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Abstract— A helicopter agent has to plan trajectories to track
multiple ground targets from the air. The agent has partial
information of each target’s pose, and must reason about its
uncertainty of the targets’ poses when planning subsequent
actions.

We present an online, forward-search algorithm for planning
under uncertainty by representing the agent’s belief of each
target’s pose as a multi-modal Gaussian belief. We exploit
this parametric belief representation to directly compute the
distribution of posterior beliefs after actions are taken. This
analytic computation not only enables us to plan in problems
with continuous observation spaces, but also allows the agent
to search deeper by considering policies composed of multi-
step action sequences; deeper searches better enable the agent
to keep the targets well-localized. We present experimental
results in simulation, as well as demonstrate the algorithm on
an actual quadrotor helicopter tracking multiple vehicles on a
road network constructed indoors.

I. INTRODUCTION

MAVs are increasingly used in military and civilian do-
mains, ranging from intelligence, surveillance and reconnais-
sance operations, border patrol missions, as well as weather
observation and disaster relief coordination efforts. In this
paper, we present a target-tracking planning algorithm for
a helicopter maintaining surveillance over multiple targets
along road networks. Applications include an autonomous
police helicopter tasked with monitoring the activity of
several suspicious cars in urban environments.

Target-tracking is a sequential decision-making task that
combines target-search — finding targets that are not initially
visible, and target-following — maintaining visibility of the
discovered targets. As the agent does not have perfect infor-
mation of the targets’ poses and their subsequent actions, it
has to reason about its belief of their poses when planning
to keep them well-localized. Traditionally, although target-
search algorithms [1], [2], [3] necessarily involve planning
under uncertainty, target-following algorithms [4], [5], [6]
typically focus on performing accurate belief updating and
data association, rather than tackling the decision-making
challenges faced by the agent. Especially when multiple
targets have to be tracked by a single agent, the agent has
the additional challenge of reasoning about which target to
concentrate on at every timestep.

In this paper, we present the Multi-modal Posterior Be-
lief Distribution (MMPBD) algorithm, an online, forward-
search, planning-under-uncertainty algorithm for the road-
constrained target-tracking problem. We have shown previ-
ously [7] that for uni-modal Gaussian representations, the
sufficient statistics of how the agent’s belief are expected to
evolve as actions are taken can be directly computed without
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Fig. 1. (a) Our quadrotor helicopter tracking multiple ground vehicles. (b)
Road-network target-tracking problem. Both the agent (green) and targets
(red) are constrained to travel along the road network. The agent maintains
a belief (blue/dark blue) of the targets’ poses .

having to enumerate the possible observations. This property
allows the planner to search deeper by considering plans
composed of multi-step action sequences, which we refer to
as macro-actions.

We extend our previous algorithm by representing the
agent’s belief of each target’s pose as a multi-modal Gaussian
belief. For this belief representation, we show that we can
similarly approximate the distribution of posterior beliefs at
the end of a macro-action in an efficient manner, thereby
enabling the planner to search deeper. Simulation results
compare our algorithm to both the greedy strategy and a
forward search strategy that does not incorporate macro-
actions, and we also demonstrate our algorithm on an actual
quadrotor helicopter (Figure la) tracking two autonomous
ground vehicles from the air.

II. PROBLEM FORMULATION

We first formulate the road-network target-tracking prob-
lem. A helicopter is tasked with having to search and main-
tain track of n targets (n > 2) that are moving independently
around a road network.

A map of the urban environment is known a priori,
and we assume that the road network can be reduced to a
graph with edges and nodes, representing roads and junctions
respectively (Figure 1b). Both the agent (green square) and
the targets (red square) are constrained to move along the
graph, and can move in either direction along an edge (black
lines). At a road junction (node), the agent and targets can




move along any of the roads that meet at the junction. The
road network makes it critical that the agent’s belief of each
target is representable as a multi-modal belief (blue bars).

The agent is able to accurately localize itself in the envi-
ronment, but does not have perfect information about the tar-
gets’ poses. Apart from the sensors used for self-localization,
the agent has a limited range, downward-pointing camera
sensor that obtains observations of a target’s pose if it is
within view (green circle in Figure 1b). Given the height
that the helicopter is flying at and the intrinsic parameters of
the camera sensor, we can recover the effective range r, of
the camera sensor. The agent obtains a noisy observation of a
target if it is less than r, distance from the agent, and a null
observation otherwise. The observation space is therefore
continuous when the agent receives an observation, but also
has a bi-modal characteristic due to the null observation.

We assume that the targets’ poses and dynamics are
independent of the agent’s, i.e., the target is indifferent or
unaware that it is being pursued. In addition, we assume
that each target < moves with non-zero speed u; ; around the
environment, perturbed by Gaussian noise ¢; ~ N(0, R;).
The agent has knowledge of the targets’ mean speed and start
poses, and can travel faster than the targets. Even though the
agent is aware of the targets’ start poses, this target-tracking
problem still involves a target-search component because it
can subsequently lose track of a target, especially when the
modes split at a junction.

The agent does not know the true pose of each of the
targets in the environment. Instead, it only has access to an
estimate of target i’s pose at time ¢, known as a belief b, ;.
The agent’s goal is to minimize both the uncertainty of the
targets’ poses and the distance it needs to travel.

III. BELIEF UPDATING FOR TARGET-TRACKING

Formally, the transition and observation dynamics of the
agent z; tracking a single target s;; along a road edge can
be written as
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where d; ~ N(0,Q;) is the Gaussian noise associated with
the observation when a target is within the field-of-view of
the agent’s sensor. When the target gets to a node, it chooses

a new edge with dynamics Aj;, where the probability of

choosing each edge is ﬁ for a node of degree k.
At every timestep, the agent takes an action a; and obtains
a set of observations z;. It can then update its belief according

to
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where 7 is a normalization constant.
In this paper, we represent the agent’s belief over each
target’s pose as a multi-modal Gaussian distribution.
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where p;;; and X, ; ; are the means and covariances of
mode j of target ¢ at time ¢, and wy; ; is the weight of each

Algorithm 1 BELIEFUPDATE() for a single target

Require: Belief state b:—1 ;, action u ;, observation z: ;
1: Collapse modes that are within 1 std dev.
2: (Transition update)
3: for each mode j do
4 Ty = At ile—1,i5 + Brijut,i;
500 B4 = At,i,jztfl,i,jAz:i,]‘ + Ry
6
7
8
9

Split mode if f, ; ; reaches a fork node.
: end for
: (Observation update)
: if z¢; 7 NULL then

10: Associate z;,; to edge e

11:  for each mode j do

12: if mode along e, then

13: Kt,i,j = Zt,i,thT(CtEt’i,thT + Qt)il
14: Bty = By g5+ Keg (20 — Celly 4 5
15: Sy = (CLQ7 ' Cr+ S y) "

16: else

17: We 5 = fPWi—1,4,5-

18: end if

19:  end for

20: else {Null observation}

21:  for each mode j do o

22: Truncate and refit (7, ; ;, t,i,5)

23: Reduce weight wy ;; based on (1 — fn)xfraction of

Gaussian truncated
24: end for
25: end if
26: Re-normalize weights w; ;,;Vj

mode. As the focus of this paper is on the multi-modal nature
of the agent’s beliefs, we represent each of the modes as a
1D Gaussian, though the algorithm is easily extendable to
multi-variate Gaussian representations.

A multi-modal Gaussian distribution is essentially a
weighted sum of uni-modal Gaussian beliefs. This similarity
enables us to leverage the popular Kalman filter algorithm
for performing our belief update. Kalman filters provide a
closed form, efficient means of performing a belief update
to obtain the agent’s posterior belief, especially when the
transition and observation models are linear with Gaussian
noise (Equations 1 - 2). Unfortunately, the original Kalman
filter only tracks the overall mean and variance of the agent’s
belief, which is insufficient for a multi-modal distribution.

Algorithm 1 presents our modified version of the Kalman
filter for performing multi-modal Gaussian belief updates
of each target. This algorithm is similar to the sum of
Gaussians Kalman filter from the literature [8], but has been
adapted to the target-tracking problem. Following [8], at each
iteration, modes within one standard deviation of each other
are first collapsed into a single mode, so as to keep the
belief representation as compact as possible. The Gaussian
parameters of the new mode is computed by re-fitting a
Gaussian to the original modes, while the new weight is
found by summing the weights of the original modes.

Each of the resulting modes are then propagated forward
in time based on the target’s transition dynamics, according
to the equations for the Kalman filter transition update. If
any of the modes reaches a node where there are multiple
edges that the target can travel along, additional modes are
created with the same Gaussian parameters fi; ;, % j, but
with the original weight w; ; uniformly distributed amongst
the resultant modes.



The observation update depends on whether an observation
of the target’s pose was received. If an observation is
received, we first perform a data association step linking
the observation to the nearest edge e; along the graph. The
Kalman filter observation update equations are then used to
update all of the modes along that edge, while the weights
of all other modes for the target are set to fp, the probability
that the observation was a false positive. The weights of all
the target’s modes are subsequently re-normalized.

If instead a null observation is obtained, the agent must
still incorporate the negative information associated with the
null observation. Modes that have support within the agent’s
field-of-view are truncated according to the sensor field-of-
view, and a new Gaussian is refit around the rest of the mode.
In addition, we calculate the relative percentage of the belief
that was truncated, and redistribute that fraction of the weight
across the remaining modes of the multi-modal Gaussian
belief. In this paper, we place strong emphasis on negative
information when updating the agent’s belief. Modes with
low weights are pruned from the agent’s belief via a variation
of ratio pruning [9] to keep the belief representation tractable.

I'V. PLANNING UNDER UNCERTAINTY WITH
MACRO-ACTIONS FOR UNI-MODAL GAUSSIAN BELIEFS

The target-tracking problem requires the agent to plan its
next action at every timestep in order to minimize the cost
incurred. We measure the cost of each target’s uncertainty
using the weighted sum of the covariances associated with
each of the target’s Gaussian modes. At each timestep, the
agent incurs a cost (or negative reward) according to its belief
b; and the distance traveled in the last timestep d

Rew(by,d) == Y wyijtr(Sei;)—pd  (5)
[

where § controls the relative importance of minimizing the
distance traveled. The total cost over a fixed number of
timesteps 1" is therefore

T
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where v is a discount factor.

An approach for tackling this planning under uncertainty
problem is to perform forward search, alternating between
a planning and execution phase and planning online only
for the belief at the current timestep. During the planning
phase, a forward search algorithm creates an AND-OR tree
of reachable belief states from the current belief state. The
tree is expanded using action-observation pairs that are
admissible from the current belief, and the beliefs at the
leaf nodes are found using Equation 3. By using a value
heuristic [10] that estimates the value at the fringe nodes,
the expected value of executing a policy from the current
belief can be propagated up the tree to the root node.

If a planner can search deep enough, it will find the
optimal action for the current belief [11], [12]. Unfortunately,
the number of belief states reachable within depth D is
(|A]|Z])P, where |A| and |Z| are the sizes of the action and
observation sets. Not only does the search quickly become
intractable as D increases, but online techniques generally
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Fig. 2. Distribution of posterior beliefs for uni-modal Gaussian beliefs.
a) A Gaussian posterior belief results after incorporating an observation
sequence. b) Over all possible observation sequences, the distribution of
posterior means is a Gaussian (black line), and for each posterior mean, a
Gaussian (blue curve) describes the agent’s posterior belief.

have to meet real-time constraints, limiting the planning time
available for each iteration.

One option for searching to a greater depth is to restrict
our action space to a set of multi-step action sequences, also
known as macro-actions, and compute the expected reward
of each macro-action by sampling observation sequences
of corresponding length [13]. Unfortunately, the size of
the observation space and sampling complexity still grows
exponentially with the length of the action sequence, making
it challenging to plan to long horizons.

However, the exponential computational dependence on
the action sequence length can be broken if we can an-
alytically compute the distribution over beliefs that arises
from a macro-action. For a particular macro-action, the
probability of the agent obtaining an observation sequence
is equivalent to the probability of obtaining the posterior
belief associated with that observation sequence. Seen from
another angle, every macro-action generates a distribution
over beliefs, or a distribution of distributions (Figure 2).
If we are able to calculate the distribution over posterior
beliefs for every action sequence, and branch at the end of
the action sequence by sampling posterior beliefs within this
distribution, the sampling complexity is then independent of
the macro-action length. Furthermore, the expected reward
of an action sequence can then be computed by finding the
expected rewards with respect to that distribution, rather than
by sampling the possible observations.

We have previously developed the Posterior Belief Dis-
tribution (PBD) algorithm [7], such that when the agent’s
belief is representable as a uni-modal Gaussian belief, we can
directly compute the distribution of posterior beliefs without
having to enumerate the possible observations. Specifically,
given a prior Gaussian belief (¢, >;), the resultant distribu-
tion of posterior beliefs can be characterized by a distribution
of posterior means and a fixed covariance. The distribution
of means is itself a normal distribution according to
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where f(ui—1,{A, B,u}s.e17) is the deterministic transfor-
mation of the means according to p;yr = Appgfberk—1 +
Bitpuitk.

For the covariance update, we can also collapse multi-step
covariance updates into a single step. Let ¥, = B;_,C,_ 11.
At every step, the complete covariance update can be written
as:
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The covariance update is only dependent on the model
parameters of the problem, and is independent of the ob-
servations that may be obtained. This property enables us
to collapse multi-step covariance updates into a single step
V1.0 = HiT:1 W,, recovering the posterior covariance
Yypr from Xyppr = BHTC;:T. For a uni-modal Gaussian
belief, we therefore have a closed-form method for calcu-
lating the distribution of posterior beliefs after the agent
executes a macro-action, and can then sample Gaussian pa-
rameters from this distribution of distributions to instantiate
posterior beliefs for deeper forward search.

V. APPROXIMATIONS FOR MACRO-ACTION,
TARGET-TRACKING PLANNING

For the target-tracking problem, the set of macro-actions
available to the agent includes the sequence of actions
necessary to travel down an edge to a node, as well as
hover at a position for a fixed number of timesteps. Each of
these macro-actions can be thought of as open-loop policies
of varying lengths, independent of the observations that the
agent receives while executing the macro-action.

In order to perform efficient planning under uncertainty,
we seek to perform belief updates over a macro-action with-
out having to consider the possible observations that could be
obtained. We want to compute the joint distribution over the
weights and mode statistics, which we will then sample from
to obtain posterior beliefs for deeper forward search. For the
target-tracking problem, we make explicit two assumptions
that are necessary to be able to update the agent’s beliefs
efficiently: 1) a distance-varying covariance function can
model the bimodal characteristic of the observation model,
and 2) the observations are accurate enough that over the
span of a macro-action, the agent will observe the target at
least once if it is within the agent sensor’s field-of-view at
some point along the macro-action.

A. Distance-varying observation noise covariance function

A single mode j in a multi-modal Gaussian belief of target
1 is represented as a Gaussian distribution, N (Bt,is Ztig)-
As per our problem formulation (Equation 2), the agent
has a sensor with a limited field-of-view, r,. If the target
is within the sensor’s field-of-view, the agent will receive
a noisy position observation z;; of the target, whereas if
the target is outside of the agent’s field-of-view, the agent
receives a null observation. The possibility of having both
noisy position observations and a negative observation makes
it appear difficult to consider the observation space without
branching on the observations.

We propose using a modified noise covariance function to
unify the two observation modes. Recall that when the target
is within the agent’s field-of-view, it receives an observation
that is perturbed by Gaussian noise d; ~ N (0, Q;). The co-
variance of the Gaussian noise, ()¢, is then used to calculate
the Kalman gain K ; ; and update the Gaussian parameters
(te,i,5, 2t,4,5) according to
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When the agent’s belief of the target’s location has little
support within the agent’s field-of-view, we observe that
the belief update according to Algorithm 1 will result in a
posterior belief that remains essentially unchanged from the
prior belief before the observation update, since little of the
belief will be truncated. We also note that for a traditional
Kalman filter update, if the noise covariance is very large,
then the Kalman filter equations (Equation 9 - 11) result in
a posterior belief that also remains essentially unchanged.

When a particular mode of the agent’s belief has strong
support within the agent’s field-of-view, a null observation
will result in the weight of the mode converging towards
zero. Under such circumstances, the update of the individual
mode with negligible weights is irrelevant. We delay the
discussion of weights updating to Section V-B.

Therefore, we can unify the two observation modes (null
observation or not) by using an observation noise covariance
that varies with different distances between the agent and
the target. Specifically, we represent the set of observations
using the following covariance function:

Qi(wy, s1,i) = C1 — ColN (8¢

Tt, C3Ta) (12)
where C; is the noise covariance value where getting an
observation would have little effect on the belief update, and
C1 — C5 > 0 determines the covariance of the observation
noise when the agent is directly above the target. C'5 is a
scaling constant that makes the drop off of the covariance
function a direct function of the sensor field-of-view.

Despite the possibility of obtaining a null observation, the
Gaussian parameters of each mode j of the agent’s belief
of target ¢ can therefore be calculated by using a single
covariance function (Equation 12). Since the observation
noise covariance, ()¢, is now a function of the agent and the
target’s poses, and the target poses are unknown, we must
integrate over the agent’s belief of the target to compute and
use the expected noise covariance ¥, . ; = E[Q;] for each
mode
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We note that in a Normal distribution, for every value of
St,ir Tes P(Seilxe, Csry) = p(xy|se, Csrg), which implies
that the above equation can be written as:
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This calculation of ;. ;; assumes that the belief is
known, i.e., there is a deterministic value of the mean and
covariance. However, when performing a belief update after
a macro-action, we obtain a distribution over the means
(Equation 7). Assuming 7, ; ; ~ N (my ;, St ), the noise



term can then be calculated according to:
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The expected noise from an observation therefore depends
not only on the agent’s pose and expectation of the target’s
pose, but also on the agent’s uncertainty of the target’s
pose. The larger the uncertainty in the target’s pose, the
more uniformly noisy the observation is expected to be with
changes in the agent’s pose, which corresponds to a lower
expectation of being able to reduce the uncertainty associated
with that particular mode.

More importantly, individual modes can now be updated in
a consistent, closed-form manner. After executing a macro-
action, each mode of the agent’s belief can be represented
by a distribution of means (Equation 7), as well as a fixed
covariance (Equation 8), with @, replaced by > . ; ;.

B. “Macro-observations”

Having discussed how the individual modes of the agent’s
multi-modal Gaussian belief can be updated independently
of the possible observations, we now turn to updating the
weights of the agent’s posterior belief. Unfortunately, it is not
reasonable for us to update the weights without incorporating
the observations, since by the very nature of the belief
updating process, the weights will vary drastically depending
on whether the agent has made a positive observation during
the macro-action.

In order to reduce the branching factor due to the num-
ber of possible observations, we introduce the notion of
a “macro-observation” when updating the weights, corre-
sponding to whether null observations are received when the
multi-step action sequence is executed. For each multi-modal
belief of a single target ¢, we maintain two different sets of
weights, Wy ; and Wy ;, corresponding to the two separate
scenarios where the agent does and does not receive at least
a single positive observation while executing a macro-action.

As discussed in Algorithm 1, the agent’s belief is updated
after receiving a positive observation by first associating
the observation to an edge. When predicting the possible
observations for planning, one option is to sample possible
data associations and recover the corresponding weights
of the modes. Alternatively, we can leverage the distance-
varying covariance function that was developed in Section V-
A to update the posterior weights of all modes directly. The
distance-varying covariance function exhibits the property
that the noise covariance of the observation model grows
with increasing distance between the agent and the mean
of a Gaussian mode. In addition, the Fisher information
associated with the observation model measures the certainty
of a state estimate due to measurement data alone [14]. In
the context of a multi-modal Gaussian belief, the Fisher
information associated with the observation model for each

mode therefore corresponds to the certainty that an obser-
vation is associated with that mode. Applying Bayes rule
p(s|z) o p(z|s)p(s), we can therefore update the weights of
each mode according to

wtz,j OCCt fZ,]C Wi — 1,2,5 (20)

where C X2 t i .CT is the Fisher information associated with
the observatlon model for the Gaussian mode j of target ¢
and C; maps the state space to observation space. We then
re-normalize the weights.

On the other hand, when a null observation is obtained,
modes that have support within the agent’s field-of-view
should be truncated and a new Gaussian refit around the
rest of the mode. Unfortunately, no closed-form solution
exists for performing such a truncation. As a result, we
take advantage of the intuition that if null observations are
obtained throughout the course of a macro-action, a mode
that has strong support within the agent’s field-of-view will
have a posterior weight that tends towards zero. We therefore
compute the set of weights associated with null observations,
Wi, by setting the weights of modes that have support in
the agent’s field-of-view to zero, and renormalize the rest of
the weights.

Separately, we calculate the probability a of the agent
obtaining a positive observation while executing the macro-
action. This probability can be obtained by computing the
average percentage of the agent’s belief that has support
within the field-of-view of the agent’s sensor over the course
of the macro-action, assuming that the macro-action had
been executed in an open-loop fashion. « therefore describes
the probability that the agent’s multi-modal weights will be
distributed according to Wy-;, as opposed to W ;, assuming
that the agent does not incorporate any of the observations
obtained while executing the macro-action. We then sample
from these two sets of weights according to « to instantiate
posterior beliefs for deeper forward search.

Given that the series of belief updates associated with
a macro-action have been approximated with a macro-
observation, it would appear that an alternative approach
would be to reduce the graph map structure into a series
of discrete cells, with each cell depicting a connected edge
and/or node. However, such a simplification of the problem
would result in actions with varying time durations, and
performing a belief update using an asynchronous discrete-
event model is non-trivial, as evidenced by the computation-
ally complex Partially Observable Semi-Markov Decision
Processes (POSMDP) [15] framework.

VI. MULTI-MODAL POSTERIOR BELIEF DISTRIBUTION
(MMPBD) ALGORITHM

Algorithm 2 summarizes the Multi-Modal Posterior Belief
Distribution (MMPBD) algorithm for efficient macro-action
planning in the target-tracking problem. At every timestep,
this forward search algorithm generates the list of macro-
actions based on the agent’s current state. It then evaluates
each of the macro-actions, and executes the first action
from the macro-action with the minimum expected cost.
The agent then updates its belief based on the action taken
and observation received via Algorithm 1, and repeats the
planning process at the next timestep. Hence, even though
the planning process only considers macro-actions, it replans



Algorithm 2 Multi-Modal Posterior Belief Distribution
(MMPBD) algorithm

Require: Agent’s initial belief by, Macro-action search depth Hy,
No. belief samples per macro-action N,

1: t<—0

2: while not EXECUTIONEND() do
Generate macro-action list Agcq
for ascq,i € Aseq do

Q(aseq,i, bt) = ROLLOUTMACRO(aseq,i; be, Hf, N-)

end for
Execute first action a¢ of Gseq = argmax Q(bt, Gseq)
Obtain new observation z; and cost C}
bt+1 = BELIEFUPDATE(by, at, 2¢)
10: t—t+1
11: end while

VRN AWw

Algorithm 3 ROLLOUTMACRO()

Require: Action sequence aseq, belief state b;, remaining search
depth h, no. belief samples per macro-action N,
1: if h =0 then
2:  Perform Kalman filter update with null observation out to
predefined time depth.

3:  return Y, Rew(bs, Yiqj)

4: else {Expand Macro-Action}
5. for each target ¢ do
6
7
8

Compute prob. «; of obtaining observation along aseq

for each step in ax € dseq, k = {1,...,|aseq|} do
: Collapse modes that are within 1 std dev. apart
9: for each mode j in belief b; ; do
10: Compute params (Miyr,i,j, Sttki iy Dttk,i,j)
11: Split modes if end of edge reached
12: Update weights Wy, t4k,i,5, Wn,t+k,i,j
13: end for
14: V=V+ aRew(Wy7t+k,i, Et+k,i)
15: V=V+ (1 — Ot)}{611)(1/‘/']\7,t+k72‘7 Et+k¢i)
16: end for
17: V=V+p5d

18: end for
19: forp=1to N, do

20: Gen. samples with weights {Wy, Wi} accord. to «

21: Sample belief modes from (Mit+4a.eq, Sttaseqs Dttaseq)

22: Obtain action sequence list A75r"

23: for alil € zil;f;t do

24: Q(bpv a?:;,p) = .
ROLLOUTMACRO(agcy psbp,.h — 1,N>)

25: end for ) .

26: V=V+ Vv, argmaXgneat Q(by, aseqp)

27: end for
28: return V'
29: end if

after every timestep, taking into account the latest observa-
tion and information available.

Algorithm 3 summarizes the procedure for calculating the
expected cost of each macro-action. After computing the
probability « of obtaining a positive observation during the
macro-action, the distribution of posterior beliefs for both the
individual modes and the weights are calculated according
to Section V-A and V-B respectively.

After calculating the expected immediate cost associated
with the macro-action, the agent then samples from the
posterior belief distribution to instantiate beliefs for deeper
forward search. Given that the covariance of each mode
is constant, we perform importance sampling only on the
posterior mean distribution and the weights, and associate
them with the posterior covariances to obtain samples of

posterior beliefs. These beliefs are then used to perform an
additional layer of depth-first search, and this process repeats
for a pre-determined search depth Hy.

At the leaf nodes, a value heuristic is used to provide an
estimate of being at the belief node [10]. Because we perform
a forward search out to a fixed macro-action depth, rather
than a fixed primitive-action depth, the belief nodes may
have expanded out to different timesteps. Our value heuristic
therefore accumulates the cost of the agent’s belief out to
a predefined timestep, and for these additional timesteps
assumes that the beliefs are updated without obtaining any
meaningful observations.

VII. SIMULATION EXPERIMENTS

We implemented our target-tracking algorithm in several
simulated environments, such as those shown in Figure
1b. The targets circle the environment in a predominantly
clockwise fashion, but at a map junction, the targets may
choose to travel along one of multiple paths. In addition,
different paths can subsequently recombine onto the same
edge. For this set of experiments, the agent only had to track
two targets, although the algorithm can be directly extended
to more targets.

Figure 3 provides snapshots of a simulation run of the
MMPBD algorithm. The problem begins with the agent
heading in the general direction of the targets (3a, b).
Because one of the targets will be arriving at a branching
point, the agent hovers at the branching point to observe
which outgoing edge is chosen by the target (3b). The
agent then moves over to localize the other target (3c). This
behavior shows that the agent can anticipate when modes
will split at a junction, and search deep enough to recognize
that if it does not localize the target at the junction, it will be
harder to localize the targets subsequently. In addition, the
agent typically focuses on localizing a single target until the
uncertainty of the other targets is large enough that it offsets
the cost of traveling to those uncertain targets (3d), or if the
modes of the other targets are about to split (3e). The cost
of motion also biases the agent to choose shorter paths (3f).

We compared our algorithm to two other strategies —
a greedy strategy and a forward search strategy without
macro-actions. For the greedy strategy, the agent always
travels towards the mode that results in the smallest negative
rewards, which roughly translates to the mode with the
largest weighted covariance and a small cost-to-travel. This
strategy causes the agent to oscillate between the different
targets, but cannot anticipate when modes may split at road
junctions.

We also implemented a forward search algorithm that did
not have access to macro-actions. Primitive actions are eval-
uated by performing belief updates according to Algorithm 1
However, the continuous observation space of the target-
tracking problem would have made the branching factor
too large to be computationally feasible. Instead, for every
action that was evaluated, we only branched on whether an
observation was obtained or not, thereby giving the naive
forward search algorithm access to the macro-observations
that were discussed in Section V-B.

Figure 4 reports the performance of the different strategies
for a typical run. Initially, all three strategies obtain similar
performance, oscillating between the targets to keep them
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Fig. 4. Comparison of different strategies over a single run. The targets
are better localized if the agent’s belief has a smaller weighted covariance.

well-localized. However, as the modes approach the road
junctions, the greedy strategy does not anticipate when the
modes split. Similarly, the naive forward search strategy
cannot search deep enough to realize that it would be harder
for the agent to localize the target after the modes have split.
The increase in the number of target modes (Figure 4a) for
these benchmark algorithms make it harder for the agent to
reduce the uncertainty at subsequent timesteps.

Table I summarizes the performance of the three strategies
over 10 runs. Although the MMPBD algorithm results in the
longest distance traveled, the agent is better able to localize
the targets, ensuring that its belief of each target is uni-
modal most of the time. In contrast, the naive forward search
algorithm causes the agent to travel the shortest distance
because it focuses on trying to localize a single target.

| Dist. Traveled | Ave. Modes | Total Cost
MMPBD 138.76 1.0810 -51.7698
Greedy 133.52 1.5240 -61.2492
Naive FS 112.20 1.7747 -85.1101
TABLE 1

PERFORMANCE OF DIFFERENT PLANNERS OVER 10 RUNS.

VIII. REAL-WORLD EXPERIMENTS
Finally, as a proof of concept, we demonstrated the
MMPBD algorithm on an indoor quadrotor helicopter (Fig-
ure la) tasked with tracking two ground vehicles. We set up
a mock-up of a road network indoors (Figure 5a), with two

L]

(d (e) )

Snapshots of a simulation run with the MMPBD algorithm. The agent (green) is able to follow targets (d), anticipate mode splitting (b),(e), and

(@) (b)
Fig. 5. (a) Mock-up of road network constructed indoors. (b) Graph
structure extracted from SLAM map.

autonomous cars driven at approximately constant speeds in
the environment. In previous work [16], [17], we have devel-
oped a quadrotor helicopter that is capable of autonomous
flight in unstructured and unknown indoor environments.

We made use of a publicly available GMapping algo-
rithm [18] to build a map of the environment (Figure 5b),
before performing a skeletonization of the map to construct
the road-network. Since neither target detection, nor data
association, is the focus of this paper, we made the targets
easy to detect by using distinct colors for each of the targets,
and used a simple blob detection algorithm to detect them.

Figure 6 shows snapshots of the helicopter’s path during a
target-tracking run, as well as the images captured from the
onboard camera. The helicopter exhibited behaviors similar
to those discussed in Section VII, oscillating between the
different targets to keep them well-localized.

IX. RELATED WORK

Variants of the target-tracking problem have been well-
researched in the past, and it is beyond the scope of this
paper to review that body of work here. However, most of
the existing literature has only focused on either the target-
searching or target-following problems, as opposed to the
unified approach that is presented here.

A sub-class of problems known as road-constrained target-
tracking is often used to describe problems where the agent’s
belief of the targets’ pose could have multiple modes. In
cases of multiple-hypothesis tracking of a single target,
the belief updating is traditionally done with particle filters
([41,[5],[6]). An exception is [19], which explores both the
Gaussian sum approximation and particle filter approaches.
However, these algorithms typically focus on the problem
of performing accurate belief updating and data association,
rather than on the decision-making for the agent.

In the planning domain, modern approaches to planning
with incomplete state information are typically based on
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Fig. 6. Real-world target-tracking demonstration. The path traveled by the
helicopter (red/brown) is shown in red. The helicopter oscillates between
both target beliefs (blue/dark blue) to localize the targets. Inset: Image
captured from downward-pointing camera.

the Partially Observable Markov Decision Process (POMDP)
framework. [20] presents a POMDP formulation of the
target-tracking problem, and applies SARSOP to generate an
offline policy. However, this formulation focuses on tracking
a single target. Recently, [21] formulated the target-tracking
problem for an MAV over multiple targets as a POMDP
by assuming uni-modal Gaussian beliefs of the targets’
poses, but avoids having to represent the beliefs as multi-
modal Gaussian distributions by assuming that obstacles
obstruct the agent’s view of the targets but not the targets’
movement. [22] similarly employs Bayesian techniques for
performing search task allocation for multiple vehicles under
uncertainty.

Our approach is closely related to the body of online, for-
ward POMDP techniques that have recently been developed.
[10] provides a survey of these methods, but these have thus
far been limited to discrete belief representations, branching
on the individual actions and observations to determine the
set of reachable posterior beliefs. In contrast, our approach
uses parametric belief representations and branches only at
the end of macro-actions. Macro-actions have previously
been explored in the context of POMDPs [13], but have
not been used as part of a forward-search algorithm. More
generally, the Partially Observable Semi-Markov Decision
Process (POSMDP) [15] framework allows for actions that
can persist for extended time periods, but effective POSMDP
algorithms do not currently exist.

X. CONCLUSION

We have demonstrated the value of probabilistic planning
for tracking targets in an urban environment. By using a
multi-modal Gaussian representation of the agent’s beliefs,
we can plan efficiently by considering multi-step action
sequences, and we have demonstrated the performance of our
algorithm in both simulation and on actual hardware. Future
work includes analyzing the errors induced by the approxi-
mations introduced, as well as comparing the algorithms on
larger environments with more targets.
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