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Abstract— This paper discusses how mobile manipulators
with an under-actuated vertical arm can be designed to
be differentially flat. The property of differential flatness is
achieved by appropriate inertia redistribution of the vertical
arm and a wide range of under-actuation becomes possible.
As a result of having the flatness property, the under-actuated
mobile manipulators are capable of executing point-to-point
maneuvers as mobile manipulators with a fully actuated arm
would do. In addition, the trajectory planning and feedback
controller design for point-to-point motions in state space is
considerably simplified despite the under-actuation of the arm
and nonholonomic constraints (from no-slip assumption) of
the mobile base, which make the system more difficult to
plan and control. These ideas are demonstrated through an
illustrative example of a mobile manipulator consisting of
an under-actuated vertical three-link arm and a two-wheeled
differentially driven mobile base using differential flatness.

I. INTRODUCTION

Mobile manipulators are one of the most active research

areas in robotics since they have a wide spectrum of practical

applications including mobility assistance, material handling,

and military missions such as bomb disposal. While mobile

manipulators are usually designed with a fully actuated

arm, i.e., actuators are placed at every joint in the arm,

under-actuation can be a viable solution to reduce the

manufacturing and operating costs, or to improve reliability

in case of actuator failure. A mobile manipulator with an

unactuated joint was addressed in [1] and an under-actuated

n-link manipulator with a fixed base was discussed in [2].

However, in these references, only one joint was allowed to

be unactuated in their system.

Despite the under-actuation, which makes the system more

difficult to plan and control, it was shown in the authors’

previous studies [3], [4] that using the differential flatness

theory mobile manipulators can be designed to be capable of

executing point-to-point maneuvers as a mobile manipulator

with a fully actuated arm would do and in addition, a wide

range of under-actuation is possible.

Whereas the mobile manipulators discussed in [3], [4] op-

erate in a horizontal plane, in this paper, differential flatness

has been investigated in the context of a mobile manipulator

mounted with an under-actuated arm that operates in a

vertical plane. In this system, like in the previous studies,

the differential flatness property is achieved by inertia re-

distribution with addition of torsional springs at unactuated

joints. Through an illustrative example of an under-actuated

vertical three-link mobile manipulator with a two-wheeled
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differentially driven mobile base, it is demonstrated that the

trajectory planning and feedback controller design problem

can be solved in an efficient and simplified way using

differential flatness.

The rest of this paper is organized as follows: In Section II,

the dynamic model of a mobile manipulator with an n-link

vertical arm is derived. In Section III, design methodology

for differential flatness is adopted and the flatness property

is investigated by exploiting the special structure of the gov-

erning equations. The simulation results of an under-actuated

mobile manipulator with a vertical three-link manipulator

arm are provided in Section IV.

II. DYNAMIC MODEL DERIVATION

In this section, we derive the equations of motion of a

mobile manipulator consisting of a mobile base and an n-

link vertical manipulator arm as shown in Fig. 1. The mobile

base moves in a horizontal plane while the manipulator arm

operates in a vertical plane attached to the mobile base. We

model the mobile base as a two-wheeled differentially driven

robot. The manipulator is mounted on the mobile base at P1

through a revolute joint. The point P1 is off the midpoint O
between the two wheels by a distance d. The center of mass

C of the mobile base is at a distance a from the midpoint.

The system’s configuration is given by

q = [qT
A, qT

B]
T , (1)

where qA = [x, y, θ]T and qB = [θ1, θ2, · · · , θn]
T . qA

are the coordinates describing the mobile base’s position and

orientation. qB are the joint angles for the manipulator arm.

(x, y) is the position of midpoint O of the mobile base and

θ is the orientation of the mobile base with respect to the

x-axis. θi denotes the relative joint angle of link i of the arm

with respect to link i − 1. li and lci represent the length of

link i and the distance of the center of mass of link i from

joint Pi, respectively.

To derive the equations of motion of the mobile ma-

nipulator system, we first find the equations of motion

for the mobile base and the manipulator arm separately,

with interaction forces and torques in the two submodels.

These subsystem models are then combined together and

the interaction forces and torques are eliminated to find the

equations of motion of the entire system.

A. Dynamic Model of the Mobile Base

From the assumption of no-slip on the wheels, the non-

holonomic constraint on the system coordinates is given by

CA(qA)q̇A = 0, (2)
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Fig. 1. A mobile manipulator consisting of a mobile base and an n-link
vertical manipulator arm mounted on the base. The configuration of the
system is described by (x, y, θ, θ1, · · · , θn).

where CA(qA) = [sin θ,− cos θ, 0]. With a matrix SA(qA)
that spans the null space of CA(qA), it is possible to define

a velocity vector νA = [v, θ̇]T such that

q̇A = SA(qA)νA, where SA(qA) =





cos θ 0
sin θ 0
0 1



 . (3)

Here, v is the velocity of the midpoint O (Figure 1). Using

Lagrange formulation with the multiplier vector λ associated

with the constraint of (2), the equations of motion for the

mobile base are given by

MAq̈A +VA = EAτA −CT
Aλ−R, (4)

where R is the 3-dimensional generalized force vector along
qA due to the interaction forces and moments applied by the
manipulator arm on the mobile robot at P1. The structures
of the terms in the above equation are

MA =





m0 0 −am0 sin θ
0 m0 am0 cos θ

−am0 sin θ am0 cos θ a2m0 + I0



 , τA =

(

τr
τl

)

,

VA =





−am0θ̇
2 cos θ

−am0θ̇
2 sin θ

0



 ,EA =





cos θ/r cos θ/r
sin θ/r sin θ/r
b/r −b/r



 .

Here, m0 is the mass and I0 the moment of inertia of the

mobile base about its center of mass. r is the radius of the

robot’s wheels and b is the half the distance between the

two wheels. τr and τl are the motor torques applied on the

robot’s right and left wheels, respectively.

B. Dynamic Model of the Manipulator Arm

The dynamic equations of the manipulator arm can be

derived using Lagrange’s formulation. The kinetic energy of

link i of the manipulator is given by

Ki =
1

2
miv

T
civci +

1

2
ω

T
i Iiωi, (5)

where mi is the mass of link i, vci is the velocity of the

center of mass of link i, Ii is the moment of inertia matrix

of link i with respect to the coordinate frame attached to

the body given by Ii = diag(Ixi, Iyi, Izi). ωi is the inertial

angular velocity of link i given by

ωi = θ̇ẑ+ (θ̇1 + θ̇2 + · · ·+ θ̇i)û, (6)

where ẑ is the unit vector along an axis normal to the

horizontal plane in which the mobile base moves. û is

the unit vector normal to the vertical plane in which the

manipulator arm operates. The equations of motion of the

manipulator can be written as

MB(q)q̈+BB(q, q̇)q̇+GB(q) = QB, (7)

where MB(q) denotes the (n+3)×(n+3) inertia matrix and

BB(q, q̇)q̇ the (n+3)-dimensional Coriolis and centripetal

vector. The (n+3)-dimensional gravity vector GB is related

to the potential energy V as GB = ∂V
∂q

. QB is the (n+ 3)-
dimensional vector of generalized forces on the manipulator

given by

QB =

(

R

τB

)

, (8)

where τB = [τ1, τ2, · · · , τn]
T and τi (i = 1, ..., n) denotes

the torque input at joint i.

C. Dynamic Model of the Mobile Manipulator

From (3), the rates in the entire system satisfy the follow-

ing relation, with ν = [νT
A, q̇T

B]
T ,

q̇ = Sν, where S =

(

SA 0

0 In

)

. (9)

Here, In denotes the identity matrix of size n.

On combining (4) and (7), one gets

M(q)q̈+V(q, q̇) +GB(q) = E(q)τ −

(

CT
Aλ

0

)

, (10)

where M(q) denotes the (n + 3) × (n + 3) inertia matrix,

V(q, q̇) the (n+3)× 1 Coriolis and centripetal vector, and

E =

(

EA 0

0 In

)

, τ =

(

τA

τB

)

.

By differentiating (9), one obtains q̈ = Ṡν + Sν̇. On

substituting q̈ into (10), premultiplying by ST , and using

the property CASA = 0, one finally gets

A(q)ν̇ +D(q,ν) +G(q) = STEτ , (11)

where A(q) = STMS, D(q,ν) = STMṠν + STV and

G(q) = STGB. Note that A(q) is an (n + 2) × (n + 2)
inertia matrix and D(q,ν) and G(q) are (n+2)-dimensional

vectors. Due to the structure of matrix S as described in (9)

and the fact that the potential energy V is independent of

qA(= [x y θ]T ), the first two entries of G(q) are zero.

In general, the dynamic model of a mobile manipulator is

highly nonlinear. Hence, it is quite difficult to characterize

the differential flatness of such a system if it is under-

actuated. In the next section, a set of design conditions

will be identified such that the mobile manipulator system

becomes differentially flat.
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III. DIFFERENTIALLY FLAT DESIGN OF

UNDER-ACTUATED MOBILE MANIPULATOR

In the previous studies [3], [4], we showed that the mobile

manipulators with an under-actuated planar manipulator arm

that operates in a horizontal plane can be made to be differ-

entially flat if the inertia distribution within the manipulator

arm is properly chosen. In this paper, motivated by these

studies, we adopt the following design conditions for the

mobile manipulator. The inertia distribution of the arm is

chosen in the following way: (i) the center of mass of the

last link n of the arm is selected to lie on the last joint

axis n, (ii) the center of mass of the last two links n and

n− 1 lies on the joint axis n− 1, (iii) this procedure repeats

until the center of mass of the last j links, i.e., n, n − 1,

..., n− j + 1, lies on the joint axis n− j + 1. These design

conditions can be practically achieved in a physical design

by counter balancing or by properly locating the actuators in

the mechanical arm [5], [6].

With these design conditions, we consider the under-

actuation in the manipulator to be as follows: The first

n − j + 1 joints have actuators while the remaining j − 1
joints, i.e., joints n− j+2 through n, are unactuated. These

joints are mounted with torsion springs. In this case, the

manipulator arm is under-actuated by j − 1 and τB has a

special form of τB = [τ1, τ2, · · · , τn−j+1, 0, · · · , 0]
T . The

contribution of the torsion springs to the potential energy, if

added to each of the last j − 1 joints, is

Vs =

n
∑

i=n−j+2

1

2
kiθ

2
i . (12)

On the other hand, the potential energy due to gravitation,

Vg , which is the sum of the potential energy of each link,

is independent of the last j joint coordinates, θn−j+1, ..., θn
due to the special design method. The total potential energy

of the system is given by V = Vs + Vg . By taking the value

of j from 2 to n, a wide range of under-actuation is possible.

Later, it will be shown that the dynamic model of each

mobile manipulator with under-actuated joints corresponding

to the different value of j is differentially flat.

A. Structure of Equations of Motion

It can be shown that the equations of motion of the mobile

manipulator, with the proposed inertia distribution has the

following structure.

Aj(q)ν̇ +Dj(q,ν) +Gj(q) =

(

ST
AEAτA

τB

)

. (13)

In the above model, the subscript j indicates that the special

inertia distribution is applied on the last j links as j can vary

from 2 to n. For each choice of j, the (n+2)×(n+2) inertia

matrix Aj and the (n+2)-dimensional nonlinear vector Dj

take the following special form:

Aj =



























0 0 · · · 0
0 0 · · · 0

Āj(q) an−j+3 an−j+4 · · · an+2

...
...

...
...

0 0 an−j+3 · · · an−j+3 an−j+4 · · · an+2

0 0 an−j+4 · · · an−j+4 an−j+4 · · · an+2

...
...

... · · ·

...
...

. . .
...

0 0 an+2 · · · an+2 an+2 ... an+2



























,

(14)

Dj =































d1(q,ν)
d2(q,ν)
d3(q,ν)

...

...

dn+2(q,ν)































, Gj =































0
0

g3(q̄)
...

gn−j+2(q̄)
0

kn−j+2θn−j+2

...
knθn































. (15)

Here, q̄ is a vector containing the joint variables θ1 through

θn−j . Āj(q) is the (n − j + 2) × (n − j + 2) submatrix

of Aj . Due to the choice of inertia distribution, all terms in

Aj , except for its submatrix Āj , are constants. In addition,

the matrix Aj has the structure of a reflected L pattern. For

example, the (n + 2)th row and (n + 2)th column have all

the same constants an+2, except for their first two elements

which are 0. gi(i = 3, ..., n − j + 2) is the entry of G in

(11).

B. Differential Flatness

Under this special inertia distribution and under-actuation,

the equations of motion of the system is given by n + 2
first-order dynamic differential equations (13) and n + 3
first-order kinematic differential equations (9). The (2n+5)
state variables in the equations of motion are (q,ν) =
(x, y, θ, θ1, ..., θn, v, θ̇, θ̇1, ..., θ̇n). The system is driven by

n− j + 3 actuators including two for the mobile base.

According to the theory of differential flatness [7], [8],

we need to select n − j + 3 flat outputs, equal in num-

ber to the control inputs. We choose these (n − j +
3) flat outputs to be (F1, F2, F3, ..., Fn−j+2, Fn−j+3) =
(x, y, θ1, ..., θn−j ,

∑n
i=1 θi).

The differential flatness property with these flat outputs

can be shown by expressing all state and input variables

in terms of the flat outputs and their derivatives. From the

choice of the flat outputs and (9), they are expressed as

(x, y, θ1, ..., θn−j) = (F1, F2, F3, ..., Fn−j+2), (16)

θ = arctan

(

Ḟ2

Ḟ1

)

, v =

√

Ḟ 2
1 + Ḟ 2

2 . (17)

The state variables θn−j+1 through θn can be written in

terms of Fn−j+3 and its derivatives as follows. Using the

special form of the matrices given by (14) and (15) with the

choice of the flat output of Fn−j+3 =
∑n

i=1 θi, the last row
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TABLE I

DESIGN CONDITIONS AND FLAT OUTPUTS WITH UNDER-ACTUATED

ARMS

• Two-link manipulator (n = 2)

# of links with

special design
actuator(s) spring(s) Flat outputs

j = 2 τ1 k2 F3 = θ1 + θ2

• Three-link manipulator (n = 3)

# of links with

special design
actuator(s) spring(s) Flat outputs

j = 2 τ1, τ2 k3 F3 = θ1, F4 = θ1 + θ2 + θ3

j = 3 τ1 k2, k3 F3 = θ1 + θ2 + θ3

of the equations of motion in (13) is given by

an+2F̈n−j+3 −
1

2
θ̇2(Ixn − Iyn) sin(2Fn−j+3) + knθn = 0.

(18)

Differentiating θ in (17) once and substituting it into (18),

one can have θn expressed in terms of the flat outputs

and their derivatives. Taking advantage of the pattern of

the inertia matrix Aj , with the second last row and double

derivative of θn obtained above, one can solve for θn−1 in

terms of the flat outputs and their derivatives. This procedure

of differentiation and substitution continues until obtaining

the expression for θn−j+2. Finally, one can express θn−j+1

using Fn−j+3 =
∑n

i=1 θi since all the other joint angels are

shown to be in terms of the flat outputs and their derivatives.

The expression for the joint rate θ̇, θ̇1, ..., θ̇n can be obtained

by differentiating θ, θ1, ..., θn.

In Table I, a set of design conditions is listed with the flat

outputs for the mobile manipulator with two- and three-link

manipulator arms. In this table, τi and ki denote the actuator

and torsion spring at joint i, respectively. The first two flat

outputs (F1, F2) = (x, y) are common to all the cases. Note

that the pattern given in this table applies to manipulators

with additional links.

C. Relative Degrees

In order to take advantage of the flatness property for

feedback control design by representing the system as a chain

of integrators, the total relative degree of these flat outputs

must be the same as the order of the system, i.e., the number

of state variables. On differentiating F1, F2 twice, an input

appears in the second derivatives, which leads the system to

have an ill-defined relative degree. However, by prolongation

of v̇, i.e., considering v̇ as an additional state, one gets a well-

defined relative degree of 3 for each of F1 and F2. However,

as one would expect from (18), the third derivative of Fn−j+3

has a θ̈ term, that is, an input appears resulting in an ill-

defined relative degree. Therefore, in order to have a matched

relative degree with the number of state variables, one needs

2j − 3 prolongation of θ̇. Consequently, additional 2j − 3
prolongations of v̈ must be done to have a well-matched

relative degree of 2j for each of F1 and F2. Hence, the rela-

tive degree of the flat outputs (F3, F4, ..., Fn−j+2, Fn−j+3)

θ3

P3

lc3

l3

θ

Cv

O
(x, y)

P1

d
a

k3

P1 θ1

θ2

P2
lc1

l1

lc2

l2

k3

Fig. 2. A mobile vehicle mounted with an under-actuated 3-link manip-
ulator arm. The first two joints P1 and P2 have torque inputs and the last
joint P3 is passive with a torsion spring of stiffness k3

are respectively (2, 2, ..., 2, 2j). As a result, the total relative

degree of the prolonged system is 2n+4j and now matches

the order of the prolonged system.

IV. AN ILLUSTRATIVE EXAMPLE

The methodology presented in this paper is illustrated by

the mobile manipulator with an under-actuated 3-link arm

shown in Fig. 2. In this illustrative example, n = 3 and j =
2, i.e., the manipulator arm is designed with the following

conditions: (i) lc3 = 0, i.e., the center of mass of the third

link is on the third joint P3; (ii) m3l2 +m2lc2 = 0, i.e., the

center of mass of the second and third links together is at

the second joint P2.

The first two joints P1 and P2 have torque inputs and the

last joint P3 is passive with a torsion spring of stiffness k3.

With this design, the equations of motion are given by

A2(q)ν̇ +D2(q,ν) +G2(q) = J2τ . (19)

where

A2 =













a11 a12 a13 0 0
a12 a22 a23 0 0
a13 a23 a33 a4 Iz3
0 0 a4 a4 Iz3
0 0 Iz3 Iz3 Iz3













, G2 =













0
0
g3
0

k3θ3













,

J2 =













1/r 1/r 0 0 0
b/r −b/r 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













,D2 =













d1
d2
d3
d4
d5













, τ =













τr
τl
τ1
τ2
0













,

d5 = −

1

2
θ̇2(Ix3 − Iy3) sin(2θ1 + 2θ2 + 2θ3).

Note that the subscript 2 denotes that the last 2 links have the

special inertia distribution suggested in this paper. Detailed

expressions for a11, a12, a13, a23, a33, a4, d1, d2, d3, d4, and

g3 are not shown here to avoid a lengthy paper. However,

note that a4 is a constant as stated in Section III-A, whereas

the other variables are not necessarily constants.
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Furthermore, the dynamic model of this system can be

expressed in state space form as follows.

q̇ = Sν, (20)

ν̇ = f1 + f2τ , (21)

where q = [x, y, θ, θ1, θ2, θ3]
T , ν = [v, θ̇, θ̇1, θ̇2, θ̇3]

T , f1 =
A−1

2 D2 and f2 = A−1
2 J2.

A. Construction of Diffeomorphism

In this section, we present the diffeomorphism for the

example system. The system’s state variables are (q,ν) =
(x, y, θ, θ1, θ2, θ3, v, θ̇, θ̇1, θ̇2, θ̇3). With four actuators, four

flat outputs can be selected and they are (F1, F2, F3, F4)
= (x, y, θ1, θ1 + θ2 + θ3) as suggested in this paper. The

expressions for the state variables in terms of the flat outputs

are (x, y, θ1) = (F1, F2, F3) and

θ = arctan

(

Ḟ2

Ḟ1

)

, v =

√

Ḟ 2
1 + Ḟ 2

2 . (22)

The last row of the equations of motion in (19) is given by

Iz3F̈4 −
1

2
θ̇2(Ix3 − Iy3) sin(2F4) + k3θ3 = 0, (23)

so θ3 can be solved for in terms of the flat outputs and their
derivatives.

θ3 =
1

k3

{

1

2

(

Ḟ1F̈2 − F̈1Ḟ2

Ḟ 2
1 + Ḟ 2

2

)2

(Ix3 − Iy3) sin(2F4)− Iz3F̈4

}

(24)

From the choice of F4 = θ1 + θ2 + θ3, one can solve for

θ2 in terms of the flat outputs and their derivatives using

θ1 = F3 and the expression for θ3 in (24). The remaining

state variables θ̇, θ̇1, θ̇2, θ̇3 are obtained by differentiating

the obtained flat output expressions of θ, θ1, θ2, and θ3. The

flat output parametrization for the inputs can be computed

using (21). By taking two additional differentiations on F̈4

from (23), θ̈3 appears in the expression of F
(4)
4 . Since it can

be found in (21) that θ̈3 contains inputs, the relative degree

of F4 is 4 while the relative degree of F1 and F2 each is 4 by

the prolongation as explained in Section III-C. The relative

degree of F3 is 2. Therefore, the total relative degree is 14

and is well matched with the number of state variables, 14, of

the prolonged system, which is added by the three additional

state variables.

B. Planning of Desired Trajectories

Initial and final conditions given for the state variables

can be mapped to the boundary conditions on the four flat

outputs and their derivatives. These boundary conditions are

used to generate a smooth trajectory for the flat outputs.

Since one can choose a trajectory freely in the flat output

space, trajectory planning problem becomes considerably

simplified. The inverse mapping is then used to compute

the state trajectory from the selected trajectories of the flat

outputs.

In this example, the initial conditions of x(0), y(0),
θ(0), θ1(0), θ2(0), and θ3(0) are used to get F1(0), Ḟ1(0),

F̈1(0), F2(0), Ḟ2(0), F̈2(0), F3(0), Ḟ3(0), F4(0), Ḟ4(0),
F̈4(0), and

...
F 4(0). Similarly, the final conditions, at t = tf ,

of the flat outputs can be computed from the given final

conditions of the state variables. Additionally, one need

boundary conditions of v, θ̇, θ̇1, θ̇2, θ̇3, and v̇ to match the

boundary conditions in flat output space. A smooth trajectory

over t = 0 and t = tf is selected that satisfies the boundary

conditions that are transformed into the flat output space.

In the example, we choose seventh degree polynomials for

trajectories of F1(t), F2(t), F4(t) and a third degree poly-

nomial for F3(t) so that the coefficients of the polynomials

can be uniquely determined from the boundary conditions.

The desired trajectories over [0,10] sec are planned with the

following boundary conditions for (x, y, θ, θ1, θ2, θ3): (0, 0,

0, 0, 0, 0) at t = 0 and (10, 10, 0, π/4, π/4, 0) at t = 10.

C. Controller Design

Due to the flatness property, an exponentially stabilizing

controller can be developed in the flat output space since the

system is represented by a chain of integrators.

Since the system has four inputs, a subset of (21) can be

written as








v̇

θ̈

θ̈1
θ̈3









= f̂1 + f̂2









τr
τl
τ1
τ2









, (25)

where f̂1 is the 4 × 1 subvector of f1 and f̂2 is the 4 × 4
submatrix of f2. Then, (25) can be rewritten as

v̇ = γ1, (26a)

θ̈ = γ2, (26b)

θ̈1 = γ3, (26c)

θ̈3 = γ4, (26d)

using the input transformation








γ1
γ2
γ3
γ4









= f̂1 + f̂2









τr
τl
τ1
τ2









. (27)

In order to find an invertible mapping between the inputs
and higher derivatives of the flat outputs, the flat outputs
were differentiated until an input appears in their expressions.
As we noted in Section III-C, we require two prolongations
of γ1(= v̇), and one prolongation of γ2 resulting in three
additional state variables to the system. This makes the
number of state variables of the system to be 14. Then, one
gets









F
(4)
1

F
(4)
2

F̈3

F
(4)
4









=







C1

C2

C3

C4






+









cθ −vsθ 0 0
sθ vcθ 0 0
0 0 1 0
0 D42 0 −

k3

I
z3















γ̈1
γ̇2
γ3
γ4






, (28)

where cθ denotes cos θ, sθ sin θ, and D42 = 1
Iz3

θ̇(Ix3 −

Iy3) sin(θ1 + θ2 + θ3). The entries Ci are not shown here

to avoid a lengthy paper, but they are a function of the state

variables of the prolonged system. From this relation, one
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Fig. 3. The integrated planner and controller with the dynamic model of the mobile manipulator.

observes that the total relative degree of the prolonged system

becomes 14, which is well matched with the order of the

prolonged system. Therefore, in the flat output space, the

system is governed by the linear equations with new inputs

u1, u2, u3, and u4 such that

F
(4)
1 = u1, F

(4)
2 = u2, F̈3 = u3, F

(4)
4 = u4. (29)

In order to achieve exponentially stable tracking control, u1,

u2, u3, and u4 are selected as

u1 = F
(4)
1d + p3

...
F̃1 + p2

¨̃F1 + p1
˙̃F1 + p0F̃1, (30a)

u2 = F
(4)
2d + q3

...
F̃2 + q2

¨̃F2 + q1
˙̃F2 + q0F̃2, (30b)

u3 = F̈3d + r1
˙̃F3 + r0F̃3, (30c)

u4 = F
(4)
4d + s3

...
F̃4 + s2

¨̃F4 + s1
˙̃F4 + s0F̃4, (30d)

where F̃i is defined as Fid −Fi and Fid denotes the desired

trajectory of the flat output Fi. pi, qi, ri, and si are control

gains that are chosen appropriately such that all roots of the

characteristic equations of the closed loop error dynamics lie

in the left half-plane to ensure exponential stability.

On substituting (30) into (29), one can compute γ̈1, γ̇2,

γ3, and γ4 from (28). γ1 and γ2 can then be obtained by

integration. The original torque inputs τr, τl, τ1, and τ2 are

then computed using (27).

D. Simulation Results

The block diagram for the planner and controller is pre-

sented in Fig. 3. Figure 4 (a) shows the desired and actual

trajectories of the mobile base’s coordinates (x, y). In this

simulation, initial errors were given by taking the initial

conditions for y(0), θ1(0), θ2(0), and θ3(0) as 1.0 m, π/6
rad, π/6 rad, and π/6 rad, respectively in order to check

the exponential convergence to the desired trajectory. The

control gains in (30) were chosen in a way that all the roots

of the characteristic equations of the error dynamics are all

at −3. The desired and actual trajectories of θ, θ1, θ2, and θ3
are shown in Fig. 4 (b). The system parameters used in the

simulation are: (d, a, r, b, l1, l2, l3) = (1, 0.5, 0.3, 0.5, 1, 1, 1)
m, (m0,m1,m2,m3) = (5, 1, 1, 1) kg, (I0, I1, I2, I3) =
(5, 1, 1, 1) kg·m2, and k3 = 1 N·m/rad.

V. CONCLUSION

In this paper, it was shown that mobile manipulators with

an under-actuated vertical arm can also be made differen-

tially flat using the inertia redistribution design methodology

��� ���

Fig. 4. (a) The mobile base’s desired and actual trajectories. (b) The desired
and actual trajectories for θ, θ1, θ2, and θ3.

introduced in the previous studies [3], [4]. As a result, a

wide range of differentially flat designs can be achieved.

The differential flatness property significantly simplifies tra-

jectory planning and feedback control. The proposed method

was illustrated by the example of a mobile manipulator with

a three-link vertical under-actuated arm. Simulation results

were presented to verify point-to-point maneuvers of the

system satisfying the dynamic model with nonholonomic

constraints and under-actuation, while ensuring exponential

stability.
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