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Abstract. Biomarkers are biochemical facets that can be used to measure differ-
ent aspects of a disease. In the last years, there has been much interest in biomark-
ers of different cancer variants for predicting future patterns of disease. However,
DNA Biomarker selection is a difficult task as it involves dealing with a special
type of datasets, microarrays, that consists of a large number of features with
small number of samples. This paper proposes a new approach for biomarkers
selection by means of an innovative parallel evolutionary algorithm that performs
wrapper feature selection from thousands of genes to achieve a small set of most
relevant ones. To test our method, the well known Van’t Veer dataset on Breast
Cancer [1] has been considered. Preliminary results outperform those reported by
Van’t Veer both in accuracy and the number of genes selected.

1 Introduction

Biomarkers are biochemical facets or features that can be used to measure different
aspects of a disease, like the risk to develop it, its progress or the effects of particu-
lar treatments. Disease markers can be studied at many molecular levels, ranged from
genomic, epigenomic, proteomics, cellular and morphologic, to genetic factors. These
factors predispose patients to the disease or indicate its occurrence. In particular, ge-
netic biomarkers are DNA subsequences that have biological significance, in terms of
disease evolution, drug tolerance or response to specific treatments.

There has been much interest in biomarkers of cancer variants in predicting future
patterns of disease, especially as cancer treatment has made such positive strides in the
last few years. The hope that prognosis and disease treatment could be predicted using
these information patterns pushes forward the research in this particular field.

During the last few years, early cancer diagnosis has been based on the concentra-
tion of serum antigens, like CEA (Carcinoembryonic antigen), in blood [2]. CEA and
other antigens are nonspecific for cancer and can be produced by normal organs as well.
Their application is restricted in use and no treatment is ever based solely on a CEA.
Usually, alterations above normal can spur further diagnostic testing to catch the disease
at an early stage. These serum biomarkers can be partially effective in preliminary di-
agnosis or, additionally, as a way of determining the adequacy of postoperative therapy
[3].



As an alternative to serum antigens, DNA biomarkers could provide predictive ca-
pabilities in the evaluation of the evolution of the disease and prognosis [4]. In addition,
and even more important, they could lead us to the development of effective treatments
using appropriate drugs and therapies.

DNA biomarker selection is difficult to perform. The machine learning analogy for
biomarkers selection is feature subset selection (FSS) on microrrays. Microarrays are
datasets with the problem of curse of dimensionality (large number of features with
small number of samples). FSS approaches are divided into wrapper and filter methods.
Wrapper methods provide better results but they have two major issues to be considered:
(i) a robust and coherent validation method should be applied to ensure quality and fair-
ness of the internal classifier, and (ii) the size of the search space grows exponentially
according to the number of features.

In this paper, a new approach is presented on biomarkers selection. This approach
is based on an innovative parallel evolutionary algorithm that performs wrapper feature
selection from thousands of genes to achieve a small set of most relevant ones, keep-
ing the best prediction quality. This new technique is a two-stage method (depicted on
figure 1). Preliminary feature filtering and data preprocessing is followed by the ac-
tual biomarkers selection using Multiple Offspring Sampling (MOS). This method has
been tested using the well known Van’t Veer dataset on Breast Cancer [1]. The selec-
tion obtained includes fewer genes than the ones reported by Van’t Veer getting better
prediction results.

Fig. 1. Overview of MOS applied to Biomarker Selection

2 Feature Subset Selection (FSS)

The FSS problem [5,6,7] deals with the search of the best subset of variables to train a
classifier. This is a very important issue in several areas of knowledge discovery such
as machine learning, optimization, pattern recognition and statistics. The goal behind
FSS is the appropriate selection of a relevant subset of features upon which to focus
the attention of a classification algorithm, while ignoring the rest. The FSS problem
is based on the fact that the inclusion of more variables in a training dataset does not
necessarily improve the performance of the model. We can distinguish two different
kinds of variables:

Irrelevant features. This variable has no relation with the target of the classifier.



Redundant features. There exist subsets of variables with variables whose informa-
tion can be deduced from other variables from that subset. The inclusion of all
variables within one of those sets will not improve the final model.

2.1 Classical Solutions

The literature describes several approaches to solve this problem. To achieve the best
possible performance with a particular learning algorithm on a particular training set, a
feature subset selection method should consider how the algorithm and the training set
interact. There are two alternatives to consider this interaction which have been called
filters or wrappers, respectively.

Filter methods [8,9] are mathematical expressions that evaluate each available fea-
ture. We can sort all features using this evaluation to obtain a ranking of features and
cut this rank when desired. Correlation between each feature and the target variable is a
classical example of a filter measure. Filter FSS is based on an estimation of the perfor-
mance of the algorithm (without its actual execution) based on statistical or information-
based relationships among the selected features, including the classification label.

Wrapper methods [7,10] use the induction algorithm itself to evaluate the perfor-
mance of each subset. We train the model with each candidate subset of features and
use any resulting quality measure to evaluate each candidate feature selection. In the
wrapper approach, FSS becomes an optimization problem for finding the best set of
features, using the induction algorithm as a black box.

Filter methods are, in practice, faster than wrapper ones and obtain good enough
results in some datasets. Wrapper methods potentially achieve better feature selections
but their computational cost is higher. There are two main aspects that deeply influ-
ence the computational cost of these techniques: (i) the optimization algorithm could
be more or less exhaustive. For example, forward selection, backward elimination, and
their stepwise variants can be viewed as simple hill-climbing techniques in the space of
feature subsets; (ii) the robustness of the validation method applied to evaluate the qual-
ity of the results obtained by each candidate selection. It includes the measure to use,
but also the validation schema (leave-one-out, cross-validation, bootstrap, . . . ). These
validation methods behave differently in terms of variance, bias, and complexity.

An accurate FSS technique based on wrapper approaches that combines both a pow-
erful search method and a robust validation approach is still a challenge, particularly in
high dimensional datasets. An appropriate alternative is using a hybrid approach. The
most common one is the use of a filter to reduce the number of features (features are
ranked based on their representativness and the worst are removed), and a wrapper to
perform the final selection. This represents a balance between the number of features
to make the wrapper technique reasonable in computational time and the number of
features included in the optimal subset selection.

2.2 Heuristic Wrapper Approaches

As it has been said before, wrapper methods use the final model as an internal evaluation
step for feature selection. The wrapper trains a model and uses the accuracy of the model



as the fitness value of the subset used for training. These methods need a search schema
that guides the generation and selection of subsets of features.

An exhaustive search generates and evaluates all possible subsets of features and so
the algorithm always finds the best subset. The main disadvantage of this approach is
its complexity. The application of this algorithm is unfeasible even with small-medium
size datasets.

Most common approaches are greedy algorithms due to its low computational cost
and good results in general. Four greedy approaches can be distinguished [11,12]:

Sequential Forward Selection. The search starts with an empty subset and adds the
best feature in each step until no improvement can be done.

Sequential Backward Elimination. This approach starts with all features selected and
deletes the worst one. The deletion of variables stops when no improvement can be
done.

Sequential Floating Forward Selection. The algorithm starts with an empty subset
and the best feature is added in each step (the same as SFS). After adding the
variables it tries to delete one of the previously selected ones (a backward step) if
this improves the current solution.

Sequential Floating Backward Elimination. It starts with all features and deletes the
worst. After deleting each variable, the algorithm tries to add one of the previously
discarded ones.

Genetic Algorithms [13,14] have been proposed as an alternative to FSS in regular
datasets. Although it is a more powerful explorative method, the results with standard
datasets are similar to the greedy alternatives. However, these algorithms may behave
differently with horizontal datasets (e.g. microarrays).

2.3 FSS applied to Microarray Analysis

The analysis of gene expression using microarray data has become popular in the past
few years. Microarrays are applied to a wide variety of problems in life and medical
sciences. An important issue is patients’ diagnosis for some specific disease. Because
of the cost and effort required to gather this information, microarray datasets have only
a low number of samples or observations (10-100). However, each sample has a large
number of numerical expression levels of genes (10000-30000). This extreme asym-
metry, referred as the “curse of dimensionality” [15], is the typical property of most
microarray datasets, and needs modified computational techniques to be analyzed.

An important task in classification is to reduce the high dimensionality feature
space, that is, for example, applying dimensionality reduction or feature subset selection
techniques.

Feature selection applied to microarray data has primarily been studied in a super-
vised learning context, where predictive accuracy is commonly used to evaluate feature
subsets. Specifically, (penalized or non-penalized) logistic regression algorithms were
used by [16,17]. Even new algorithms based on logistic regression (Recursive Feature
Elimination) were proposed [18] to obtain the best genes selection. Other supervised
methods have also been considered [19,1] for cancer diseases.



Considering both wrapper and filter feature selection, Inza and Larrañaga present a
comparison between both models in DNA microarray domains [20]. Different methods
using both models have been proposed [21,22,1] trying to exploit benefits from both
approaches with significative results.

3 Breast cancer dataset description

Van’t Veer dataset [1] on Breast Cancer 3 has been considered to validate our approach.
As we know, Van’t Veer researches were approved by FDA (Food and Drug Adminis-
tration) and were applied in a genetic test, named MammaPrint, that predicts whether
patients will suffer breast cancer relapse or not.

Data is divided into two groups, learning and validation instances. The training data
consists of 78 patients, 34 of which are patients that developed distance metastases
within 5 years (poor prognosis). The rest of the dataset (44 patients) are the ones who
remained healthy from the disease after their initial diagnosis for an interval of 5 years
(good prognosis). The second group of patients (validation dataset) consists of 19 pa-
tients, 12 patients with poor prognosis and 7 with good prognosis.

DNA microarray analysis was used to determine the mRNA expression levels of
approximately 24500 genes for each patient. All the tumours were hybridized against a
reference pool made by pooling equal amounts of RNA from each patient.

3.1 Preprocessing

Obviously, the original data contains many redundancies and also incorrect or missing
values, depending on some factors. So, as a first step, certain preprocessing was per-
formed in order to clean up and prepare the data. Variables with low internal variance
or low correlation with outcome were also discarded.

Several preprocessing algorithms have been carried out through the training data.
Firstly, replicated genes are discarded. Next, patients with more than 80% of missing
gene values are also discarded. All data have been background corrected, normalized
and log-transformed using Lowess Normalization [23]. Missing values were estimated
using a 15-weighted nearest neighbours algorithm [24] (kNN Impute).

3.2 Preliminary Filtering

Filter scoring tries to identify genes that are differentially expressed in the categories
of the problem. The first step of the filter procedure is to rank the features in terms of
the values of the used univariate scoring metric. In a second step, the d features with
the highest scoring metric are chosen to induce the LR model. For this contribution,
Pearson measure has been selected.

r (j) =
∑N

i=1 (xij − xj) · (yi − y)
(n − 1) · sj · sy

(1)

3 available at http://www.rii.com/publications/2002/vantveer.html



where xi is the mean value, sj is the standard deviation of expression levels, and yi

and y are the class value and class mean respectively.
Next, a ranking list ordered by Pearson correlation is generated. With this list, a

group of 1000 best genes has been selected. A large number of pre-candidate genes has
been selected to provide enough alternatives to the wrapper search in the second stage.
As mentioned before, this means that the search space in the wrapper method is large
and potentially very complex. The proposed wrapper method to select biomarkers from
a 1000 candidate genes is based on an innovative evolutionary technique that allows
optimal values to be found on complex and large search spaces.

4 MOS: Multiple Offspring Sampling

Multiple Offspring Sampling is introduced as a variant of classic population-based evo-
lutionary algorithms. This new approach proposes the simultaneous use of different
techniques (a proper definition of technique in the context of MOS will be given in
subsection 4.2) to create new individuals (candidate solutions).

To show how MOS modifies the behaviour of classic Evolutionary Algorithms (EA),
we should first present a general schema of EA functioning, which will be given in the
next subsection. Afterwards, Multiple Offspring Sampling will be presented.

4.1 Evolutionary Algorithms

Evolutionary algorithms (like Genetic Algorithms (GAs)), in a general schema, are di-
vided into different phases:

À Creation of the initial population P0.
Á Evaluation of the initial population P0.
Â Checking of the algorithm termination (convergence or generation limit), if so then

finish, otherwise continue.
Ã Generation, using some individuals from Pi, of new individuals for the next gener-

ation, called offspring population Oi.
Ä Evaluation of the new individuals in Oi.
Å Combination of offspring and previous population to define the next population

Pi+1.
Æ Go back to Â.

Based on this schema, different evolutionary algorithms and approaches have been
developed. For example, in step Å classical GAs take the offspring as the next popula-
tion (Pi+1 = Oi). Other approaches, like steady state algorithms generate only one off-
spring individual that replaces the worst individual in Pi, and intermediate approaches,
based on elitism, take the best individuals from both Oi and Pi to generate Pi+1.

In step Ã, there have been also many different approaches in the literature. Some ex-
amples are based on selecting different genetic operators, or using statistical approaches
for modelling the population and later sampling the offspring (e.g. estimation of distri-
bution algorithms by [25]).



4.2 Multiple Offspring Basics

We introduce Multiple Offspring Sampling (MOS) approach as a combined alternative
in the way steps Ã and Å are performed. MOS proposes the definition of multiple
mechanisms to generate new individuals, and make them compete during the evolution
process. Each mechanism creates its own offspring O

(j)
i (i is the generation and j is the

mechanism).
These MOS mechanisms, or techniques, as they are named at the beginning of sec-

tion 4, could be defined as a mechanism to create new individuals, i.e., (a) a particular
evolutionary algorithm model, (b) with an appropriate coding, (c) using specific opera-
tors (if required) and (d) configured with its necessary parameters.

According to the above definition we can consider different parameters and thus
divide MOS into several categories. A rough taxonomy of how MOS can be divided
could be:

– Algorithm-based MOS: different algorithms (GAs, EDAs) are used to create new
individuals.

– Coding-based MOS: different codings (genotypes) can be used to represent one
candidate solution (phenotype) of the problem.

– Operator-based MOS: for a single coding of candidate solutions there could exist
different genetic operators (if working with GAs) that could be used simultane-
ously.

– Parameter-based MOS: different values for evolutionary parameters (crossover and
mutation ratios, selection mechanisms, etc.) are used within each technique.

– Hybrid MOS: a combination of any of the previous.

In the particular case of the experimentation performed for this study, two different
genotype encodings are considered.

As a solution, the phenotype, can participate in multiple genotype recombinations, a
group of functions is required to transform genotypes between two different encodings.

Once the offspring population is created by each of the techniques being used, the
quality of these populations is evaluated by means of several possible measures. The
most obvious of these measures is the average fitness of the population, but more so-
phisticated measures could be proposed to take into account not only the current per-
formance of the technique but its capability.

Finally, in phase Å, previous population Pi and all the offsprings O
(j)
i are merged

to produce the next population Pi+1. This process is usually done by using an elitist
population merge function.

The calculation of the amount of new individuals created in each generation, for n
different offspring sampling methods, is obtained using a Participation Function (PF).
Different functions have been proposed in other scenarios by [26], where the first ap-
proach to Algorithm-MOS was introduced under the combination of two different Evo-
lutionary Algorithms: GAs and EDAs. From these functions, a dynamic one was se-
lected for being used in our studies. This function dynamically adjusts the participation
of each technique according to the quality of the offspring populations calculated be-
fore.



4.3 MOS for Biomarker Selection

Previous subsections have introduced MOS as an innovative parallel genetic algorithm
that is able to exploit the benefits of using different techniques to produce a new off-
spring based on current population. In the case of this study, two different codings were
used.

First coding is simply a binary vector of length the number of features in the learning
dataset. Each of these binary values tells if that feature will or will not be selected by
the algorithm.

Second coding is a condensed version of the first one, consisting of a vector of
integer numbers where each number represents a gene being selected by the algorithm.
This messy coding was firstly introduced by [27] and since then reliably applied to a
wide range of optimization problems [28,29].

These two codings coexist all along the evolutionary process, each of them taking
more participation in different phases of the execution of the genetic algorithm and
helping the GA to outperform itself when using just a single genetic representation
(coding).

Fig. 2. A detailed view of MOS applied to Biomarker Selection

5 Experimentation scenario, results and discussion

This section provides an overview of the whole process followed in this research along
with the results obtained and a discussion about these results.

Figure 4.3 clearly depicts the followed process:



À Firstly, a preprocessing phase is performed to select the best 1000 genes consider-
ing their position in a ranked list ordered by Pearson correlation, as explained in
section 3.2.

Á Then, a MOS algorithm is executed to select most relevant genes from these 1000
genes previously selected. MOS will evaluate each generated individual with a
bootstrap (200 iterations) using a KNN algorithm, trying to optimize a fitness "mea-
sure", the AUC in this experimentation, as it has empirically demonstrated to be-
have quite well for this problem. For KNN, two different distance measures have
been considered: traditional Euclidean distance and Chebyshev distance. First one
has been selected because it has been widely used in previous works and that lets
us to fairly compare our approach with others. Second one has been used due to
its capability to penalize selections of genes with large distance among only few of
them (even between just two of them), a characteristic we wanted to exploit in our
experiments.

Â Finally, an external validation process is performed considering only selecting genes
to learn a KNN algorithm and a validation dataset different from that used to learn
and not seen by the algorithm until now.

The experiments were executed on a 13 dual Xeon cluster at 2.40 GHz, using a
parallel asynchronous genetic algorithm implemented in GAEDALib coded by [30]
with the configuration described in table 1(b).

Table 1. Experimental scenario

(a) GA configuration

(Global) Pop. size 390

Termination Pop. convergence
Convergence % 98 %

Individuals selection Roulette wheel
Crossover % 90 %
Mutation % 1 %

(b) Parallel configuration

Paradigm islands model
Model asynchronous

Topology mesh
Migration rate 10 gens.
Migration pop. Top 20 %

Nodes 26

Table 2 summarizes the results obtained in this experimentation. Fourteen different
configurations were tested. For each of the two distance measures considered, seven
different fitness functions were tested. First function only tried to maximize the AUC,
regardless of the number of selected genes. With such a great degree of freedom the al-
gorithm tends to select a huge number of genes. For this reason, a new fitness function
was introduced (see equation 2) that tries to avoid this problem. This fitness function
tries to lower the number of variables as much as possible but not more than the pivot
value that acts as a center of gravity for the number of variables. Then, six new config-
urations were executed, with the only difference being in the pivot value.

fitness = AUC ∗ 1
abs(#genes − pivot) + 1

(2)



Results, in general, outperform those of Van’t Veer both in prediction accuracy and
smaller number of genes selected. Best results are achieved with Chebyshev distance
and the penalized fitness function with pivot equal to 40, although there are not great
differences among all the configurations with penalized fitness function regardless of
the distance measure used. This makes us think that the optimal number of genes must
be within this range ([20, 60]).

Table 2 presents the average results of ten executions for each configuration. Sev-
eral executions of the algorithm (with different configurations) returned a selection of
genes with an impressive 94% of accuracy in external validation and with just 20 genes
selected in the best case.

From table 2 we can also observe that there exists a strong correlation between the
optimization measure (AUC) and the validation measure (accuracy) (0.92 for Pearson
correlation). This property is quite desirable for an optimization measure when training
an algorithm that will be validated with unknown data.

Finally, the penalizing method appears to be very restrictive and makes the algo-
rithm to adjust perfectly to the selected value of pivot. This behaviour must be studied
and some modifications may be introduced to allow a certain level of flexibility for the
number of features selected.

Table 2. Summary of results: all reported values are the average of ten executions

AUC Accuracy Size
Chebyshev Distance - Not Penalized 0.75 0.79 317.70

Chebyshev Distance - Penalized (centered on 0) 0.60 0.71 2.45
Chebyshev Distance - Penalized (centered on 20) 0.76 0.81 20.00
Chebyshev Distance - Penalized (centered on 30) 0.73 0.79 30.00
Chebyshev Distance - Penalized (centered on 40) 0.76 0.84 40.00
Chebyshev Distance - Penalized (centered on 50) 0.75 0.81 50.00
Chebyshev Distance - Penalized (centered on 60) 0.75 0.81 60.00

Euclidean Distance - Not Penalized 0.74 0.77 131.25
Euclidean Distance - Penalized (centered on 0) 0.66 0.73 2.35

Euclidean Distance - Penalized (centered on 20) 0.76 0.80 20.00
Euclidean Distance - Penalized (centered on 30) 0.75 0.82 30.00
Euclidean Distance - Penalized (centered on 40) 0.75 0.81 40.00
Euclidean Distance - Penalized (centered on 50) 0.80 0.82 50.00
Euclidean Distance - Penalized (centered on 60) 0.76 0.81 60.00

6 Conclusions and future work

This paper introduces an innovative and robust method to perform FSS on large mi-
croarray data sets (1000 features or more).

It also presents a validation mechanism that consists of: (i) an internal validation
process to avoid overfitting to learning data (bootstrap with 200 iterations in this ex-



perimentation) and (ii) an external validation to evaluate the quality of the selection of
genes.

Results demonstrate the effectiveness of this method, with an average accuracy of
84% in the best configuration, and several selections of genes with an accuracy of 94%.
The number of genes selected is also fewer than those reported by Van’t Veer, which
makes this approach outperform previous works both in accuracy and selections of
genes’ size.

Future works will include analysis of the relations among different selections of
genes with similar performance and a study of the behaviour of the algorithm when
learning with measures others than AUC.
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