
Developing Self-Organizing Robotic Cells using Organic Computing
Principles

Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach, and Wolfgang Reif

Abstract— Nowadays industrial robotics applications, which
are often designed and planned with a huge amount of effort,
have a fixed behavior during runtime and cannot react to
changes in their environment. Failures can hardly be compen-
sated and often can only be repaired by human involvement.
In this paper we present a layered approach for developing
self-organization systems that are able to take advantage of
Organic Computing principles and therefore are more robust
and flexible during runtime.

I. INTRODUCTION

With respect to their structure, traditional automation
systems are very static. The material flow is fixed and every
component is optimized according to the planned system
structure to reach maximum throughput. This approach is
very suitable for mass production as in the automotive indus-
tries, where one product is manufactured for a considerable
time. Even the use of industrial robots does not change
this situation. In fact, industrial robots are very flexible and,
given an appropriate tool, are able to perform a large variety
of tasks. However, the complex and tedious programming
of today’s industrial robots, the fixed wiring and difficult
integration of additional devices, as well as the very static
layout of shop floors do not exploit the possible flexibility
of robotic solutions. As a consequence, high effort is needed
to customize and adjust automation systems, making them
hardly applicable for small-series production with flexible
products where regular adaptation is required. Moreover,
failure tolerance and flexible optimization is hard to achieve
with traditional automation systems.

On the other hand, the idea of Organic Computing [1][2]
and Autonomic Computing [3] is to develop systems which
possess self-x properties, like self-healing (compensation
of failures), self-adaptation (adaptation to changing or new
jobs and system structure) or self-optimization (optimization
according to a given fitness function). In the context of
production automation, the goal is to provide architectures
and techniques to build organic automation systems, where
organic means life-like behavior or more concise that the
systems are capable of autonomously adapting to changes
in their environment. This behavior is often realized by the
use of bio-inspired paradigms and algorithms, e.g. genetic
algorithms or pheromone-based approaches.

Hence, the well-designed combination of Organic Com-
puting principles and robot technology can lead to hyper

Alwin Hoffmann, Florian Nafz, Hella Seebach, Andreas Schierl, and
Wolfgang Reif are with the Institute for Software and Systems Engineering,
University of Augsburg, D-86135 Augsburg, Germany.

This work has been partly sponsored by the priority program Organic
Computing (SPP OC 1183) of the German research foundation (DFG).

flexible and robust automation systems. While robots, mo-
bile platforms as well as industrial manipulators provide
mechanical flexibility and the ability to perform a large
variety of different tasks, Organic Computing introduces self-
organization to the systems which enables them for self-
healing, self-adaptation or self-optimization. For example,
an organic automation system can compensate failures due
to its self-healing capabilities and continues to operate in
graceful degradation – a requirement for robotic systems
which is getting more and more important [4]. Especially
in small and medium enterprises, where there are phantom
shifts at night, systems of this kind are welcome. Due
to self-organization, organic systems are reconfigurable by
design and are easily able to adapt to new tasks or products
– a requirement in today’s globalized economy with its
turbulent markets and fast changing demands [5]. However,
evolutionary approaches and bio-inspired principle which
solely rely on the idea of emergence cannot directly be
applied to production systems. Emergence rather has to be
controlled and directed to accomplish a defined goal, i.e.
manufacturing a product.

In this paper, we want to outline how self-x properties and
Organic Computing principles can be applied to robotic cells.
Sect. II describes the challenges that are to facing in order to
build organic robotic cells. The challenges are ranging from
uncontrolled emergence over the layout of robotic cells to
limitation in software architectures. In Sect. III, we present
a multi-layer architecture to design and implement organic
robotic cells in automation. Based on that architecture, we
illustrate our approach with a case study in Sect IV. Finally,
conclusions are given in Sect. V.

II. CHALLENGES

From our point of view, the development of self-organizing
robotic cells using Organic Computing principles poses three
major challenges:

1) To render organic systems acceptable for industry,
emergence must be controlled to accomplish a defined
goal.

2) To apply self-x properties, the layout of robotic cells
must provide additional degrees of freedom.

3) To utilize these additional degrees of freedom, robotic
software architectures must provide flexibility with
regard to programming techniques, coping with geo-
metric uncertainty and device integration.

These challenges and their influence on the development of
organic automation systems are described in detail in the
following sections.



Failure

Failure

Expected behaviour

Fig. 1. Organic production systems require a corridor of expected behavior.
Inside this corridor, emergent behavior is approved and even desired.

A. Controlling Emergence

A main concept of self-organizing systems is emergence.
Emergence describes the appearance of complex system
behavior caused by relatively simple and local interactions of
individuals without the control of a central instance. Hence,
the system behavior is not explicitly programmed, but a result
of these local interactions. An example of emergent behavior
is an ant colony where no central control is present. Instead,
each ant is an autonomous unit that reacts depending on local
information, i.e. pheromones, and genetically encoded rules.

Thus, the behavior of the individual components cannot
be exactly predicted. Müller-Schloer [6] calls this kind of
behavior bottom-up constraint propagation which stands
in contrast to the classical top-down design of technical
systems. In the latter approach, the developer tries to model
and implement all possible system states. This usually starts
with a high-level specification, until after a number of trans-
formations and refinements, executable code is generated.

However, having an exhaustive model of a complex system
is often not feasible and even contradictory to the idea of
emergence. In order to solve this contradiction, we suggest
defining a corridor of good expected behavior [7] for every
organic production system. Inside this corridor, emergent
behavior is approved and even desired, whereas the system is
in an exceptional state when this corridor is left (cf. Fig. 1).

This corridor is defined through constraints by the system
developer and allows controlled emergence. Usually, these
constraints can be observed locally by each autonomous
component of the system. If one or more constraints are
violated, the component tries to restore the constraints lo-
cally. If this is not sufficient, it starts to involve surrounding
components until a valid solution is found that satisfies the
constraints. In Organic Computing this kind of architecture
is called an Observer/Controller architecture [6] [8]. By
doing so, organic automation systems are self-organizing
and can be directed to accomplish a defined goal, e.g.
to manufacture products. Besides, behavioral guarantees in
terms of functional correctness can be given [9].

B. Adding Degrees of Freedom

Usually, automation systems are designed and tuned to ac-
complish pre-defined tasks for a long period. In single-station
automated cells, a production machine is typically equipped
with a material handling system (e.g. a robot for loading
and unloading the machine) and a storage system. Due to
this setting, the cell is able to operate unattended but the

system fails if any of the components breaks. An automated
production line consists of multiple workstations that are
automated and linked by a transport system which transfers
parts from one station to the next. Again, if one components
breaks, the whole system fails. According to [10], flexible
manufacturing systems still have limited capabilities with re-
gard to customized products and failure compensation. They
even state that the need for flexible products and adaptive
systems cannot be supplied with traditional approaches.

In order to become self-organizing, automation systems
require additional degrees of freedom and redundancy in the
available hardware. Without these prerequisites, the system
is not able to adapt to new environmental conditions or to
compensate failures:

∙ For self-healing, an organic automation system needs
redundant hardware components. Otherwise, it cannot
compensate for the failure of one component and con-
tinue operation in graceful degradation.

∙ Regarding self-adaptation, an organic production sys-
tem needs degrees of freedom, i.e. flexible tools or
transport systems, in order to adapt to changing or new
tasks as well as to a modified system structure.

∙ Finally, self-optimization is only possible if there are
several degrees of freedom which can be optimized with
respect to a given fitness function.

Due to these reasons, we believe that robotic cells are well-
suited for self-organization by using Organic Computing. In
robotic-based systems, additional degrees of freedom can
be achieved by adding robots, redundant tools, or tool-
changing systems. Concerning transportation, robots can
be connected using carousels, two-way conveyors, or even
mobile platforms. Further details are given in Sect. III, but
here it is worth mentioning that the concrete choice of how
redundancy is added can impact the system’s robustness and
its mean time to failure, as the example in Sect. IV shows.

C. Requiring Software Flexibility

By adding degrees of freedom and redundancy to the avail-
able devices and to the shop floor layout, self-organization
becomes feasible. However, to completely utilize self-x prop-
erties, additional requirements to the architectures of robotic
systems with regard to software flexibility are necessary.

Flexible and reconfigurable automation systems require
the introduction of smart products carrying information about
how to be processed by the system. This can be e.g. realized
by using RFID [10]. As a consequence, a product-centric
approach of configuring and commanding industrial robots
and their tools is required. Pre-defined motion sequences
have to be replaced by more dynamic motion planning
considering the environment and avoiding obstacles. Due to
the dynamic system behavior, the use of previously taught
motions cannot be sufficient anymore. Instead, the use of
sensor feedback (e.g. vision) or compliant devices should be
considered. With sensor-based or compliant motions [11], an
error-tolerant execution of complex robot tasks in uncertain
and unknown environments is possible [12].



In contrast to these demanding requirements, industrial
robots are still programmed with special robot programming
languages which are derived from early imperative languages
and have not evolved much since then. Due to these low-
level programming techniques, developing software for an
industrial robot is a complex and tedious task requiring con-
siderable technical expertise [13]. Hence, industrial robots
are usually equipped and programmed to perform only a
set of pre-defined tasks. This contradiction between low-
level programming and high-demanding requirements must
be solved in the future to realized self-organizing robotic
systems.

Furthermore, the integration of external devices must be
facilitated. Today, tools are usually connected by a fixed
wiring to a robot controller and communicates over digital
and analog I/O ports. But when using tool changing systems,
no human interaction should be required. The software of
the robot controller must be able to independently cope
with different tools mounted to the robot. Moreover, it
must be possible to integrate arbitrary sensors for intelligent
perception and sophisticated tools that allow e.g. complex
grasping strategies and dexterous manipulation [14]. The
introduction of plug-and-play mechanisms as proposed in [4]
would cover this requirement for flexible device integration.

III. ARCHITECTURE

Our approach uses a layered software architecture which
addresses the system at different levels of abstraction. The
proposed architecture is depicted in Fig. 2.

On top of the hardware layer, two software layers are
located for controlling the robot. The lower one, the Robot
Control Layer, is responsible for the real-time critical, low-
level hardware control, whereas the upper layer, the Robot
Programming Layer, is used for defining the control flow and
specifying required motions and tools actions. For traditional
production systems, these three layers are sufficient, as they
allow the robot to execute arbitrary, pre-programmed tasks
in a reliable, repeatable fashion. However, to extend the
system towards self-organization, additional communication
and control software is required.

Therefore, our approach adds two more layers on top,
which control the robotic system according to Organic
Computing principles. The first layer, the Organic Control
Layer, wraps the components of the robotic cell and turns
them into software agents coordinating with other agents
through communication. Furthermore, it is responsible for
the execution of capabilities which are to be applied to the
workpiece. When this layer detects a locally unrecoverable
error, the Organic Planning Layer takes control and searches
for a new configuration to achieve the task. Once a solution
has been found, control is returned to the Organic Control
Layer for further execution. The layers of the architecture
are explained below from bottom up.

A. Hardware

The foundation of each robotic cell is a set of robots
with tools that are interlinked with a transportation system.

Organic 

Planning

Organic Planning Layer

Organic Control 

Layer

Robot Programming

Layer

Robot Control Layer

Hardware

Organic

Control

Robot

Programming

Robot

Control

Hardware

Observer

g g y
Distributed Planning 

and Reconfiguration

Controller

High-level 

Commands

R b C l L

Closed-loop 

Robot Control

R
Status and Error 

Reporting

communication

Fig. 2. The proposed architecture for self-organizing robotic cells showing
two individual components.

In order to become a self-organizing production system,
additional degrees of freedom are required as state in Sect. II-
B. This means that a robot cannot only be equipped with one
static tool corresponding to its pre-assigned task. For simple
cases, it might e. g. be enough to equip the robot with a
set of equal drills so that it can replace them when they
fail during production, but for exploiting all advantages of
self-organizing systems, different tools are needed that can
perform a variety of diverse tasks, and a way to interchange
them without human interaction. This can be achieved by
the use of external tools, by an automatic tool exchange
system, or by using advanced tools like anthropomorphic
hands which allow dexterous manipulation.

If different tasks have to be executed, or the different task
steps should be assigned to different robots, the transporta-
tion system also has to become flexible. Instead of a single
conveyor connecting the robots in a given order, this set-up
requires a way to change the order a workpiece passes the
different robots. Similar to existing systems, robots can be
connected using a carousel or two conveyors, one moving
forward and one moving backwards. Thus, each robot can
forward the workpiece to any other robot by placing it onto
the right conveyor. Corresponding to the idea of hyper flexi-
ble manufacturing systems [4], another solution is to replace
the conveyor by a set of mobile platforms navigating between
the robots, transporting partly processed workpieces.

Such a system can show a dynamic behavior and, more-
over, as the hardware devices are expected to perform differ-
ent tasks, all of them have to be controlled by a computer-
based system. This software layer must provide real-time
guarantees to reliably control hardware devices.

B. Robot Control Layer

Low-level hardware control is performed in the Robot
Control Layer. It is responsible for applying open or closed
loop control laws on actuators and sensors in order to make
the hardware execute the requested actions. Therefore it has
to be implemented in a real-time capable environment, e. g.
running on a micro controller for simple actions or under a
real-time operating system (such as VxWorks, QNX or real-
time extensions for Linux). For commercial KUKA robot
systems, this layer – the so-called kernel system – is imple-
mented in VxWorks. It can execute motion commands and



send data to attached tools using fieldbus communication.
However, it is quite limited with respect to sensor integration
or compliant motion – fields where research robot controllers
like OROCOS [15] are more advanced.

As a typical robot action consists of more than the
application of one single control law with given parameters
(e. g. one motion to a point), the robot control layer has
to provide an interface allowing to specify multiple control
laws or commands that are to be applied sequentially or in
parallel. This interface can be used by the programming
layer. Furthermore the control layer has to monitor the
attached hardware for errors, and report them to the above
layer to allow reasonable failure strategies.

C. Robot Programming Layer

The Robot Programming Layer offers an interface which
accepts high-level commands to be executed by the robot.
It is responsible for transforming them into control laws
that can be executed with real-time guarantees in the robot
control layer. Furthermore, it transfers the control laws to
the robot control layer and monitors execution progress,
errors and sensor events. For KUKA robots, this layer is
provided by the robot programming language KRL which
allows to write robot programs including extended control
flow (e.g. conditional statements and loops), motions and
tool commands. However, as the self-organizing robot cell
– opposed to traditional production cells – does not have
a fixed processing or material flow order, it is not possible
to write one program for each robot that can be executed
repeatedly to perform the unchanging robot task. Each robot
needs a set of robot programs (one for each robot capability)
that can be started and controlled from a higher architecture
layer.

As the dynamic nature of a flexible production system
makes it hard to guarantee exact positioning of the work-
pieces during transportation, these systems also have to
cope with greater uncertainty about object locations. Thus
the integration of sensor feedback for object localization
becomes more important here, as well as the possibility to
program tolerant or compliant manipulators or tools. Also
dynamic motion planning with obstacle avoidance for both
robots and mobile platforms must be possible using this
layer.

When trying to control a flexible production cell through
a set of individual robot programs (one for each robot
capability), these programs as well have to be flexible and
highly configurable as described in Sect. II-C. However,
passing detailed environment information to traditional robot
programs is often quite complex, involving fieldbus com-
munication, thus limiting the range of possibilities. These
problems can be solved by using a robot control architecture
that allows programming robots in standard, high-level pro-
gramming languages, such as the one described in [16]. It
provides a high level, object-oriented API for programming
robots which can be directly used from the higher layers
or encapsulated into a service that can be e.g. accessed via
standard service-oriented methods.

D. Organic Control Layer

The organic intelligence of the system is encapsulated
in the top two layers. The main task of these layers is to
maintain the behavioral corridor of the system (see Sect. II-
A). The specification of this corridor is done by OCL
constraints, which are annotated to the particular models
during the design process. This design process provides a
guideline for development of the organic computing layers
of such a system and is described in detail in [8]. These
OCL constraints define an invariant over the system state
and distinguish good from erroneous states. More informal,
they describe how correct configurations of the robots must
look like. The organic intelligence then tries to preserve these
invariants as long as possible and in case of a violation to
restore them, by reconfiguring the system. For a detailed
description of this restore invariant approach see [7]. One
major benefit is that the behavior of the system components,
i.e. the robots, is formalized and verified, so we can – in
combination with the restore invariant approach – guarantee
that the system stays in the defined corridor.

The Organic Control Layer consists of two main compo-
nents. The Observer evaluates the invariant based on the sta-
tus information it receives from the lower layers. Therefore,
an interface which allows to receive feedback from the Robot
Programming Layer (e.g. example error-messages or sensor
data) is needed. Whenever the observer detects a violation of
the invariant, it activates the planning layer and forwards all
gathered information. The second component in this layer
is the Controller. It performs the capabilities assigned by
the planning layer and commands robot actions required to
apply the capabilities and exchange resources. It makes use
of the interface provided by the Robot Programming Layer
and controls the robot to ensure that the right capability
is applied. It further reacts to new configurations sent by
the Organic Planning Layer, for instance to change the
performed actions of the robot.

E. Organic Planning Layer

The Organic Planning Layer is responsible for calculating
new configurations if an error occurs and the invariant
is violated. It analyzes the current situation and, as most
of the failures cannot be compensated by a robot alone,
it has to communicate with the planning layers of other
robots to gather information about available robots and their
capabilities. Then, the planning component tries to find a
common solution to reach the objectives. After a consensus
is found, the planning layer forwards the new configuration
for its responsible robots to the Organic Control Layer, which
then commands the robot accordingly.

The advantage of moving all the self-organization into
this high-level layer is to use the full bandwidth of planning
approaches, like bio-inspired or genetic algorithms as well
as simple planners. This layer provides a kind of plug-in
interface to allow the use of several methods and algorithms
for coordination and planning, implemented as centralized or
decentralized variants. System architects can choose what is
best suited for their kind of system and problem to solve.



IV. EXAMPLE

In this section we want to illustrate the presented approach
on a vision of a future adaptive production cell. It shows the
benefits of applying organic principles to traditional robot
systems. Traditional engineering would handle and design
such a production cell in a rather static way, consisting of
individual machines that process workpieces with their tools
and linked to each other in a strict sequential order using
conveyors or similar mechanisms. The layout of the cell is
therefore predefined, very inflexible, and rigid. Additionally,
and maybe more important, such a system is extremely prone
to system errors as the failure of one component will stop the
whole system. However, the adaptive production cell is self-
organizing which means that it is adaptive according to user-
defined tasks (work plans) and compensates for component
failures. Furthermore, it tries to optimize the throughput by
finding a configuration which is best suited for the actual
work plan.

The adaptive production cell consists of KUKA Light-
weight Robots (LWR), which are capable of using different
tools. The traditional conveyor belt has been replaced by
flexible and autonomous transportation units, which can carry
workpieces. The goal of the cell is to process workpieces in
a user-defined sequence of tool applications (work plan).

Sect. II expounds that redundancy and soft flexibility are
needed to enhance traditional systems with self-organization.
To achieve the maximum benefit from redundancy, it is
important how the redundancy is distributed within the
system. For example, it would be possible that a robot has
the same tool three times and is the only one with this
tool. Then, the robot is capable of reacting two times on
tool breaks, but the breakdown of the whole robot stays a
single point of failure. To find good distribution strategies for
the redundancy, the ADCCA1 technique [17] technique can
be used, which calculates minimal combinations of failures
which lead to standstills of the whole production system.

According to these results, the case study is arranged as
follows: three LWRs for processing, four carts for trans-
portation and two storages, which provide unprocessed work-
pieces and store finished ones, are used. Each LWR is able to
perform all three capabilities: drill a hole into a workpiece,
insert a screw into the drilled hole and tighten the inserted
screw. The user-defined standard work plan is to process all
workpieces with all three tools. The given order is first to
drill the hole, then insert the screw and at last to tighten it.
In principle, an easy but not very high-performance solution
is to let each robot perform all capabilities and change tools
after each step. As switching tools is very time consuming
compared to the time for applying the capability, the standard
configuration is to let every robot perform a different task.
The distribution of processing steps among different robots
requires flexible routing of carts so that the correct order is
maintained. One such configuration is sketched in Fig. 3.

If a failure occurs now, e.g. the drill tool of the drilling
robot breaks, the robot monitors this failure and starts a

1Adaptive Deductive Cause-Consequence Analysis

Fig. 3. Adaptive production cell

reconfiguration. It collects the information of the neighbor-
ing robots and carts, calculates a new distribution of tool
assignments and re-routes the carts in a way, that production
can continue. A traditional system would stop and a human
interaction would be needed here. The reconfigured situation
is depicted in Fig. 4.

Fig. 4. Adaptive production cell

In this case study, the robots and carts have only local rules
and interaction possibilities. The resulting whole system is a
self-organizing production cell which is capable of reacting
to changes in the environment and new work plans. The
configurations which are calculated by the robots in case
of local invariant violations (e.g. capability loss) restore the
invariants specified for the system which means that the
occurring emergence stays in an expected behavioral corridor
as claimed in Sect. II-A.

The organic layers are implemented with a multi-agent
framework called Jadex [18], which also provides the com-
munication infrastructure. On each robot one Organic Con-
trol Layer agent is running and coordinating the robots via
the interfaces provided by the Robot Programming Layer.
Whenever a failure occurs or a reconfiguration request of
another robot is received it spawns an Organic Planning
Layer agent which then is handling the reconfiguration for
this robot. Currently, reconfiguration is done by solving a
constraint satisfaction problem to receive valid configuration
for each robot. The constraints originate from the invariants



formulated over the system which describe how correct
configurations must look. More details can be found in [9].
For a proof of concept, we implemented the robotic-specific
layer using the simulation environment of Microsoft Robotics
Developer Studio and placed them under the organic layers.
For more information see [19].

V. CONCLUSION

In the field of Organic Computing, we were looking at the
domain of production automation, in particular the field of
adaptive production cells. Further in robotics research, we
looked at facilitating the software development for industrial
robots and improving software quality. In the presented paper
we wanted to show how both worlds can fit together and
how Organic Computing principles can be used to realize
a flexible automation system. To be more concise, how the
architecture of a self-organizing robotic cell can look like
and how it can be implemented.

In earlier work, the lower layers were prototypically sub-
stituted by a simulation and coupled to the implementation of
the organic layers within a multi-agent system, as described
in Sect. IV. Nevertheless, we have been able to show that
these systems can benefit from the application of Organic
Computing principles, especially in terms of failure tolerance
and flexibility. One major advantage of the proposed archi-
tecture and its implementation is that it is formal grounded
and, therefore, allows to give behavioral guarantees with
respect to the assigned configurations, which always leads
to correct processing of the resources. The definition of a
behavioral corridor and the assurance of remaining inside this
corridor allows flexibility and gives firm guarantees about
the system, which is very important for the acceptance in
industrial applications. However, the drawback of moving
self-organization into high-level layers is that no real-time
critical behavior can be considered. Hence, only non real-
time critical reconfigurations are possible.

Different production scenarios and factory settings need
diverse reconfiguration mechanisms, e.g. completely decen-
tralized coalition formation or wave propagations. We are
currently working on different plug-ins for the Organic Plan-
ning Layer to enhance it by several reconfiguration algorithm
implementations. In order to meet the flexibility requirements
as proposed in Sect. II, we are currently extending our robotic
software architecture (see [16]) which corresponds to both
the Robotic Programming Layer and the Robotic Control
Layer. A mid-term goal is to replace the simulation of the
adaptive production cell by an implementation using the
lightweight robots in our lab.

REFERENCES

[1] C. Müller-Schloer, C. von der Malsburg, and R. P. Würtz, “Organic
computing,” Informatik Spektrum, vol. 27, no. 4, pp. 332–336, Aug.
2004.

[2] J. Branke, M. Mnif, C. Müller-Schloer, H. Prothmann, U. Richter,
F. Rochner, and H. Schmeck, “Organic Computing – Addressing
complexity by controlled self-organization,” in Proceedings of the
2nd International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA 2006), Nov. 2006.

[3] J. Kephart and D. Chess, “The vision of autonomic computing,” IEEE
Computer, January 2003.

[4] M. Hägele, T. Skordas, S. Sagert, R. Bischoff, T. Brogårdh, and
M. Dresselhaus, “Industrial robot automation,” European Robotics
Network,” White Paper, July 2005.

[5] M. Mehrabi, A. Ulsoy, Y. Koren, and P. Heytler, “Trends and perspec-
tives in flexible and reconfigurable manufacturing systems,” Journal
of Intelligent Manufacturing, vol. 13, no. 2, pp. 135–146, 2002.

[6] C. Müller-Schloer, “Organic computing: on the feasibility of con-
trolled emergence,” in CODES+ISSS ’04: Proceedings of the 2nd
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis. New York, NY, USA: ACM, 2004, pp.
2–5.

[7] M. Güdemann, F. Nafz, F. Ortmeier, H. Seebach, and W. Reif, “A spec-
ification and construction paradigm for Organic Computing systems,”
in Proceedings of the Second IEEE International Conference on Self-
Adaptive and Self-Organizing Systems, S. Brueckner, P. Robertson,
and U. Bellur, Eds. IEEE Computer Society Press (2008), 2008, pp.
233–242.

[8] H. Seebach, F. Ortmeier, and W. Reif, “Design and construction
of organic computing systems,” in Proc. 2007 IEEE Congress on
Evolutionary Computation, Singapore, Sept. 25–28 2007, pp. 4215–
4221.

[9] F. Nafz, F. Ortmeier, H. Seebach, J.-P. Steghofer, and W. Reif, “A
generic software framework for role-based organic computing sys-
tems,” Software Engineering for Adaptive and Self-Managing Systems,
International Workshop on, vol. 0, pp. 96–105, 2009.

[10] M. Zaeh and M. Ostgathe, “A multi-agent-supported, product-based
production control,” in Proc. 7th IEEE International Conference on
Control and Automation, Christchurch, New Zealand, Dec. 2009, pp.
2376–2383.

[11] M. Mason, “Compliance and force control for computer-controlled
manipulators,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 11, no. 6, pp. 418–432, 1981.

[12] U. Thomas, B. Finkemeyer, T. Kröger, and F. M. Wahl, “Error-tolerant
execution of complex robot tasks based on skill primitives,” in Proc.
2003 IEEE Intl. Conf. on Robotics and Automation, Taipei, Taiwan,
Sept. 2003, pp. 3069–3075.

[13] J. N. Pires, “New challenges for industrial robotic cell programming,”
Industrial Robot, vol. 36, no. 1, 2009.

[14] A. Okamura, N. Smaby, and M. Cutkosky, “An overview of dexter-
ous manipulation,” in Proc. 2000 IEEE International Conference on
Robotics and Automation, San Francisco, USA, Apr. 24–28 2000, pp.
255–262.

[15] R. Smits, T. D. Laet, K. Claes, H. Bruyninckx, and J. D. Schutter,
“iTASC: a tool for multi-sensor integration in robot manipulation,”
in Proc. IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems, 2008.

[16] A. Hoffmann, A. Angerer, F. Ortmeier, M. Vistein, and W. Reif,
“Hiding real-time: A new approach for the software development of
industrial robots,” in Proc. 2009 IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, St. Louis, USA, Oct. 2009.

[17] M. Güdemann, F. Ortmeier, and W. Reif, “Safety and dependability
analysis of self-adaptive systems,” in Proceedings of ISoLA 2006.
IEEE CS Press, 2006.

[18] L. Braubach and A. Pokahr, “Jadex BDI Agent System.” [Online].
Available: http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

[19] A. Hoffmann, F. Nafz, F. Ortmeier, A. Schierl, and W. Reif, “Proto-
typing plant control software with microsoft robotics studio,” in Third
International Workshop on Software Development and Integration in
Robotics. IEEE Intl. Conf. on Robotics and Automation, Pasadena,
USA, May 2008.

http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

	Introduction
	Challenges
	Controlling Emergence
	Adding Degrees of Freedom
	Requiring Software Flexibility

	Architecture
	Hardware
	Robot Control Layer
	Robot Programming Layer
	Organic Control Layer
	Organic Planning Layer

	Example
	Conclusion
	References

