangle

R specifying its approximate location relative to the object

center, and the index c of the image channel from which

it was extracted. Specifically, a patch is defined as a triple

〈g,R, c〉. Given an input example image, a patch feature

value is computed by first computing the (normalized) cross-

correlation of the dictionary patch with the corresponding

image channel, and then taking the maximum response over

the patch rectangle.

We also use HoG features in addition to patch-based

features, applied in a similar fashion to the patches described

above. In particular, we build a dictionary of descriptors

extracted from positive examples. A feature value is then

defined by taking the maximum dot-product between the

stored descriptor and a descriptor computed at each point in

R of the example image. This computation can be performed

quickly by first computing HoG(I, i, j) for all i, j using

integral images [28].

The patch and HoG features computed as above are

concatenated into a single feature vector that is given to our

classification algorithm. In our experiments we have about

400 patch features and 200 HoG features per object view.

D. Training

Once we have generated positive and negative example

images and computed the feature vector for each, we train

a boosted decision tree classifier using the Gentle Boost

algorithm [29]. Since our training sets are extremely large,

it is impractical to train these classifiers on single machines.

Instead, we use the distributed training approach described

in [12]. Except for quantizing the feature values to 8 bits

each, the distributed training system yields the same result

as training on a single machine.

IV. MULTI-CAMERA DETECTION

Once we have a single-image object detector, we can com-

bine their outputs to obtain improved detection performance.

Roughly speaking, if we receive multiple observations of

the same scene but from different angles, then even if

these observations are correlated it is quite possible that the

combined beliefs derived from all of the observations will be

better than any single observation. In our setting, we assume

that we are given multiple different images of the same scene

where the viewpoints from which the images were captured

are separated by a modest baseline (similar to what could

be achieved with multiple cameras on a robot, or by a robot

that can move itself or the cameras a short distance). We’ll

assume from now on that we have just two cameras, but

the same technique can straight-forwardly be applied to any

number of observations.

Recall from Section III that our classifiers are trained to

identify a single object over a small range (20◦) of poses.

Each classifier is run in a sliding-window fashion, outputting

a posterior probability P (yi = 1|Ii;α), where α is the

parameter for the pose of the object being detected, and yi is
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(a) (b) (c) (d) (e)

Fig. 3. Our synthetic data system: (a) Object view as seen by the capturing camera, with fiducial marking. (b) Mask extracted from the green-screen
image. (c),(d),(e) Synthesized positive examples.

the label for sub-region Ii. The label is yi = 1 if the object

is detected in pose α, or 0 otherwise.

We assume that, after running our single-view classifiers

on the image, we are left with a set of candidate bounding

boxes. Each box is annotated by the posterior probability

computed by the classifier and the approximate pose α. Our

basic approach to combining these detections will be broken

into several steps:

1) Determine the correspondence between pairs of detec-

tions. I.e., which detections in both cameras actually

correspond to the same object in the scene.

2) For each pair of corresponding detections, compute the

posterior probability for the class label.

3) Perform non-maximum suppression on the detections

jointly between the cameras to find the most probable

locations of the objects considering all observations.

We’ll now describe each of these steps in turn.

A. Determining Correspondences

Determining the correspondence between detections in

each image is easy if our robot is equipped with a depth

sensor or some other knowledge of the distances to each

detection. Using the extrinsic and intrinsic parameters of the

cameras we could easily determine whether the centers of the

bounding boxes corresponded to the same point in the scene,

and similarly could verify that the boxes were approximately

of the same size (accounting for the object’s distance from

each camera). Since we do not assume that such a sensor is

available we will need to solve the correspondence problem.

This turns out to be somewhat non-trivial when accurate

parameters for the camera extrinsics are not known. This is

not only the case for our pan-tilt-zoom cameras4 but is also

true, for example, when images are captured by moving the

robot base. In these cases, we may have only coarse estimates

of the camera extrinsics from the robot’s localization system.

To determine the correspondences we apply a number of

filtering steps to first reject pairs of detections that are not

likely to correspond to the same object. For a given pair of

detections, we have bounding boxes R1 and R2 in the first

and second camera respectively. Since we have approximate

intrinsic and extrinsic parameters for our cameras, we can

use the center points of the bounding boxes to (roughly)

triangulate the center point of the hypothetical object in

4Our pan-tilt-zoom cameras do not have encoders to determine their pan
and tilt. Instead, we can only dead-reckon their orientation. The pan and tilt
angles are reasonably accurate since the cameras use stepper motors, but
are not sufficiently reliable for off-the-shelf stereo packages.

3D space. We discard points that violate the (approximate)

epipolar constraints between the cameras. For instance, if the

depth of the center point is very large (say, greater than 20

meters5), we can safely assume that the detections do not

correspond to the same object. Using the approximate 3D

position we can also compute the size of the bounding boxes

in 3D space. We reject correspondences whose bounding

boxes have a relative error in width of more than 10%.6

We also have geometric information about the object itself:

for each candidate detection we know the pose parameter

αi from the classifier that generated the detection. Again,

using the approximate 3D location of the object relative to

the cameras, we can reject any correspondences whose poses

are not consistent. For instance, if the detection in the first

camera has αi = 50◦, then we can determine geometrically

that the second camera should find the same object with an

orientation of, say, αi = 70◦ if the cameras are separated by

20 degrees around the object location. Any correspondences

whose poses do not (approximately) satisfy these constraints

are rejected.

We now use a simple stereo keypoint-matching system

to choose the best correspondences from amongst those

satisfying the geometric constraints outlined above. As a

preprocessing step, we compute point correspondences be-

tween the images captured by each camera using SURF

descriptors [30]. For each detection in the first image we then

search for the best match in the second image. In particular,

for a detection with bounding box R1 in the first image

and bounding box R2 in the second image, we compute the

following score:

min

(

N12(R1,R2)

N1(R1)
,
N12(R1,R2)

N2(R2)

)

.

N12(R1,R2) is the number of SURF correspondences where

the first point falls inside R1 and the second point falls inside

R2. N1(R1) is the total number of SURF correspondences

where the first point falls inside R1 (regardless of where

its corresponding point is found in the second image), and

similarly for N2. We discard low-scoring candidate corre-

spondences, then use a greedy algorithm to find the best

pairing between detections in the two images.

5Large depth values are unlikely: objects beyond 20 meters are not likely
to be legitimately detected.

6Note that if the size of the bounding box changes depending on the
object view (e.g., if it bounds the object tightly) then this heuristic will
not work properly. We ensure during training that our detector learns to
place bounding boxes at the same size relative to the object regardless of
viewpoint—allowing us to use the bounding box width as a proxy for object
size.
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B. Computing Posterior

The result of the above procedure is a reduced set of

candidate detections for each image, and pair-wise corre-

spondences between the detections indicating which pairs of

detections potentially correspond to the same object in the

scene. The next step is to combine the detections to make

more confident predictions about the label of the object. Our

classifiers output probabilities instead of discrete labels, thus

giving us a measure of their confidence. By probabilistically

combining the detections using the probabilities supplied by

the classifiers we can obtain a more confident labeling than

either classifier could achieve alone.

In the following we will consider one pair of the remaining

candidate detections. We will refer to the sub-region I1

containing the object as viewed from the first camera and

the sub-region I2 containing the object as viewed from the

second camera. Each detection is annotated by probabilities

P (y = 1|I1;α1) and P (y = 1|I2;α2) respectively from

our classifiers, where α1 and α2 are the pose parameters

of the classifiers that generated the detections. Note that

we have dropped the subscript for the label y since both

classifier outputs now refer to the same object (which must

ultimately be labeled the same way in both camera views).

In the following, we will omit the αi as they are not needed

for computing the posterior probability of the class label.

We will assume for the moment that we are given accurate

posterior probabilities P (y = 1|I1) and P (y = 1|I2).
Clearly the classifier outputs are highly correlated, since

the images I1 and I2 are observations of the same scene.

Nevertheless, we will assume that the observed sub-regions

I1 and I2 are conditionally independent given the label y:

P (I1, I2|y) = P (I1|y)P (I2|y).

Under this assumption the combined posterior probability

P (y = 1|I1, I2) can be computed using several applications

of Bayes’s Rule yielding:

P (y|I1, I2) ∝
P (y|I1)P (y|I2)

P (y)
. (1)

From this it is easily seen that the log odds of the posterior

in Eq. (1) can be written:

log
P (y = 1|I1, I2)

P (y = 0|I1, I2)
=

log
P (y = 1|I1)

P (y = 0|I1)
+ log

P (y = 1|I2)

P (y = 0|I2)
− log

P (y = 1)

P (y = 0)
. (2)

Thus, we can combine the detection probabilities by simply

adding the log odds together (plus a constant). The choice

of constant P (y = 1) is generally not important since we

will ultimately threshold the combined detections at whatever

value yields the best performance.

We have assumed that the posterior probabilities output by

the detector are accurate. In reality, the probabilities are in-

correct because they refer to the training distribution.7 Thus,

our classifier actually gives us log P̂ (y=1|I)

P̂ (y=0|I)
for a distribution

7The classifier has been optimized for the training distribution (and,
indeed, usually separates the data perfectly) and thus will be over-confident.
The training data also has a different distribution of positive and negative
examples than real data.

P̂ that is not the same as the test distribution. We compensate

for this difference by learning linear function parameters α

and β that map the detector outputs to the correct values

needed for Eq. (2) using logistic regression [31] on a hold-

out set of synthetic data:

log
P (y = 1|I1)

P (y = 0|I1)
= α log

P̂ (y = 1|I1)

P̂ (y = 0|I1)
+ β.

C. Non-Maximal Suppression

After completing the above steps, we will have a set of cor-

responding detections with a combined posterior probability

for each reflecting the likelihood that the target object will

be found at a particular location. As is commonly the case

with sliding window detection algorithms, we must suppress

detections that are not local maxima.8 Since we have multiple

images, however, this suppression must be done jointly to

maintain consistency between the detections in each camera

view. A natural solution is to perform the non-maximal

suppression in the 3D world space rather than the 2D image

space. As we have done previously, we can triangulate the

3D position of the detections using our (rough) camera

parameters. We then perform non-maximal suppression in the

usual way over 3D position and object scale, removing any

detections whose probability values are lower than another

detection that is nearby in the 3D space.

V. FOVEATION

A major limitation in detecting objects in single 2D images

is the quality and resolution of the image itself. Our cameras,

for instance, output 640 by 480 pixel images. While the

quality is sufficiently high for humans to pick out most

objects, many key details of an object are often lost, making

the detection process much more difficult. One solution is to

use a camera with zoom capability to take high resolution

pictures of “interesting” areas in the scene and then perform

object detection in these regions.

In this work, we use foveation as a “verification” mech-

anism for candidate detections found by our multi-camera

detector. For each candidate detection found using the meth-

ods described above, we will direct our cameras to acquire

high resolution images of the detection’s bounding box (one

image for each camera, as before). We will then re-run our

detectors on the higher resolution images, yielding a set of

detections and a probability estimate for each. Since we are

zooming in on a previously selected candidate region there

is no stereo correspondence problem to solve; we can simply

combine the detection probabilities as described previously

for any detection pairs whose poses are consistent with the

camera geometry. We can then use these combined detections

for our results and discard the detections acquired from the

low-resolution images.

VI. EXPERIMENTS

For our experiments, we used two AXIS 214 pan-tilt-zoom

cameras and tasked them with identifying claw hammers

8As a sliding window detector passes over an object in an image the
probability values from the detector increase to a maximum (when the object
is roughly centered) and then begin decreasing.
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around our lab. The two cameras are mounted slightly less

than 1 meter apart on a fixed horizontal bar attached to a

tripod at a height of about 2.5 meters. A picture of our system

is shown in Figure 4. We collected green-screen images of 7

different claw hammers for training. Using these images, we

synthesized 1 million examples for each pose as described in

Section III. Negative examples were extracted from a set of

images that do not contain other hammers, yielding roughly

5 million negative examples for each classifier. We used

decision trees of depth 3 and 400 rounds of boosting.

Fig. 4. Our multi-camera system.

Each of the single-view, single-image classifiers performs

fairly well in isolation. We tested several of the classifiers

individually by placing hammers in specific poses relative

to one of the cameras and then running the classifier for

that pose on the captured image. The precision-recall curves

for these classifiers can be seen in Figure 7. They perform

quite well considering the difficulty of some of the detections

(the example shown in Figure 1, for instance, is classified

correctly by the α = 50◦ classifier). Nevertheless, they are

imperfect, and the large number of classifiers (18) amplifies

the problem of false positives. As a result, when we naively

combine the detections from all of the views we expect the

precision of the combined detector to suffer.

We now test the multi-camera and foveation detection

strategies described above and compare the results to the

accuracies obtained using the standard method of naively

combining the detections in a single image (which we expect

to exhibit a high false positive rate.) We again place the

(previously unseen) hammers around our lab, but this time

allow them to be placed in any pose relative to the cameras.

Thus, in order to detect all of these hammers, we must use

all of the classifiers together. We collected images from 15

different scenes, each containing from 0 to 3 hammers.

Fig. 5. Output of all 18 single-image classifiers for the left and right
cameras for one of the test scenes. (Best viewed in color.)

To illustrate the operation of the system, a typical example

of the outputs of each step of our detection system are

shown in Figures 5 and 6. In each image, the brightness
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Fig. 7. Precision-Recall curves for several individual claw-hammer
classifiers. The pose (α) for each classifier is given in the legend.
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Fig. 8. Precision-Recall curves for our claw-hammer detector.

of the rectangles indicates the probability associated with

the detection. Figure 5 shows a scene as viewed from each

camera along with the detections output by the single-image

classifier. These detections are then combined using the

procedure described in Section IV to obtain a reduced set

of corresponding detections with more accurate probability

estimates. These detections, as viewed from the left camera,

are shown in Figure 6a. Also shown are the 3D triangulated

positions of the detections, where it is clear that there are two

clusters of detections. Figure 6b shows the result of applying

the 3D non-maximum suppression step of Section IV-C,

where all of the detections have been collapsed to two

locations. Finally, our system foveates on each of the two

remaining candidate detections and executes the classifiers a

second time. In this case, the previously incorrectly labeled

region is correctly labeled as negative during the foveation,

while the correctly labeled hammer is verified as shown in

Figure 6c.

The final precision-recall curves for our multi-camera

detection methods are shown in Figure 8.

As Figure 8 makes clear, the naive strategy for combining

detections suffers from reduced precision compared to the

accuracies of the individual classifiers (compare with Fig-

ure 7). This method achieves an area-under-curve of 0.86.

The performance of the multi-camera detector is significantly

better (AUC of 0.89), recovering some of the lost precision.

Moreover, the addition of foveation to the system improves

performance much further still (AUC of 0.97). These results

suggest that the false positive errors created by using many

classifiers can be successfully overcome using these types of

multiple-camera, multiple-resolution techniques.
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(a) (b) (c)

Fig. 6. (a) Detections in the left camera after combining with the detections from the right camera. (b) Detections in the left camera after applying
non-maximum suppression in the 3D world space, labeled with the posterior probability and the approximate pose (angle in degrees) output by the classifier.
(c) The final detection results after foveation. [The insets show the 3D triangulated positions of the detections in each view relative to the two cameras.]

VII. CONCLUSION

We have demonstrated a system for object detection that

demonstrates a number of key elements that can be combined

to achieve high performance: (i) learning from extremely

large datasets including synthetic examples, (ii) leveraging

multiple camera views, (iii) using high resolution imagery to

verify detections. Our results show that the use of multiple

cameras and resolutions allows us to take a strong single-

image, single-view object detector and construct a multi-view

object detector that achieves higher accuracy than is possible

using the standard approach of combining the responses in

a single image. Since these techniques are applicable to any

type of object detector that outputs probability estimates,

we believe these results demonstrate that multi-camera and

multi-resolution methods are valuable tools for building

robust multi-view object detection systems. Moreover, we

expect that the methods presented here will continue to

yield benefits as more sophisticated single-image detectors

are developed.
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