
Fast, Robust Quadruped Locomotion over Challenging Terrain

Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, Michael Mistry, and Stefan Schaal

Abstract— We present a control architecture for fast
quadruped locomotion over rough terrain. We approach the
problem by decomposing it into many sub-systems, in which
we apply state-of-the-art learning, planning, optimization and
control techniques to achieve robust, fast locomotion. Unique
features of our control strategy include: (1) a system that
learns optimal foothold choices from expert demonstration
using terrain templates, (2) a body trajectory optimizer based
on the Zero-Moment Point (ZMP) stability criterion, and (3) a
floating-base inverse dynamics controller that, in conjunction
with force control, allows for robust, compliant locomotion
over unperceived obstacles. We evaluate the performance of
our controller by testing it on the LittleDog quadruped robot,
over a wide variety of rough terrain of varying difficulty levels.
We demonstrate the generalization ability of this controller by
presenting test results from an independent external test team
on terrains that have never been shown to us.

I. INTRODUCTION

Traversing rough terrain with carefully controlled foot
placement and the ability to clear major obstacles is what
makes legged locomotion such an appealing, and, at least
in biology, a highly successful concept. Surprisingly, when
reviewing the extensive history of research on robotic legged
locomotion, relatively few projects can be found that actually
address walking over rough terrain. Most legged robots walk
only over flat or at best slightly uneven terrain, a domain
where wheeled systems are usually superior.

Recently, several teams working with the LittleDog
quadruped robot have been tackling rough terrain, where the
obstacles are comparable in size to the leg length. Complete
control architectures have been presented that perform lo-
comotion over challenging terrain [1], [2]. Foot placement
being one of the most critical aspects of rough terrain
locomotion, systems have been proposed that learn optimal
foot placement strategies from expert demonstration [3], [4].
Control techniques that enable compliant walking and distur-
bance rejection have been demonstrated on rough terrain [5].

In this work, we present a complete control architecture for
quadruped locomotion over very rough terrain. The controller
presented pushes locomotion performance well above that of
previously published results. This performance is achieved
by the introduction of several novel sub-systems. Optimal
foothold selection is learnt from expert demonstration using
terrain templates, which does away with the need for terrain
feature engineering. Body trajectories are optimized for
smoothness subject to stability constraints, which allows for
very fast, stable locomotion over rough terrain. Finally, a
novel floating-base inverse dynamics control law, coupled
with force control at the feet enables compliant locomotion

M.K., J.B., P.P. and S.S. are at the Computational Learning and Motor
Control Lab, University of Southern California, Los Angeles, CA 90089
{kalakris,buchli,pastorsa,sschaal}@usc.edu

M.M. is with Disney Research, Pittsburgh, PA 15213
mmistry@disneyresearch.com

Fig. 1. (a) The LittleDog quadruped robot, manufactured by Boston
Dynamics. (b) The pose finder optimizes the pose of the robot body to
maximize kinematic reachability while avoiding collisions with the terrain.

that has the ability to deal with unperceived obstacles.
Evaluations of our controller are carried out on the LittleDog
robot, over terrains of various difficulty levels. Additional
testing on our software is carried out by an independent
external test team, on terrains that we have never seen, to
validate the generalization abilities of the controller.

The rest of this paper is laid out as follows. In Section II,
we describe our experimental setup to provide context for the
development of our controller. In Section III, we discuss each
component of our controller in detail, highlighting its key
and novel features. In Section IV, we present evaluations of
our controller on the LittleDog quadruped robot, on various
kinds of terrain. Finally, we conclude the paper and discuss
ideas for future work in Section V.

II. EXPERIMENTAL SETUP

Our experimental setup consists of the LittleDog
quadruped robot (Fig. 1(a)), manufactured by Boston Dy-
namics, with ball-like feet that are close to point feet. The
robot is about 0.3 m long, 0.18 m wide, and 0.26 m tall
and weighs approximately 2.5 kg. Each leg has 3 degrees
of freedom, actuated by geared electric motors. The robot
has a usable leg length of roughly 13 cm, measured as
the perpendicular distance from the bottom of the body to
the tip of the foot with the leg in its maximally stretched
configuration. LittleDog has a 3-axis force sensor on each
foot, position sensors to measure joint angles, and an on-
board inertial measurement unit (IMU). An external motion
capture system (VICON) provides information about the
absolute world position and orientation of the robot.

LittleDog’s 12 degrees of freedom are controlled by an
on-board computer using PD control at 400 Hz. The rest of
our control software runs on an external 4-core Intel Xeon
CPU running at 3 GHz, which sends control commands to
LittleDog over a wireless connection at 100 Hz.

In order to easily test the performance of our controller on
different kinds of terrain, we use a set of interchangeable ter-
rain modules of size 61×61 cm. The terrain modules include
flat modules, steps of various step heights, different sizes of
barriers, slopes, logs, and rocky terrain of varying difficulty
levels. Each terrain module is scanned by a laser scanning

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2665

O
ff

lin
e

Pr
e-

pr
oc

es
si

ng
O

nl
in

e
Optimal foot placements are learnt
from expert demonstration using a
template learning algorithm.

Terrain foothold rewards are pre-
calculated using the learnt foothold
ranking function.

Rough body path is planned that
guides the robot through regions
with good footholds.

Terrain Reward
Map Generation

Approximate Body
Path Planner

Footstep Planner

Pose Finder

Body Trajectory
Generator

Foot Trajectory
Planner

PID Control
Inverse Dynamics

Force Control

Learn Foothold
Ranking Function

Four future footholds are chosen
that maximize rewards.

Robot pose is optimized to
maximize kinematic reachability
and avoid collisions.

Stable, yet smooth body
trajectory is generated for the
next four footsteps.

Collision-free swing leg
trajectory is planned using
whole-body motions.

Plan is executed with accuracy
and robustness to perturbation.

100 Hz Once per footstep

Fig. 2. An overview of our control architecture for quadruped locomotion
over rough terrain.

system beforehand, to produce a 1 mm resolution 3D model.
The position and orientation of terrain modules are tracked
using the motion capture system, This greatly simplifies the
perceptual component of rough terrain locomotion, allowing
us to focus on the planning and control problems.

An identical setup is available to the five other teams
participating in the Learning Locomotion program. This
allows for meaningful comparisons between the different
control strategies used by the teams.

III. CONTROL ARCHITECTURE

Finding an optimal sequence of motor commands for 12
degrees of freedom that take the robot from the start to the
goal state over rough terrain is considered an intractable
problem. Fortunately, such problems tend to have a natural
hierarchical decomposition, which we exploit in order to
obtain tractable solutions within practical time limits. We
perform a limited amount of pre-processing on the terrain
before a run, namely, calculation of terrain rewards, and
planning of a rough body path through the terrain. All the

remaining planning and control is executed online while the
robot is walking. This online approach makes our system
applicable to domains where terrain information is not avail-
able before hand. It also allows for quick re-planning in case
of slippage or imprecise execution which is inevitable during
fast locomotion on rough terrain. An overview of our control
architecture is presented in Fig. 2.

In the following subsections, we describe in detail each
sub-system of our approach to quadruped locomotion over
rough terrain:

A. Terrain Reward Map Generation
In rough terrain, foothold selection becomes one of the

most crucial aspects of robotic legged locomotion. Optimal
footholds must be chosen such that the danger of slipping
and unplanned collisions are minimized, while stability and
forward progress are maximized. However, engineering such
a foothold selection function, that scores available footholds
based on the terrain features and the state of the robot,
turns out to be very difficult. Moreover, finding the set of
parameters that perform well on many different kinds of
terrain is intractable, due to the number of trade-offs that
need to be considered [3].

Instead, we propose an approach that learns a set of terrain
features and a foothold ranking function from good example
foothold choices demonstrated by an expert. The algorithm
extracts discretized height maps of small patches of terrain of
different scales, so called terrain templates [4]. Small terrain
templates capture the quality of the actual foothold to avoid
slipping, while large terrain templates capture information
about collision clearance from terrain and distance to drop-
offs. A large set of templates is sampled from a variety of
terrain modules. Each template is used in a corresponding
feature that measures similarity to the template.

The template learning algorithm learns a foothold ranking
function by converting the ranking problem into one that can
be solved by an off-the-shelf classifier. Feature selection is si-
multaneously achieved by choosing a sparse, L1-regularized
logistic regression classifier, which learns a classification
function that uses a small subset of the available features. The
size of the template library is effectively reduced, enabling
the footstep planner described in Section III-C to evaluate the
foothold ranking function in real-time. Most importantly, the
use of terrain templates does away with the need for careful
engineering of terrain features, since the appropriate features
in the form of templates are automatically selected by the
learning algorithm.

Training, collection of expert demonstrations, and learning
of the foothold ranking function are performed off-line,
while generation of the terrain reward map is done in the
pre-processing phase, just before each run. However, since
our foothold ranking function also takes the current state
of the robot into account to calculate collision scores and
other pose-dependent features, the final foothold rewards are
computed online. For more information about the learning
process, additional terrain and pose features, and evaluations
of the generalization performance, please refer to [4].

B. Approximate Body Path Planner
After generating the terrain reward map, we plan an

approximate path for the robot body through the terrain,

2666

from the start to the goal. This path guides the robot through
regions of the terrain that contain a better choice of footholds.

We discretize the terrain height map into 1 cm square grid
cells, and assign a reward to each cell. These rewards are
obtained by assuming that the center of the robot is in the cell
and the four feet are in their default stance positions. For each
leg, the best n (we use n = 5) foothold rewards in a small
search radius around the default position are summed up to
form the final reward for the cell. Using the footholds with
the highest rewards around each leg reflects the intentions of
the footstep planner, which is to maximize the same rewards.

A policy in this grid is obtained using Dijkstra’s algorithm.
This provides the optimal path to the goal from every cell in
the grid. This approximate body path is then used to direct
the lower level footstep planner.

Generation of terrain rewards and planning of the approx-
imate body path are the only pre-processing steps that are
required. All the other modules described below are run
online while the robot is walking, i.e. planning for the next
footstep occurs while the current footstep is being executed.
This allows for quick recovery and replanning in case of
imprecise planning or execution, and results in a very robust
locomotion system.

C. Footstep Planner

Given the cached terrain reward map and the current
state of the robot, the footstep planner calculates optimal
foothold choices for the next four steps. Optimality is based
on the foothold reward function which was learnt from expert
demonstration, as described in Section III-A. These rewards
are biased to guide the robot towards the approximate body
path plan. Search complexity is reduced by following a fixed
sequence of leg movements (left hind, left front, right hind,
right front), that has been shown to be the optimum sequence
that maximizes static stability [6].

Our planner computes the next four optimal foothold
choices, using a greedy search procedure at each step. For
every candidate foothold choice, we optimize the pose of
the robot body using an approximate pose finder, described
further in Section III-D. The final reward for each candidate
foothold is a combination of the cached terrain reward and
additional features based on the robot pose, such as in-radius
of future support triangles and collision cost features.

In some situations, such as crossing a large gap, the use of
a greedy search procedure is inadequate. Choosing a footstep
in a greedy fashion can put the robot in a configuration
where it cannot proceed, or has to make a bad foothold
choice to do so. When faced with such terrain, we use the
Anytime Repairing A* (ARA*) algorithm [7] to find a plan
that maximizes the sum of foothold rewards from the start to
the goal. ARA* is an anytime variant of the heuristic search
algorithm A*. It starts with a sub-optimal plan and then
iteratively improves the plan until terminated. The anytime
property of ARA* allows us to terminate it after a fixed
amount of time, and use the current best plan found by
the algorithm. Since this planner needs to be executed in
the pre-processing phase, i.e. before execution, we use this
planner only on terrains where the greedy planner is known
to perform poorly, currently only large gaps that are as long
as the legs of the robot (e.g., Fig 1(b))). For all other classes

of terrain, the advantage of running ARA* before execution
was found to be small, hence we prefer to minimize pre-
processing time by using the online, greedy planner.

D. Pose Finder
Given the 3-D locations of the stance feet, the pose

finder optimizes the 6-D pose of the robot body in order to
maximize kinematic reachability and to avoid configurations
that collide with the terrain. The x and y positions of the
body are set to the in-center of the support triangle, to be
modified later by the body trajectory generator (Sec. III-
E). This leaves the z position of the body and its roll,
pitch and yaw angles as the search variables for body pose
optimization. The kinematics of the LittleDog robot are such
that the 3-D positions of all four feet and the 6-D pose of the
robot body are sufficient to fully specify the 12 joint angles;
i.e, there are no extra redundancies to be optimized.

We use two different versions of the pose finder: the first
is a very fast, approximate search over a coarse grid of the
free variables. This coarse search is used to optimize the
pose of every candidate foothold evaluated by the foothold
planner. The second version is a more exact, gradient-based
optimizer. We use a floating-base iterative inverse kinematics
algorithm [8] to satisfy the locations of the feet, while
optimizing the secondary objectives of collision avoidance
and maintenance of a default posture in the null space of the
first. This fine-grained optimization is only performed for the
final foothold selected by the footstep planner.

E. Body Trajectory Generator
The body trajectory generator uses the next four planned

footholds and creates a body trajectory. The generated tra-
jectory is smooth, stable with respect to the Zero-Moment
Point (ZMP), a dynamic stability criterion, and works even
over highly irregular foot placement patterns, which is almost
always the case in rough terrain. We also eliminate the four
leg support phase, which is time spent moving the body
while all four feet remain on the ground. This phase is
required by traditional body trajectory planners that use the
Center of Gravity (COG) as a stability criterion. The idea of
these planners is to keep the COG over the triangle formed
by the stance feet, called the support triangle, while a leg
is swinging. These support triangles are typically shrunk
by a stability margin to account for inaccurate execution.
A four leg support phase is required when two consecutive
shrunk support triangles are disjoint. Keeping the duration of
the four leg support phase low, or eliminating it completely
results in increased locomotion speed. COG-based planners
are further limited in their locomotion speed by the fact that
the COG is a purely static stability criterion; it neglects the
effects of acceleration on the stability of the robot.

We instead use the ZMP [9] as our stability criterion. We
represent the trajectory of the COG as a series of quintic
spline segments (fifth order polynomials) and formulate
body trajectory generation as an optimization problem to
minimize squared accelerations along the trajectory, subject
to continuity and ZMP stability constraints. The resulting
optimization is a convex quadratic program (QP) that can be
solved efficiently by off-the-shelf solvers.

Swing leg durations are heuristically decided based on
the expected travel distance of the foot. The body trajectory

2667

(a) t = 0.0 s (b) t = 0.4 s (c) t = 0.5 s (d) t = 0.51 s (e) t = 0.6 s (f) t = 1.0 s

Fig. 3. Snapshots from a ZMP-stable body trajectory generated by our optimizer. The COG (red circle) moves smoothly between the two disjoint support
triangles, while the ZMP (green diamond) is always kept within the current support triangle (marked in bold in each frame). At the moment of support
triangle switching (in between t = 0.5 s and t = 0.51 s), the ZMP position discretely switches between them, achieved by manipulation of the acceleration
profile of the COG, which influences the ZMP position according to Eqn. 1.

during each swing leg movement is split up into n quintic
spline segments (we use n = 3). The cost function is defined
as the integral of squared acceleration along the trajectory;
this expression is quadratic in the spline coefficients.

Double differentiability of the body trajectory is important
when using inverse dynamics control, to guarantee continu-
ous motor torques. Each individual spline segment, being a
fifth order polynomial, is twice differentiable. To guarantee
this property in between spline segments, constraints are con-
structed by equating the position, velocity and acceleration
at the junction of two neighboring spline segments. These
constraints are linear in the spline coefficients. Constraints
are also added to ensure that the start of the trajectory
matches the current position, velocity and acceleration.

In order to formulate stability constraints, we consider
the cart-table ZMP model [10] as an approximation of the
LittleDog robot, which has a heavy body relative to its legs.
This model relates the COG and ZMP positions as follows:

xzmp = xm − zmẍm

z̈m + g
, (1)

where xzmp is the position of the ZMP along the x axis,
xm and zm are the positions of the COG along the x and
z axes respectively, g is the acceleration due to gravity, and
accelerations of the COG along the x and z axes are denoted
by ẍm and z̈m. The position of the ZMP along the y axis is
obtained by replacing all occurrences of x with y in Eqn 1.

At every instant of time, the ZMP must lie in the support
triangle, or, more generally, the convex hull of the support
polygon. This can be written mathematically as a set of k
constraints, k being the number of sides in the convex hull
of the support polygon. For each line segment connecting
two consecutive points on the convex hull, the ZMP must
lie on the interior side of it. To represent this constraint for
all times, we discretize the trajectory at the control interval
(10ms), and express the ZMP constraints at each of these
times. These constraints are linear in the spline coefficients.

The optimization problem thus formulated is convex, with
a quadratic objective function and linear constraints. This
can be readily and efficiently solved using off-the-shelf QP
solvers. We use the freely available QuadProg++ library [11]
to perform the optimization, which is typically completed in
30ms. Situations may arise where the optimization fails, i.e.
there is no feasible trajectory that can satisfy all the con-
straints. In such a case, we successively relax the problem,
by reducing stability margins and increasing four leg support
phase durations, until the optimization succeeds.

The body trajectory generator described above optimizes
the trajectory over the four future footholds selected by the
foothold planner. Running the optimization in this receding
horizon manner, combined with suitable stability margins

provides us with smooth and stable body trajectories, even
over very rough terrain, without special parameter tuning for
different terrain classes. Under this framework, we can drop
the requirement for a four-leg support phase altogether, even
when moving between two disjoint support triangles. This
is possible by manipulation of the acceleration profile of the
trajectory such that the ZMP jumps instantaneously from one
support triangle to the next. As shown in Fig. 3, the optimizer
automatically finds such solutions. However, this requires us
to drop the constraint on continuous accelerations at the in-
stant when we switch between support triangles. In practice,
we insert a tiny (50ms) four leg support phase, which is
considerably smaller than that required by traditional COG-
based trajectory planners. This provides us with continuous
accelerations which are necessary for our inverse dynamics
controller, as described in Section III-H.

F. Foot Trajectory Planner

Given a stable body trajectory (provided by the body
trajectory generator) and the desired footstep locations (pro-
vided by the footstep planner), the foot trajectory planner
generates a trajectory for the swing leg that avoids collisions
with the terrain. An initial trajectory is generated that guides
the end-effector over the terrain from its initial position to its
goal. This trajectory is subsequently optimized to eliminate
potential shin or knee collisions.

An initial trajectory is generated that moves the foot
over the terrain in the plane containing the start and the
goal. Points on the convex hull of the terrain along the
plane from the start to the goal are raised by a clearance
height. A trajectory is then generated through these points
using piece-wise quintic splines optimized for minimum
acceleration. This trajectory is sampled at 10ms intervals
and converted into joint angles using the standard analytical
inverse kinematics solution for a 3-DOF arm. Kinematic
infeasibilities are simply ignored, since they are taken care
of in the subsequent optimization phase.

The initial trajectory is only guaranteed to avoid collisions
of the end-effector with the terrain, however, it may still
contain knee or shin collisions. Moreover, if parts of the
trajectory were kinematically infeasible, they may be in
collision with the end-effector as well. We run a trajectory
optimizer called CHOMP (Covariant Hamiltonian Optimiza-
tion for Motion Planning) [12] on the trajectory to eliminate
any collisions that remain. CHOMP also serves to smooth
the trajectory in joint space according to a quadratic cost
function; we choose a minimum squared jerk cost function
to provide continuous accelerations for inverse dynamics
control. CHOMP uses covariant gradient descent in order
to push the trajectory away from obstacles while still main-
taining its smoothness. The cost function for collisions (and

2668

its gradients) is defined based on a signed distance field
(SDF), which is a 3-D grid of distances to the closest obstacle
boundary. The sign of the SDF voxel values are positive if
it is outside obstacles, and negative otherwise. The SDF is
generated before the start of the trial as a pre-processing step.
Joint limit violations are handled using a covariant update
that eliminates them without impacting smoothness. We run
CHOMP on a virtual 8-DOF system: the 3 joints of the leg,
the body z height, and 4 variables that together represent the
body quaternion. This enables the use of whole-body motions
such as pitching in order to avoid swing leg collisions.

In our system, footstep planning and trajectory generation
is performed while the robot is executing a swing motion
with one of its legs. Hence, it is critical that the entire tra-
jectory for the next swing leg be generated before the current
swing motion ends. Our implementation of CHOMP is most
often able to produce collision-free, smooth trajectories in
less than 100 iterations, which typically takes no more than
50ms. The lower limit on swing leg duration in our system
is 300ms, allowing us to run the optimizer while the robot is
walking, one step in advance, as opposed to pre-generating
trajectories all the way to the goal before execution.

G. Dynamic Motions for Extreme Terrain

Terrain that contain steps and barriers of height up to
12 cm and gaps of width up to 17 cm push the LittleDog
robot beyond its limits of kinematic feasibility. Since the
maximum ground clearance the robot can achieve with its
legs fully stretched is roughly 13 cm, it is not possible to
safely walk over such obstacles. Therefore a special series of
movements, in particular a lunging movement and a sliding
movement, were designed to enable the robot to cross such
obstacles. Similar dynamic motions have been demonstrated
before on the LittleDog robot [13].

The dynamic lunging motion involves shifting the weight
of the robot onto its hind feet, pitching up its nose, and lifting
its feet onto the step or barrier. In case of lunging across a
gap the robot executes a bounding-like movement before the
lunge to ensure that the COG reaches the other side of the
gap (using its momentum). The sliding movement involves
shifting the robot’s weight in front of its front legs and
using the robot’s nose as a fifth stance to lift its rear, which
allows for collision free hind leg movements. To account
for different COG positions and different friction properties
across different LittleDog robots, a calibration procedure has
been developed that performs a series of lunging movements
to estimate the optimal parameter set for that particular robot.

H. Execution and Control

The 6-D pose trajectory of the body is converted into joint
angle trajectories for the 3 stance legs using a closed form
inverse kinematics solution for each 3-DOF leg individually.
These trajectories are then combined with the swing leg joint
trajectories to form the final sequence of joint angles to be
executed on the robot.

In order to guarantee stability of the robot and accurate
foot placement, it is essential that the planned joint trajec-
tories be executed accurately. At the same time, the robot
has to be able to overcome small perturbations and slips,
and robustly handle unperceived terrain. To achieve this level

of robustness, we use a combination of five controllers, as
described below:

1) PD control (400 Hz): The desired joint angle positions
and velocities are sent over a wireless link to Little-
Dog’s on-board computer that servos these commands
using PD control at 400 Hz.

2) Inverse dynamics (100 Hz): We use a novel, analytical
floating-base inverse dynamics algorithm [14] that does
not require knowledge of the contact forces at the
feet. The joint torques thus computed are sent to the
LittleDog at 100 Hz, which it then applies as feed
forward torques, in addition to the torques from the
PD controllers. Using inverse dynamics provides better
tracking of trajectories, and allows us to use lower PD
gains than otherwise possible, making the robot more
compliant to perturbations [5].

3) Force control (400 Hz): The above inverse dynamics
algorithm provides us with the expected contact forces
at all four feet. This allows us to control the forces at
each foot using the force sensor data as feedback. The
use of force control allows us to negotiate unperceived
obstacles up to 4 cm in height. These results are
discussed in detail in a previous publication [5].

4) Closed loop body pose control (100 Hz): We monitor
the 6-D robot pose as registered by the motion capture
system, and use an integral controller to track the
desired pose. The controller performs floating base
inverse kinematics to servo body position and orien-
tation, in the null space of foot location constraints.
This modifies the desired joint angles that are sent to
the PD and inverse dynamics controllers. Tracking the
body pose keeps the robot stable in spite of small slips
at the stance feet.

5) Closed loop foot position control (100 Hz): We use a
similar integral controller on the swing foot position.
This controller significantly improves foot placement
accuracy, which is critical for walking on rough terrain.

IV. EVALUATIONS

We now present evaluations of our LittleDog control
software on the terrain modules that are present in our lab,
as well as results from tests conducted by an external test
team on terrains that we have never seen.

In our lab, we tested our controller on rocky terrain of
various difficulty levels, round rocks/pebbles (not movable),
and wavy dunes. The most difficult rocky terrain contains
obstacles up to 10 cm (76% of the usable leg length) in
height. We also tested our software on geometric test sce-
narios like gaps, steps of varying step heights, slopes, and
barriers. Our controller is able to traverse all classes of terrain
at speeds ranging from 7.2 cm/s to 13 cm/s (0.24 to 0.43 body
lengths/s). The advantage of our ability to replan quickly in
case of a deviation from the plan is evident when testing
on more challenging rocky terrain, where the robot succeeds
with high probability even after slipping or imprecise foot
placement. Steps up to a height of 10 cm can be climbed
using our regular walking gait, and lunging can be performed
to traverse steps up to 12 cm in height. Similarly, lunging is
employed to cross barriers up to 12 cm in height. Gaps up
to 15 cm wide can be traversed successfully by generating

2669

Fig. 4. Sequence of snapshots of the quadruped robot LittleDog crossing a test terrain module using the controller presented in this work.

a footstep plan using the ARA* planner, and lunging can
again be employed to cross gaps up to 17 cm wide. The
choice of high-level strategies (i.e., ARA* planner, lunging)
is currently specified by the user per terrain class. Automatic
terrain class detection is outside the scope of this work, and
may be addressed in future.

Inverse dynamics control, coupled with force control and
low PD gains allow us to overcome unperceived obstacles.
This property was tested by placing wooden planks on the
terrain, which was not sensed by the motion capture system.
Our controller was able to handle obstacle heights up to 4 cm
without significant difficulties. Additionally, a movable see-
saw was set up on the terrain for the robot to walk over,
once again, unsensed by the motion capture system. This
scenario posed no problems for our software, demonstrating
the robustness added by this combination of controllers.

Fig. 4 shows the robot traversing one of the test terrain
modules. The attached video highlights the key features of
our controller, and contains a compilation of video from test
runs of the robot on different kinds of terrain.

Our control software was subject to additional testing by
an external test team, on terrain modules that have never
been shown to us. As of the final (privately disclosed) test
results, the LittleDog robot controlled by our software has
successfully traversed all the hidden test scenarios posed
by them. These results serve as a testament to the true
generalization ability of our controller.

V. CONCLUSION

We have presented a general quadruped locomotion con-
troller for fast locomotion over rough terrain, and its appli-
cation on the LittleDog robot. This controller relies on a de-
composition of the problem into many sub-systems, in which
we apply state-of-the-art learning, planning, optimization
and control techniques to achieve high performance. Novel
features of our controller include a procedure that learns
optimal foothold choices using terrain templates, a body
trajectory optimizer based on the ZMP stability criterion,
and a floating-base inverse dynamics controller that does
not require knowledge of the contact forces. Evaluations
presented have shown that our controller is highly performant
and generalizes well on many different kinds of terrain.

This controller represents our final submission to the
Learning Locomotion program, in which five other teams
also took part. Our approach has proven to be very com-
petitive. Most of the techniques developed in this work are
generally applicable to planning and control problems on
other systems. In future work we intend to apply these
techniques to other platforms such as humanoid robots.

ACKNOWLEDGEMENTS

We would like to acknowledge the contributions of Dim-
itris Pongas, Jan Peters and Jo-Anne Ting to previous ver-
sions of our control software. Regular testing carried out
by the Learning Locomotion Government Team has been
very helpful in the development of this work. This research
was supported in part by the DARPA program on Learn-
ing Locomotion, National Science Foundation grants ECS-
0326095, IIS-0535282,CNS-0619937, IIS-0917318, CBET-
0922784, EECS-0926052, the Okawa Foundation, and the
ATR Computational Neuroscience Laboratories. J.B. was
supported by a prospective researcher fellowship from the
Swiss National Science Foundation.

REFERENCES

[1] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A control architecture for
quadruped locomotion over rough terrain,” in Proceedings of the IEEE
Int. Conf. on Robotics and Automation, 2008, pp. 811–818.

[2] J. R. Rebula, P. D. Neuhaus, B. V. Bonnlander, M. J. Johnson, and
J. E. Pratt, “A controller for the LittleDog quadruped walking on
rough terrain,” in Proceedings of the IEEE Int. Conf. on Robotics
and Automation, 2007, pp. 1467–1473.

[3] J. Z. Kolter, P. Abbeel, and A. Y. Ng, “Hierarchical apprenticeship
learning, with application to quadruped locomotion,” in Neural Infor-
mation Processing Systems, vol. 20, 2007.

[4] M. Kalakrishnan, J. Buchli, P. Pastor, and S. Schaal, “Learning
locomotion over rough terrain using terrain templates,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2009, pp. 167–172.

[5] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal,
“Compliant quadruped locomotion over rough terrain,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2009, pp. 814–820.

[6] R. B. McGhee and A. A. Frank, “On the stability properties of
quadruped creeping gaits,” Mathematical Biosciences, vol. 3, no. 1-2,
pp. 331–351, Aug. 1968.

[7] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: anytime a* with
provable bounds on suboptimality,” Advances In Neural Information
Processing Systems, 2003.

[8] M. Mistry, J. Nakanishi, G. Cheng, and S. Schaal, “Inverse kinematics
with floating base and constraints for full body humanoid robot
control,” in 8th IEEE-RAS Int. Conf. on Humanoids, 2008, pp. 22–
27.

[9] M. Vukobratovic and B. Borovac, “Zero-moment point - thirty five
years of its life,” Int. J. of Humanoid Robotics, vol. 1, no. 1, pp.
157–173, 2004.

[10] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE Int. Conf. on Robotics and
Automation, vol. 2, 2003, pp. 1620–1626.

[11] L. D. Gaspero, “Quadprog++, a c++ library for quadratic program-
ming,” http://quadprog.sourceforge.net/.

[12] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
gradient optimization techniques for efficient motion planning,” in
Proceedings of the 2009 IEEE Int. Conf. on Robotics and Automation,
2009.

[13] K. Byl, A. Shkolnik, S. Prentice, N. Roy, and R. Tedrake, “Reliable
dynamic motions for a stiff quadruped,” in Experimental Robotics,
2009, pp. 319–328.

[14] M. Mistry, J. Buchli, and S. Schaal, “Inverse dynamics control of
floating base systems using orthogonal decomposition,” in Proceedings
of the IEEE Int. Conf. on Robotics and Automation, 2010.

2670

