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Abstract— Humans are adept at grasping different

objects robustly for different tasks. Robotic grasping

has made significant progress, but still has not reached

the level of robustness or versatility shown by hu-

man grasping. It would be useful to understand what

parameters (called grasp measures) humans optimize

as they grasp objects, how these grasp measures are

varied for different tasks, and whether they can be

applied to physical robots to improve their robustness

and versatility. This paper demonstrates a new way to

gather human-guided grasp measures from a human

interacting haptically with a robotic arm and hand. The

results revealed that a human-guided strategy provided

grasps with higher robustness on a physical robot even

under a vigorous shaking test (91%) when compared

with a state-of-the-art automated grasp synthesis algo-

rithm (77%). Furthermore, orthogonality of wrist ori-

entation was identified as a key human-guided grasp

measure, and using it along with an automated grasp

synthesis algorithm improved the automated algorithm’s

results dramatically (77% to 93%).

I. INTRODUCTION

Young healthy humans have a near-perfect success

rate for grasping everyday objects, probably because

they spend years as toddlers learning to grasp objects.

But surprisingly little is known about the algorithms

that humans employ for grasping objects. Currently,

robots can achieve this level of success only in an

industrial assembly line with grippers and environments

specifically designed for a part’s shape. If a versatile

robotic hand can be programmed to grasp a variety of

common objects at close to a 100% success rate, it

would change the landscape for the industrial grippers

and would also enable personal robotic assistance for

the elderly or disabled in everyday environments.

To achieve a high grasping success rate for everyday

objects using robots, a variety of features and metrics

have been explored as “grasp measures” to judge and

optimize grasp quality. Simulation based grasp mea-

sures from the prior work include: 1) computing grasp
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strength and the largest disturbance-wrench magnitude

“Epsilon” that the grasp can resist [15], [10], [16],

[21], 2) finding independent contact regions and the

distance of the grasp center from center of mass [23],

and 3) finding quick grasps using just the object ver-

tices [22] (see [2] for a comparison of these grasp mea-

sures using simulation and [29] for a survey of grasp

synthesis techniques). Heuristics for hand preshaping

and wrist orientation [32] and contact points [3] have

also been used for grasp synthesis.

However, due to calibration errors in the physical

robot and mismatches between simulated models and

real objects/environments, it is critical that a grasp’s

success be measured when it is expressed on a phys-

ical robotic hand rather than just in simulation. The

relationship between success in simulation and on a

real robot is beginning to be explored. For example,

an open-source software called GraspIt! [20] has been

used to generate real-world grasps for different robotic

hands given an object model. In this paper, we have

carefully evaluated GraspIt!’s capability to produce

real-world grasps and used it as a benchmark for

automated grasp synthesis. While GraspIt! uses some

of the grasp measures mentioned above to predict

grasp success in the real world (also see [17] where

objects with varied mass distributions were considered),

some approaches use heuristic grasp measures such

as hand grasp volume and hand symmetry [5] to

quantify grasp quality on a physical robot. In addition,

some approaches distinguish “contact robustness” from

“grasp robustness” for grasp synthesis [24]. Finally,

new approaches combining machine learning [25] and

computer vision [27] have also been used for grasp

synthesis. To our knowledge, the best reported success

rate for grasping everyday objects using three or more

robotic fingers is 60–80% for simple lifting1 [5], [27].

While some of these strategies are now yielding

higher success rates due to new and clever algorithms,

we believe that people would abandon a robotic assis-

1The 80% result is from experiments with one novel object

over five trials [27]. A higher success rate of 87.8% [27] has

been reported based on more experiments with novel objects and

a parallel-plate gripper, which has a highly limited task space

compared to multifinger hands.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2294



tant that drops an object one out of five times, just as

unreliable or hard-to-use prosthetic limbs have little ac-

ceptance. In addition, we are interested in “robustness”

of grasps; that is, we are not only interested in whether

the object can be picked up, but whether the object

can be held stably in the presence of disturbances and

uncertainty in modeling and actuation. So our testing

procedure includes shaking the robot vigorously after

the object is grasped.

Another key aspect of grasping that humans can

provide is task specificity. For example, one could grasp

a stapler with the intention of lifting it up for transporta-

tion, handing over to someone else, or stapling papers.

While automated grasp synthesis using task-specific

forces and torques have been explored before [16],

extracting position-based task-specific grasp strategy is

currently not possible by other techniques.
In order to approach a near-perfect success rate

even with perturbation and to provide us with task-

specific strategies, we took an approach to let humans

physically guide a robot to demonstrate the grasping

strategy that they would choose for a given task. Our

goal is to use the collected grasps to learn the rules

used by humans for grasping and then generalize and

improve automated grasping techniques. Please note

that this paper is not claiming that this is the only

technique to use over others or to say that this technique

“as is” is scalable.

However, we do claim that the strategies humans use

to grasp robustness have not been completely identified.

Rather than guessing what grasp measures humans may

use or what in general may be good for grasping, we

observed and collected data from humans, extracted the

grasp measures, and then evaluated their effect on an

automated grasp synthesis algorithm. We believe that

these human-based grasp measures can speed up and

produce higher robustness results for existing grasp

generators.

From human-subject data collected in one full

day (described in section II), we demonstrate that a

human guided grasping feature improves real-world

robot grasping robustness significantly in section III.

This is our first paper with this new human guided tech-

nique, and we discuss scalability, task-specific grasp

measures, and how to achieve a near-perfect success

rate in section IV.

II. METHODS

A. Human Haptic Interaction Environment

The Human Haptic Interaction Environment was a

framework where a person could teach a robot different

grasps by being in the robot’s workspace and physically

interacting with the robot. This interaction method

allowed the person to guide the robot to specific wrist

configurations and finger postures, and these grasps

were called “human-guided grasps”. Such interactive

robotic grasping with a human in the loop has been

explored before by the GraspIt! group [6], but only

wrist posture was controlled by the human and finger

posture was controlled by GraspIt!. Their purpose was

to demonstrate how GraspIt! goes through search itera-

tions to generate a grasp for a given wrist position. The

purpose of our experiment was to collect human-guided

grasping strategies and identify features that may not

be expressed properly in other methods. While more

scalable approaches like simulation or video-based

interactions could have been used to gather human

strategies, as our first experiment with human subjects,

we did not want to lose important grasp measures by

placing people in an artificial environment that forced

them to visualize the objects/robotic hands on a two-

dimensional display. Haptic interaction was the most

intimate way for the human subjects to know the object

properties and to build their own internal model of

robotic hand shape and capabilities. Others have con-

sidered motion-capture approaches to convert human

movements to robot motions [26], but the difference in

kinematics between the human body (particularly the

human hand) and robot makes it extremely challenging

to transfer movements.

The Human Haptic Interaction Environment used

a robotic platform consisting of a seven degree-of-

freedom Barrett Whole Arm Manipulator robotic arm

and a three-fingered four degree-of-freedom Barrett-

Hand [1]. The robotic hand was equipped with electric

field sensors [31] which enabled the fingers to detect

their proximity to objects. The electric field sensors

enabled all three fingers to close in on the object

simultaneously.

The Human Haptic Interaction Environment placed

the robotic arm in a “gravity compensation” mode,

where the arm had negligible weight and could be

easily moved by a person. The object to be grasped

was placed at a known location and orientation in the

workspace. The robotic arm was reset to a neutral

position in the workspace and the fingers of the hand

were kept open. The grasp guidance process proceeded

as follows: 1) The human subject guided the robot

to an initial wrist pose at which the object could be

grasped (see Figs. 1a and 1b). 2) Using electric-field

sensing, the fingers closed into the object so that each

fingerpad was approximately 5 mm from object surface.
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Fig. 1. The experiment procedure of a human subject guiding the

robot to grasp an object: (a), (b) approach the object, (c) adjust wrist

orientation and finger spread, (d) fingers close in on the object, and

(e) lift object.

At this point, the human subject guided the finger

posture by haptically moving the spread angle of the

fingers. Additionally, the subject could re-adjust wrist

pose to better align the fingers with the object (see

Fig. 1c). 3) When the subject was satisfied with this

grasp pose, the robotic fingers were commanded to

close around the object, completing the grasp teaching

procedure. The final closure step was guided by the

electric-field sensors so that all fingers contacted at

the same time to not perturb the object (see Fig. 1d).

4) Subjects were then allowed to lift and shake the

robotic arm to determine if they liked the grasp. If the

subject did not like the grasp or if the object slipped

out, the grasp was not considered a human guided

grasp (see Fig. 1e). We eliminated such grasps because

the key idea was to collect the best grasps that humans

can provide. Since the subjects had little experience

with the system, the procedure provided an opportunity

for the subjects to review the grasps. It turned out in

the experiment described in the next section that less

than five percent of all the human guidance grasps

were eliminated because the subject was not satisfied

with the grasp. A valid grasp was represented as an

eleven dimensional vector containing the seven degree-

of-freedom robot arm joint angles and the four degree-

of-freedom (one spread and three flexion) hand joint

angles.

B. Human Experimental Paradigm

Seven subjects participated in the study approved by

the University of Washington Human Subjects Divi-

sion, and a total of 210 grasps were collected with

the robot. Each subject was given five minutes practice

time. Nine objects were used in the experiment: three

small objects, three medium-sized objects, and three

large objects (see Fig. 2). Each subject was asked to

perform three different tasks for an object, namely, lift-

ing the object, handing the object over, and performing

a function with the object. For the handing over task,

the subject was asked to grasp the object such that

there was room left for someone else to grasp it. The

functional tasks depended on the object. For example,

for the wine glass, the functional task was pouring

and for the phone, the task was picking up to make

a phone call. For each object, the subject was asked to

perform two grasps for each of the three tasks for a

total of six grasps, and the subjects were asked to vary

the grasps if they could. Each subject was randomly

assigned to five objects, while ensuring that we had an

even distribution of grasps for each of the objects (each

object was selected four times except for the soda can

which was selected three times).

From the eight human-guided grasps for each object-

task pair (six for the soda can), three were randomly

chosen for testing on the robot (3 candidate grasps x

3 tasks x 9 objects), and each grasp was tested five

times. Each time, the robot arm was commanded to the

recorded arm joint angles with the fingers full opened.

The robot hand was then commanded to the required

spread angle. Finally, the fingers were commanded to

close in quickly on the object, and the robot lifted the

object and then executed a shaking procedure where the

object was shaken four times in a continuous circular

motion (absolute mean (peak) values for angular veloc-

ity: 2.74 (4.62) rad/s, linear velocity: 0.39 (0.62) m/s,

angular acceleration: 2.22 (4.39) rad/s2, linear acceler-

ation: 0.33 (0.63) m/s2). If the object stayed in the hand

after the shaking, it was considered a success (rated 1);

otherwise, a failure (rated 0). Note that the grasp testing

procedure was intentionally kept simple to maintain

focus on grasp generation rather than grasp testing.

Also the human subjects did not know that the grasp

would be tested by shaking and were only providing

grasps for the various tasks.

The success rate was computed for each grasp by

averaging over the five trials. Hypothesis testing was

performed with a p-value of 0.05, and standard errors

were reported for all mean values.

C. Grasp Success Validation on Physical Robot

To compare human-guided grasping against a good

simulation-based technique, we ran GraspIt! for thirty

minutes with the intention of generating the top six

grasps for each object (using the same procedure

in [11]). While we expected to have a total of 54 grasps,

we ended up with a total of 49 grasps because the grasp

search yielded fewer than six grasps for some objects

due to search complexity and time limit. In addition, an
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Fig. 2. Objects used in the experiment.

inverse kinematics solution did not exist for some of the

grasps because the robot was stationary relative to the

table and object in the testing set-up. Specifically, three

objects had fewer than six grasps (wine glass: 4, coil of

wire: 5, one-liter bottle: 4), while the remaining objects

had six grasps each, yielding a total of 49 grasps.

Note that GraspIt! cannot provide task-specific grasps,

and its grasps are intended for lifting tasks only. The

GraspIt! grasps also were validated using the same

process as the human guided grasps.

D. Analysis Using a Grasp Measure Set

Our goal was to understand human grasping strate-

gies in order to improve the robustness of robotic grasp-

ing. To do so, we used grasp measures already used in

literature [10], [20], [5], [28] and one new measure

that became apparent during the human-subject exper-

iments (see Table I). The new measure, orthogonality,

measures the orientation of the wrist relative to the

object’s principal axis and its perpendiculars. Suppose

the object principal axis (axis of longest dimension)

is u, and the axis pointing out of the palm of the

BarrettHand is v. The angle δ between u and v may be

computed as δ = arccos(u · v). Then the orthogonality

measure α is defined as:

α =



















δ , if δ < π/4

π/2−δ , if π/4 < δ < π/2

δ −π/2, if π/2 < δ < 3π/4

π −δ , if δ > 3π/4

(1)

In Fig. 3, since the axis pointing out of the palm of

the robotic hand in the bottle-lifting task is approxi-

mately parallel to the bottle’s principal axis (vertical),

the orthogonality measure α for that grasp is close

to zero. In contrast, the GraspIt! grasp for the sta-

pler would have an orthogonality measure α close to

π/4 rad, the maximum possible value.

III. RESULTS

Fig. 3 shows a sample of the grasp strategy used by

human subjects and GraspIt! for three objects. While

human subjects varied grasping strategies for different

tasks, the GraspIt! grasps are analogous to human

TABLE I

GRASP MEASURE SET

Grasp Measure Description Citation

Epsilon1 Minimum disturbance wrench

that can be resisted

[10],

[20]

Wrench space

volume1
Volume of grasp wrench space

Grasp energy2 Hand-object proximity

Point

arrangement1
Proximity of fingertips being in a

plane parallel to palm.

[5]

Grasp volume1 Volume enclosed by hand

Hand flexion2 Similarity of finger flexion

Hand spread2 Proximity of the finger spread to

equilateral triangle.

Finger limit3 Extent of finger extensions

Volume of ob-

ject enclosed1
Object volume enclosed by hand

normalized by object volume.

[28],

[27]

Parallel

symmetry2
Distance between center of mass

and contact point centroid along

object principal axis.

Perpendicular

symmetry2
Distance between center of mass

and contact point centroid perpen-

dicular to object principal axis.

Orthogonality See section II-D
1Larger⇒Better grasp; 2Smaller⇒Better grasp;
3Mid-range⇒Better grasp

grasps for the lifting task. That is, we believe that

the grasp measures used by GraspIt! and humans are

comparable. In contrast, for the handing-over task, the

subjects likely prioritized leaving space on the object

for a receiver as against optimizing for a robust grasp.

For the functional task, subjects likely optimized the

grasp for the subsequent functional movement. Thus,

we compared GraspIt! grasps with human-guided lift-

ing grasps in the analysis below.

A. Grasping Success Rate on Physical Robot

Table II presents the success rates for each ob-

ject (after being shaken vigorously five times) for the

human-guided lifting grasps and for the best GraspIt!

grasps (a total of 370 trials). Across objects, the human-

guided lifting strategy yielded a 91(3)% success rate

while GraspIt! yielded 77(3)%. An outlier for the

human lifting grasps was the one-liter bottle, without

which the success rate for human-guided lifting grasps

was 97(1)%.
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Fig. 3. Example grasp postures generated by human subjects (for

three different tasks) and GraspIt! for three objects. Note that the

human subjects manually specified the grasps on the physical Bar-

rett robotic hand, which were then visualized using the OpenRAVE

program [7].

TABLE II

MEAN SUCCESS RATES FOR HUMAN-GUIDED

GRASPING (LIFTING TASK) AND GRASPIT!

Object Human guidance GraspIt!

Lifting

Wine glass 93 (7) 100 (0)

One-liter bottle 40 (13) 65 (26)

Soda can 93 (7) 90 (5)

Cereal box 93 (7) 90 (4)

Coil of wire 95 (4) 32 (11)

Phone 100 (0) 70 (6)

Pitcher 100 (0) 83 (5)

Soap dispenser 100 (0) 67 (11)

CD pouch 100 (0) 100 (0)

Overall 91 (3)* 77 (3)*

Number of grasps 25 49

*p < 0.05

B. Grasp Measures Used by Humans

Table III shows the range of values for the grasp

measures for human-guided lifting and GraspIt! grasps.

Four grasp measures, namely epsilon, grasp wrench-

space volume, hand flexion, and orthogonality, were

significantly different between the human-guided lifting

and GraspIt! grasps. In addition, the energy measure

showed borderline significant difference (p = 0.05) be-

tween human-guided lifting and GraspIt! but that was

because of outliers. While larger epsilon and volume

indicated better grasp quality theoretically, we noticed

TABLE III

GRASP MEASURE VALUES FOR HUMAN-GUIDED LIFTING AND

GRASPIT!

Feature Mean (Standard Error)

Human guidance GraspIt!

Lifting

Epsilon* 0.1 (0.02) 0.19 (0.01)

Wrench space volume* 0.19 (0.05) 0.42 (0.04)

Grasp energy -1.33 (0.09) 3.95 (2.57)

Point arrangement 0.78 (0.02) 0.76 (0.02)

Grasp volume (cm3) 281 (29) 259 (33)

Hand flexion* 0.05 (0.01) 0.19 (0.04)

Hand spread 0.39 (0.02) 0.37 (02)

Finger limit 0.70 (0.05) 0.76 (0.02)

Volume of object enclosed 0.06 (0.01) 0.05 (0.01)

Parallel symmetry 0.30 (0.05) 0.39 (0.03)

Perpendicular symmetry 0.33 (0.03) 0.28 (0.03)

Orientation* 5.2 (1.3) 23.2 (1.86)

Number of grasps 25 49

*p < 0.05

from the experiment that epsilon and volume were

lower for the human grasps when compared with the

GraspIt! grasps even though the human guided grasps

have a higher success rate than the GraspIt! grasps.

The hand-flexion measure indicated that humans use

grasps which have similar finger flexion values when

compared with the GraspIt! grasps.

The stand-out measure however was orthogonality.

The orthogonality measure for the human grasps was

significantly smaller than for the GraspIt! grasps, in-

dicating that wrist orientation in the human grasps is

much closer to the object’s principal axis or its perpen-

diculars (see Fig. 3; the principal axis for the bottle and

wine glass was vertical and phone horizontal). Fig. 4

shows the orientation box plots for three objects for all

human and GraspIt! grasps.

C. GraspIt! Performance Improvement with Human

Grasp Measures

Each grasp, whether from GraspIt! or human guid-

ance, is stored as a eleven dimensional vector contain-

ing the seven robot arm angles and four hand joint an-

gles. We divided all the grasps into two groups: Group 1

is the set of grasps obtained by merging the set of

grasps from human-guided lifting and the set of grasps

from GraspIt!. Group 2 consisted of GraspIt! grasps

only. Fig. 5 shows the variation in success rates for the

two groups of grasps, each split by an orientation angle

threshold of 13 degrees. Grasps whose orthogonality

measure was less than 13 degrees were considered

orthogonal. This result showed that the success rate

of GraspIt! grasps with low orientation value was

significantly higher than GraspIt! grasps with a large

orientation value (93(5)% compared with 77(3)%). In
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Fig. 4. Variation of the orthogonality measure for three objects.

The first three rows represent the human grasps and the fourth row

the GraspIt! grasps. Each box-plot shows the spread of the orthog-

onality measure, where the blue box spans from the 25% quantile

to the 75% quantile. The whiskers represent the extremes of the

data and the (blue) dot an outlier.

Fig. 5. Success rates for orthogonal (< 13 degrees) and non-

orthogonal grasps from two groups: (a) Human lifting grasps

combined with GraspIt! grasps (orthogonal and non-orthogonal

grasps n = 37 each), and (b) GraspIt! grasps only (orthogonal

grasps n = 14, non-orthogonal grasps n = 35).

contrast, when investigating the significance of the

hand-flexion measure for grasping, we did not see

a significant difference in grasp success for grasps

with small hand-flexion measures when compared with

grasps with large hand-flexion measures. This indicated

that a low hand-flexion measure was likely not a reason

for a better grasp.

D. Task-Dependent Variation in Human Performance

As seen in Fig. 3, humans varied the grasping strat-

egy for different task requirements. Table IV shows the

success rate for the handing over and functional tasks (a

total of 265 trials). We note that the success rates for

these tasks are lower than the success rates for the lift-

ing task. Grasp measures used by the handing-over and

functional tasks remained statistically indifferent from

lifting task except for hand flexion feature (p < 0.05).

TABLE IV

MEAN SUCCESS RATES FOR HUMAN-GUIDED GRASPING FOR

THE HANDING-OVER AND FUNCTIONAL TASKS

Object Human guidance

Handing-over Functional

Wine glass 33 (13) 100 (0)

One-liter bottle 67 (13) 93 (7)

Soda can 90 (9) 100 (0)

Cereal box 87 (10) 100 (0)

Coil of wire 100 (0) 60 (13)

Phone 75 (10) 50 (13)

Pitcher 100 (0) 100 (0)

Soap dispenser 87 (9) 100 (0)

CD pouch 100 (0) 67 (13)

Overall 82 (3) 86 (3)

Number of grasps 28 25

The lack of difference was surprising, and we need to

possibly find more appropriate grasp measures (than

those measures listed in Table I) and object-task pairs

that are suitable for differentiating human task-specific

strategies.

IV. DISCUSSION

A. Human-Guided Grasps and Their Robustness

We wanted to see if a human’s near-perfect grasping

performance with her own hand transferred to success-

ful grasping using a real robot. Table II shows that the

human guided grasps resulted in more robust grasps

than GraspIt! when expressed on a real robot. While

GraspIt! likely produces some of the best automated

grasps, the mismatch between simulation models and

the real world can cause automated grasp synthesis to

fail. Furthermore, humans have an advantage from their

strong sense of causal physicality for tool use [12].

The orthogonality of the wrist orientation may seem

obvious when we think about how most of the objects

in the world are designed with Cartesian coordinate

frames. With these Cartesian objects, palm contact and

finger placement may be improved when the wrist

orientation is parallel to or perpendicular to the ob-

ject’s principal axis. Since the BarrettHand has a flat

palm, orthogonal grasps are likely to generate more

palm contact which creates a more robust grasp. Wrist

orientation parallel to the ground has been used as

a heuristic earlier for grasp synthesis [32], where it

was claimed that grasp orthogonality likely comes

from environmental constraints or the relative object

location. It would be interesting to explore further if

object shape influences grasp orthogonality as well.

Finally, human motor control literature has shown

that many motor neurons encode human movements

in extrinsic Cartesian coordinate frames rather than

intrinsic (muscle or joint) coordinate frames [13].
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B. Implication for Automated Grasp Synthesis

One of goals of this work is to use human skill to

identify key grasp measures that can speed up auto-

mated grasp synthesis and improve real-world grasp

quality. Table III shows that the orientation feature

has significantly different values for human grasps

and GraspIt! grasps. Furthermore, Fig. 5 shows that

orthogonal grasps have significantly higher success rate

than non-orthogonal grasps. These results indicate that

an automated search process can focus on grasps with

small orientation values before exploring grasps with

larger orientation values. This will likely result in better

grasps faster for GraspIt! and other automated grasp

synthesis methods.

This paper did not further analyze the grasp measures

that produced similar results between human-guided

grasps and GraspIt!. This is because our data only

contained highly successful grasps and thus it could not

be used to identify good and bad grasp measures, unless

significant differences were found between human-

guided and GraspIt! grasps. Also, the lack of correlation

between epsilon and grasp wrench space volume with

the high human-guided grasp success rates is worth

investigating further to inform the grasp measures used

by the grasping research community.

C. Achieving 100% Robustness

Human guidance has produced 91(3)% success rate

for multi-fingered grasping with vigorous shaking and

a 100% success rate for grasping without shaking.

However, we believe that a robotic hand with 91(3)%

success rate is still not good enough as a prosthetic,

assembly line, or personal assistance device where a

near-perfect success rate is desired. So how can we

achieve even higher success rates?

We believe that we can make several changes to

our experiment protocol to improve on this result. We

collected data from subjects who had never seen or

interacted with a robotic arm/hand before. It is possible

that with more practice with the robot, a subject would

provide better grasping strategies. Second, we asked

human subjects to vary the grasping strategy every trial,

if they could. In retrospect, we should not have forced

people to devise different grasping strategies as we

do not believe that there are always multiple optimal

solutions. Third, the subjects were not informed of the

vigorous shaking used in the robustness test. If the

subjects had known, they may have chosen different

grasps.

One outlier in the human guided grasps suc-

cess rates is the success rate for the one-liter bot-

tle (only 40(13)%, see Table II). If this outlier is re-

moved, the human grasping success rate is 97(1)% even

with vigorous shaking. As seen in Fig. 1, subjects chose

to grasp the bottle from the top, when most humans

with their own hand would not grasp a filled bottle

this way. This strategy was chosen when we instructed

subjects to vary the grasps when they could. This

technique did not work well on the bottle’s slippery

surface and large mass.

Finally, it is worth noting that this paper is based

on experiments with the BarrettHand, which is widely

used and is a great first tool for comparing results

across the grasping research community. While highly

reliable, the BarrettHand is not backdriveable and is

not as anthropomorphic or versatile as some of the

newer robotic hands. It would be interesting to quantify

success rates with more compliant robotic hands such

as the SDM hand [8] or more anthropomorphic hands

such as the ACT hand [30], Robonaut hand [19], and

DLR hand [4] and with additional sensing capabilities

like computer vision and touch sensors.

D. Prediction of Grasp Success

An important goal for the grasping community is to

predict real-world grasp quality for novel objects from

simulation [27]. While the grasp measures in Table I

have been used to compute grasp quality in simulation,

these predictions do not always extend to the real world.

Using parallel grippers and computer vision, the grasp

success for novel objects was shown to be 87.8% [27].

We are interested in having equally high or higher suc-

cess rate for multi-fingered grasps with our approach.

Unfortunately, we do not have sufficient number of

failed examples to build a grasp classifier, because our

grasps were heavily biased towards success. With more

grasp results and modified grasp measures based on

human strategies, we can then build a grasp classifier

and test our algorithm on novel objects.

E. Widening and Generalizing the Grasp Database

Data collected using the human haptic interaction

approach has exceptional quality, but the process is

labor intensive and not scalable for many objects, tasks,

and robotic hands. We plan to compare the haptic

interaction with other less labor-intensive modes of

human-robot interaction for grasping purposes. These

modes include remote control operation (with robot in

sight) [9], remote control with a video camera [18], and

remote control through a simulated environment [14].

This multi-modal approach will allow us to understand

the fidelity required in gathering human data for robotic

grasping and also collect additional data to complement
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other grasp databases [11]. Ultimately, the more we

understand human grasping strategy and how to bring

a 91% success rate to 100%, the less accurate infor-

mation we need to complete the database, capture a

useful grasp measure set, and generalize grasps to new

objects. Finally, while we have already collected unique

and exciting data on task-specific grasps, future work

involves analysis of the grasp measures that explain the

variability of grasps with tasks.
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