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Abstract— The use of unmanned autonomous vehicles is
becoming more and more significant in recent years. The
fact that the vehicles are unmanned (whether autonomous or
not), can lead to greater difficulties in identifying failure and
anomalous states, since the operator cannot rely on its own
body perceptions to identify failures. Moreover, as the autonomy
of unmanned vehicles increases, it becomes more difficult for
operators to monitor them closely, and this further exacerbates
the difficulty of identifying anomalous states, in a timely
manner. Model-based diagnosis and fault-detection systems
have been proposed to recognize failures. However, these rely
on the capabilities of the underlying model, which necessarily
abstracts away from the physical reality of the robot. In this
paper we propose a novel, model-free, approach for detecting
anomalies in unmanned autonomous vehicles, based on their
sensor readings (internal and external). Experiments conducted
on Unmanned Aerial Vehicles (UAVs) and Unmanned Ground
Vehicles (UGVs) demonstrate the efficacy of the approach by
detecting the vehicles deviations from nominal behavior.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) and Unmanned

Ground Vehicles (UGVs) are finding increasing use in

real-world applications. These include surveillance and pa-

trolling ([1]), aerial search [8], and more. Increasing depen-

dence on UAVs and UGVs (UVs, in general) for critical tasks

makes it vital to remotely assure the nominal behavior of the

vehicles, whether teleoperated or autonomous.

Yet, paradoxically, the prominent advantage of UVs being

unmanned, raises the challenge of detecting deviations of the

UV from its normal behavior. For example, when driving a

car, the driver can use her own body perceptions to detect

a failure (e.g., a flat tire can be detected when the wheel

seems to “pull” to a particular direction, or the sound of the

driving changes). However, in unmanned vehicles, a remote

monitoring station no longer receives all the information

available to a driver, and must instead rely on information

gathered from (potentially faulty or inaccurate) sensors on

the vehicle. Thus, it can be difficult for a remote operator

to detect anomalies. The problem is further exacerbated with

increasing autonomy of the unmanned vehicles, as this leads

to reduced human monitoring, and therefore even further

degradation in timely detection of failures.

A number of previous investigations have explored a vari-

ety of ways to improve monitoring. Model-based diagnosis

*We acknowledge partial support of IMOD. Thanks to K. Ushi.

methods (e.g., [10], [14]) rely on a detailed model of the

vehicle’s systems to note deviations between the vehicles

actual behavior, and its nominal behavior (as generated

by the model); these rely on the availability, resolution,

and accuracy of a model. Fault models (e.g., rule-based)

can be used to capture expert’s experience in recognizing

faults [6], but this approach is inherently tied to the scope

of the expert’s experience. Several approaches also attempt

to identify outliers in the data based on the history of the

vehicle’s operation ([7], [9]).

In particular, a promising technique to determining anoma-

lous values in data is based on the use of the Mahalanobis

distance ([12], [9]), which measures the multi-dimensional

distance between a sample point and a distribution, in units

of standard deviation1. This allows, in principle, relatively

straightforward discovery of outlier measurements. Unfor-

tunately, the technique often fails in practice (due to both

run-time and data availability issues) when the number of

different variables (i.e., the number of dimensions) scales

up [9]. Because of this, the Mahalanobis distance can only

be used with a limited number of variables. Of course, a

in monitoring UVs, we often have dozens, if not hundreds,

of different variables whose values are reported to the

monitoring station.

In this paper we propose a novel approach for detecting

anomalies in the behavior of UVs, using the Mahalanobis

distance. The approach consists of a pre-processing phase

which finds dependencies between different internal sensors

on the vehicles. This dependency detection (DD) phase

uses an efficient search method—developed for data-mining

applications and described in [13]—to identify sub-groups

of variables that are statistically dependent (i.e., their values

changes together in predictable ways). The results of this

phase are therefore several distinct groups of variables—each

of much smaller number of dimensions. The second phase,

taking place during the execution of the mission, uses the

Mahalanobis distance to identify anomalous values in each

of the smaller-dimensional groups of variables.

We provide results of extensive experiments conducted

using data from commercial UAVs, and in laboratory mobile

1For one-dimensional data, the Mahalanobis distance is reduced to the
standard z-score of a point.
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ground robots. In the experiments, we investigate the efficacy

of this approach in detecting anomalies in the UVs’ behavior.

We also demonstrate the critical role of the first phase.

II. RELATED WORK

The problem of anomaly detection in the context of

real-time data is not new to researches in robotics and

autonomous systems. We cannot hope to cover all related

work in this vast area, and so focus here on the most closely-

related investigations.

In the context of unmanned vehicles, many investigations

(e.g., [7], [15], [5]), propose the use of Kalman filters as

a basic building block in detecting anomalies. Typically,

one or more filters is use to make predictions of specific

state variable values (e.g., sensors), and those predictions are

compared against the observed values. Since often using a

simple Kalman Filter usually yields a large number of false

positives, additional computation is used to robustly decide

on the failure state and its significance. For instance, Cork

and Walker [5] present a non-linear model which, together

with Kalman Filters, tries to compensate for malfunctioning

sensors of UAVs. Goel et al. [7] use a classifying neural-

network to determine when and which of several filter-based

fault detectors to believe. The use of Kalman filters makes

assumptions with regard to the behavioral nature of the data

and noise (e.g., that the time series models are linear with

additive Gaussian noise). The DD technique we introduce

to detect subgroups of dependent variables can be useful to

eliminate redundant variables from the Kalman filters, and

thus simplify their design.

Oates et al. [13] and Lotze et al. [11] studied the problem

of detecting anomalies in sequence of real-time data of pa-

tience and diseases. Our DD method is based on the work on

multi-stream dependency-detection, described in [13]. How-

ever, we use only a subset of the results generated, and thus

can potentially alleviate the computational load, compared

to the original work. Machine learning methods are usually

employed to model what constitutes a nominal behavior and

deriving from the representation of the nominal behavior

the abnormal behavior. For example, Ahmed et al. ([3],

[2]) investigate the use of two distinct machine learning

approaches, namely the block-based One-Class Neighbor

Machine and the recursive Kernel-based Online Anomaly

Detection algorithms, to detect network anomaly. Yet, as of-

ten happens in machine learning techniques, their models are

constrained and cannot be easily adapted to other domains.

Besides the fact that it is sensitive to different thresholds, to

enable its use in different domains many parameters must

be fine tuned. We, on the other hand, demonstrate that

our proposed approach can be easily adapted to different

domains, while preserving the high anomaly detection rates.

Recently, Daigle et al. [6] proposed an event based

approach for diagnosis parametric faults in continuous sys-

tems. Their approach is based on a qualitative abstraction of

deviations from the nominal behavior. Yet, in contrast to our

proposed approach, their approach is aimed to diagnose an

isolating single fault. Moreover, their technique is based on

a finite automaton under the assumption that it is feasible

to create a model that captures all relevant system behavior.

Another approach for anomaly detection is based on model

based reasoning (e.g., [10], [14]). Yet, this requires to have a

model of the robot and its interactions with the environment.

Such a model is expensive and complex to build.

Others have been using Mahalanobis distance for anomaly

detection. Using the Mahalanobis distance allows testing

whether a given sample point (say, a vector of all current

values for all state variables) is “similar” to the nominal

sample (defined by a distribution of such vectors), where the

similarity accounts not only for the centers of each variable,

but also for the variance of its values. For instance, Broth-

erton and Mackey [4] use the Mahalanobis distance as the

key factor for determining whether signals measured from an

aircraft are of nominal or abnormal behavior. However, they

are limited in the number of dimensions (variables) across

which they can use the distance, due to run-time issues. This

is one challenge the DD approach addresses.

III. PROBLEM DESCRIPTION

We define the problem of detecting anomalies in the

behavior of unmanned autonomous vehicles. We deal with

a multi-stream data which is measured by the UV and

transmitted online to a remote monitoring computer. The

data consists of various types of measurements collected by

the UV and its sensors, internal and external, physical and

virtual. For instance, the pose and altitude of the UV (e.g.,

location at the X , Y and Z axes, heading), odometry data,

engine temperature, mass, and other telemetry. Let I denote

the set of measurable inputs (called attributes below) the

UV maintains, Vi the set of values (whether finite values or

finite range of values) for each i ∈ I , and S a finite set

of all joint values for all attributes (V1 × V2 × . . .× V|I|).

Therefore a state of the UV is denoted as a vector ~s ∈ S.

Let Time denote the set of time periods in which the UV is

in motion, that is Time = {0, 1, ..., ep}, where ep denotes

the end period, in which no more data is communicated to

the ground station. A stream of data of the UV is then an

ordered sequence of vectors, ~s0, . . . ~st, . . . ~sTime, forming a

matrix M of dimensions {|Time| × |I|} which consists of

a state per each time unit. It is assumed that at each time

unit (henceforth, tick) all attributes are transmitted at the

rate of the highest frequency; that is, even if some attributes

are measured in a lower frequency the state of the UV will

always be sent in full.

We define a nominal set m of the UV as an uninterrupted

sequence of vectors in M (i.e., an ordered set of consecutive

vectors), in which the behavior of the UV is characterized as

stable and following a predetermined logic. For example, we

distinguish between the lift-off, the landing of the UAV and

the constant speed flight. Each such stream can constitute

a nominal behavior which characterizes the flight, and is

captured by a different set m.

An abnormal reading is a vector ~m∗ ∈ S which is defined

as such that the UV deviates from the nominal set m by

at least some threshold. In other words, ~m∗ /∈ m, and also

3039



Dist( ~m∗,m) > h0, where Dist is a distance function which

measures the multi-dimensional distance between the vector
~m∗ and the set m. It returns a number which is contrasted

with the constant h0. A value higher than h0 indicates an

abnormal reading.

IV. DETECTING ANOMALIES IN UVS’ BEHAVIOR

Naively, to detect anomalies, we can use the matrix

M from nominal run as the nominal state m, and the

Mahalanobis distance [12] for the distance function Dist.
We describe this method in Section IV-A. Unfortunately,

for realistic UVs this fails due to the large number of

attributes. We explain this—and describe a solution to this—

in Section IV-B.

A. The Anomaly Detection Component

The anomaly detection component is the online mecha-

nism which can be invoked at any given time on the stream-

ing data. In this mechanism we also use the assumption that

historical input is accessible, and thus it is used to compare

the online data to it to allow finding which stream deviates

from the nominal behavior of the UV.

To find a correlation between two sets of data a statistical

model should be used. A simple distance metric, such as the

Euclidean distance, for example, could be applicable if we

are only comparing one vector to another. However, we need

to compare a vector ~m∗ to a set of vectors m.

Towards this end, we chose to use the Mahalanobis

distance [12] as the distance metric that we invoke. Generally

speaking, the Mahalanobis distance is the distance of the

input stream from the centroid in the multidimensional space,

where the centroid is built based on the distribution. Thus,

it provides an indication of whether or not a given vector

is an outlier with respect to the nominal set of vectors.

Formally, we denote the known sample matrix as Msample

t×|S| ,

where t ∈ T is the total time units in the sample matrix.

The mean of all attributes in the sample matrix is a vector

~µ = (µ1, µ2, ..., µ|S|) and the covariance matrix is denoted

as COV . Thus, the Mahalanobis distance of a new matrix

X is denoted as:

Dmahal(X) =
√

(X − ~µ)TCOV −1(X − ~µ) (1)

The output of the Mahalanobis distance is given in units

of standard deviations. A large value is a stronger indication

of the stream being an outlier than a smaller number. Note

that this method has the benefit of not relying on domain

knowledge with regard to the UV’s behavior (e.g., motion or

physical model of the flight/drive).

Unfortunately, the naive method described above does not

work in realistic UVs (see Experiments section), for several

reasons. The first obvious problem is that as the number of

attributes is easily in the dozens, and often in the hundreds,

the run-time increases to the point where processing cannot

keep up with the incoming data.

However, a more fundamental problem exists with the use

of the Mahalanobis distance with large-dimensional data.

It relies on estimating a centroid of a distribution from

the data available to it, and as a result, sparse data can

complete throw off the estimation process. Thus a significant

amount of data is needed to construct a good sample of the

distribution, in order to allow the Mahalanobis distance to

provide robust results. Now, as the number of dimensions

increases, the amount of data required for such good sample

grows combinatorially. For instance, having 50 different

attributes means that the nominal distribution m is built from

50-dimensional vectors. To have each nominal vector appear

once in m, we would require |V |50 vectors (V is the set of

possible values for each attribute) just as training data.

We believe this is the principal reason why methods

based on Mahalanobis distance have only been used in UVs

indirectly, in support of other methods. The Mahalanobis

anomaly detector by itself simply does not scale with the

number of attributes.

B. The Dependency Detection (DD) Component

We introduce a pre-processing mechanism that uses sta-

tistical dependency-detection methods to determine possi-

ble sub-groups of attributes which are statistically inter-

dependent. These sub-groups are then used in the second

(online) phase to form the basis for the Mahalanobis distance

measurements. Thus, instead of using the Mahalanobis out-

lier detector on the entire input vector, we break the task into

a set of outlier detectors, each focused on parts of the input

vector, each using its own nominal distribution m, and each

operating in a small-dimensional space (in our experiments,

typically 2–3 attributes).

In this work we build on earlier work by Oates et

al. [13], which have developed efficient data-mining algo-

rithm called Multi-Stream Dependency Detection (MSDD).

The algorithm finds statistically significant patterns of the

type AxBy → CzDq , which should be understood as

follows: In an input vector ~v, if the value A appears in

attribute x, and the value B appears in attribute y, then the

value C will likely appear in attribute z and the value D
will likely appear in attribute q. In other words, MSDD is

able to determine that attribute values are dependent on each

other. The statistical strength of the patterns are measured

by the G statistic [16]2. MSDD uses an efficient heuristic

search which guarantees finding the complete set of patterns,

without examining the entire combinatorial search space.

MSDD is both too crude and too good for our needs.

On one hand, MSDD has the capability for finding such

patterns even when they are spread over time (i.e., to find

patterns of the form “if attribute x has value A, then in

two ticks, we expect attribute y to have value B”), and can

thus produce finer-grained information than what is needed

for the Mahalanobis distance. Indeed, using this finer grain

may be interesting for anomaly detection by itself, but we

leave this for future work. On the other hand, rather than

simply outputting a single pattern for each set of dependent

attributes, MSDD very often detects redundant dependencies,

2Similar in principle to the χ
2 statistic.
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by finding different variations on the same basic dependence:

AxBy → CzDq

CzAxBy → Dq

CzDq → AxBy

. . .

We therefore used a modified version of MSDD—called

simply Dependency Detection (DD)—in which redundant

patterns of the type above are merged together to form

groups of dependent attributes (in this case, the set would

be x, y, z, q). This modified version, in effect, tells us what

attributes are correlated, and this, in turn, allows to run the

Mahalanobis distance only on the dependent attributes, thus

significantly reducing the dimensionality of the space. Note

that often more than one group of dependent attributes would

be identified, in which case multiple Mahalanobis outlier

detectors should be used, one for each group.

V. EXPERIMENTS

To evaluate the efficacy of our approach for detecting

anomalies in UVs we conducted several sets of experiments.

The different experiments demonstrate the strength of the

combination between the pre-processing dependency detec-

tion mechanism and the online anomaly detection mecha-

nism, as well as the generality of the approach. We begin

by describing the experiment setup, and then continue to

describe the different experiments and results.

A. Experiment Setup

We chose two different unmanned vehicles to demonstrate

the generality of our approach. The first set of data came

from actual commercial unmanned aerial vehicles. The UAV

is equipped with several sensors and actuators, as well as

a communication system. The communication system trans-

mits the information, along with monitoring information, to

the ground station.

The information which is measured by the UAV sensors

and is relevant for the anomaly detection process includes

more than 50 attributes. The different attributes can be

categorized to different families: air data (includes telemetry

data that the UAV measures), inertial data (includes infor-

mation about the inertial navigation system (INS)), engine

data (includes information about the engine’s air and wa-

ter temperature), servo information, and other information,

including the UAV mass, the air temperature and other

information. The data is measured by the sensors either in a

1Hz or 10Hz frequencies, yet the whole data is downloaded

from the UAV at a frequency of 10Hz.

The second set of experiments was conducted on a

commercial vacuum-cleaning mobile robot (the Friendly

Robotics RV-400) fitted with our own control software.

The RV-400 robot is equipped with many less sensors and

actuators than the UAV. It has 22 attributes measured by ten

sonar sensors which measure ranges, four bumper sensors,

and various other measurements including the target velocity

and the actual velocity (based on wheel motor encoder data),

etc. The data itself is recorded in a 10Hz frequency.

In the course of evaluations, we utilized data from several

nominal runs of the robots, as well as from failure runs. We

refer to these runs in the discussion of the experiments below.

For the UAV we the following errors were recorded:

• Descend: In this error, one of the sensors is malfunc-

tioning and thus causes the sensor’s input to decrease

rapidly from a valid input to a constant value of zero.

• Constant: In this error, one of the sensors is malfunc-

tioning and reports a constant value for a period.

For the UGV the following errors were recorded:

• Weight Drag Halt: In this error, the robot was attached

to a cart via a fishing string which was loose. Then, the

robot started its movement away from the cart, causing

the string to stretch, until it was completely stretched.

This caused the robot to completely halt.

• Direction Deviation: In this error, a coin was attached to

one of the robot’s wheels. This caused the robot to divert

from nominal behavior every time the coin touched the

floor (which was about every 5 seconds). It also changed

its heading, etc.

For each UV we had a nominal behavior file which was

used for two purposes. First, it was used in the pre-processing

phase to obtain the strongest dependent attributes for the

domain of the UV. Then, it was used in the online anomaly

detection process for finding deviations in the behavior of

the vehicle from the nominal behavior recorded in that file

(i.e., as the basis for the nominal set m). The experiment

data sets are summarize in Table I.

B. Successfully Detecting Anomalies

As we mentioned, the anomaly detection process requires

that we first find the attributes that are considered correlated.

To this end, we ran the pre-processing mechanism described

in Section IV-B on a nominal data file, Nominal UAV A

(Nominal UGV A for the UGV domain). Out of the 56

(22 for the UGV) different attributes that are measured

several attributes were found to be significantly strongly

correlated (based on the G statistic). We chose to use 2 of

the correlated attributes in our anomaly detection process

(both in the UAV and the UGV domains). It is notable to

mention that in the case of the UGV domain, the MSDD

pre-processing mechanism returned somewhat unsurprising

correlation between the odometry sensors, yet it also returned

a surprising correlation between two sonars on-board the

robot. Later we found this dependency highly useful for

detecting the anomalies in the UGV experiments.

In the process of detecting the anomalies we need to

determine the threshold above which an anomaly is flagged.

To this end we first run the Mahalanobis distance algorithm

on the nominal file and create a histogram of the standard

deviations that are the output of the algorithm. The threshold

is then determined in such that at least 93% of the measure-

ments are below it. For the UAV and UGV domains, this

generates a threshold of 15 and 0.081 standard deviation
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Data Type Description

Nominal UAV A Contains nominal flight behavior.
This file was also used for the pre-process
phase and the comparison of
other UAVs’ behavior.

Nominal UAV B Contains an additional nominal flight behavior.

Descend UAV C Contains an error in a sensor, which
rapidly decreases its value until a constant zero.
The error is between time units
15,990 and 16,054.

Constant UAV D Contains an error in a sensor, which
value is stuck constant.
The error is between time units
8,105 and 8205.

Nominal UGV A Contains nominal driving behavior.
This file was also used for the pre-process
phase and the comparison of
other UGVs’ behavior.

Weight Drag Halt UGV Contains an error in the nominal
driving behavior: The UGV attempts to drag
a heavy load, which causes to comes to
a complete halt at time unit 100.

Direction Deviation UGV Contains an error in the nominal
driving behavior: The UGV has an object
stuck in one of its wheels, causing it to bounce
every 5 seconds.

TABLE I

DESCRIPTION OF EXPERIMENT DATA.

units, respectively. We begin by describing the results on

the UAV domain and finish with the description of the UGV

experiments.

1) Detecting Anomalies in UAVs: Figure 1 shows the

results of the Mahalanobis distance algorithm when applied

on the Descend UAV C data. Disregarding the end of the

flight, in which the behavior of the UAV changes, we can

see from the figure that in the exact times of the error, the

output of the Mahalanobis distance is significantly higher

than the threshold. Out of the 64 time units of the error, a

total of 59 (92%) were above the 15 threshold.
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200
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15250 15750 16250 16750 17250

Time

S
td

Fig. 1. Descend UAV C: Mahalanobis distance (in std units) as a function
of flight time.

Figure 2 shows the results of the Mahalanobis distance

algorithm when applied on the Constant UAV D data. Again,

we disregard the start and end of the flight time periods

(we discuss them later). Unfortunately, though, the algorithm

found no evidence of deviations from the nominal behavior in

this case. The explanation for this is the fact that “freezing”

a sensor on a constant value does not cause deviations from

nominal behavior, since the value is legit, and thus the

Mahalanobis distance cannot detect these kinds of errors.

Trying to overcome this issue we ran an additional ex-

periment. In this experiment we took the differential of the

data per each attribute, and now ran the anomaly detection

mechanism to find whether there are deviations from the

nominal behavior of the UAV based on the differential of

the data. Figure 3 now shows the results of this experiment

(note that for display purposes we omitted the start and end

periods of the flight from the figure’s scale). Now we can

see that the algorithm was indeed able to find a deviation

from the nominal behavior at the end of the error period,

just before the sensor re-started reporting normal behavior.
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S
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Fig. 2. Constant UAV D: Mahalanobis distance (in std units) as a function
of flight time.

Encouraged by these results, we moved to apply this

technique to the UGV experiment data. The results of the

approach on the UGV domain is given below.

2) Detecting Anomalies in UGVs: Figure 4 shows the

results of the Mahalanobis distance algorithm when used

with the UGV Weight Drag data, causing the UGV to halt .

In Figure 4 we can see that the approach accurately detected

the stop movement of the UGV around time unit 100.

Finally, Figure 5 depicts the results of the Mahalanobis

distance algorithm when applied on the Direction Deviation

UGV anomaly. We can see that approximately every 5

seconds the standard deviation units leap to a value larger

than 0.08. An operator at the control station watching this

data online (or rather, being notified as the measures pass the

threshold) would have been able to detect that there is some

malfunction with the robot, which is taking place every 5

seconds.
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Fig. 3. Constant UAV D, analysing differential data: Mahalanobis distance
(in std units) as a function of flight time.
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Fig. 4. Drag Weight Halt UGV: Mahalanobis distance (in std units) as a
function of movement time.

C. The Importance of DD Pre-Processing

The Mahalanobis distance cannot stand on its own to

detect anomalies. Its success in detecting anomalies above

lies in the fact that the dependency detection pre-processing

mechanism was invoked prior to the anomaly detection

algorithm, and chose specific attributes on which to focus

the Mahalanobis distance measure. Here, we demonstrate the

importance of invoking this mechanism.

First, let us examine the run-time of using the Mahalanobis

distance as the number of attributes increases. Figure 6

demonstrates the importance of narrowing down the input

to the Mahalanobis distance algorithm. The figure shows

the run-time (in minutes) of the algorithm as a function of

the number of attributes in each stream of data it uses to

detect the deviation from the nominal behavior. The results

demonstrate that the algorithm’s run-time increases quickly

as a function of the number of attributes. This is a part of the

motivation for allowing the DD process to select a smaller

set of attributes.

However, it is not simply a case of reducing the number
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Fig. 5. Direction Deviation UGV: Mahalanobis distance (in std units) as
a function of movement time.
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Fig. 6. Mahalanobis distance’s run-time (in minutes) as a function of
attributes number.

of attributes. To demonstrate the importance of running the

Mahalanobis distance on dependent attributes we ran the

following experiment.

Here, we built on a predefined knowledge of the UAV

domain and chose several attributes which are independent

of each other (we verified also that they do not appear in the

results of the DD process). We then applied the Mahalanobis

outlier detector based on these attributes, to see if we could

detect the failures using these attributes instead of those

selected by the DD process. We hypothesized that both on the

nominal files and the simulated error files the results would

generate high rates of false alarms (detecting anomalies even

though there is none), making the algorithm useless.

We started by running the algorithm on two different data

files which describe a nominal behavior (Nominal UAV A

and Nominal UAV B). Then, we applied the same mechanism

on a data file which simulated errors in predefined times

(Descend UAV C). Figure 7 show the percentage of false

alarms detected when running the Mahalanobis distance

on uncorrelated attributes as compared to running it on

correlated attributes.
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Fig. 7. False alarm rates when applying the Mahalanobis distance on
correlated and uncorrelated attributes.

As we hypothesized, we can see that the approach does

not scale well if the input is not fine tuned. While the rates

of false alarms when applying the algorithm on dependent

attributes is relatively low (0.71%, 0.17% and 0.10% for

Nominal UAV A, Nominal UAV B and Descend UAV C,

respectively), the rates increase significantly when applied

on uncorrelated attributes (2.06%, 34.29% and 60.17% for

Nominal UAV A, Nominal UAV B and Descend UAV C,

respectively). That is, the algorithm “found” that the nominal

flights actually deviated from the nominal behavior, which,

of course, was not the case.

As we argued in Section IV-B, a small number of attributes

is also important because it facilitates increased accuracy.

Figure 8 demonstrates that the number of false alarms

dramatically increases (compared to the DD-based runs) if

too many attributes are used (3.97%, 1.19% and 21.81%

for Nominal UAV A, Nominal UAV B and Descend UAV

C, respectively, when four attributes are used—compare to

0.71%, 0.17% and 0.10% when using the two strongly-

dependent attributes). From the figure we can see the differ-

ence in the false alarm ratio when only two of the strongest

correlated attributes are used as compared to using four

strongest attributes. Thus, using the DD algorithm to find the

K strongest correlated attributes can also allow minimizing

false alarms in the anomaly detection process.

VI. CONCLUSIONS AND FUTURE WORK

In this work we presented a novel approach for detecting

anomalies in unmanned autonomous vehicles. Experimenting

with two different domains we showed that applying our

approach allows detecting anomalies successfully in the

different domains, encouraging us with regard to the efficacy

and adaptability of our approach.

As discussed, future work also warrants careful investiga-

tion due to different behavioral characteristics and dynamics

of the motion of the autonomous robots, to allow the dif-

ferentiation between the anomaly detection when a change

is occurring in the behavioral settings of the robot. Future

work in this field will also focus on an efficient automated

way for determining the threshold for the Mahalanobis
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Fig. 8. False alarm rates when applying the Mahalanobis distance on two
and four correlated attributes.

distance algorithm, above which anomaly should be detected.

While negative examples might be a scarce resource, another

research direction would be to understand how to utilize

positive examples, which might be abundant, and reflect from

them on nominal behavior and the deviation from it.
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