Development and Evaluation of
Tool Support for Retrospective Analysis in
Requirements Engineering

Master Thesis at

Department of Communication Systems
Software Engineering Research Group
Lund Institute of Technology

Lund University

Mikael Jonsson
Per Klingnas

Supervisors
Lena Karlsson
Bjorn Regnell

Abstract

Release planning is an essential part of the development process in
market driven software development. To obtain a successful release plan
for a specific software system, prioritizations must be done to decide
which requirements shall be implemented in each release. The
prioritization is typically done after criteria as expected customer value
and estimated cost of implementation. The outcome of the
prioritizations does not always correspond to the true outcome, which
can relatively easy be measured when the software has been
implemented and available on the market for some time. To improve the
release planning process, the sources of these inaccurate prioritizations
can be identified, by using retrospective analysis, and hopefully
adjusted. One such type of retrospective analysis is the PARSEQ
method, developed at the Department of Telecommunication Systems at
Lund University. The PARSEQ method is divided into four steps where
each step in some extent can be supported by a tool, but the method as a
whole lacks this possibility. Because of the inexistence of such a tool,
the process is considered impractical and time-consuming and therefore
hard to test and evaluate in real development processes.

The purpose of this thesis was to develop a tool that supports all four
steps of the PARSEQ method. The tool should then be evaluated to
examine if it is appropriate for the PARSEQ method and fully supports
all steps.

The result of the development work is a program written in Java in
size of about 10.000 lines of code. All four steps of the PARSEQ
process are supported, including three different kinds of prioritization
methods. Requirements can be imported to and exported from the
program to allow an interface with possibly already existing
requirement management tools in the development process. An
evaluation of the project’s development process was done using the
PARSEQ method with the tool. This evaluation gave some minor
improvement suggestions concerning the project’s requirement
management but no serious errors were found.

The evaluation of the program was done during a user evaluation
with users very familiar with the PARSEQ method. The outcome of this
evaluation was on the whole positive. Some parts of the process were
found less time-consuming and more flexible than without the tool.
Other parts were considered to be in need of some further program
development to achieve an even better support for the method.

Acknowledgements

We would like to thank our supervisors Bjorn Regnell and Lena
Karlsson, at the Department of Telecommunication Systems at Lund
University in Sweden, for the opportunity to do this thesis. Particularly,
we would like to thank Lena for all her support, throughout the project,
in everything from answering questions and helping us gather
information to being a constant source of feedback on both the
development of the tool and this report.

Contents

1

2

3

INTRODUCTION. ..ottt e 1
11 BACKGROUNDc.uiitieiiieiiesiie st siee et sbe ettt ssbestaesteesbeesbeesteaeesneesnes 1
1.2 OBUJIECTIVES .tiitieitte ittt sttt ettt ettt be e nbe et e sbesse e sneenbeanbeannean 2
1.3 LIMITATIONS ...ttt ettt ettt ettt sbe b sbe e bt e nbe et e esbesbeesbeeneeas 2
14 OUTLINE OF THE REPORT ...vttttteesteesteenteastesssasiessiessteestesssessssssnesssessesssesnsenns 2

SOFTWARE ENGINEERINGccooviiiiiieet e 5
2.1 SOFTWARE PROCESS. ...cuttiueesueesteesteesreaseassesssesseesseesnesssesssssnssssessnesssesssesnsenns 5
2.2 SOFTWARE PROCESS MODELScveiuietieiitestesresiesieeseeeesne e sne s s sseseenneneens 6

221 Waterfall MOdelccovviiiiiiiii e 7

2.2.2 Evolutionary developmentcccvevevereresese e 7

223 SPIrAl MOEL.....coiviiiiiiiice e 8

REQUIREMENTS ENGINEERINGcooviiiiiiieiie et 11
3.1 REQUIREMENTSttiitteeittiesteesiteesteesite e stesssae e sntaesnbe e sntaesnneesteesnaeeannaesnnees 11
3.2 REQUIREMENTS SPECIFICATION ...uvvviiiieeeiiiiiiriieeeessssissienssesssessssrsnssesssens 12

3.2.1 Good requirements SPECIfiCAtioNccccoeiireiicii e 12
3.3 REQUIREMENTS ENGINEERING PROCESSESuvvviiiiieiiiiiiriieieeessssiivsniseeeeenns 14

3.3.1 Feasibility StUAIESc.cceiiieiice e 15

3.3.2 Requirements elicitation and analysisccocevevenieiienesiesciesesenn, 15

3.3.3 Requirements validationccccccoeviiiiieninieieeie e 16

3.3.4 Requirements Management........ccceoerereresesiesieeieseese e e seseeeeseenees 16
3.4 RELEASE PLANNINGviutttestistesieette et sre st nnesn et sne s nnenes 16

3.4.1 Market-driven release planning.........cccocoevvivviviieeieneniese s 17
35 REQUIREMENTS PRIORITIZATION....cecitvieiieesieesieesreesreessneesseesnnesasenesnnees 17

351 Planning game........ccoiiiiriiiiii e 17

3.5.2 Pair-wise COMPAIiSONScoiirviiiirieieiirieeie st 18

3.5.3 Incomplete Pair-wise COMPAriSONS.........ccceiireieeiiereeniesiesieeeseeee e 18

3.5.4 The analytic hierarchy proCess..........cccooieiirienieienene e 19

355 BLOO-TESE coeveieiiieeieieeie et 20

RETROSPECTIVE ANALYSIS ..ot 23
4.1 RETROSPECTIVES IN PRACTICE ...c.vviiieieeieeie s siee s sneesre e snne e nneeneeas 23
4.2 THE PARSEQ METHOD0iiiitieiiieiieesteeseeesteesteesnvessnneesnveesnneesnnessnseesnns 24

4.2.1 Requirements SAMPIING.......ccccvererererieniesiesieeee e 25

4.2.2 Re-estimation of priority Criteria........cc.ccocvevvevererieiieninsie e 25

4.2.3 ROOL-CAUSE ANAIYSIScvviviiiiiiiiieiitsie e 26

4.2.4 Elicitations of improvementsccocoovireniiinienninenecse e 26

METHOD ...ttt sttt st 29
5.1 IMPLEMENTATIONcutitiestiesteestee et ee st sttt e bt et esbe s e i e sbeesbeenee e e snneenes 29

5.1.1 Requirements eNgiNEEIINGccccueuererereiereeieie e 30

5.1.2 Configuration Managementccccoererereneneeiienese e 31

5.1.3 Graphical uUser interface...........cccceveiiiiiiie i 31

TN O S 11 11 o PSSR 32
5.2 EVALUATION ..ottt r e nnes 33

52.1 User evaluation of RAINDOWIEccccvriiiiiiiiiiiieescees 33

5.2.2 PARSEQ evaluation of the Rainbowie implementation..............c......... 33

5.2.3 Comparison between Rainbowie and Focal Point.............cc.cccevervennnen. 34

6

10
11
12

L] U I I T 37
6.1 RESULTS FROM THE IMPLEMENTATION ... uutttiiieieiiiiiiiriieeeeesseisrreensessssssnnnns 37
6.1.1 Implemented functionality...........cccoerriiieniiiiiee e 37
6.1.2 KNOWN lIMITAtIONScoiveiiciiiiceie et 43
6.1.3 UNMEet reqUIrEMENTS......ccveiieitiiecieeieice sttt 43
6.1.4 SOftware arChiteCtUIE........ccocuvieiiiiii et 44
6.2 RESULTS FROM THE EVALUATION. ...eeiiiittiieeetieeeereee e s etreeeseteeeesvaeesssnveeeeas 47
6.2.1 User evaluation of RAINDOWIE..........cceevveiiiiiiiiis e 47
6.2.2 PARSEQ evaluation of the Rainbowie implementation 47
6.2.3 Comparison between Rainbowie and Focal Point............c..ccccevvennnnn. 49
ANALYSIS ettt e s st s e e s srr e areas 61
7.1 USER EVALUATION OF RAINBOWIE........ciccitiiieieiiiiiitiie e siivrieee e sinenns 61
7.2 PARSEQ EVALUATION OF THE IMPLEMENTATIONvvoviveeiivienieesiveesneens 61
7.3 COMPARISON WITH FOCAL POINT L.uvtiiiiiiiiiiiiiiie ettt 62
7.3.1 The pair-wise comparison method as a whole...............ccocoevvvveienenn, 62
7.3.2 Effects of the modification of the IPC algorithmcccoevvevennenn. 62
7.3.3 Accepted inaccuracy in industrial applications.............ccocceevevveiiennenn. 63
DISCUSSION ...ttt ettt st e st e st e s st e e st e e s aae s st e s saaeesanas 65
8.1 GENERAL REFLECTIONS OVER THE PROJECT ...uvviieieiiieeecreee e s erveeeeevee e 65
8.2 SUGGESTIONS FROM THE USER EVALUATIONccciiiiieeiieeeesctreeeeeree e e e 65
8.3 SUGGESTIONS FROM THE FOCAL POINT COMPARISONcccovuveeeeereeeennnen. 67
CONCLUSIONS ...ttt et e s b e s s s s s raeesbae e 69
REFERENGCES. ...ttt sttt sttt 71
LIST OF FIGURES AND TABLES ...t 75
F AN d o 1 N1 5] R 79
APPENDIX A — TECHNICAL TERMS AND ABBREVIATIONS ...ovvviieieiiiiiiiiieeee s siivsneenas 79
APPENDIX B — DETAILED SOFTWARE ARCHITECTUREccvvviiieeeiiiiiiriiee e siinnneenns 83
The rainbOWIe PACKAGEcoveiviiiiiicece e 83
The IMPOItEr PACKAGEcvevecieiie sttt st 85
The Prioritizer PACKAQGEcovvvereieeeeee et 86
The analyzer PACKAQE.c.civrereiiee e 91
The gui and gui.prio PACKAGEScoviiriiiirieere e 94
THe UL PACKAGEcveeeieiecc e 99
APPENDIX C — REQUIREMENTS SPECIFICATION......eciivieiieesiriesneestreesneessneesneessneens 103
APPENDIX D —USER GUIDEuvtiiiiiiiiiiiiiiiiie e seiitiee e s s sabbaas e s s sabbasas e s e s s s sasnnnns 113

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

1 - Introduction

1 Introduction

This report is a part of the result of a Master Thesis done by two Master
of Science students at the Department of Telecommunication Systems at
Lund University in Sweden. The work was done over a period of 20
working weeks during the spring semester in 2005 and corresponds to 2
times 20 credits.

At the time of this thesis, the authors were both studying at the
Computer Science and Engineering program with software systems as
area of specialisation. The authors also have similar interests in the
development process and requirements engineering field.

1.1 Background

In market driven software development, release planning is an essential
part of the development process. Software is almost all the time
produced and delivered in several releases, each one with some changes
and improvements made since the last release. For each release, a
selection of which functionality and features that shall be implemented,
expressed as requirements in the requirement specification, must be
done. The decisions made during release planning do not always turn
out to be the most appropriate after the release has been on the market
for some time. Features considered to be very essential during the early
decision phase might for example be rated as unnecessary when the
customers have used the product. By understanding the inappropriate
decisions and why they were made, it is possible to identify potential
improvements to the release planning process.

One method of understanding how inappropriate release planning
decisions are made is the retrospective analysis. The core of a
retrospective analysis is to, by evaluating earlier work, gain knowledge
from the past in order to improve the process in the future. At the
Department of Telecommunication Systems at Lund University, a
retrospective analysis method called PARSEQ (Post-Release Analysis
of Requirements SElection Quality) has been developed. The method
consists of four main steps described in detail in this report. When a
PARSEQ evaluation is performed today, each step can individually be
supported by various tools, but there exist no tool that supports the
process as a whole. The lack of such a tool makes the PARSEQ process
in practice impractical and time-consuming. This inconvenience means
that the process is hard to test and use in real development processes. To
make PARSEQ faster and easier to use, a computer-based tool is
therefore needed.

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

1.2 Objectives

The goal of the thesis is, from a given requirements specification, to
develop and evaluate a tool for retrospective analysis of requirements.
The developed tool shall give support for all the four steps in the
PARSEQ method: Requirements sampling, re-estimation of value and
cost, root cause analysis and elicitation of improvements.

1.3 Limitations

The tool that was to be developed would have many similarities to other
requirements engineering tools, but its purpose is not to store and
manage large amounts of requirements.

There is a line between the PARSEQ method and the objective of
this thesis. The purpose of this thesis was not to evaluate the PARSEQ
method, but to build and evaluate the tool for it.

1.4 Outline of the report

After this first section, three sections follow that cover software
engineering theories relevant to this thesis. In section 2 Software
engineering, a summary of general software engineering concepts is
done. The intention of this is to give the reader a broad picture of the
area of software development in general. In the next section, 3
Requirements engineering, a more detailed description of requirements
engineering is done to describe the part of the software engineering that
IS most relevant in this thesis. Finally in section 4 Retrospective
analysis, the group of specific process improvement methods in general
and the PARSEQ method in particular that is the ground for this work
are described.

In section 5 Method, the implementation and evaluation methods
used during the work is described. This chapter is followed by the
results from the implementation and evaluation in section 6 Results. In
section 7 Analysis, an analysis of the results achieved is done. A
discussion concerning the result of the work and proposed future further
development of the tool can be found in section 8 Discussion.

In section 9 Conclusions, the conclusions drawn from the work are
presented.

In section 10 References and 11 List of figures and tables, the
references used during the work can be found, together with a list of
figures and tables.

In the last section of the report, 12 Appendix, additional information
and documents concerning the work is located.

1 - Introduction

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

2 - Software engineering

2 Software engineering

According to Sommerville [1] software engineering is:

“...an engineering discipline which is concerned with all aspects of
software production from the early stages of system specification
through to maintaining the system after it has gone into use”

By referring to all aspects of software Sommerville means that software
engineering not only concerns the technical processes involved in
software development. Other important areas included can for instance
be project management and development of tools and theories. In other
words, software engineering is the engineering approach to all the
activities and processes present during software development.

2.1 Software process

A specific set of these activities constitutes what is called a software
process. Sommerville [1] defines the software process as a set of four
specific, fundamental process activities.

1. Software specification is the activity where the functionality of
the software itself and the constraints of its operation shall be
stated.

2. During the software development the software that meets the
demands in the specification is produced.

3. When the software has been produced a software validation has
to be done to ensure that the demands have been fulfilled.

4. Due to changing customer demands a software evaluation must
be done to meet new needs.

All these activities are in one way or another present in every software
development project. A big difference in organizing the activities exists
and also different levels of detail are used when describing the activities.
One project’s way of organizing the activities might be unique while
some other ways might be widely spread, depending on how suitable it
is to adapt that particular way of organizing to a specific project. Also
parameters as timing of the activities as well as results and outcomes
from each activity might differ from project to project. Sommerville [1]
point out that if an inappropriate process is used, a probable reduction of
quality and usefulness of the software project will be introduced.

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

2.2 Software process models

Some processes have been proved to be more suitable than others for
some types of projects. In order to make it easier to use these specific
types of processes, models are created. A software process model is
therefore a simplified description, an abstraction, of a specific software
process [1]. In addition to the fundamental activities mentioned above, a
model can include other important components of the software
development. An example of such an important component can be the
roles of people involved in the project.

According to Sommerville [1] the type of models can vary
depending on their focus. Some models are described on the basis of the
flow of work throughout the process. In this case the activities in the
model are represented by actions taken by humans. In other models the
activities are represented by data-flow and a bigger focus is on how
input is transformed during the process into output. A third kind of
viewpoint is to focus on the actors’ different roles in the project and the
activities for which they are responsible. The choice of model type and
what to focus on might differ from time to time according to the specific
nature of the current project.

Software process models of today can be categorized into different
generic groups [1]. Each of these groups represent one approach to
developing software. The groups can be seen as paradigms for a process
from a particular perspective of today’s software development.

1. The waterfall approach represents a model where each activity
is completed before the next one can start. A waterfall with no
option to go back separates the steps from each other.

2. In evolutionary development the idea is to let a rapidly
developed initial system grow by continuous customer input.
This means that the main activities of the process must be
interleaved and repeated in relatively short iterations.

3. In a formal transformation model the objective is to convert a
formal mathematical system specification into a program by
using mathematical methods. If the transformation is succeeded,
it can be proven that the developed program meets its
specification requirements.

4. Another general model take for granted that parts of the system
already exists. By integrating these parts it is possible to do a
system assembly from reusable components.

Besides these generic groups of process models, other types of models
have been developed. An example of one such type of model is hybrids
of two or more of the groups presented above.

2 - Software engineering

To create a greater understanding of the main parts of and
differences between various kinds of models, a few of them will be
presented and illustrated more in detail. First the most fundamental and
earliest process model, the waterfall model, will be presented to create
an understanding of the origin of process modelling. The next model to
be presented is the one that best describes the software process in this
project, the evolutionary development model. Finally an example of a
hybrid model will be given to show how the process model evolution
has resulted in some of today’s most commonly used models.

2.2.1 Waterfall model

The simplest way to model a software process is to consider the
fundamental activities as independent steps in a one-way proceeding
process. This is exactly what is done in the waterfall model. This model
assumes that one activity in the process must be fulfilled before an
irreversible step can be taken to the next activity. To form a process
after this model is very inconvenient. Problems and mistakes discovered
during a late phase of the project can be hard to deal with due to the lack
of possibility to go back and modify. According to Lauesen [2] the
whole idea of strict phases of the waterfall model is wrong. Lauesen
means that the model only represents an ideal and that real projects
cannot be carried out this way. This means in practice when the
waterfall model is used, the stages will have to overlap each other to
make information feedback possible [1].

Specification

Development

Validation

Figure 1 The Waterfall model

2.2.2 Evolutionary development

The base of evolutionary development is to early in the process create
an initial prototype implementation. By exposing this prototype to the
customer, the system will be developed by adjusting and adding features
due to the comments collected [1]. This procedure then repeats

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

throughout the project time and the result is a continuous evaluation of
the system. Doing specification, development and validation
sequentially as in the waterfall model is not possible in this method.
Instead these activities must be carried out in parallel and with instant
feedback and updates between each other.

The main advantages of the evolutionary development lie in the
possibilities to develop the specification of the customer requests
incrementally. By doing this throughout the whole process, a system
that meets the immediate needs of the customer can be created. Another
advantage within the same domain is that the user develops a better
understanding of their problem, which can be directly reflected in the
outcome of the project [1].

In contrast to the advantages mentioned above, especially three
problems have been identified in the model [1].

1. The lack of visibility is a problem for the project manager. To
measure the progress of the project the manager needs regular
deliverables. This can be hard to produce in an evolutionary
development. To produce documentation of every version of the
system is very cost-inefficient.

2. The nature of continual change in this model tends to create a
poor software structure.

3. Sometimes, special tools and techniques may be required to
allow rapid development. The lack of compatibility with other
programs and techniques together with possible skill needs to
use these programs and techniques may be a problem.

Sommerville [1] do point out that the evolutionary development might
be the best way to carry out projects of small to medium-sized systems.
In development of larger systems, the problems might be too great and
other models are more suitable.

2.2.3 Spiral model

When developing a large system, one single software process model
might not be enough to cover all the different parts of the system. The
approach used to develop one specific part of the system might not work
at all in another part. For this purpose, hybrid models containing
essential parts from a range of models have been developed. One such
model, referred to as the spiral model, was originally proposed by
Boehm [3]. Instead of describing the development process as a sequence
of activities, Boehm uses a spiral where each loop represents a phase in
the process. These phases are not fixed activities and may therefore be
defined in the way the project needs. Each phase do however have a
fixed internal structure that consists of four sectors [1].

2 - Software engineering

1. Initially the objectives for that phase are defined. Constraints are
spotted and a detailed management plan is drawn up. Risks are
identified and due to the outcome of this identification,
alternative strategies may be planned.

2. For each of the risks found in the prior sector, a detailed analysis
is carried out. After that, measures are taken to reduce the risk.

3. In the next sector, a development model for the system is chosen
based on the risk evaluation. Depending on the characteristics of
the identified risks, the most suitable development model is
chosen for the forthcoming parts of the project. This model can
for example be a traditional evolutionary model or the waterfall
model.

4. The last sector in each phase contains planning for the rest of the
project. A decision of whether to continue with a further loop is
made in this sector. If so is decided, plans are drawn for the next
phase in the project.

The most important difference between the spiral model and other
software models is the consideration of risk. Because risk often causes
project problems such as time and cost overruns, risk minimisation is an
important task in project management. This is the reason to why the
spiral model considers risk identification as such an important part of
the process [1].

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

10

3 - Requirements engineering

3 Requirements engineering

One of the main issues in today’s software development is the
requirements engineering process. Sommerville [1] describes
requirements engineering as the process of finding, analysing,
documenting and checking the requirements of a system. Requirements
engineering also includes the processes of maintaining and updating
these requirements.

3.1 Requirements

The requirements of a system are the description of its services and
constraints, in other words, the requirements describe what the system
should and should not do. It is often difficult for the engineers to
formulate the demands on a system into good requirements, because the
problems to be solved by the system are often very complex and it can
also be hard to understand the nature of the problem.

The requirements (demands) come from wusers and other
stakeholders [2]. A stakeholder can be defined as anyone who has some
kind of indirect or direct influence on the system and anyone that will be
affected by the system, such as: the users, the developers, the users’ and
developers’ companies, sponsors, customers, authorities, etc.

Sommerville [1] divides requirements into three description levels:

1. User requirements are high-level abstract requirements in
natural language and diagrams that describe what services the
system should provide and under which constraints the system
must operate.

2. System requirements are detailed descriptions of services and
constraints.

3. Software design specification adds more detail to the system
requirements and is used to bridge the requirements engineering
and design activities.

Requirements are also often classified as being either functional, non-
functional or domain requirements [1].

Functional requirements define what the system should and should
not do, how the system should react to certain input and what services it
should provide.

Non-functional requirements describe the limitations on the
functionality and services of the system. They can, for example, be
timing-constraints and standards.

11

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Domain requirements come from the system’s application domain,
and can be both functional and non-functional. They can, for example,
describe limitations or features needed on the system due to the
environment it should operate in.

3.2 Requirements specification

The document containing the requirements is called the requirements
specification. The presence of the requirements specification is obvious
throughout the whole development process [2]. In the early stages the
requirements specification is a vital piece of the system analysis and
often a part of the contract between customer and developer. Later on,
the specification is an important input to the design phase and its
extension, the implementation of the project. During test and evaluation
stages the requirements specification plays an important role in
forwards- and backwards-tracing between demands, requirements and
program features. In all, the requirements engineering and its key object,
the requirements specification, are present and significant to project
outcome during the whole process progress.

3.2.1 Good requirements specification
According to the IEEE Standard 830-1998 [24] a good requirements

specification should be:

Correct

Unambiguous

Complete

Consistent

Ranked for importance and/or stability
Verifiable

Modifiable

Traceable

© N o g~ w0 D

These characteristics are summarized and commented by Lauesen [2]:

Correct

Correctness is achieved when all the requirements are correct, in other
words when it reflects a customer need or expectation. A typical
example of how incorrect requirements are produced is when the analyst
misunderstands the customer’s needs.

12

3 - Requirements engineering

Unambiguous

When all parties agree on what each requirement means, the
specification is unambiguous. To help ensure unambiguity, formal
specifications (for example math notations) may be used.

This is, however, only a problem if the developer believes he
understands what the customer wants, when in fact the customer wants
something else. If the developer should find a requirement ambiguous
he will ask the customer for a clarification and the problem will never
arise.

Complete

Completeness means that all the customer’s expectations are covered.
However, in practice it is unrealistic to include every single requirement
since many requirements are too trivial to be worth specifying. If every
single requirement was specified and included, the specification would
be so long that it would lose understandability. Instead it is important to
make sure that all non-trivial requirements are specified and to ensure
that all business goals and critical issues are covered.

Consistent

By consistency it is meant that there should not be any conflicting
requirements or groups of requirements. An example of inconsistency is
if there is one requirement stating that a warning should be yellow and
another requirement stating that it should be red.

To avoid inconsistency it is recommended that things are stated in
one place only, and references are made from other places as needed.
However, since this might make the specification more difficult to read
a short version of the requirement together with the reference is better.

Ranked for importance and stability
All requirements are not equally important and some will change more
often than others. Each requirement should have a priority as well as an
expected change frequency.

The reason for setting the expected change frequency is to help the
developer identify functions that should be easy to modify, so that he
can pay special attention to these functions when designing them.

Verifiable
A requirement is verifiable if it is possible, within economically limits,
to check that the product meets it.

Verifiability is important throughout the development process as
well as in the finished product. It may be very costly to deal with an
unmet requirement when the product is supposed to be finished. Further
are the courts good at deciding whether or not a requirement has been
met and this may also become costly.

13

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Modifiable

Specifications that are easy to change and that maintains consistency
when changed are modifiable. There are several ways to help ensure
modifiability: the requirements should be numbered, a consistent
terminology should be used, there should be an index and requirements
should refer to each other rather than be repeated.

Traceable

Traceability is defined as having requirements that are both backwards-
and forwards-traceable. A requirement is backwards-traceable if it is
possible to see which goals and domain-oriented documents it comes
from, and it is forwards-traceable if it is possible to see where it is used
in design and code.

3.3 Requirements engineering processes

Sommerville [1] partitions requirements engineering into four generic,
high-level requirements engineering activities that deal with creating
and maintaining a system’s requirements documentation: feasibility
study, requirements elicitation and analysis, requirements specification
and requirements validation.

Feaability
study /

Feaahility
report

Requirements
elicitah on and

analyss)
' Requir ements
specifi cat
Remquirements

vdidaion

User and system
requirements

Requirements
document

Figure 2 The requirements engineering process [1]

In addition to these four activities Sommerville includes a fifth activity,
requirements management, which deals with the fact that requirements
change.

Requirements specification has already been covered and the other
four activities are summarized in the following sub-sections.

14

3 - Requirements engineering

3.3.1 Feasibility studies

The purpose of the feasibility study is to determine whether or not the
system contributes to business objectives. Therefore, the requirements
engineering process should start with a feasibility study for all new
systems. To decide the systems business value Sommerville [1] lists a
number of questions for which answers should be sought:

1. Does the system contribute to the overall objectives of the
organisation?

2. Can the system be implemented using current technology and
within given cost and schedule constraints?

3. Can the system be integrated with other systems which are
already in place?

The outcome of the feasibility study should be a report recommending
whether or not it is worth to continue with the system development
process.

3.3.2 Requirements elicitation and analysis

In the next stage, after the feasibility study, requirements are elicited
and analysed. This process often involves several techniques (see
Lauesen [2]) to, together with stakeholders, find and formulate the
requirements.

Elicitation and analysis is an important but also difficult process.
The difficulties are due to the fact that [1]:

1. Stakeholders may be unable to express what they want from the
system, often they only know what they want from the system in
the most general terms and they may be unaware of the
implementation cost of their demands.

2. It is hard for the requirements engineers without experience in
the customer’s domain to understand the stakeholders’
requirements expressed in the stakeholders’ own terms.

3. The requirements engineers have to discover all potential
sources of requirements. Since there often are many such
sources, the requirements engineers get requirements expressed
in different ways among which they have to discover conflicts
and similarities.

4. There may be political factors that influence the requirements of
the system.

15

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

5. The importance of certain requirements may change and new
requirements may emerge, since the economic and business
environment in which the analysis takes place is dynamic.

3.3.3 Requirements validation

After the requirements specification is complete it has to be validated. In
the validation the specification is conducting several checks to ensure
that it fulfils the criteria of a “Good requirements specification” (See
section 3.2.1).

It is important to validate the requirements, both after the
requirements specification is complete and continuously throughout the
project, because the cost of repairing an error originating from a faulty
requirements specification greatly increases towards the end of the
development [1].

3.3.4 Requirements management

Requirements management is the process of storing and managing
changes to the requirements. Requirements will inevitably change over
time as customers can change their minds, the domain can change and
other factors that affect the system can change. Requirements can also
turn out to be wrong, too expensive to meet and other problems can
arise that forces a change to the requirements.

3.4 Release planning

Lauesen [2] points out that most successful projects end up with a series
of releases, even though their goal from the beginning was to have one
single delivery of the product. There are many reasons for this. The
developers may suddenly realize that they cannot keep the deadline.
Another reason could be that the project might require several
prototypes or iterative development to ensure the correct functionality
and to receive feedback from customers. Another example is in large-
scale development of a continuously evolving product where the
company constantly must implement new requirements to keep, and get
new, customers and stay ahead of competitors. The process in the latter
example is called market-driven requirements engineering.

Therefore release planning is an essential part of a company’s
requirements engineering process. Release planning is about prioritizing
the requirements and deciding in which release certain requirements
should be included.

16

3 - Requirements engineering

3.4.1 Market-driven release planning

In market-driven release planning, as explained by Karlsson [4], the
company must make every release attractive to the customer. This
means that sometimes the company might wait with including some
features to make later releases attractive. There also needs to be a
balance between new features and improvements of old features and it
must be the most appropriate features to include and improve. The
releases must also be made at appropriate intervals, with customer needs
and competitor’s releases in mind. To make it even harder for the
developing company, we must not forget that each feature takes a
certain amount of time and cost to include or improve.

In conclusion, the developing company must have a carefully
developed release plan where customer needs, development cost and
development time for every release must be balanced in the most
appropriate way.

3.5 Requirements prioritization

There are often more requirements on a system than can be
implemented at once [5]. The requirements must therefore be prioritized
so that the most appropriate set of requirements is included in the
intended release (see section 3.4.1).

To decide which requirements that are of most significance the
prioritization is often done by using two criteria, for example cost and
value, where cost can be a measure of the development cost for
estimated time and resources that will be needed and value can be the
business value. The aim is, of course, to maximize the value to a
minimal cost.

When it comes to prioritizing requirements, there are a number of
different techniques. Three commonly used requirements prioritising
techniques are the planning game, pair-wise comparisons (PWC) and
the $100-test.

The pair-wise comparisons method is a part of the analytical
hierarchy process (AHP) and the incomplete pair-wise comparison
(IPC) is a modification of PWC. Therefore, these are also described in
this section.

3.5.1 Planning game

When using the planning game (PG) to prioritize, all the requirements
are written on what is called story cards. A story card contains a short
description of the requirement and other useful information like
requirement/story number, the requirement’s date and more. Planning
game originates from the extreme programming methodology developed

17

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

by Kent Beck [6] and is the commonly used prioritization technique in
extreme programming.

The developers estimate how long/how much it would cost to
implement each story. Then the developers sort the stories into three
different piles based on how accurate they believe their estimations to
be: (1) those stories that they can estimate precisely, (2) those that they
can estimate reasonably well, and (3) those that they cannot estimate at
all [6].

At the same time, the customers sort the same stories into three
different piles based on their significance: (1) those without which the
system will not function, (2) those that are less essential but provide
significant business value, and (3) those that would be nice to have [6].
After this, the stories can also be prioritized within the piles if desired.

3.5.2 Pair-wise comparisons

In pair-wise comparisons (PWC) all possible pairs of requirements are
compared to determine which of the two is of higher priority [5]. After
the comparisons have been made, the priorities are calculated using the
matrix multiplication parts of AHP (See section 3.5.4).

This means that if you have n requirements you need to do n(n-1)/2
comparisons for each criteria, this makes the PWC technique time-
consuming as the number of requirements increase. However, this
redundancy makes the technique insensitive to judgement errors and
furthermore, a consistency check can be included in PWC where
judgement errors can be identified.

3.5.3 Incomplete Pair-wise comparisons

Due to the fact the PWC becomes very time consuming as the number
of requirements and the number of criteria increases it is desirable to
decrease the number of necessary comparisons. Harker [7] has
developed a method, known as incomplete pair-wise comparisons (IPC),
to reduce the number of needed comparisons to be between n and n(n-
1)/2 for each criteria.

After the n first comparisons have been made, IPC uses an algorithm
to calculate the missing values. This algorithm puts the comparisons in a
directed graph where each node represents a requirement and each arc
represents a comparison between the requirements (nodes). The
algorithm then uses the geometric mean of a random set of paths
between two nodes to calculate the missing comparison. The algorithm
is not using all possible paths, because the immense number of paths
would make it unrealistic to perform the calculations since the number
of paths grows exponentially as comparisons are added. Further, the IPC
algorithm also calculates which comparison that should be made next by
calculating which comparison that will give the most useful information.

18

3 - Requirements engineering

Also a value of how useful the information from the next comparison
would be is calculated. This value is used as a stopping rule, if that
value is below a given constant the next comparison is considered to
give too little information and the prioritization is completed.

In conclusion IPC can result in substantial timesavings by the
reduced number of comparisons. In addition, by always doing the
comparisons that give the most information first, the accuracy is kept as
high as possible.

See [7], for a detailed description on the IPC algorithm.

3.5.4 The analytic hierarchy process

AHP, designed by T.L. Saaty [8], is a model that includes PWC and is
used to aid the decision-making.

Joachim Karlsson and Kevin Ryan [9] describes the four steps in
AHP used for decision making and how to check the results for
consistency:

1. Set the requirements in the rows and columns of a matrix. With
n requirements this will result in an nxn matrix.

2. Now a pair-wise comparison is performed for all the
requirements. The scale used can be 1/9,1/8 ... 1/2, 1, 2,3 ... 9.
To explain how the scale is used, imagine putting the two
requirements next to each other and the more significant one of
the requirements are, the farther to that side in the scale the
number is taken. This will result in a matrix, called the
comparison matrix, with ones in the diagonal and the result from
the comparison in all the other positions. When translating the
relative significance in each comparison to a numerical value,
different scales can be used. The scale mentioned above is the
original scale by Saaty [8], but research has been done to
investigate the effects of different kinds of scales [10].

3. Now the eigenvalues of the matrix are estimated using a method
called averaging over normalized columns. Which means that
the column’s sums are calculated and used to divide each
element, belonging to that column, with. This results in a new
matrix, in which the row sums are calculated and divided by the
number of elements, n. The result is referred as the priority
matrix, which is an estimation of the eigenvalues.

4. Finally, the estimated eigenvalues are assigned to the
corresponding requirements and give a percentage of how
significant each requirement is.

19

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

After completing the four steps the prioritisation is done and a
consistency check can be made thanks to the redundancy given. The
consistency check can be divided into two steps:

1. The consistency index (Cl) is calculated: CI = (4,,, —n)/(n—-1)

where A max denotes the maximum principal eigenvalue of the
comparison matrix.

2. The consistency ratio (CR) is calculated: CR =CI /RI where RI
is the consistency indices of randomly generated reciprocal
matrices from the scale 1 to 9, also known as random indices.

Generally, a consistency ratio less than, or equal to, 0.10 is considered
acceptable. In practice though, consistency ratios higher than 0.10 is not
uncommon.

3.5.5 $100-test

The $100-test [11] is a simple and fast prioritization technique that is
also easy to use when there are several people involved with the
prioritization. Every participant is given $100 of “pretend money” each.
The money is then used for “purchasing” the requirements they want,
spending more money on the requirements they believe is more
significant. When everybody has used up their $100 the results are
summarized so that a ranking of the requirements is made.

There are, however, a few drawbacks with this method that should
be kept in mind. Firstly, the technique can only be used once in every
project, because the participants will be influenced by the results, once
they are known. For instance, if you are a participant and your most
wanted feature is high up on the list but your next favourite feature did
not make it to the list, you can put more money on that second feature
next time. Counting on that the other participants will, once again, put
their money on your favourite feature so that it will still make it to the
list.

Secondly, even if a prioritization have not been done yet, a tricky
participant may put all of his money on a requirement he wants but are
not as important as other obviously important requirements, because he
knows that the other participants will put their money on the more
important requirements.

20

3 - Requirements engineering

21

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

22

4 - Retrospective analysis

4 Retrospective analysis

George Santayana, a Spanish-American 19" and 20" century
philosopher [25], once stated that:

“Those who cannot remember the past are condemned to repeat it”” [12]

With this quote as a starting point, Joseph Juran identified the
retrospective analysis as a method of learning from work experience
already in 1988. He named the practice the “Santayana review” after the
great philosopher [13]. The main idea of a Santayana review is very
simple; by taking time to examine what happened in the last project and
learn from it you can use the new knowledge to improve the outcome of
the next project [13].

4.1 Retrospectives in practice

When carrying out retrospective analysis, different approaches can be
used in order to decide how to gather new knowledge. According to
Nolan [14] the best results are achieved by “learning from success”. In
practice this means that measuring and understanding of old projects
should be focused on the parts that made them successful. Extracting
these successful processes and introducing them into new projects can
achieve the best results in a rapid way. The biggest limitation with this
approach is the need for an analysable and finished successful project to
use as knowledge source. If no such project exists, the analysis can
impossibly be done. This is of course in particular a problem for young
and inexperienced development teams. On the other hand, if such a
project does exist, the introduction of the analysis method seldom
receives resistance from the involved development teams because of its
nature of focusing on good practice instead of bad [14].

The other approach to use when doing a retrospective analysis is
obviously to focus on bad practice. One particular case of big interest is
to analyze projects that failed big time. Because of this reason,
retrospective analysis is sometimes referred to as “Post-mortem
reviews” [15]. Besides the direct knowledge that prevents mistakes from
earlier projects, other advantages can be drawn. One such advantage is
the increased sharing of experiences within the development team and
also communication of the understanding to other teams [16]. Another
advantage is the increased individual recognition and remembering of
new knowledge gained during the project for each team member
participating in the retrospective analysis [16]. There exists several ways
to perform retrospective reviews. Dingsgyr et al [17] has presented a
lightweight retrospective review based on focused brainstorming and

23

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

analysis by grouping problem issues on post-it notes. This lightweight
review does follow a general structure that seems to be suitable for most
kind of retrospective processes [Birk, Kerth]. This structure is divided
into three main parts.

1. A preparation part is the first phase. During this phase a better
understanding of what has happened is achieved by going
through project documentation. Also a goal for the analysis is
determined in this phase.

2. The next part of the analysis consists of data collection.
Techniques proposed for collecting data by Birk et al [16] are
semistructured interviews, facilitated group discussions and KJ
sessions. The latter is a group methodology for collecting and
structuring data developed by Japanese ethnologist Jiro
Kawakita [16].

3. To finalize the process an analysis phase is done. This can be
done in several different ways. One approach, suggested in the
lightweight post-mortem review by Dingsgyr et al [17], is to use
Ishikawa diagrams as an analysis tool to show causes.

The software development of today is a very dynamic and flexible
process. This demands a continuous improvement and evolution of the
companies’ development processes. According to Kerth [15] the most
important step toward this improvement is by doing retrospective
analysis. As mentioned above, the running point in a retrospective
analysis is to create future advantages by analysing actions taken in the
past. By doing this, the developer can hopefully prevent mistakes made
in the past being repeated and a continuous progress in process
evolution can be done.

4.2 The PARSEQ method

In this section we summarize the PARSEQ (Post-Release Analysis of
Requirements SElection Quality) method, which is a retrospective
analysis method developed at the Department of Telecommunication
Systems, Lund University, Sweden [18].

To be able to perform the PARSEQ method the company must have
multiple releases of the product as well as access to requirements from
prior releases. Each requirement must be tagged with the release it was
implemented in, or if it was postponed or excluded. Further the
company must have access to employees who have decision-making
experience from earlier releases as well as a facilitator with experience
from retrospective analyses. PARSEQ is mostly used for user
requirements, because the goal is to increase the business/user value by
improving the release planning process.

24

4 - Retrospective analysis

In the method a sub-set of requirements from previous releases is
systematically analysed and a set of root causes to suspected incorrect
requirements selection decisions are identified and analysed. The goal is
to find improvements that will increase the company’s ability to plan
coming releases, by learning from earlier mistakes.

The PARSEQ method basically consists of the four steps that are
briefly described in the following sub-sections and shown in Figure 3.

e Process
Requriernents Sub-set of Postrelease Root-causes improvernents
repgsn:gry rEqUIrETT'EntS prlDrlty list perDSEIS
Requirermments Re-estirmation of Foot-cause Hicitation of
sampling priority criteria analysis improverments

Figure 3 The PARSEQ process, the lower rectangles represent the four steps [18]. The
five upper icons represent inputs and outputs to the four process steps.

4.2.1 Requirements sampling

Requirement candidates from previous releases, releases that have been
on the market long enough to allow an estimation of the included
requirements current market value, are chosen to be included in the
analysis. These candidates are either requirements that were included in
one of the releases or requirements that were rejected and have not been
included yet. Hence, the sample should include requirements that have
not been included as well as requirements that have been included.
Further the sample should contain enough requirements to represent the
product but not so many requirements that they cannot be handled in
one session.

4.2.2 Re-estimation of priority criteria

The sample created during the requirements sampling step is post-
released analysed and a re-evaluation based on what have been learned
and on what is known at this point, is done. The thought is that the new
estimations of the criteria are more accurate since the releases have been
on the market for some time. With the new estimations it can be seen
which of the requirements that should have been included in the releases
with today’s knowledge. If the result is that the exact same requirements
should have been included, the company has either not learned anything
since the planning of the old releases, the market has not changed at all
or the company did a very good job during the release planning.

The goal of the re-estimation is to discover planning decisions that
would have been made differently with today’s knowledge. These
differences are noted and used in the root-cause analysis. Hence, the

25

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

output of this step, and input to the root-cause step, is a list of
requirements that were implemented too early or too late.

4.2.3 Root-cause analysis

The aim of the root-cause analysis is to find and understand why
release-planning decisions are made. Root-causes for the old decisions
are sought and the differentiating requirements from the re-estimation
step are mapped to one or more of these root-causes to illustrate the
decision disposition and to be used as an input to the next step.

4.2.4 Elicitations of improvements

In this, last step, of the PARSEQ method, the goal is to elicit release-
planning improvement proposals from the root-causes found in the
previous step.

The goal is to get a list of high-priority areas of improvements that
can be introduced in the release-planning process and thereby improving
the accuracy of coming releases.

26

5 - Method

27

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

28

5 - Method

5 Method

Before the development could begin, it was necessary to learn how the
PARSEQ method works. It was also necessary to get a picture of what
features should be included in the program, what the program should
look like and how it should work. An understanding of the PARSEQ
method and the program was achieved by theory studies, in the form of
articles, and discussions with the customers. The theory studies and
discussions continued, as needed, throughout the entire development,
especially when it was time to implement the different prioritization
techniques. A good understanding of PARSEQ and the implemented
techniques was a prerequisite for the success of the project.

5.1 Implementation

The nature of the implementation process was strongly affected by the
close collaboration with the customer, moreover the supervisor of the
work. This fact made some important choices of implementation
procedures possible. One of the biggest advantages of these choices was
the possibility to develop a system by using short iterations and frequent
customer feedback. Another advantage was the chance to discuss
questions and in cooperation work out uncertainties in the requirements
specification. These advantages were factors that shaped the
development process in a way that resulted appropriate for this specific
project.

The main structure of the development process followed an
evolutionary software process model (see section 2.2.2). Initially a
prototype with the fundamental functionality implemented was
produced. The selection of what should be considered as fundamental
functionality was together with the customer extracted from the
requirements specification. When the prototype was considered
independent enough, a first user test was carried out. The outcome of
this test, in terms of new and modified requirements, together with
requirements from the original requirements specification were then
selected for the next iteration of the implementation process. This
procedure of requirements selection, implementation and testing was
then repeated throughout the development process and the final system
is an evolution of the initial prototype.

The entire implementation is done in Java on personal computers
running Windows and Unix. As a development platform, the open
source tool Eclipse [26] was used. Both the choice of implementation
language and platform were requirements present in the original
requirements specification. The vast majority of the implementation
work was done using the Extreme Programming (XP) practice pair

29

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

programming [19]. Briefly explained this means that two programmers
sit in front of the same computer. One programmer has the main
responsibility to write code and focus on the method at hand. The other
one has the job to continuously perform code review. Other important
issues for the code reviewer are things such as making suggestions for
improvements, attentive corrections and keep the overall class structure
solid.

The modeling of the software developed was strongly affected by
the choice of evolutionary development as the main work procedure.
Also the selection of an object-oriented programming language had a
great effect on the modeling work. After receiving and reviewing the
initial requirements specification a rough model of needed packages,
classes and objects were made. When modeling the main structure of the
system, special consideration of possible future refactorings were taken
into mind. This decision was a result of the knowledge by experience
from earlier projects that the evolutionary development can demand
significant changes in class hierarchies and system structures. Also
sketches of the first graphical interface were made early in the project.
Since a great role of and advantages achieved from the system is via the
direct user interaction, a big effort was early made to attain a good
usability.

5.1.1 Requirements engineering

This project’s type would, according to Lauesen’s [2] definitions, be a
mix of in-house development and contract development with emphasis
on in-house development. In-house development is when a project is
carried out inside a company for internal use and contract development
is when the developing company delivers a system to the customer
according to a contract and requirements specification.

The customer initially provided us with a requirements specification.
We did, however, also have a close collaboration and good
communication with the customer. Therefore, all requirements were not
documented and some of the documented requirements were changed.

Setting up some kind of requirements engineering process, where we
could formally prioritize the requirements in the specification with, for
example, the planning game method, was discussed. However, it was
concluded that for a project of this small size that was unnecessary.
Instead the requirements to give high priority were decided in
collaboration with the customer.

Since requirements are bound to change over time (See section
3.3.4), the architecture and implementation of the program was done
keeping requirements management in mind. Hence, even though we did
not really have any formal requirements engineering process in this
project, changes to requirements and new requirements should not pose
any problems.

30

5 - Method

5.1.2 Configuration management

The use of a configuration management tool like Concurrent Versions
System (CVS) [27, 28, 29] was discussed. However, after initial
research and experiments we concluded that the administration and
compatibility issues with the resources at our disposal, would give a too
large time-overhead to be worth it for a project of this size.

According to Whitgift [20] it is suitable to use directories to hold
configurations in projects with no more than ten thousand lines of
source code. Therefore we instead chose this way to manage the
configurations, releases and source code of our project.

5.1.3 Graphical user interface

The main purpose of developing the tool was to a great extent to provide
a more efficient way to perform an existing analysis process. This
means that if the outcome should be successful, the tool must have a
high degree of usability. This comprehension was held in focus
throughout all parts of the process involving user interaction.

Usability is often broken down into usability goals to capture the
most important parts of what often is referred to as good interaction
design [21]. This break down was also made in this project.

1. Effective to use: The general goal of the whole project is to
develop a tool that is capable of letting the user to carry out their
task, the PARSEQ process, in an effective way.

2. Efficient to use: By making the user interaction mainly consist of
standardized actions, as for example pressing buttons and click
& drag with the mouse, the aim is to create a system where the
user in an efficient way can complete his/her tasks. Each part of
the process is also put in a well-defined and separate step, which
hopefully will provide a clear structure of the program and an
efficiency of use.

3. Safe to use: The system prevents the user from making serious
errors by for example asking for confirmation before files are
written over when saving. The division of the process into
separate steps also provides the user an easy way of correcting
errors made in a previous stage.

4. Have a good utility: As mentioned in section 5.1, the most
important features and functionality were implemented first. By
using this approach the system hopefully provides an appropriate
set of functions to enable the users to carry out the most
important tasks in the way they want to do them.

5. Easy to learn: To achieve a high learnability, all user interaction
is done via well-known WIMP (Windows, Icons, Mouse and

31

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Pull-down menus) interfaces [21]. The purpose of this is to
create a way of interaction where any user recognizes and
understands the possibilities and consequences of interacting.
The program does also have a built-in help module where each
window has its own step-by-step description of how to use.

6. Easy to remember: The natural sequence of completing a step in
the process before another is started and the constraints built-in
in the program to guide the user through these steps have the
intention of creating a high memorability. By in this way
providing an obvious guidance through the process, the way of
using the program is hopefully easy to remember.

The development process of the user interface has followed an
evolutionary model as well as the rest of the program. In the initially
produced prototype a simple high-fidelity user interface prototype [21]
was included. This prototype then served as a seed from where the rest
of the windows and interaction components grew out.

Further, Ben Shneiderman’s eight golden rules [21] were kept in
mind when designing the graphical interface and strongly affected the
design of the windows throughout the program:

Strive for consistency

Enable frequent users to use shortcuts

Offer informative feedback

Design dialogs to yield closure

Offer error prevention and simple error handling
Permit easy reversal of actions

Support internal locus of control

© N o g~ 0w DR

Reduce short-term memory load

5.1.4 Testing

Most testing during the development was done using informal test
techniques [22]. The main part of the test work was done in parallel with
development and each new module of code was tested before being
completely integrated with the rest of the system. Together with these
low-level unit and integration tests, larger high-level system tests were
regularly performed. These testing techniques were deemed to be
suitable for this project because of its relative small amount of code and
few numbers of extraordinary complex algorithms.

All testing of the graphical user interface during the main
development phase was done by “quick and dirty” testing [21]. The use

32

5 - Method

of this test method means that all information feedback from the
customer was given through informal meetings, focused on quick input
rather than carefully documented findings.

5.2 Evaluation

Three different evaluations were performed. One user evaluation with
the goal of confirming the programs usability and functions, as well as
finding possible improvements to these areas. There was also a
retrospective analysis of the project conducted, with the PARSEQ
method and Rainbowie as the support tool. The third evaluation was on
Rainbowie’s IPC algorithm.

The results of the evaluations can be found in section 6.2 and an
analysis of the results can be found in section 7.

5.2.1 User evaluation of Rainbowie

A user evaluation was done together with, and at the same time as, a full
PARSEQ evaluation of the Rainbowie tool itself. All parts of
Rainbowie, except the pair-wise comparisons technique and the $100-
test, were evaluated. The user evaluation was made by two users, which
are very familiar with the PARSEQ method, together with the two
developers.

While the developers took notes, asked and answered questions, the
users were encouraged to freely comment and discuss all parts of the
program that was used.

5.2.2 PARSEQ evaluation of the Rainbowie implementation

Since Rainbowie was developed to support the PARSEQ method it was
considered appropriate to do a PARSEQ evaluation of it.

The evaluation was performed by two users together with the two
developers using the planning game as the prioritization technique with
value and cost as the criteria. Because the two users were the
supervisors of the thesis, they were also the intended customers.

From the 52 product requirements (PKxxxx in Appendix C -
Requirements specification) a sample of 20 randomly selected
requirements were listed in an Excel-sheet together with their release
status, to be used for the evaluation.

First the users carefully sorted the cards in the planning game by the
value it had to them, how important they found the specific features to
be. Then the developers sorted the cards by the actual cost, in time, it
had taken to implement the features or an estimate of the time it would
take to implement them if it had not already been implemented.

After the prioritization, the cost/value graph was studied to find
requirements which release deviated from the optimal release. What

33

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

were sought for were in other words, requirements with high values and
low costs that had been implemented in a late release and vice versa.

When the identification of deviating requirements was done, they
were added to the root-cause matrix. Then the PARSEQ evaluation was
ended with completing the last step in the method by elicitating root-
causes, possible reasons for the deviations and possible improvements
to, if possible, avoid the deviations next time. The conclusions were
entered in the root-cause matrix and exported to an Excel-file. The
session was then completed by ranking the possible improvements for
importance.

5.2.3 Comparison between Rainbowie and Focal Point

In the developed tool, three prioritization methods are implemented. In
two of these methods, the $100-test and the planning game, the result of
the prioritization is the direct outcome of the assigned values by the
user. In the third method, the pair-wise comparisons, the result is based
on a modified version of Harker’s [7] IPC method (see section 3.5.3 for
the method and section 6.1.1 concerning the modification). Since the
IPC method only calculates estimations of the true results and the
modification makes the method less accurate, a probable loss of
precision will be introduced. To examine the approximate size of this
loss of precision, a comparison between the developed tool and a
commercial tool for performing pair-wise comparisons called Focal
Point [30] was done. The purpose of this evaluation was not to make a
statement of whether or not the implemented algorithm is usable in
practice. The aim was rather to make an attempt to create an
understanding of the possible size of the errors in the estimated values.

The evaluation was done by performing a pair-wise comparison for
two criteria of ten requirements in both Focal Point and in Rainbowie.
During the Focal Point prioritization, the so far assigned values were
registered after each compared pair from nine (the smallest number of
comparisons allowed for ten requirements in Focal Pont) to 45 (all
possible comparisons). For Rainbowie, two series of pair-wise
comparisons were done. First a series with all 45 pairs, compared in a
semi-randomly generated order by Rainbowie (see section 6.1.1), was
completed, i.e. a normal Rainbowie prioritization. After each pair, the so
far assigned values were registered in analogy with the procedure for
Focal Point. The objective of this first comparison was to evaluate how
well the program as a whole could perform a pair-wise comparison
compared with a commercial tool. An analysis of the progress of the
assigned values throughout the whole prioritization series were also
desired and therefore were all 45 comparisons completed.

The second series was obtained by letting Rainbowie do the same
first 19 comparisons that were made in Focal Point. The objective of
this second series was to evaluate if the results from internal modified

34

5 - Method

IPC algorithm differed from the results from Focal Points built-in
algorithm in a significant way. The reason why only 19 comparisons
were made was because this is the number of comparisons that Focal
Point recommends the user to do for 10 requirements. Since the values
assigned after 19 completed comparisons are recommended by Focal
Point as estimations of the true values, 19 comparisons were chosen to
be the stop point for this series.

Finally a second prioritization was made with Focal Point with 19
comparisons to examine if the recommended number of comparisons
always resulted in the same assigned values. If that was not the case, a
check was done of how large differences between the two prioritizations
that could be considered acceptable by Focal Point. This examination
was done by letting Focal Point perform two prioritizations with the
recommended number of comparisons, 19 comparisons in this case. The
value assigned for each comparison made was decided by the registered
values from the earlier made full prioritization. Since Focal Point use
some kind of random comparison generation, the 19 comparisons made
where not the same in both prioritizations. This difference in the 19
chosen comparison to make can result in a different outcome from the
two prioritizations, and therefore is this examination interesting to do.

The objective of this examination was to obtain a reference point of
how accurate the pair-wise comparison method is considered in today’s
industrial applications.

35

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

36

6 - Results

6 Results

The purpose of this thesis was to create a tool that can be used to
examine the possibilities of more efficiently using the PARSEQ method
in software development and research. Because of this formulation of
the purpose, the result of the work can be divided into two main parts.
The first part of the results is the implemented tool itself. By
understandable reasons, this part was the most time consuming and
work demanding section of the thesis.

The second part of the results is the tool’s ability to examine the
possibilities of more efficiently using the PARSEQ method in software
development. A big part of this result could not possibly be examined
within the limitations of this project because of the scarce time
resources. To extract a definite answer to the question whether the tool
can make the PARSEQ method more efficient, it probably needs to be
applied to a larger scale of research work. The results from the
evaluation in this thesis are therefore the outcomes of a relatively brief
user evaluation of the system itself and subjective opinions from
experienced PARSEQ analyzers about the ability to ease up the method.

6.1 Results from the implementation

The implementation work was, as mentioned above, the single most
time consuming activity in the project. Therefore the result of the
implementation is considered to be the main part of the results from the
project in total. The physical result of the implementation is a program
that covers a majority of the requirements given in the requirement
specification. The complete requirements specification can be found in
Appendix C — Requirements specification. A specified compilation of
the implemented functionality will follow in the next section followed
by the known limitations and unmet requirements. Also a rough
description of the software architecture built will be presented in this
section. For a more detailed version, see Appendix B — Detailed
software architecture. The implementation resulted in a program called
Rainbowie of about 10.000 lines of Java code.

6.1.1 Implemented functionality

To create a better overview of the results in this part, the compilation of
the implemented functionality will be divided in the same classifications
as in the requirement specification.

37

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Development requirements

The tool is developed with the use of incremental development and the
programming language used was Java. The open-source platform
Eclipse [26] was used as development tool throughout the project. The
program is written and can be run on workstations running Windows.
Together with the program itself, this project report was written and
delivered before the deadline of 30" of June 2005.

Common product requirements

When the program is started, a main window appears where the user can
make choices by clicking buttons or menu items. By opening the help
dialog, possible actions to take are presented to the user. This window,
as well as almost all other windows in the program, can be minimized
and maximized.

o

File ‘Window Help

Imported Requirements Reprioritized Requirements

Req. # Requirement Rel. # | Req. # Requiretnent Rel.# | Prio1 | Prio2 |

-| «|

Reprioritize
Raoot-cause |

L=l L=l

Figure 4 The main window of the program

Requirements for sampling
In dialog with the customer, an early decision was made to concentrate
on sampling requirements from Excel spreadsheets only. This decision
was made based on the facts that Excel is today a common way to
handle requirements and that it is quite simple to extract requirements
from ordinary requirement tools to Excel. The limitation of using Excel
spreadsheets only was also considered to be a reasonable solution since
importation from other programs, pure requirement tools in special,
probably would result in a too high cost/benefit-rate according to the
time required. Since the benefits from the possibility of sampling
requirements from existing tools, which already has an easy interaction
with Excel, would be relatively small in comparison to the time needed
to implement that functionality, the Excel-only strategy was sustained.
When requirements are imported, they are displayed in a table with
three columns: Requirement number, requirement description and

38

6 - Results

release number. The possible number of requirements to import has no
upper built-in restriction in the program. A lower bound of two
requirements is set since a reprioritization with a single requirement is
pointless. Imported requirements can be manually added and/or edited
in all three columns by using a special edit window. The reason for this
special window is to prevent erroneous editing in the imported list. If a
requirement shall be tagged with a release number only, this can be
directly done in the imported list. Anytime during the sampling process
the user can choose to return to the main window by either pressing the
accept button to continue the process with the current list or the reject
button to start over again with the sampling.

Requirements for reprioritization
For reprioritizing the imported requirements, the user can choose
between three techniques to use: Planning game, $100-test and pair-wise
comparisons. The criteria cost, value and risk together with up to two
own defined criteria can be chosen among, when doing a
reprioritization. During all reprioritization, the previously set release
number is not shown to prevent the user from being affected.

In planning game prioritization every requirement is represented by
a card, with the requirement description written on it, placed on a desk.
If a requirement is only represented by a requirement number, the
number is written on the card instead. In the requirement specification
there exists a requirement (PK3310) that says that each card initially
shall be given a random position on the desk and cards shall not be put
on top of each other. The algorithm for a random placement on the desk
was implemented and integrated in the system without any problems.
An algorithm for preventing cards to be put on top of each other where
also implemented but the integration with the system led to a problem.
Since another, informal, requirement from the customer was that each
card should be large enough to be able to hold a significant part of the
requirement description; the initial placing of the cards sometimes could
not be done. This problem appeared especially when many cards where
to be placed on a workstation with a low screen resolution, i.e. when
many cards had a relatively small desk to be placed on there was not
room enough to find an empty place for all cards. In the balance
between large cards and prevention from placing cards on top of each
other it was in discussion with the customer decided to stay with the
large cards. By dragging and dropping the cards with the mouse, the
user can put the cards in any of the three boxes marked “High”,
“Medium” or “Low”. Within each of these three boxes, the user can
reorder the cards in the same way as moving cards on the desk. When
the user is finished with the reprioritization, a window for confirming
the prioritized ordinal list of requirements will appear.

In the $100-test all requirements are presented in a table where the
last column is editable. In this column, the user types in the desired

39

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

amount of $ for each of the requirements. Below the editable column
information of the number of spent $ are displayed to make it easier for
the user to keep track of the progress.

An additional way to reprioritize requirements, not present in the
requirement specification but stated as an informal requirement, has
been implemented. This method can be explained as a combination of
the two methods mentioned above. The user starts by reprioritizing
requirements in the planning game method. When this is done, the
reprioritization continues with the $100 method. The main difference in
this $100 method, compared with the regular, is that the order of the list
of requirements presented must be sustained. This means that the user
cannot assign $ values to the requirements in the list that would modify
the internal order of the list of requirements. When this reprioritization
is done, the result is a list similar to the one obtained from a regular
$100 method.

The pair-wise comparison technique is the most complex of the
three techniques and therefore contains the most complicated functions.
The priority values of each requirement are calculated by using the
AHP. The scale used for comparing two requirements with each other is
the Saaty scale [8], 1/9...1/3, 1, 3...9. If the user completes the
comparison process and performs all n(n-1)/2 comparisons (with n = the
number of reprioritized requirements), the priority values are calculated
with a true PWC-calculation. The user can however choose to finalize
the reprioritization as soon as n comparisons have been done. If so is
done, the values will be calculated with a modified IPC-algorithm. The
reason for the modification of the IPC algorithm is because of the
limited resources of time in the project. The authors found it more
valuable make sure to be able to integrate a small, modified version of
the IPC-algorithm than to try to, but not be able to ensure to succeed,
make an implementation of the full, rather complex, algorithm. The
modification of the algorithm consists mainly of the removal of the
stopping rule functionality. This means that the algorithm to calculate
all missing values by using a directed graph is done and a regular AHP
calculation can be done to find the priority values. It is instead the next
step in the algorithm that is removed. When a true IPC-algorithm
calculates the next comparison to make according to the amount of
potential information that will added by that comparison, and possibly
suggests a stop in the prioritization, the modified algorithm does not. In
the modified algorithm the next comparison to make is instead randomly
chosen among the remaining comparisons and leaves the decision
whether to stop the prioritization or not to the user. To ensure that the n
first comparisons made can create the directed graph needed for the IPC,
a true random selection of the comparisons cannot be made. Therefore a
special semi-random algorithm is implemented to select the n first
comparisons randomly within special restrictions. In the algorithm two
adjustable threshold values are implemented. When few comparisons

40

6 - Results

have been made, it is possible to use the average mean of all possible
paths between two nodes in the graph when calculating a missing
comparison. When the number of comparisons increase, making the
number of all possible paths grow exponentially, a given value is set
where the algorithm switches to using a random set of paths through the
graph instead. Therefore, the two threshold values decide when the
algorithm shall switch from all possible paths to a randomized number
of paths and the number of random paths to use.

Requirements for root-cause analysis

The reprioritization made by the user can be presented in a graph with
the chosen prioritization criteria on the axes. In the graph, each
requirement is represented by an icon, the requirement number and the
first few words of the requirement description. The assigned release
number decides the look of the requirement icon. Requirements missing
a release number are represented by a “+”-sign while assigned release
numbers are represented by a number of circles. The number of circles
is decided by which release number that is assigned.

When the planning game reprioritization method has been used, the
graph is divided in three areas along each axis, i.e. nine areas in total.
These areas correspond to the three boxes, “High”, “Medium” and
“Low”, for each criterion in the reprioritization method. Within each
area, the requirements are positioned out following the assigned
reprioritized order.

In the graph for other reprioritization methods the requirements are
positioned according to the assigned prioritization value in percent
along each axis. In this graph, together with the requirements, there are
also two support lines instead of the nine areas mentioned above. These
two support lines are defined by the functions: y =2xand y = 0.5x [9].

The purpose of these lines is to easily identify those requirements that
have a more than twice as large priority value of one of the criteria
relative to the other. Since one of the objectives in the PARSEQ
analysis is to find originally incorrect prioritized requirements (see
section 4.2.2), the ones identified by the support lines are highly
interesting for further analysis.

When the user finds a requirement to include in a further analysis, it
can be added to the root-cause and improvements matrix by double-
clicking or by using a button in the graph window. The added
requirement will then be added as a new column in the root-cause
matrix that already contains two columns for root-causes and
improvements.

41

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

7> Root-Cause Matrix =lolx|

File Edit Help

Root-Cause Matrix

Root Causes | Improvements | Export | Prazos | prazos | ewazio |
Specifically requested by the customer Ireokve the customer he development process [X A|
Under estimation of business value Perform a more thourough stigation ﬂ ks hs

1 e

Export | Al rowr | Remove | Close |

Figure 5 The root-cause matrix with three requirements added

Requirements for improvements elicitation
In the root-cause matrix, the user can enter root-causes for the originally
incorrect prioritization and improvements suggestions. This information
can then be linked to one or more of the requirements added as columns
in the table. Each requirement can also be linked to more than one root-
cause and improvement suggestion.

When this final phase of the PARSEQ process is completed, the user
can export the results, the root-cause table and the requirements graph,
to an Excel spreadsheet for further editing and printing possibilities.

Quiality requirements

The code is fully commented to ease possible extensions of the program
in the future. Each class and method is described in large extent to make
code maintenance uncomplicated and straightforward.

A detailed help module that provides a step-by-step description of
how to use the program is implemented to ensure new users to be able to
use the program. This help module can be used both as a guidance
through the program for new users as well as a reference book for more
experienced users.

A great effort has been made to create an uncomplicated interface
for adding new prioritization methods. To create a complete plug-in
interface was not possible due to, among others, details in the graphical
interface and possible graph representations. Though, a comprehensive
description of how to integrate a new prioritization method with the
program is written and delivered with the final release.

42

6 - Results

6.1.2 Known limitations

The program was mostly developed and tested on a personal computer
(PC) that was provided by the department. It was a PC that was running
Microsoft Windows 2000 as operating system (OS) using Java version
J2SE 1.4.2_07 SDK and Eclipse 3.0 as development environment. The
program has only briefly been tested on other Java versions and
operating systems.

When the consistency ratio is calculated for the PWC method,
random indices are used as defined by AHP [9], up to order 15. For
matrices of higher order than 15, the same RI value as for an order 15
matrix is used because no literature found presents the values for higher
order matrices or how to calculate the values.

The algorithm for calculating assigned values when using an IPC is
only a modified version of Harker’s IPC algorithm. The reasons for this
modification are already motivated in section 6.1.1.

6.1.3 Unmet requirements

In the requirement specification there are requirements that could not be
met during this project due to one reason or another, where one
reoccurring reason is the time limit of the project. In this section these
requirements will be discussed more in detail and the reasons behind the
decisions to exclude them from the program are explained. Also, the
excluded requirements was discussed and approved to be postponed by
the customer. References will be made to the final requirements
specification of the project that can be found in Appendix C -
Requirements specification.

In the requirement group concerning common product features, a
requirement of a help button in every window of the program can be
found (PK3103). The help buttons were replaced by help menu items
because of convenience issues in some windows. The placing of a
relatively big button tended to be very inappropriate in some of the
smaller windows. By offering the same connection to the help dialog,
via the menu, in all windows, a high consistency could be kept.

As mentioned earlier in section 6.1.1, import of requirements can
only be done from Excel spreadsheets. The benefits achieved from
implementing import interfaces towards other programs than Excel
where estimated to be significantly smaller than the estimated cost in
time needed to implement the functionality. Because of these
circumstances, the decision was taken to focus on import from Excel
files only.

Part of requirement PK3310 says that the story cards in the planning
game window should not overlap each other. This has not been achieved
since it very much depends on how many cards there are and how high
the screen resolution is. It was a choice between larger, overlapping,
cards with more information and smaller, non-overlapping, cards with

43

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

less information and it was decided that easy access to the information
on the cards was more important.

The requirement demanding that the comparisons should be in a
random order (PK3317) has only partly been met, because the
implementation of IPC demands that a directed graph is constructed
from the n first comparisons (see section 6.1.1). Therefore, the n first
requirements are not fully randomized.

A modified version of requirement PK3408 was implemented.
Instead of marking requirements that after the reprioritization gets an
“optimal release” that differs from its actual release, every release has a
unique icon to tell them apart. This indicates to the user which
requirements to investigate in the root-cause analysis.

Instead of implementing report writing and printing support, as
PK3502 demands, the root-cause matrix and graph can be exported to an
Excel sheet. Excel is widely used in industry and at the department; it
also has excellent exporting, printing and report making support. We
would, within the given timeframe, never be able to implement report
writing or printing features that would be better than the features Excel
have.

Requirement PK3503, concerning database storage of the results,
was also considered a “nice to have” feature that would demand quite
some time to implement. Further, to save the improvement suggestions
to a database in a good way would require the program to have some
kind of database support (like SQL) and a database server would need to
be available. It was considered enough to be able to save the root-causes
and improvement suggestions to an Excel-file.

There was a requirement stating that at least one industrial
evaluation of the tool should be made (UK2006). However, at the time
of the printing of this report this has not been done due lack of interest
from the local industries and/or lack of time at the interested industries.
Instead an in-house evaluation was conducted together with the
customer.

6.1.4 Software architecture

The program is divided by functionality into seven packages where each
package contains several classes. The steps in the PARSEQ process,
three in this case because the last two steps have been merged into one
in the tool; importing, reprioritizing and analysis, are each represented
by an own package. This means for example that the classes relating to
functionality used for prioritizing is collected in one package. In
addition to these packages there exists two packages containing classes
to represent the graphical user interface. Another package holds
universal classes used throughout the whole program, i.e. the
representation of a requirement. Finally there is a utility package that
contains a set of utility classes.

44

6 - Results

1

2 analyzer |

——————— —| |———————— 2 gui.prio

|
I] | |
= | o
| i gui Z:::: 2 rainbowie | |
| _
1 | |

T
o 11 | |
I |1 | |
I N |1 I I
| | | |
|) v L1) v I
| | 2 importer Jl I g3 prioritizer |
| | ——
o | I
| | — |
| L S g il |
-k -

Figure 6 Package structure of the program

This chapter will provide a brief description of the packages mentioned
above and the classes within these. To obtain a more detailed
description, the reader is advised to consult Appendix B — Detailed
software architecture.

The rainbowie package

This package contains the classes considered to be universal throughout
the program. In the package there are classes to represent a requirement
and a list of requirements in the system. The main class containing the
main method and lists of imported and reprioritized requirements is also
located here. All communication between the steps in the PARSEQ
process is done via the lists of requirements in the main class.

The importer package

This package holds the functionality to import requirements from other
programs. At this point, the program is only able to import from MS
Excel spreadsheets that means this functionality is the single one located
in this package. If a future extension would provide functionality to
import requirements from for example other requirement engineering
tools, this functionality should be added here.

45

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

The prioritizer package

When the reprioritization is done by the user, all needed calculations
and functionality not directly connected to the user interaction is done in
a separate class. For each prioritization method there is one such
corresponding class located in this package. This means in practice, for
example for the $100 method, that there is a class in this package
keeping track of things like the number of users that has taken part in
the reprioritization.

The analyzer package
When all requirements have been reprioritized, the process shall
continue with the analysis phase. Internally in the program this means
that the priorities assigned by the user shall be translated to positions in
the analysis graph. To achieve this, each prioritization method
corresponds to a class in the Analyzer package. All analyzer classes
extend the Analyzer super class that contains fundamental methods for
creating points and support lines for the graph. Depending on the unique
characteristics of each prioritization technique, these methods are
overridden to make a visualisation possible.

The package also contains a class for physical representation of a
graph point and the attributes assigned to this.

The gui and gui.prio packages

Because of the relatively large number of windows in the program,
some of the classes in the gui package are placed in a sub package called
prio. In the sub package, classes managing user interaction during the
reprioritization step are found. Each prioritization technique has its own
window and therefore its own class in this package. Together with these
a class to simplify a program extension with a window for a new
prioritization method is located in this package.

In the package above gui.prio all other windows in the program are
placed. All of these, as well as the prioritization windows, has a range of
internal classes to take care of user interaction, drawing, table rendering
and so on.

The util package

Frequently in the program, utility classes are used for wide range of
functionalities. All these classes are collected in the utility package. The
functionality provided by these classes is for example showing of the
help dialog, setting standard sizes for window components and setting
window alignments.

46

6 - Results

6.2 Results from the evaluation

In the following sub-sections the results of the three evaluations that
were performed are presented, as facts and figures.

6.2.1 User evaluation of Rainbowie

The user evaluation resulted in a confirmation that the program’s
usability was good enough, as well as the implemented functionality
worked as intended. There were, however, also a number of usability
improvements suggestions and new requested features as a result of the
evaluation. These improvement and feature suggestions are listed
below:

1. Support for importing and handling earlier priorities.
Extensive undo support throughout the program.

3. Make it possible to change and adjust priorities in an easy way
later in the process.

4. Ability to merge, group and split cards in the PG.

Make it possible to directly drag a card from one pile to another
in the PG, without having to put the card on the desk first.

6. Visualize which requirements that belong to which pile in the
PG’s Confirm window.

7. Implement a slider in $100-window that should be used to assign
the $. When one slider is pulled up, the other sliders should be
lowered. Also, implement functionality to lock desired slider, so
that they will not be changed when another is pulled.

8. Change the name of the Reject-button in the PG and the Print-
column in the root-cause matrix.

9. Make it possible to map several improvements suggestions to
one root-cause in the root-cause matrix.

10. Visualize in the graph window which requirements that have
been added to the root-cause matrix.

6.2.2 PARSEQ evaluation of the Rainbowie implementation

As can be seen in the result of the prioritization in Figure 7, there are six
deviating requirements:

1. PK3210 Had high value and low cost, but was not implemented
until release 2

47

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

2.

F

PK3201 Had high value and low cost, but was not implemented
until release 2

PK3408 Had high value and medium cost, but was not
implemented

PK3504 Had high value and medium cost, but was not
implemented until release 2

PK3410 Had medium value and low cost but was not
implemented until release 4

PK3104 Had medium value and low cost but was not
implemented

Valug

[=]
PR30 Man ska t

@)
F¥331 45 Da manvwaliar Far-vi3a jam
Prz2408; Do krav sam | omariories

a
PHAZ11: Dt ska gd alt iytla PC
a |
PK3305: Det aka of At wilfa griot
® ;
PRAZ10: Dan importarade kraviistan . |
PKA201: Dol ska & 5% imgariera k

PL3504: Dat ska a8 sfl exportera §
PRIEOD; Dot ska of all &

a
: = kel Bt BT Tl Y T D——
@)
FEI4TE Dl sk oh all rarkera kg
| FEI303: Man ske keana valja prior..
Pra31&: D& man vaher 100%-melodan...
PEI404: Kravans %-tal 1 1008-pdar...

L)
PE2M 2 Slodeken pd kravmidngcden 5

Pt 04 la Fansler ska kinna max..

=] |
PRI208: Dl sha g atl manuelll dn

TEN

'~ |
PHII0Z, PS irl|r|)l;ilk'.l€6‘iilﬂi;l= ska

ar |

P332} Dol ska gd a8 markera fe

FrazngDel

Cast

Figure 7 The resulting graph from the prioritization of the requirements in the
PARSEQ evaluation of Rainbowie.

Table 1 shows the resulting root-cause matrix after finding the root-
causes to the deviating requirements and after elicitating process
improvement suggestions to help avoid the same root-causes next time.

48

6 - Results

T hY o b T T
P P X X ~ x
Root Causes Improvements 8 8 ® ® ® et
[y o o o = o
o [o] S o N
Inadequate elicitation the Even earlier prototyping
requirement was not there and more discussion X X
from the beginning about the specification
with the customer
The first prototype did not Not an erroneous X X
need it decision
Was expected to be harder | Look harder for existing
to implement before an solutions before solving
existing library was found the problem ourselves X X
The requirement received a | Write the requirements
lower priority since it turned | at a higher level, not
out that it is better to show solutions and more X
the release numbers discussion about the
reguirements
Expected the solution to be | More discussion with the
harder than it was and customer
weighted between different X
solutions
Partly implemented Not an erroneous X
decision

Table 1 The resulting root-cause matrix after the PARSEQ evaluation.

From this table four improvement suggestions were found to be
viable and ranked for importance:

e More discussion about the specification with the customer
e Write the requirements at a higher level, not as solutions

e Look harder for existing solutions before solving the problem
ourselves

e Even earlier prototyping

This ranked list of process improvement suggestions concluded the
results from the PARSEQ evaluation of the development of Rainbowie.

6.2.3 Comparison between Rainbowie and Focal Point

The registered values during the pair-wise comparisons in Focal Point
and Rainbowie, as described in section 5.2.3, are presented in the tables
and graphs below. The requirements used in the prioritization are called
by their requirement numbers: REQ001 — REQO010.

The results displayed in the graphs shall be compared two and two,
one graph for Focal Point and one for Rainbowie. Figure 8 shall be
compared with figure 9, figure 10 with figure 11 and so on. Especially
the two tools’ abilities to early in the prioritization process stabilize each
requirements value close to the finally achieved priority shall be
observed. The results presented in the graphs are analysed in section 7.3.

49

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

45 comparisons in Focal Point — criterion 1

Requirement:
REQO001
REQO002
REQO003
REQO004
REQO005
REQO006
REQO007
REQO008
REQO009
REQO010

Values after n number of comparisons

10 19 45
16,74% ... 17,35% ... 17,07%
825% ... 7,79% ... 7,70%
6,48% ... 594% ... 531%
11,93% ... 11,96% ... 12,13%
742% ... 751% ... 7,70%
947% ... 10,02% ... 10,42%
8,26% ... 7,41% ... 7,70%
12,23% ... 12,23% ... 12,13%
1159% ... 1243% ... 12,13%
762% ... 737% ... 7,70%

Table 2 Assigned values by Focal Point for a full prioritization with 45 comparisons

and criterion 1

Focal Point - Criterion 1

20,00%
—e— REQO01
18.00% 1 perteeseten cosesesess —H—REQOO2
16.00% 1 REQ003
14,00% - REQ004
12,00% 1T e S —¥— REQO005
10,00% | —e— REQO06
6.00% el | ——REQO07
o 00vs PPN —— REQO08
REQ009
4,00% 1 REQO10
2,00% -
0,00% ++——FF+—"r—""+—""+—"T """

10 13 16 19 22 25 28 31 34 37 40 43

Figure 8 Visualization of assigned values by Focal Point for 45 comparisons and

criterion 1

50

6 - Results

45 comparisons in Rainbowie — criterion 1

Requirement:
REQO001
REQO002
REQO003
REQO004
REQO005
REQO006
REQO007
REQO008
REQO009
REQO010

Values after n number of comparisons

10
19,78%
7,86%
4,58%
13,52%
8,40%
7,42%
6,64%
10,80%
14,18%
6,77%

19
13,69%
8,95%
4,46%
13,44%
7,94%
11,07%
9,09%
12,97%
11,61%
6,73%

45
27,19%
4,76%
2,38%
13,81%
4,76%
9,90%
4,76%
13,81%
13,81%
4,76%

Table 3 Assigned values by Rainbowie for a full prioritization with 45 comparisons

and criterion 1

30,00%

Rainbowie - Criteron 1

25,00% -
20,00% -
15,00% -
10,00% -

5,00% 1

—e—REQO01
—m— REQ002
REQO003
REQO004
—%— REQO005
—e—REQ006
—+— REQ007
—=—REQO08
REQO009
REQO010

0,00%

10 13 16 19 22 25 28 31 34 37 40 43

Figure 9 Visualization of assigned values by Rainbowie for 45 comparisons and

criterion 1

o1

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

45 comparisons in Focal Point — criterion 2

Values after n number of comparisons

Requirement: 10 19

REQO001 12,81% ... 10,26%
REQO002 17,85% ... 13,58%
REQO003 13,95% ... 17,79%
REQO004 9,25% ... 9,10%
REQO005 566% ... 5,61%
REQO006 6,60% ... 7,30%
REQO007 12,77% ... 17,24%
REQO008 797% ... 6,48%
REQO009 4,06% ... 4,32%
REQO010 9,09% ... 8,34%

45
9,27%
13,45%
15,92%
9,30%
5,62%
7,20%
16,66%
6,87%
5,41%
10,31%

Table 4 Assigned values by Focal Point for a full prioritization with 45 comparisons
and criterion 2

25,00%

Focal Point - Criterion 2

15,00%

5,00%

0,00%

20,00% -

A :%%w

10,00% -

,*M

M

'v’v’v’v’v.

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

—e— REQOO1
—m— REQO02
REQO03
REQO04
—%— REQO05
—e— REQO06
—+— REQO07
— = REQO08
REQO09
REQO10

Figure 10 Visualization of assigned values by Focal Point for 45 comparisons and

criterion 2

52

6 - Results

45 comparisons in Rainbowie — criterion 2

Values after n number of comparisons

Requirement: 10 19 45

REQO001 766% ... 895% .. 8,62%
REQO002 16,79% ... 13,14% ... 15,12%
REQO003 18,67% ... 16,49% ... 21,99%
REQO04 5,94% ... 4,86% . 1,714%
REQO005 458% ... 6,13% .. 2,60%
REQO006 438% ... 635% ... 4,79%
REQO007 19,32% ... 18,95% ... 23,15%
REQO008 733% ... 6,21% ... 4,35%
REQO009 397% ... 589% .. 252%
REQO010 11,32% ... 1298% ... 9,07%

Table 5 Assigned values by Rainbowie for a full prioritization with 45 comparisons
and criterion 2

Rainbowie - Criterion 2

30,00%

—e— REQOO1

25,00% -
S | —8— REQO02
oo REQDO3
REQO04
—¥— REQ005

15,00% -
- —e— REQUO6
.o —+— REQOO7

) L)

10,00%
’ — = REQO08

) REQO009
5.00% 1 REQO010

0,00% ‘HHHHHHHHHHHHHHHHH]
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Figure 11 Visualization of assigned values by Focal Point for 45 comparisons and
criterion 2

53

Development and Evaluati
Retrospective Analysis in

on of Tool Support for
Requirements Engineering

19 equivalent comparisons in Focal Point — criterion 1

Requirement:
REQO001
REQO002
REQO03
REQO004
REQO05
REQO006
REQO0O07
REQO008
REQO09
REQO010

Values after n number of comparisons
and internal order at n =19

10 19 Order
14,44% ... 17,35% 1
9,16% e 1,79% 6
6,50% ... 5,94% 10
13,01% ... 11,96% 4
7,44% . 1,51% 7
9,50% ... 10,02% 5
8,42% . 1,41% 8
12,13% ... 12,23% 3
12,04% ... 12,43% 2
7,37% . 1,37T% 9

Table 6 Assigned values by Focal Point for 19 equivalent comparisons and criterion 1

Focal Point - Criterion 1

20,00%

18,00% |

16000 | S0 0O e —e— REQOO1
—=— REQUO2

14,00% REQU03

oo | = o e REQ004

—%— REQO05
10,00%
—e— REQO06

8,00% - W% —+— REQO07

6,00% | | —=—REQO08
REQ009
0, i
4.00% REQO10
2,00%
0,00%

10 11 12 13 14 15 16 17 18 19

Figure 12 Visualization of assigned values by Focal Point for 19 equivalent

comparisons and criterion 1

54

6 - Results

19 equivalent comparisons in Rainbowie — criterion 1

Values after n number of comparisons
and internal order at n =19

Requirement: 10 19 Order
REQO01 25,15% ... 17,48% 1
REQO002 725% ... 791% 7
REQO003 432% ... 6,34% 10
REQO004 14,39% ... 11,38% 3
REQO005 259% ... 8,56% 6
REQO006 587% ... 10,26% 5
REQO007 555% ... 7,61% 8
REQO008 14,30% ... 10,83% 4
REQO009 14,71% ... 12,05% 2
REQO010 587% ... 7,58% 9

Table 7 Assigned values by Rainbowie for 19 equivalent comparisons and criterion 1

Rainbowie - Criterion 1
30,00%

25,00% +—& —e— REQO01
—m— REQ002
20,00% - REQO03
REQ004
15,00% REQU0S
—e— REQO06
—+— REQO07
10,00% H —=— REQ008
REQ009
5,00% REQO10

0,00% T T T T T T T T T

10 11 12 13 14 15 16 17 18 19

Figure 13 Visualization of assigned values by Rainbowie for 19 equivalent
comparisons and criterion 1

55

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

19 equivalent comparisons in Focal Point — criterion 2

Values after n number of comparisons
and internal order at n =19

Requirement: 10 19 Order
REQO01 12,81% ... 10,26% 4
REQO002 17,85% ... 13,58% 3
REQO003 13,95% ... 17,79% 1
REQO004 9,25% ... 9,10% 5
REQO005 566% ... 5,61% 9
REQO006 6,60% ... 7,30% 7
REQO07 12,77% ... 17,24% 2
REQO008 797% ... 6,48% 8
REQO009 4,06% ... 4,32% 10
REQO010 9,09% ... 8,34% 6

Table 8 Assigned values by Focal Point for 19 equivalent comparisons and criterion 2

Focal Point - Criterion 2
25,00%
—e— REQOO1
20,00% 1 —m— REQOO2
\ REQ003
15,00% - REQO04
—%— REQO05
—e— REQO06
10,00% | —e— 7 T | o007
& —=— REQO08
5,00% w REQO009
REQ010
0,00% ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 11 12 13 14 15 16 17 18 19

Figure 14 Visualization of assigned values by Focal Point for 19 equivalent
comparisons and criterion 2

56

6 - Results

19 equivalent comparisons in Rainbowie — criterion 2

Requirement:
REQO001
REQO002
REQO03
REQO004
REQO05
REQO006
REQO0O07
REQO008
REQO09
REQO010

Values after n number of comparisons
and internal order at n =19

10 19
12,63% ... 7,62%
2450% ... 10,26%
1157% ... 14,57%
931% ... 12,45%
423% ... 6,80%
4,44% ... 6,61%
12,82% ... 14,56%
9,50% ... 8,17%
3,42% ... 6,74%
7,99% ... 12,22%

Order

roorBSowN o

Table 9 Assigned values by Rainbowie for 19 equivalent comparisons and criterion 2

Rainbowie - Criterion 2

30,00%

25,00% -

20,00% -

15,00% | M
w\wﬁ‘rﬂ N
10,00% 1 _>0\ : a—a—p
. * —
5,00% |

0,00%

—e— REQO01
—m— REQO02
REQO03
REQO004
—%— REQO05
—e— REQO06
—+— REQO07
—=— REQO08
REQO09
REQO10

10 11 12

13 14 15 16 17 18 19

Figure 15 Visualization of assigned values by Rainbowie for 19 equivalent

comparisons and criterion 1

S7

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

19 comparisons in two prioritizations in Focal Point — criteria 1
The “Diff.” column shows the absolute value of the difference between
the prioritizations in percentage points.

Requirement: Prio. 1 Prio. 2 Diff.

REQO01 17,35% 16,23% 1,11 pp.
REQO002 7,79% 7,30% 0,49 pp.
REQO03 5,94% 5,55% 0,39 pp.
REQO004 11,96% 12,37% 0,41 pp.
REQO05 7,51% 7,56% 0,05 pp.
REQO006 10,02% 10,16% 0,14 pp.
REQO0O07 7,41% 7,72% 0,32 pp.
REQO008 12,23% 13,42% 1,19 pp.
REQO009 12,43% 11,77% 0,66 pp.
REQO010 7,37% 7,90% 0,54 pp.

Table 10 Assigned values for two prioritizations with 19 comparisons in Focal Point
and criterion 1

Average difference between the prioritizations: 0.53 percentage points

19 comparisons in two prioritizations in Focal Point — criteria 2

Requirement: Prio. 1 Prio. 2 Diff.

REQO001 10,26% 9,12% 1,14 pp.
REQO002 13,58% 13,43% 0,14 pp.
REQO003 17,79% 18,11% 0,32 pp.
REQO004 9,10% 7,98% 1,12 pp.
REQO005 5,61% 4,79% 0,82 pp.
REQO006 7,30% 6,83% 0,46 pp.
REQO07 17,24% 16,70% 0,54 pp.
REQO008 6,48% 6,10% 0,37 pp.
REQO009 4,32% 5,88% 1,55 pp.
REQO010 8,34% 11,06% 2,73 pp.

Table 11 Assigned values for two prioritizations with 19 comparisons in Focal Point
and criterion 2

Average difference between the prioritizations: 0.92 percentage points.

58

6 - Results

59

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

60

7 - Analysis

7 Analysis

The results from the three evaluations have been analysed and compiled
in the following sub-sections, together with the conclusions that was
made.

7.1 User evaluation of Rainbowie

The outcome of this evaluation was on the whole positive and it was
concluded that the program’s usability is good enough for users familiar
with the PARSEQ method. Further, it was concluded that the program
fully, even though not yet always perfectly, supports all the steps in the
method.

Some parts of the process, for example the automatically generated
graph when the prioritization is done, were found less time-consuming
and more flexible than without the tool.

Other parts were considered to be in need of some further program
development to achieve an even better support for the method as well as
a higher usability. For a list of these improvement suggestions see the
list in section 6.2.1. From this list, items 6 and 8 have since been
implemented, while the rest will be discussed as suggestions of future
development in section 8.2.

7.2 PARSEQ evaluation of the implementation

If the project was to be remade or a new project with a similar process
was to be started, the results from the user evaluation would help us to
be even more successful.

The three main conclusions drawn is that too little time was spent on
discussing and understanding the requirements and the specification,
more time should be spent on looking for existing solutions to presented
problems and more effort should be put into making earlier prototypes.

The fourth point, concerning requirement’s level of description,
cannot be influenced by the developers. This is an improvement that
must be made by the customer, or the writer of the requirements
specification, and is therefore left out as an improvement suggestion for
this project.

The main knowledge gained through the PARSEQ evaluation can be
put in one sentence: “Spending more time in the beginning of a project
to get a picture of what the customer really wants, will help getting the
appropriate features in the appropriate release”.

61

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

7.3 Comparison with Focal Point

As described in section 5.2.3, the comparison between Rainbowie and
Focal Point had three main purposes. Each of these will be analyzed in a
separate section below.

7.3.1 The pair-wise comparison method as a whole

The first observation made from the results after using the two
prioritization tools is the difference in absolute assigned values. This
difference is obvious when the values after 45 comparisons are
consulted. These values shall be considered to be the true values of the
prioritization, i.e. no estimations are done, when the calculation is done
by using to the AHP. Since these differ between Focal Point and
Rainbowie, a difference must exist in either the AHP calculation or in
the translation of relative significance in the comparisons made by user
to values used in the calculation. The fact that requirements assigned
with equal priority values by Focal Point also are given equal values by
Rainbowie indicates the latter. An example of these equal values is that
REQO004, REQO08 and REQO09 have all been assigned the value
12,12% for criterion 2 by Focal Point and 13,81% by Rainbowie for the
same criterion. This means that Rainbowie probably uses another scale
than Focal Point when translating a comparison made by the user to a
numerical value for the AHP calculation (for details of this translation,
see section 3.5.4).

Another obvious difference is Focal Point’s greater ability to in an
early stage of the prioritization process stabilize a requirement’s priority
nearby the final value. In the graphs, this is obvious by the smoother
lines in Focal Point’s graphs and a more fluctuating evolvement by
Rainbowie. The reason for this weakness in Rainbowie is probably a
consequence of the modification of the IPC algorithm and will be
further described in the next section. As a result of this, Rainbowie will
in most cases need more comparisons done by the user than Focal Point
to generate a result with the same accuracy. To examine the size of this
difference in needed comparisons, a study larger than possible for the
scope of time in this thesis must be done and is therefore left out for
possible future research.

7.3.2 Effects of the modification of the IPC algorithm

The major modification of the IPC algorithm is the excluded
functionality for selecting the comparison with the most potential
information to add as the next comparison. The effect of the exclusion
of this part, which is presumed to be implemented in Focal Point, is
obvious through the bigger fluctuations throughout the prioritization in
the values assigned by Rainbowie. When values are stabilized in an
early stage of the prioritization in Focal Point, many more comparisons

62

7 - Analysis

are needed in Rainbowie before a similar behaviour can be observed. In
the second part of the comparison between the tools, where the order of
19 comparisons decided by Focal Point is used, a more comparable
progress of the assigned values is logically shown. The values
calculated by Focal Point seem to stabilize earlier and have a less
fluctuating development towards the final values. It must though be
pointed out that this evaluation is by far comprehensive enough to draw
any definitive conclusions and should rather be seen as an instrument
for identifying possible sources of inaccuracy. The lack of functionality
for setting up the most efficient order of the list of comparisons in the
modified IPC algorithm must however be considered as such a source.

7.3.3 Accepted inaccuracy in industrial applications

To try to get an estimation of the relative extent of the inaccuracy found
in the IPC algorithm implemented in Rainbowie, a final examination
with Focal Point was done. This examination was in fact a comparison
between Focal Point and itself. The intention of this experiment was to
examine if there is an accepted degree of inaccuracy in a tool used in
industry today. The results from this test show an obvious difference in
the results from the two prioritizations with an average divergence of
0,53 respectively 0,92 percentage points. The internal order of the
prioritized requirements also differs between the two experiments and
the requirements internal ranking is only sustained in eight out of 20
cases. These observations are by no means intended to evaluate the
Focal Point tool, instead is their purpose to examine to accuracy of the
pair-wise comparison method in general. The conclusions drawn from
this part of the evaluation is that there is always an element of
inaccuracy when an incomplete form of the pair-wise comparison
method is used. This inaccuracy must be taken into mind when doing an
incomplete pair-wise comparison, especially when Rainbowie is used
since the implemented IPC algorithm is simplified. The values
calculated by Rainbowie when an incomplete pair-wise comparison has
been made shall not be considered as any truly accurate values. The
interpretation of these shall rather be of a guiding nature.

63

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

64

8 - Discussion

8 Discussion

In this section we discuss our general reflections over the project. Since
this is the first tool in its area, developed over only 20 weeks, it is fair to
assume that the tool will continue to being developed together with the
PARSEQ method itself. Because of this, a range of improvement
suggestions is also presented to reflect our opinions of where to focus
future development.

8.1 General reflections over the project

Some parts of the project have been more complex, and needed more
time, to implement than other parts. Especially complex was the theory
and implementation involving AHP and in particular the IPC algorithm.
The development of the graphical user interface for the PG method, also
belong to the more time-consuming areas of the project. Other parts,
such as the implementation of the $100-technique, have in comparison
been quite simple and also much less time-consuming.

8.2 Suggestions from the user evaluation

Here the suggestions gotten from the user evaluation is described in
more detail together with a discussion of what they would do for the
program.

Importing old priorities
The program currently only has support for importing and handling
release numbers.

Support for importing and handling earlier priorities means that it
instead of comparing the new priorities to which release the
requirements were implemented in, it would be possible to directly
compare the old priorities to the new ones.

Undo functionality
Throughout the entire program there are several areas that would benefit
from an extensive undo support.

The main reason for good undo support is to achieve a higher
usability via more forgiving interaction.

Change priorities

Make it possible to change and adjust priorities in an easy way later in
the process. If it, for example, in the graph-window is discovered that a
requirement has mistakenly been given a wrong priority.

65

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Then, it would save a lot of time if it were possible to correct that
mistake, without having to redo the entire prioritization step from
scratch.

Merge, group and split cards

The ability to merge, group and split cards in the PG would help if it,
during the prioritization, is discovered that requirements are poorly
formulated or have strong relations to each other.

Drag cards between piles

In the planning game, it would be easier and faster to move cards
between piles if it is possible to directly drag a card from one pile to
another, without having to put the card on the desk first.

Sliders in $100-window
A slider in $100-window that can be used to assign the $. When one
slider is pulled up, the other sliders should be lowered, to always keep
the total amount of used $ to $100. Also, implement functionality to
lock desired sliders, so that they will not be changed when another is
pulled.

This would mean that the user do not have to think about how many
$ that are left to be used.

Improvement suggestion and root-cause mapping
In the root-cause matrix, there currently is only one improvement
suggestion column for each root-cause.

The possibility to map several improvements suggestions to one
root-cause might make the program more flexible.

Graph-window and root-cause matrix mapping
Visualize in the graph window which requirements that have been added
to the root-cause matrix.

This is another usability improvement, which would help the user to
keep track of which requirements that have already been added to the
root-cause matrix.

Different layout of support lines in the planning game graph

In one view mode in the planning game graph, the area is divided in
three equally large areas corresponding to the boxes during
reprioritization. This means in practice that the distance between the
graph points within each square is dependent on the number of points in
that square. This should be changed to have the lines drawn with one
third of the requirements in each square, in other words the lines shall
no longer correspond to the boxes in the reprioritization.

66

8 - Discussion

This change should be made because the scale used in planning
game is just ordinal and a difference in distances between the points can
mislead the user to believe that the scale is non-ordinal.

8.3 Suggestions from the Focal Point comparison

According to the analysis in section 7.3, the implemented IPC algorithm
is one section that could gain improvement by future development. The
algorithm needs to be improved if Rainbowie’s ability to perform an
incomplete pair-wise comparison shall be comparable with industrial
tools in the area, as for example Focal Point. If the algorithm were
expanded with functionality to calculate the optimal next comparison to
make according to the IPC theory in section 3.5.3, the results given by
Rainbowie would most likely be more similar to Focal Point’s results.

Another suggestion of improvement of the implemented IPC
algorithm is to add a stopping rule that also is described theoretically in
section 3.5.3. As the algorithm is implemented today, the decision of
stopping the prioritization and continuing to the next step in the process
is entirely left to the user and no aid is given by the tool. This fact
assumes that the user has a considerable knowledge about the
prioritization method itself and the possible sources of inaccuracy
present to take such a decision. To avoid this demand on the user and
create a tool less dependant on user expertise, some sort of stopping rule
needs to be implemented.

To summarize the improvement suggestions for the PWC part of the
program, this section has significant enhancements to gain from future
development. Besides from more usability oriented improvement
suggestions listed above, this area should probably be kept in focus if
future development of the program would take place. A complete IPC
algorithm should probably be the main objective of such a development.

67

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

68

9 - Conclusions

9 Conclusions

This Master Thesis has given two main results.

First of all a software tool has been created that supports all four
steps of the PARSEQ method. The functionality of the software has
been evaluated and tested by the probable future users. The evaluation
showed that the work put into this thesis has proven to give good results
and a well functioning software prototype. The resulting software is
likely going to be used in future research and the software itself will
also probably be developed even further.

Secondly, we have gained knowledge and gotten more familiar with
retrospective analysis in general and the PARSEQ method in particular.
The knowledge gained concerning retrospective analysis has opened our
eyes for an interesting area within the requirements engineering niche.

Further, the thesis has given us more experience and insight into the
areas of software- and requirements engineering. During the work of
this thesis, we have been given the opportunity to apply the theoretical
knowledge obtained during our education in the largest real life project
we have been a part of so far.

Through the experience we have gotten in software development in
this thesis, there are a number of things that we would do differently if a
similar, larger scale, project was to be done: We would have tried to
have a more structured and formal requirements engineering process,
since this is a key area of a successful project. Also, a tool for
configuration management would be necessary. We felt that the way we
handled the configuration management in this project was sufficient,
however on the edge of growing too large to continue without a tool.
Finally, another area that would help save some time and improve the
development process is some kind of testing procedures. This could for
instance be something like a structured test first policy or automated
testing.

69

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

70

10 - References

10 References

[1]
[2]
3]
[4]

[5]

[6]

[7]

[8]
[9]

[10]
[11]
[12]

[13]

[14]

Sommerville, 1, Sofware Engineering, 6th edition, Addison-
Wesley, 2001

Lauesen, S, Software Requirements, Styles and Techniques,
Addison-Wesley, 2002.

Boehm, B. W, “A Spiral Model of Software Development and
Enhancement”, IEEE Computer, 21(5), 61-72 (Chs. 3,4), 1988

Karlsson, J., Marknadsdriven produktledning — fran kundbehov
till IdGnsamma produkter, Focal Point AB

Karlsson, L., T., Berander, P., Regnell, B., Wohlin, C.,
”Requirements Prioritisation: An Experiment on Exhaustive
Pair-Wise Comparisons versus Planning Game Partitioning”,
Proceedings of the 8" International Conference on Empirical
Assessment in Software Engineering, Edinburgh, Scotland, UK,
2004

Beck, K., Extreme Programming Explained — Embrace Change,
Addison-Wesley, 2000

Harker, P. T., ”Incomplete Pairwise Comparisons in the
Analytical Hierarchy Process”, Mathematical Modelling, Vol 9,
pp. 837-848, 1987

T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New
York, 1980

Karlsson, J., Ryan, K., “A Cost-Value Approach for Prioritizing
Requirements”, IEEE Software, pp. 67-74, September/October,
1997

Ji, P, Jiang, R., ”Scale transivity in th AHP”, Journal of the
Operational Research Society, Vol. 54, No. 8, pp.896-905, 2003

Leffingwell, D., Widrig, D., Managing Software Requirements -
A Unified Approach, Addison-Wesley, 2000

Godfrey, A.B., “The Santayana Review”, Quality Digest,
February, 1999

Rising, L., Derby, E., “Singing the Songs of Project Experience:
Patterns and Retrospectives”, Cutter IT Journal, Vol. 16, No. 9,
pp. 27-31, September, 2003

Nolan, A.J., “Learning from Success”, IEEE Software, pp. 97-
105, Jan/Feb, 1999

71

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

[15]
[16]

[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

Kerth, N.L., Project Retrospectives: A Handbook for Team
Reviews, Dorset House Publishing, 2001.

Birk, A., Dingsgyr, T., Stalhane, T., "Postmortem: Never Leave
a Project Whitout it”, IEEE Software, pp. 43-45, May/June, 2002

Dingseyr, T., Moe, N.B., Nytrg, @., "Augmenting Experience
Reports with Lightweight Postmortem Reviews”, 3"
International Conference on Product Focused Software Process
Improvement, Kaiserslautern, Germany, September, 2001.

Karlsson, L., Regnell, B., Karlsson, J., Olsson, S., “Post-Release
Analysis of Requirements Selection Quality — An Industrial Case
Study”, 9™ International Workshop on Requirements
Engineering: Foundation for Software Quality, Velden, Austria,
2003

Jeffries, R., Anderson, A., Hendrickson, C., Extreme
Programming Installed, Addison-Wesley, 2001.

Whitgift, D., Methods and Tools for Software Configuration
Management, John Wiley & Sons, Inc., 1991.

Preece, J., Rogers, Y., Sharp, H., Interaction design: Beyond
human-computer interaction, John Wiley & Sons, Inc., 2002.

Pol, M., Teunissen, R., van Veenendahl, E. Software Testing — A
Guide to the TMap Approach, Addison-Wesley, 2002.

Stevens, P., Pooley, R., Using UML.: Software Engineering with
Objects and Components, Addison-Wesley, 2000

http://ieee.org (visited 2005-05-25)

http://www.ne.se (visited 2005-05-25)
http://www.eclipse.org (visited 2005-05-25)
https://www.cvshome.org/ (visited 2005-05-25)
http://www.cvsnt.com/ (visited 2005-05-25)
http://www.wincvs.org/ (visited 2005-05-25)
http://www.focalpoint.se (visited 2005-05-25)
http://www.andykhan.com/jexcelapi/ (visited 2005-05-25)

72

10 - References

73

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

74

11 - Suggestions from the Focal Point comparison

11 List of figures and tables

Figures
Figure 1
Figure 2
Figure 3

Figure 4
Figure 5
Figure 6
Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Figure 15

The Waterfall model..........ccoooeiiiiiiiiieee e 7
The requirements engineering process [1]cccoovvvvvrvennene 14

The PARSEQ process, the lower rectangles represent the
four steps [18]. The five upper icons represent inputs and

outputs to the four process StePS.......cccvvvvevveiiveeieeiiieerieeene. 25
The main window of the programccccccevvvevvieieennenn, 38
The root-cause matrix with three requirements added......... 42
Package structure of the program...........cccocevveveiivevnenene. 45

The resulting graph from the prioritization of the
requirements in the PARSEQ evaluation of Rainbowie. 48

Visualization of assigned values by Focal Point for 45
comparisons and Criterion 1cccccevveveviienesie e 50

Visualization of assigned values by Rainbowie for 45
comparisons and Criterion 1cccccevvevevieesesie e 51

Visualization of assigned values by Focal Point for 45
comparisons and Crterion 2cccecevvevesieesesriesee e 52

Visualization of assigned values by Focal Point for 45
comparisons and Crterion 2ccccovevveveseeseeieeseeseeeeeens 53

Visualization of assigned values by Focal Point for 19
equivalent comparisons and criterion L..........cccccevvvevvenenne. 54

Visualization of assigned values by Rainbowie for 19
equivalent comparisons and criterion L..........cccccevvvevvenenne. 55

Visualization of assigned values by Focal Point for 19
equivalent comparisons and Criterion 2..........ccoccevevevvenenne. 56

Visualization of assigned values by Rainbowie for 19
equivalent comparisons and criterion L..........cccccevvvevvenenne. 57

75

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Tables
Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

The resulting root-cause matrix after the PARSEQ
EVAIUALION.veciicece e 49

Assigned values by Focal Point for a full prioritization with
45 comparisons and Criterion L.........cccocvevevieerveiesiieiennens 50

Assigned values by Rainbowie for a full prioritization with
45 comparisons and Criterion L.........cccocvevvvieeivniesineiennens 51

Assigned values by Focal Point for a full prioritization with
45 comparisons and Criterion 2.........cccevvevvevieerveiesieesesinens 52

Assigned values by Rainbowie for a full prioritization with
45 comparisons and Criterion 2.........ccceveevvevivereeiesieesennens 53

Assigned values by Focal Point for 19 equivalent
comparisons and Criterion L........ccccocvevvvievnevecie s 54

Assigned values by Rainbowie for 19 equivalent
comparisons and Criterion L........ccccocvevivvievineresiese e 55

Assigned values by Focal Point for 19 equivalent
comparisons and CrterioN 2........ccooevererenenieeieenese e 56

Assigned values by Rainbowie for 19 equivalent
comparisons and CrterioN 2........ccooevervreneniesirenene e 57

Assigned values for two prioritizations with 19 comparisons
in Focal Point and Criterion 1........cccccoccovvvevvniesnenesiesnene, 58

Assigned values for two prioritizations with 19 comparisons
in Focal Point and Criterion 2.........cccoocevvevviiesivenescie s, 58

76

11 - Suggestions from the Focal Point comparison

77

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

78

12 - Appendix A — Technical terms and abbreviations

12 Appendix

Appendix A — Technical terms and abbreviations

AHP

Cl

CR

CVS

CVSNT

GUI
IPC

J2SE

KJ session

KKXxXXX

UKXXXX

PARSEQ

PG

PKxxxx

The Analytic Hierarchy Process, designed by T.L.
Saaty [8], is a model that includes pair-wise
comparisons and is used to aid decision-making.

Consistency Index is an indicator of the accuracy of
pair-wise comparisons.

Consistency Ratio defines the accuracy of pair-wise
comparisons. It is the ratio between the consistency
index and the random indices.

Concurrent Versions System is a free and well-spread
versions control system.

Is just like CVS a free and well-spread versions control
system but with many more features.

Graphical User Interface

Incomplete Pair-wise Comparisons is a method
developed by Harker [7] to reduce the number of
necessary comparisons in the normal pair-wise
comparisons method.

Java 2 Platform, Standard Edition. A Java development
environment from Sun Microsystems.

A method for collecting and structuring data developed
by and named after the Japanese ethnologist Jiro
Kawakita.

Quality Requirement number xxxx (KvalitetsKrav).
Refers to the requirements in the requirements
specification.

Development Requirement number XXXX
(UtvecklingsKrav). Refers to the requirements in the
requirements specification.

Post-release Analysis of Requirements SElection
Quality.

Planning Game, the prioritization technique discussed
in section 3.5.1.

Product Requirement number xxxx (ProduktKrav).
Refers to the requirements specification.

79

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

PWC

RI

SDK

SQL

WIMP

WINCVS
XP

$100-test

Pair-Wise Comparisons, the prioritization technique
discussed in section 3.5.2.

Random Indices, the consistency indices of randomly
generated reciprocal matrices.

Software Development Kit.

Structured Query Language is a standard interactive
and programming language for getting information
from and updating a database.

Windows, lIcons, Mouse and Pull-down menus,
abbreviation used in interaction design.

A graphical user interface for CVS.

eXtreme Programming, is the software development
technique discussed in section 5.1.

The prioritization technique described in section 3.5.5.

80

12 - Appendix A — Technical terms and abbreviations

81

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

82

12 - Appendix B — Detailed software architecture

Appendix B — Detailed software architecture

This appendix will present a detailed description of the Rainbowie
systems internal software architecture concerning packages, classes and
relations. Each package will be presented with a class diagram in UML
[23] notation and a description of the internal class structure and
functionality. For visibility reasons, the class diagrams are not displayed
to their full extent. The intention of presenting these diagrams is to
explain the internal package structure rather than to illustrate a complete
class description. Related classes in other packages than the currently
described are presented with compressed class symbols.

The rainbowie package

In the rainbowie package, classes considered to be universal and
frequently used throughout the program are located. These classes are
three in total and are structured as follows.

|_ zimports —l
(® Rainbowie ® RequirementList ® Requirement
o DOLLAR: int
& Rainbowisl) gimports 5 BAR WISE: It «impnrt»?\ & Requirement()
@ getimportedList() — 7 % PLANNNG. GAME it @ gettopyl)
@ getlastPriodindaw) B ' @ getPriorty1)
@ getPrioList() C? RequiremerntLizt() @ getPriority2()
@ getPrioTestList)) @ addRequirement) @ getRelMdbr()
03 maing) @ getClampedCopy() @ getReq)
@ =etlmportedList) @ getindexof) @ getReghbr()
@ =zetlastPrioindaw) @ getlencgth() @ =etPriorty1()
@ =etPrioList() @ getPrioCriterial() @ =setPriority2()
@ =etPrioParamsl) @ getPrioCriteria() @ =etRelMbr()
@ zhowHelpDislogl) @ getPriotethod) @ =etReq)
/]\ | | @ getReql) @ setReghbr)
| |eimports | «imports o petReqgl)
| | .v : o] getHequst(.j
® util::HelpDialog @ getSortedlist)
| | @ printList()
| | — @ removeRedi)
kA b
| <™ @ setPrioCriterial()
| .| @ =etPrioCriteria2()
. P irnpart .
® gui:MainWindow «_p_»% @ setPrioMethod?)

83

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Rainbowie.java
This is the main class in the system. The main method of the program
can be found in this class together with the essential lists containing
imported and reprioritized requirements. When other parts of the system
have completed their tasks, as for example the requirements
reprioritization, the affected list in this class is directly updated.

In addition, the main window of the program is initialized from an
instance of this class. The class is also responsible for showing the help
dialog when the user opens it from any of the windows in the program.

Requirement.java

A requirement in the program is represented by an instance of this class.
The class is mainly a holder of the attributes for the represented
requirement, such as the requirement number, requirement description
and release number. The class also holds attributes for the assigned
priorities for the requirement. Corresponding to these attributes, the
class also holds a range of get and set methods and a method to create a
copy of the requirement.

RequirementList.java
All requirements in the program are collected in requirement lists. These
lists are represented by an instance of this class. If the list has been
reprioritized, the class stores information of the prioritization technique
and criteria used.

Together with the functionality mentioned, this class also contains
algorithms needed to create lists sorted by specified parameters.

84

12 - Appendix B — Detailed software architecture

The importer package

Since the program at this moment is capable of importing requirements
from Excel only, this package contains just one class.

® Excellmporter __ _smpots o @ rainbowiex:Rainbowie
d: Excelinparter()
@ getCols)
@ getRows() __ smports ol @ rainbowies:Requirement
@ getSheets()
@ importRequirements()
@ zetShest)
@ setupExcelimportertindow() __«mports| @ rainbowie:RequirementList
| | aitports \L«impnﬂ»
| ® guizlmportWindow
| | gitnpotts
| e
@ gui::ExcellmporterWindow

Excellmporter.java

This class contains functionality to access an Excel spreadsheet. All
interaction with Excel files is done by dynamically linking to the open
source JExcel APl written by Andy Khan [31]. The information
collected in the spreadsheet is transferred to the graphical user interface
to make the requirements selection possible. When the user has selected
the desired requirements, an import is done and the requirement list in
the Rainbowie object is updated.

85

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

The prioritizer package

All needed calculations and data storage during the reprioritization
phase of the PARSEQ process is made in classes in the prioritizer
package. Each prioritization technique has a corresponding class in the
package for the specific functionality needed. These classes do their
calculations and store results in requirements and requirement lists
distributed to them.

@ oethroTol)
@ oetRequirement()

@ PathValue

o Pathvalue)
o getPathivaluer)
@ multiplyPathi'alue)

© Pairwise @ DollarTechnigue © PlanningGame
— W CARD_HEIGHT: int
o Pairwise() & DollarTechniaue() CARDWIDTH: nt
© backOneSten() & criterisDane() F pESK: int
o dsbug() @ done)) _ FHIGH: int
i@ gethliowedPathsl) i@ getDollarsAvsilblel) ?)FLOW. int
@ getCurrertComparizonRowe() @ nesdlzer() F MEDIUM: int
@ getCurrentRowlncexi) @ oneCriteriaDone()
@ getCurrent/alue() @ setCriterial) Oc FlanningGamei)
@ gethaxPathsBetareRandom) @ setDollarsAvailble) @ acoCardToSelectionList()
@ prioDoner) @ setvalue() @ deselectCard()
@ reset() | @ drawDesk()
@ setpllowedPaths() @ drawFile()
@ setMaxPathsBeforeRandami) : sinports @ oetx()
@ setvalue() @ oethv()
| @ gethbrOfCardsinCurrentFile()
@ ComparisonList —ﬁ”pﬂt»% @ rainhowie::RequirementList |€ imports | g gethbrOfCardsOnDesk()
@ getfile()
d: ComparizonList() | @ getRequirernent()
@ addRow() | «lports @ getRequirement ()
@ addRow() @ getReguirementList()
© getlengthQ —_“‘mﬂm—)| @ rainbowie::Requirement |e _simports | @ makeCards()
@ getRow() @ moveCardToEmptyPlace()
@ removeRow() @ moveSelectedCardsTol)
i@ roweExists() @ moveselectedinfileTal)
@ moveSelectedTa()
@ Graph o print()
@ putCardinPile)
o Graph() @ select))
@ addArc() @ selectCardsinSelectionSouare()
@ calculateGeometrichean) @ selectPilen)
@ calculateRandomGeometricheant) @ sendToDesk()
@ getArcyalue() o setCurrentPriortiesAndShutfle()
QA[C @ unhighlightalPiles()
o @ Card
@ getFromi) @ drawl)
@ getTa))
o getValue() @ Pile
@ setValue)
i@ crea)
G Node @ selectedBy()
o Mode()
i@ addAre))

86

12 - Appendix B — Detailed software architecture

PlanningGame.java

The class corresponding to the Planning Game technique has the main
task to keep track of the cards on the desk and in the piles. Each
requirement in the reprioritization corresponds to an instance of the
internal Card class. In the PlanningGame class, a linked list of cards to
be found on the desk is placed. The three piles located on the desk are
represented by three instances of the internal class Pile that also holds a
linked list of the cards located in that pile. Each card is then stored in
exactly one linked list depending on whether it is in a pile or on the
desk.

Other functionality of importance located in this class concerns
handling of cards in the window. These methods are for instance
responsible for creating the cards and randomly placing them on the
desk, detecting whether a card is selected or not by a mouse click in a
specified position and handling movement of cards when the user is
dragging it with the mouse.

In the internal Card class, a reference to the corresponding
requirement is found together with information about the cards’ position
and how is shall be drawn.

In the Pile class, as mentioned above a linked list containing the
cards in the pile is located. Together with this functionality for detecting
if a dragged card can be dropped in the pile, if the pile can be selected
by a mouse click and drawing instructions can be found.

Since the prioritization values in the Requirement objects are stored
as double values, the prioritization order is coded in a special way to
handle belongings to different piles. Therefore the stored double value is
divided into two parts: The integer part of the value represents the
requirements ordinal ranking in the pile, starting by 0 for the first
position. The decimal part decides which pile the card is placed in, O for
“High”, 1 for “Medium” and 2 for “Low”. To illustrate; the card placed
first in the “High” pile will be assigned the priority value 0.0 and the
third card in the “Medium” pile will be given the value 2.1.

DollarTechnique.java
The class used for prioritizing with the $100-test has four main
parameters to keep track of.

1. The number of dollars used in total during reprioritization. If
more than one user do the prioritization, this value must be
stored.

2. The number of dollars used so far by the user for the current
prioritization criteria.

3. The number of dollars assigned to the first priority criteria for
each requirement.

87

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

4. The number of dollars assigned to the second priority criteria for
each requirement.

Additionally, the class hold functionality for calculating and for each
requirement storing the final priority values when the reprioritization
phase is done.

Pairwise.java

In the class for pairwise comparisons the internal structure formed in
three main parts. All general functionality is located in the Parwise class
itself. This type of functionality handles for example setting and getting
values parameters and priority values. Also functionality for setting up
the reprioritization and forward and backward iterating through the
comparisons can be found here.

An internal class called ComparisonList keeps track of all possible
pairwise comparisons in the requirement set. Each pairwise comparison
is represented by an Object array referred to as a row in a linked list
located in the internal class. The row elements are in the following
format:

The first requirements’ position in the original requirement list
The first requirements’ description

The second requirements’ position in the original requirement list
The second requirements’ description

o M w D E

The assigned priority value for the current comparison

The assigned value is in the format of the relative importance of the first
requirement compared to the second requirement, i.e. if the first
requirement is of higher significance than the second; the assigned value
is greater than one. For details of pair-wise comparison, see section
3.5.2,

When the comparison list is set up, a semi-random algorithm in the
Pairwise class is used. A fully random algorithm can not be used since
the use of incomplete pair-wise comparisons sets restrictions for the n
first comparisons, where n = the number of requirements in the
reprioritization. See section 3.5.3 for details on incomplete pair-wise
comparisons. The algorithm therefore works as follows:

1. A copy of the requirement list is created, the copy is hereafter
referenced to as the list.

2. A first requirement is randomly chosen within the list and then
removed from it.

88

12 - Appendix B — Detailed software architecture

3. A second requirement is randomly chosen and removed from the
list.

4. A comparison is set up in the ComparisonList between the two
requirements.

5. The requirement previously considered as second is set as first
requirement and a jump to step 3 is done if the list still contains
any requirements.

6. When the list is empty, a final comparison is set up between the
last and the very first requirement removed from the list.

7. When all n comparisons have been set up, the next step in the
algorithm starts.

8. A set of all remaining comparisons is created and randomly
inserted into the ComparisonL.ist after the initial n comparisons.
All comparison pairs are also internally switched by a
probability of 50%, i.e. the first requirement becomes the second
and vice versa,. This is done to prevent the user from being
influenced by for example one requirement always appearing on
the left hand side in the comparison window.

The comparison list is then ready to be iterated during the progress of
the users’ reprioritization work. For each prioritization criteria, a new
setup procedure is done.

The other internal class defines the graph used in the calculations of
the incomplete pair-wise comparison method. In this graph another
internal class, called Node, represents every requirement. Comparisons
between two requirements, arcs between nodes in the graph, are defined
by instances of the Arc class. Together, the nodes and the arcs define the
graph used to calculate a geometric mean of all possible, or a randomly
chosen set of all possible, paths from one requirement to another. This
geometric mean is then used as an approximation of the direct
comparison between the two requirements. The geometric mean of a set
of n numbers is defined as follows [7]:

G(a,..a,)= [ﬁaij

If the number n is unknown until the very end of the calculation, i.e. the
total number of possible paths is never known until all possibilities have
been examined, the product within the parenthesis might grow
enormously and cause an memory overflow problem if ordinary
multiplication is used. Because of this problem, another internal class
called PathValue is created to handle this calculation.

The graph has the ability to calculate the geometric mean of paths in
two ways. The first way to solve the problem is to choose to examine all
possible paths in the graph between two nodes by a depth-first

89

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

algorithm. Since the number of paths grows exponentially when arcs are
added, see section 3.5.3, this method is preferably used when few
comparisons have been completed. The other way the graph can
calculate the geometric mean is to use a randomly chosen set of paths.
The algorithm to find a random path between a specified start and end
node works as follows:

1. Set the specified start node as the current node and mark the
node as visited.

2. Among all outgoing arcs to unvisited nodes from the current
node, randomly select one.

3. Set the node at the end of the selected as the current node and
mark the new node as visited.

4. If the new node is the specified end node, exit the algorithm and
add the path to the set of randomly chosen paths, if not jump
back to step 2. If the current node has no outgoing arcs to
unvisited nodes, a dead end is reached and the algorithm starts
over at step 1 again.

In both approaches to find a set of paths, recursive algorithms are used
for graph traversing. The threshold values used for deciding when to
switch to random mode and how many random paths to use are stored as
modifiable parameters in the Pairwise class.

After each comparison made by the user, the priority values and
consistency ratio are calculated by using the theory behind AHP, see
section 3.5.4. To make this possible, a couple of matrix calculation
methods are implemented.

90

12 - Appendix B — Detailed software architecture

The analyzer package

When the requirements are reprioritized, the assigned priority values
shall be translated to positions in the graph used in the root-cause
analysis. For each prioritization method this translation is done in a
distinctive way. Each class responsible for the translation of requirement
priorities due to a corresponding prioritization method is a subclass of
the Analyzer class.

© GraphPoint | #8°CE5%: | © rainbowie::Requirement |
& Graphpoirt) |- —— —— — —— — o T T T
@ draw())
© getRequirement) @ Analyzer MR || S N pr—
@ geti() |
o getv() & snalyzert) |
@ hideText() @ createPoints() ; " " N "
@ highlight() @ drawRelativeSupportLines() B @pﬂ»% G ralnbuwm::RequuementLlst |
@ invertPoint() simparts @ drawSupportlines() /]\ /]\ /]\
@ isHighLighted() C—T "7, getAlPaints At | |
@ selectedBy() @ getSelectecdPointsReguirement() | | |
@ setReleaze() @ highlightPoirnte) | | |
@ =etd) @ zelectPaoint() | i | |
9 =) 0 setCanvasSize() | simports o
@ unhighlight) @ togoleRelstivesupportlines() | | |
1 A
simports | I I I
| | | | 1 |
® PlanningGameAnalyzer © PairwiseAnalyzer ® DollarTechniqueAnalyzer | |
d: PlanningGamednalyzer() d: Pairwizesnalyzer() d: Collar TechnigueAnalyzer() | |
@ crestePoints() @ drawRelativeSupportLines() @ drawRelativeSupportLines() | |
@ drawRelativeSupportLines() @ drawSupportlines() @ drawSupportlines() | |
@ draw SupportLines() | | |
@ invertSupportLines() L _dmpots - |[— 4
_____ dmports

GraphPoint.java

The physical representation of a requirement in the graph used in the
root-cause analysis is an instance of the GraphPoint class. This class
holds information of the points’ position, a reference to the matching
requirement, whether or not the point is highlighted and information of
how to draw the icon. The GraphPoint also contains a method called to
relocate the point when the axes in the graph have been inverted.
Another method in this class is responsible to detect if a point in the
graph is selected by a mouse click in a specified position.

Analyzer.java
In the superclass of all analyzer classes, general methods used for
priority value translations can be found. These methods are mainly
responsible for:

91

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

1. Finding the largest assigned priority value. This value is then
used to adjust the scales on the axes to ensure that the whole
graph area is used.

2. Finding the number of present release numbers and assigning
each a unique index number. This is done to make each release
be drawn with a specific icon.

3. Creation and positioning all GraphPoint objects needed. By
default, GraphPoint objects are positioned by doing a straight
transformation of the assigned priority value to a corresponding
position in the graph, e.g. considering the assigned values as a
numerical value of their significance due to the currently used
prioritization criteria. If another use of the assigned priority
values shall be done, this part of the class must be overridden by
the subclass.

4. Drawing the support lines shown in the graph. The default way
to represent these is to draw two upward sloping lines, y = 2x
and y = 0.5x, starting in origin. The lines can also be adjusted to
instead divide the set of points in the graph in three equal groups
by making the lines more or less steep. The look of these lines
can differ in various ways between the prioritization methods
and therefore is also this part sometimes overridden by a
subclass.

Besides this functionality, methods for detecting selection of one or
more points in the graph by mouse clicks can be found in this class.

PlanningGameAnalyzer.java
The result from a reprioritization made by the Planning game technique
differs particularly in two ways from the case where a default
GraphPoint translation in Analyzer can be used. First, the special coding
of the priority values, described in the PlanningGame.java section, must
be taken care of. The second major difference is that the graph’s support
lines in this case represent the three piles used during reprioritization in
two dimensions, one for each criteria. The relation between the piles and
the graph points positions can be generated in two ways. Either the
piles, illustrated by the graphs’ support lines, are equally wide and high,
meaning that the distances between graph points is relative to the
number of requirements in each pile. The other way to generate graph
points and support lines is to place the graph points with equal distances
and instead adjust the widths and heights of the piles.

Because of this prioritization technique specific behaviour, both the
method for creating graph points and the methods for drawing support
lines in Analyzer are overridden by this class.

92

12 - Appendix B — Detailed software architecture

PairwiseAnalyzer.java

When graph points are generated after a pairwise comparison
reprioritization, the default method in Analyzer is used. The only
technique specific functionality in this class is instead the creation of
labels for the axes. The highest assigned priority value found is
translated to a value in percentage notation and written out at the end of
both axes. In all other calculations, the default methods in Analyzer are
used.

DollarTechniqueAnalyzer.java

This method is identical with PairwiseAnalyzer in its functionality
except that the label created is written as a $ value instead of a
percentage value.

93

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

The gui and gui.prio packages
The classes responsible for all windows and their direct interaction with
the user are divided into two packages. Windows involved in the
requirements reprioritization phase are found in a package called prio,
located as a sub package to the gui package. In the gui package, all
windows not related to reprioritization activities are located.
Common for all window classes in the program is that they are
subclasses of the class JFrame in the package javax.swing.
In this section, all classes in the gui package will be described first
followed by the ones in the gui.prio package.

@ MainWindow |- — — — — __ _smeo @ rainbowie::RequirementList © ChoosePrioWindow
il
o Mairiindow() T T o ChonsePrioindow ()
@ paint() imports
@ setmportedTapler) | — — — — — — 7 O rainhowiezRainbowie |, j ,,,,,,,,, @ ActionHandler
® setPrioTablel) T | | |
| | | | | © actiorPerformed()
G ActionHandler } | | | | |
R R L__L__ | |
o actionperomedsy | [_“ : | | 7 | «accesss |
| oo nport
@ MouseHandler | | | [T T T T T r-———r—— "7 j__‘ll' O wtilzutil i::#::::::::{
emperte .o
© mauseClichedt) ‘ } r ‘V Jlr | T T | |
o mouseDragued() ‘ | ‘ | T . |] | saccesss |
© mouseEntered) ‘ | ‘ | | | |
© mouseExted() [‘ | | |)
@ mouseMovedr) | ‘ | perte | sscossm | I J | © ImprovementsWindow
© mousePressed) (I ‘ r 2 | ‘
® mouseReleased() | | | | | | | & mprovementsWinowr)
| | | © adiReq))
|.imports ‘ | : } | | | } o paint)
importe ampots | «acoesss | @ remaveCakmnaneData()
2 [|
| amperts] || | | ¥ | |

@ ImportWindow

@ ExcellmporterWindow

& Importindowd)
@ setvishle()
© updateRenTable()

& Excalimporteriindoe)
@ setCellAt()

@ ActionHandler

G, ActionHandler

& ActionHandler()
@ actionPerformec()

@ actionPertonned()

G ChangeHandler

@ keyPressed()
© keyReleased()
© keyTyped))

@ MouseHandler

© mouseClicksd)

@ GraphWindow

@, ActionHandler

& Granhiindow()
o dispose()
© getGraphinager)

@ actionPerformed()

@ AdjustmentHandler

G ActionHandler

@ adjustmentyalusChanged()

@ actionPertormed()

@& MouseHandler

@ mouseClicked()
© mouseDragged)
© moussEntered()

@ GraphCanvas @ mouseClicked()
@ Editwindow @ stateChanged() @ mouseEnteredt)
& GraphCanvas() AP | g mouseExted)
© dispose() O CustomTableCellRenderer @ part() __nports | | mousePressed()
© mouseReleased()
@ KeyHandler @ uetTableCelRendersrCotmponert() Q

(@ ReqTableCellRenderer

o ReaTebleCelRenderer()
© getSelectedCalumn)

© mouscEntered() | o mowesien @ getTableCeIRendererConponert()
@ MouseHandler © mouseExtedt) | @ mausehlovedi) @ setSelectedColumn()

O mousePressed() @ mousePressed)
@ mouseClicked?) @ mouseReleased;) } @ mouseReleased;) @ RequirementsTahleModel
@ moussEntered)
© mouseExitedt) T | | | @ wetColumridertifiersg)
© mousePresseds) | | | mert |
@ touseReleased?) | [| wmRert altports @ RootCauseTahleModel

aingprts
- | simparts ’—FF |
@ RequirementTableModel | ‘ | ® analyzer:Analyzer & RootCauseTableModel()
© gelColumnClass)
& RequiremertTabieModlel) } | } @ isCelEdtable()
o isCelEdisble() w _ . ,
<imports [@ importer:Excellmporter L 3 @ rainbowie:Requi sitports |
P P 1

MainWindow.java

The first window the user meets is the main window of the program. In
this window two tables, a menu bar and a set of buttons is located. Via
the buttons or the menu bar, the user can initialize the next step in the
PARSEQ process and via the tables the progress can be tracked. The
updating of the tables throughout the process is done from the programs
Rainbowie object. The action taken from the user is in this class, as well

94

12 - Appendix B — Detailed software architecture

as all other window classes, is registered and handled by internal classes
implementing the ActionListener and MouseL.istener interfaces.

ImportWindow.java

During the import step of the process, a listing of the so far chosen
requirements is displayed in a table in this window. The last column of
this table is directly editable while editing of any of the other two
demands an instance of a special edit window. The EditWindow class is
an internal class of the ImportWindow and is visualised when the user
either double-clicks on a desired row in the table or presses a specified
button. To create a faster but more complex way of editing requirement
rows for advanced users, a class implementing the KeyL.istener interface
is created to allow keyboard shortcuts. When the user is satisfied with
the set of requirements to import, a press on the accept button will
update the table of imported requirements in the main window via the
Rainbowie object and the import window will be closed.

ExcellmporterWindow.java

When the user selects to import requirements from an Excel
spreadsheet, an instance of this class is created and displayed on the
screen. In this window a table corresponding to the selected spreadsheet
is displayed. The class is responsible for taking care of user interaction
made for selecting which cells to import requirement numbers,
requirement descriptions and release numbers from. This information is
then passed on to the Excellmporter class, described above, which
imports the selected requirements to the program.

ChoosePriowindow.java

When the reprioritization phase of the process is about to start, the user
must select which prioritization method to use and which criteria to
prioritize after. These actions are taken in the ChoosePrioWindow. The
window consists mainly of three method buttons, one for each
prioritization technique, and five checkboxes for the criteria, three pre-
defined and two own definition possibilities. When the user has selected
one technique and two criteria a press on the Ok button will open the
appropriate prioritization window with the selected criteria. The main
responsibility of this window is to register the choices made by the user
and then pass them on to the Rainbowie object.

GraphWindow.java

The graph windows main task is to display the graph points representing
the reprioritized requirements in a plot on the screen. The graph can be
redrawn in several ways depending on a variety of parameters set by the
user. These parameters can for example be different kinds of support
lines as mentioned above, graph points with or without the requirement
description and with the axes of the graph inverted. All drawing of

95

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

graph points and support lines is made on the graphics of the internal
class GraphCanvas.

The window class can also detect user interaction taken to select
requirements for further analysis in the root cause matrix. Instantly
when a GraphWindow object is created, a corresponding
ImprovementsWindow, holding the root cause matrix, is instantiated. A
double click on a graph point, or a press on the Analyze button when a
graph point is selected, will add the corresponding requirement to the
root cause matrix by direct interaction between the classes. Other user
interaction that is detected by the class is if the user drags the mouse on
the graph to create a dependency line.

In addition to the functionality mentioned above, the class can also
save the graph image as a png file with a name and at a location selected
by the user.

ImprovementsWindow.java
The root-cause matrix used for root cause analysis and improvements
elicitation can be found in the class ImprovementsWindow. As
mentioned above, this window is opened from an instance of the
GraphWindow class. The root-cause matrix is in fact two linked tables,
one for the root-causes and the improvements and one for the
requirements. Functionality for adding and removing rows and columns
is implemented to support working with the root-cause matrix. The
information entered in the cells of the tables can be exported to an Excel
spreadsheet via the ExcelWriter class in the util package.

Since this is the last step in the PARSEQ process, information is not
distributed anywhere else except for the Excel export possibility.

96

12 - Appendix B — Detailed software architecture

| © rainbowie::Requirement |$ - ——————- %| @ rainbowie::Rainbowie
| T T
‘ |_ _______ —+ 19| [c] rainbowie::RequirementList |€ - | ‘
\ | I T T | [
\ | | | | | I
\ | I | | | [
\ | I N B [R
\ E Il T T | \
\ | | I | | \
\ | | I | | \
\ | | I | | \
\ | | I | | \
«\mport»\ imports | klmport» «lmport»‘ |«|mpom> | zltrports |s<|mp0rt» \«lmport»
@ PlanningGameWindow @ PainwiseWindow ® DollarWindow
d: PlanningGameiincowe () OC Pairwisedincow () d: Dollarincow)

@ asssignvalueDone() o Dollarindow()

@ ActionHandler

@ ActionHandler | @ ActionHandler
@ actionPerformecd()
@ actionPerformed() | @ actionPerformed()
@& MouseHandler |
@ ConfirmWindow | @ MouseHandler
0 mousecicked() |
& CaonfirmAincow) @ mouseErntered() | @ mouseClicked()
@ mouseExited() | @ mouseErtered()
(@ DrawCanvas @ mousePressed() | @ mouseExited;)
@ mouseReleased() | @ mousePressed()
o DrawCanvas() @ mouseReleased)
o DrawCarvast) @ PreferencesWindow |
@ pairt() | @ RequirementTableModel
d: Preferencesivindow() |
QMouseHandler @ dispose() | & Reguirement TableMoce!’)
— | o isCelEditable()
@ mouseClicked() —_ | | —l | @ setvalusat()
o mouseDragysd() simpan »l «access»l | |
@ mouseEntered) Y | | ’F | | |
@ mouseExited() © prioritizer:Painwise | | | ‘ sacoeses || |
@ mouseMoved() | bamports |«imp0r‘l» fmports | |eimports |
@ mousePressed)) @ getCR() | | ‘ | | |
@ mouseRelsased) C? trizing) | | |
| @ PrioWindowStarter | | |
@ PileWindow P dmporte | | .
| OCPriD\u’\lindUWStader() | | " |
& Pilewindaw() | | |
@ setCarcsList() | | |
@ WindowHandler _emccesss % ________ i |
@ wincow Activatec) | |
@ windowlosed() —“mjm—’)| @ prioritizer::PlanningGame | | @ prioritizer::DollarTechnique | |
@ windowClosing() |
@ windowDeactivated() |
@ windowDeiconified() |
@ windowlconified() - - - - - - - - - ————— e — — —— -
@ wincowrOpened()

PrioWindowStarter.java

When the user has selected a prioritization technique and two criteria, an
instance of this class is responsible for starting the right window. This is
the only functionality found in this class. The only reason of this class’
existence is to make a future program extension of additional
prioritization techniques easier.

PlanningGameWindow.java
During a planning game reprioritization, an instance of the
PlanningGame class is responsible for displaying the desk with the cards

97

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

on the screen. Functionality for dragging and dropping one or several
cards with the mouse is implemented to make the prioritization possible.

The class have three internal classes of significant interest. First a
class called DrawCanvas that is responsible for all drawing during the
reprioritization. The second defines the window that represents an
opened pile. This window is used for internal sorting in one pile and is
therefore called PileWindow. Finally, a minor window used for letting
the user see the complete ordinal prioritized list of requirements before
the reprioritization can be accepted is located as an internal class. This
internal class, called ConfirmWindow, is also responsible for staring a
DollarWindow if a combined planning game - $100-test reprioritization
shall be done. This type of reprioritization is described more in detail in
section 6.1.1.

PairwiseWindow.java
The window used for reprioritization with the pairwise comparison
technique is mainly responsible for forwarding the user input to the
Pairwise class where all calculations are done.

To handle parameter settings by the user, an internal class called
PreferencesWindow is implemented.

DollarWindow.java
The functionality of the DollarWindow class is similar to the
PairwiseWindow; the main task is to pass information to the
corresponding class in the prioritizer package. In this case, the
information is sent to the DollarTechnique class.

Besides the functionality mentioned, this class is also responsible for
displaying and handling the table with a single editable column used for
dollar value assignments.

98

12 - Appendix B — Detailed software architecture

The util package

In the util package, utility classes used throughout the program are
placed.

@ HelpDialog @ util

W BUTTOM_HEIGHT: int

W BUTTON_WIDTH: irt

W FONT_LARGE: int

B FONT_MEDIINM: int

& FONT_SMaLL: irt

W FONT xSMaLL: int

W HORIZONTAL_BUTTON_DISTANCE: int
@ HelpWindow W VERTICAL_BUTTOM_DISTANCE: it

& HelpDialogr)
@ showHelpText()

@, ActionHandler

@ actionPerformed)

OS centerdFramel)

@ setFort()

OS setlComponentSizel)
@ shortString)

& Helgvindow)

@ Hyperactive

@ hyperlinkUpdate)

® ExcelWriter

@ ListHandler

@ Excehiriter)
@ walueChanged() @ writeAndClosewiorkbooki
@ weriteGraphl)
@ writeTable()

@ WindowHandler

@ windowe Activated))
@ windowClosed() G Filt
ner
@ windoweClosing
@ windowDeactivated))
. - @ Fitter()

@ windowDeiconified)

@ windowlconified) © a:t':;pm_ _

@ windowOpened) @ getbescription()
@ getExtension)

Util.java

The Util class is a collection of utility methods used by window classes
primarily. These methods handle layout issues needed to create a
consistent look for all windows in the program. The methods set for
example font sizes, fixed sizes for window component and locations of
windows.

A method for dividing a long text string into a specified number of
rows with a desired number of letters on each row is also located in this
class.

99

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

ExcelWriter.java

When the result from the root cause matrix, together with or without the
graph image, shall be exported to an Excel spreadsheet this class is used.
This class uses, in analogy with the requirement importing from Excel
with the Excellmporter, the JExcelApi library.

Filter.java

Since the program only can handle Excel files for importing and
exporting, files with an xls extension, and png files for image saving, a
file filter must be used. This class filters the contents of a directory to
only display the selected file-types in open- and save-file dialogs.

HelpDialog.java

When the user of the program needs to consult the help files, the
HelpDialog class is responsible for displaying the help window with the
desired help file. The HelpDialog has an internal class called
HelpWindow that represents the window where the help text is
displayed. Help files are stored as html files and therefore functionality
for reading and displaying these kinds of files is also implemented in
this class.

100

12 - Appendix B — Detailed software architecture

101

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

102

12 - Appendix C — Requirements specification

Appendix C — Requirements specification

In this appendix we list the latest requirements specification as received
by the customer. Note: The entire specification is in Swedish.

Uppdragsgivare: Lena Karlsson 2005-04-26
Dokumentnamn: Kravspec PARSEQ Version 0.3

Kravspecifikation for verktyget PARSEQ

Uppdragsgivare: Lena Karlsson

Utvecklare: Per Klingnas (d00pk). Mikael Jnsson (d00myn)

103

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Uppdragsgivare: Lena Karlsson 2005204-26
Deolmmenmamn: Kravspec PARSEQ Version 0.3
1 Bakgrund

Malet med projeldet ér att skapa ett verltyg som stddjer anvindaren vid arbetet kuing de fyra
stegen i PARSEQ:
Sampling av kravmingd
Ompriontering av kraven
Foot-cause analysis
4. Sammanstilluing av forbittringsatgarder
Far mer information kring PARSEQ, se [1].

[P —

2 Utvecklingskrav

TE2001 Projeltet ska utforas mha inkrementell utveckling

Morivering: Eftersom resurserna dr begrdnsade vill vi sakerstalla aft den viltigaste
fimktionaliteten blir implementerad fGrst. Kraven § devma specifikation kommer aft prioiiteras
vid ett flertal fillféillen allteftersom krav tillkommer, strvks och dndras under projektets gang.
Lamplig period mellan prioviteringstillfillsn (sk Planning Gamas) kan vara 2 veckor.

TUE2002 Terltyget ska implementeras i programmeringsspriket Java mha Open Source-
verktyget Eclipse.

Morivering: Java dr det sprak bade utvecklare och uppdragsgivare kdnner fll bést ach

Eclipse finns tillgingligt for installation pd utvecklarnas avbetsplatser.

TE2003 Leverans ska ske foge 2005-06-30 och resurserna &r totalt 40 manveckor, dvs
1600 mantimmar.

Motivering: Uppdragsgivaren vill sa fort som méjligt kunna anvénda verktvget och da

projekter vintas utféras som eft examensarbete finns 20 arbetsveckor *2 personer till

forfogande.

TE2004 Utiver verkiyget ska en projekirapport levereras, inmehallande

uppdragsbeskriviung. wtftrande, resultat, analyvs och slutsatser.
Motivering: Rapporten dr det dolnmment som kommer att examinaras och utséittas for
GEposifion

UK2005 WVetlctyget ska lunna kifras pa Windows.
TUE2006 Verktyzet ska utvirderas genom validering 1 minst en industriell fallstudie.

Resultatet fran wivirderingen ska deolumenteras i projekirapporten.

3 Produktkrav

Nedan féljer alla de krav som luttills har identifierats som produldloay for PARSEQ. Forsta
seltfionen innehdller de Allménna kraven. Sedan fljer krav indelade i seltioner for de fyra
clika stegen 1 PARSEQ-metoden.

104

12 - Appendix C — Requirements specification

Uppdragsgivare: Lena Karlsson 2005204-26
Dolonmentnamn: Kravspec PARSEQ Version 0.3

3.1 Allménna produktkrav

PE3101 Da man Sppnar verktyget ska man komma till en mntrodultionssida som
beskriver verldygets syfte och de val man kan géra.

PE3102 Pa introdulktionssidan ska man kunna gira olika val genom att tex klicka pa
knappar.

PE3103 P3 varje sida ska man lounna klicka pd en “Hjalp”-knapp och f3 mer information.

PE3104 Alla fonster ska kunna maximeras och minimeras

s

3.2 Krav pa "Sampling”

PE3201 Det ska ga att importera krav frdn MS Excel.

PE3202 Det ska gé att importera krav frén MS Word.

PK3203 Det ska ga att importera krav fran MS Access.

PE3204 Det ska g3 att importera krav fran kravhanteringsverktyzet DOORS.

PE3205 Det ska ga att importera krav fran kyavhanteringsverktyget CalibesRM.

PE3206 Det ska ga att importera krav fran loavhanteringsverktyzet ReqPro.

PE3207 Eraven som mmporterats ska illustreras 1 en lista som anvindaren kan godlinma
eller firkasta. i

Motivering: Man vill ha méjlighet att géra om importen av krav om nagor blivit fel.

PE3208 Det =ka gé att manuellt dndra i den importerade kravlistan.

PE3209 Varje krav ska kunna “taggas” manuellt med releasenummer.

Motivering: Fér att | Root-cause analysen kunna identifiera de krav som implementerats

tidigare (resp. senarve) dn optimalt vill man lunna jamfora de omprioriterade kraven med den

ordning de implementerades i

PE3210 Den importerade kravlistan ska kunna innehdlla tre kolumner: en med
kravnummret, en med sjdlva kravet och en med kravens releasenummer.

Motivering: Om man har dokumenterat kvaven och dess kravminimer och releasermummer skha

det kunna importeras samfidigt.

PE3211 Det =ka gé att skriva in krav manuellt 1 en lista som alternativ t1ll att importera
fran ordbehandlingsprogram eller kxavhanteringsverkdyz.

PE3212 Storleken pa kravmingden ska kunna vara mellan 10 och 50 kyav.
Eommentar: Det ldmpliga antalet lrav varisrar mad prieriteringsmetodsn. Vid Planning
Game kan 30 vava lampligt, medan med Par-visa jamférelzer ar det limpligare med ett ldgre

105

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Uppdragsgivare: Lena Karlsson 2005-04-26
Dolumeninann: Kravspec PARSEQ Version 0.3

antal, tex 10. Men det dr éven bra att kunna ga upp i antal vid behov. Dock tror vi att mer dn
30 lrav dr ovealistisict art klara av.

PE3213 Deet =ka ga att #ndra kolumnbredden i den importerade kravlistan

3.3 Krav pa "Omprioritering™

PE3301 Man ska kunna vilja pricriteringsmetoden “Planming Game™ (PG).
PE3302 Man ska kunna vilja pricriteringsmetoden “Par-visa jamforelser” (PVI).
PK3303 Man ska kunna vilja prioriteringsmetoden “100%-metoden™ (100%).
PE3304 Det =ka gd att vilja prioriteringskriteriet "virdes".

PE3305 Det ska ga att vilja prioriteringskriteriet “kostnad”.

PE3306 Det =ka ga att vilja prioriteringskriteriet "risk™.

PE3307 Det =ka ga att definiera egna prioriteringskriterier.

PE3308 Far varje valt prioriteringskyiterie ska det finnas ett eget fonster for
prictiteringen.

PE3309 Da man viljer "Planning Game” =ka kraven hamna pa virtuella lappar, med eit
krav per lapp.

PE3310 De virteella kraviapparma i PG ska hamna 1 en slumpmiissig ordning, skiljd fran
den ordning de visas i den importerade kravlistan Man ska kunna se alla keav =8
kravlappama fAr inte hanma ovanpd varann.

Motivering: Man vill paveria anvdndaren sa lite som méiligt i prioritaringen. Om kvaven

ligger i samma ordning som 1 listan kan det paverka prioviteringen negativt.

PE3311 Det ska gd att flytta PG-kravkorten mha musklick och “drag-and-drop™.

PE3312 Det ska ga att flytta PG-kravkorten t1ll olika “loravlador™ mirkta "Hég™,
“Medel” och "Lag”.

PE3313 Inom kravlddorna ska man kunna byta plats pa PG-kravkorten.

PE3314 Taggmingen med releasenummer ska inte synas vid omprioriteringen.
Motivering: Om relsasenuntmer syns vid smpriovitaringan kan dat paverka anviandavens sdft
ait prigritera

PE3315 Da man viljer Par-visa jdmftrelser ska kraven hanma 1 en lista med 2 krav pd
varje rad och emellan varje kravpar ska finnas en skala dér man kan vilja oy
nrycket ena kravet dr mer enligt det valda kriteriet &n det andra kravet. Skalan
ska vara 1/9, I/8, /7, ... %, 1.2, .. 8, 9. (Se [2] for info om PV och lamplig
skala)

106

12 - Appendix C — Requirements specification

Uppdragsgivare: Lena Karlsson 2005204-26
Dolonmentnamn: Kravspec PARSEQ Version 0.3

PE3316 Kravens prioritet ska berilmas enligt teorin bakom AHP di man anvinder PV
(Se [3] for AHF)

PE3317 Vid anvandande av PV ska kravparen fordelas slumpm#ssigt, oberoends av
kraverdningen i den kravlista som importerats.

PE3318 Kravens prioritet 1 procent ska visas da de riknats ut mha PV].

PE3319 D3 man viljer 100%-metoden ska kyaven radas upp i en lista med en extra
kolumn till hdger, i villken man kan fiylla i antal $ f5r varje krav.

PE3320 Wederst 1 kolumnen fiir antal § i 100$-metoden ska den totala méngden anvinda

$ visas 1 en ruta sa att man vet bur manga $ man har kvar att anvinda.
Morivering: Ett av problemen med metoden & att det dr svért art halla veda pé hur manga §
man “spenderat”. Déirfor vill man ha stéd fir det § varktyget.

PE3321 Det ska ga att markera flera lyavkort samtidigt vid anvindning av Planning
Game och dra dem till en lada.

3.4 Krav pa "Root-Cause Analysis”
PE3401 Eravprionteringarna ska kunna visualiseras 1 "Kostnad Virde-diagram™.

PE3402 Ordningen i “kravladoma 1 PG-prioriteringen ska bestimma lnur kraven hamnar
i KostnadVarde-diagrammet.

PE3403 Eravens %o-tal 1 PVI-prionteringen ska bestimma hur kraven hamnar 1
Kostnad Virde-diagrammet.

PE3404 Kravens %o-tal 1 100S-prioriteringen ska bestdmma hur kyaven hammnar 1
Kostnad Virde-diagrammet.

PE3403 Vid prioritering med Planming Game ska de nio ohka kategonerma visas 1
kostnad/virde-diagrammet genom att grinserna mellan “kravladoma” markeras.
Detta for att luita de kyav som ska inga 1 analysen.

Motivering: Metoden PG anvinder en ovdinal skala och man kan divfér barva umyttja olila

kategoriar av krav baserat pa grupperingen 1 “lador™ i analysen.

PE3406 Vid prioritering med Par-visa jimforelser (FVI) och 100%-metoden ska
kostnadvirde-diagrammet visa linjer som representerar grinserna fér krav som
har virde-kostnad-forhillandet &ver 2 och under 0.5 Detta f5r att hitta de krav
som ska ingd i analysen.

Motivering: Metoderna FT T och 1008 anvinder en propovtionsll skala (eng. vatio scalg) och

déirfar kan vi ubivtia firhallandet mellan kostad och vérde fér att beddma fraven.

PE3407 Det récker att kvavmumret och de forsta ovden i keavet syns 1 Kostnad Varde-
diagrammet. D& man drar musen Sver kravnumret ska hela kravet dyka upp i en
kommentarta.

107

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

PE3409

PE3410

PE3301

PE33503

PE3504

KK4001

EE4002

EK4003

Uppdragsgivare: Lena Karlsson 2005-04-26
Dolumeninann: Kravspec PARSEQ Version 0.3
PE3408 De krav som 1 omprioriteringen hamnar pa en plats {optimal release) skiljd fran

den release som kraven implementerades 1. ska markeras for att man 1att ska
lutta dem. Markeringen kan tex vara en annan férg eller fetmarkering.

7id dubbelklick pd ett kyav ska det dvka upp i en “Root-cause-matris” som har
tre kolummer: “Krav™ (dér kravet ska dyla upp). "Anledning till felbeslut™ och
“Férbattringsforslag” (e 3.5). I kolummen “Anledning till felbesiut™ kan
anvindaren skriva in de anledmngar t1ll beshit som man konmmer fram till 1
diskussionen,

Det =ka gd att markera kravgropperingar i Kosmad/ Virde-diagrammet

Morivering: Vissa kav har relationer till andra och kan tex behdva implementeras samnidigt.
Dt dr bra om vevityget kan visualisera sédana bevoenden.

3.5 Krav pa "Férbattringsférslag”

I Eoot-canse-matrisen ska man kunna fiylla 1 "Férbattringsfarslag”™ for keaven
och markera de krav man vill skriva ut.

Det =ka gd att skyiva ut rapporter fran “Root-canse-analysen” innehéllande
kostnad virde-diagrammen, kraven, anledningen till felbeslut och
forbattringsfirslag. Dessutom ska man kunna lagga till vtterligare information i
rapporterna.

Det ska gd att spara forbittringsforslagen 1 en databas diir forbitiringsforslagen
kan vara taggade med olika tillstind, tex firslaget, accepterat. genomftirt och
utvirderat.

Deet ska ga att exportera forbiftringsforslag och Root-canse-matris till excel.

Motivering: Favetaget mdste f ndgonting “pa papper” efter art PARSEQ-métat v éver som
de tex kan publicera pa hemsida

4 HKvalitetskrav

Verktyget ska vara 14t att underhilla for att kunna géra tilligg dven efter att
projeketet & slotfort. Darfor krdvs fullgoda konumentarer 1 koden och
foiklaringar till varje klass.

Verktyget ska knnna anvandas direlct av anvandare som &r insatta 1 hur metoden
PARSEQ fungerar. Verkivget ska alltz4 guida anviindaren genom PARSEQ-
processen vid anvindandet av verkdyget.

Det ska ga att enkelt ligga till nya prioriteringsmetoder. Dirfor kan det vara
lampligt att gdra olika “plug-ins™ for de olika priornteringsmetoderna.

5 Scenario

108

12 - Appendix C — Requirements specification

Uppdragsgivare: Lena Karlsson 2005-04-26
Dokumentnamn: Kravspec PARSEQ Version 0.3

Féretaget Alfa AB will utféra en P."‘nRSEQ-ﬁ]J.Zl‘ﬁ-".- pé en av sina produkter, Alfa-Beta De
kontaktar post-release-analytikern Pelle for att £ ljélp med det. Till PARSEQ- miétet ombeds
Alfa AB att ta fram ett underlag fir analysen i form av et sampel pa 30 st krav frin 3 olika
tidigare releaser av produkien Alfa-Beta De skickar kraven i ett mejl f1ll Pelle som en Word-
fil. Deltagars pa motet &r produktledaren for Alfa-Beta och utvecklingschefen. P4 mitet
barjar Pelle med att importera de 30 kraven till PARSEQ. Pelle éir moderator pa matet och
skéter arbetet med verktyget. Uppdragsgivarna frin Alfa AB #r deltagare pa matet och
bestammer vad som ska ske.

Nir Pelle mporterat kraven syns en lista med de 30 kraven pé skirmen. Genom att klicka pa
“Redigera” fir han tillgéng till en kolumn till héger om kraven diir man kan “tagga”™ var_ie
krav med ett releasenummer. 12 av kraven blev implementerade i release 1. 9st i release 2 och
05t i release 3. Efter en koll att kraven och dess releasenummer verkar stimma klickar Pelle
pé “Gedkinn”. Da dvker nista fonster upp dar man kan vilja prontenngsmetod. Alfa AB
tvcker att Planming Game-metoden verkar infressant, sa Pelle viljer den. Da dyker det upp eit
fonster dér de nyss lmpﬂrtemde kraven #r skrivna pd virmella l.-::n Korten hgger “huller om
buller” pa skrmen s4 att det ser ut som att de blivit utspridda pa et bord. 1 nedre delen av
fonstet finns en rullista med olika kriterier som man kan vilja. Alfa AB valjer att bc-"la med
Wirde-kriteriet och di dy ker de 3 “ladoma” upp med texten "Hig
mmusen far produkt fledaren pa Alfa AB sjilv klicka och dra kr aven till rétt boxar ach vali
boxama lagger de aven kraven i ratt ordumg =2 att det krav som ligger higst upp 1 "Hog-
ladan” & det mes: virdefnlla och det som ligger langst neri “"Lag-ladan™ &r det minst
vardefulla. Nar detta & klart klickar man sig vidare till nasta kriterie som Alfa AB valjer,
nimligen “Kostnad”. P4 liknande satt jobbar utvecklingschefen pa Alfa AB med musen for att
{3 korten 1 réitt lidor.

Nér omprioriteringen r klar klickar Pelle pa knappen “Vidare till RCA” och da dvker et
fonster upp med KostnadVarde-diagrammet for de krav som just prioriterats. I diagranmmet
syns dven gransen mellan “ladema” dvs vilka krav som hanmat 1 de olika kategorierma.
Kraven som ar hanmat 1 kategorin “"Hagt virde — Lag kostmad” men som inte 1
implementerade 1 en tidig release blir rtédmarkerade. Och kraven som dr hammnat 1 kategorn
“Lagt virde — Hag kostnad” men som dr implementerade i en tidig release blir blimarkerade.
Pa =3 séitt ser man latt vilka krav som ska analyseras 1 Root-canse-analysen. Pelle
dubbelklickar pa ett krav i taget som Alfa AB vill diskutera. Produktledaren och
utvecklingschefen diskuterar fram orsaken fill att kravet implementerats vid en icke-optimal
tidpunkt. Detta skrivs in 1 root-cause-matrisen.

Nir alla krav av intresse ir genomgangna (man kan sa klart dven titta pa krav som inte blivit
markerade, men som Anda verkar vara implementerade i fel release) dizkuterar deltagama
vilka forkarrmgar man skulle kunna koppla tll kraven. Dessa forbétmngar skrivs in 1
matrisen och skrivs sedan ut i en rappert. Till rapporten viljer Alfa AB att fa ut hela matrisen,
med farbittringama sammanstillda nederst. Kostnad Virde-diagrammet skrivs ut som en
bilaga.

6 Referenser

1. Karlsson, L., Regnell, B., Karlsson, I., Olsson, 5., “Post-Release Analysis of
Requirements Selection Quality — An Industrial Case Stady™, Ninth International

109

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Uppdragsgivare: Lena Karlsson 2005-04-26
Dokumentnamn: Eravspec PARSEQ Wersion 0.3

b2

Lig

Workshop on Requirements Engineering: Foundation for Sofhware Ouality
(REFSQ'03), Velden, Austria, June 2003,

Karlsson, I, Byan, K., "A Cest-Value Approach for Pniontizing Requirements”, JEEE
Saftware, Sept/Oct 1997,

Saaty, T. L., The Analytic Hievarchy Process, McGraw-Hill, New York, 1920

110

12 - Appendix C — Requirements specification

111

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

112

12 - Appendix D — User guide

Appendix D — User guide
In addition to this report a user guide for Rainbowie was written.

RAINBOWIE PARSEQ

User Guide

113

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Contents

INSTALLATION......
SYSTEM FEQUIREMENTS oo oo e e ee e e e eee e en e e em e en e
USING RAINBOWIE PARSEQ
S S B R L TSSO 4

REPRIORITIETNG BEGUIRERIENTS Lottt eceoeeec o e eece e e e e e eemes e e e s s e m s ee e et e e s e e eme e 6
PLAITHINE GRATHE. ..ottt ettt ettt et et e bt sttt et 1
Pair-TVise COomPTPITONS ... oottt 7
Pair-Tise COompaPTTONS ... oot et &
STO0-TECRFTGUE.ocooeoee e et et em e e 9

ROOT-CAUSE ANALYSIS .

The Graph WIRAOW ... e 10
The ROOT-CAUSE HUAIFIX _.e.eeioeee et eece et et sm et em s s et st oe £ s et et eeaa e e 12

114

12 - Appendix D — User guide

Introduction

The decisions made during release planning do not always tuen out to be the most appropriate
after the release have been on the market for some time. By understanding the inappropriate
decisions and why they were made it 15 possible to identify potential mmprovements to the
release plamning process. Retrospective analysis [1] is done to gain wnderstanding about the
inappropriate decisions.

Rainbowie Parseq is a tool desizned to support the retrospective analysis techimique known
as PARSEQ [2]. Rainbowie PARSEQ has many similarities to other requirements engineering
toels, but 1ts purpose is not to store and manage large amounts of requirements.

Installation

You should have gotten a zip-file that you unzip into any folder of your choice. Make sure
that the directory structure is kept intact. see Figure 1, or you might get trouble with reading
and writing Excel-files or reading images and help-files.

CoTrrr— i
Fir Fdb View Fasorites Toos ”|-

(A B 3

hepfies images b

Fanbovie jar

M chi 648 KB A My Compuer v

Figure 1 The Rainbowiz metzll divectory should
look hke thiz

System Requirements
You must have a Java Runtime Envirenment (JRE) installed on vowr computer’s system path.
We recommend Java versions J2SE 1.4.2 due to lack of testing. but Ramnbowie Parseq
should run without problems under both older and newer versions.
You can download Java ar hirtp://java.sun.com.

(=]

115

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Using Rainbowie Parseq
Start Rainbowie Parseq by,

« In Windows or similar: double-clicking the Rainbowie icon in the folder that

Rainbowie was installed
o In Unix. Dos or sinnlar: typing java -jar FRainbowie.jar in the directory that
Rainbowie was installed

Fainbowie Parseq is now running and the main window, shown in Figure 2, is displayed.

=lol =l
Pl Wndow el

Imperted Requirements Repreortized Requirements
e ol Lo B e e P oo)

e

Figure 2 The main window of Rammbowie Parseq,

It is from this window that vou choose when to impoit, reprioritize and do a root-cause
analysis of the requirements, given that the previons step has been completed.

Feed-back abowt how far you have come in the process is given by buttons that are
enabled and the tables that are filled once the appropriate step has been completed.

The menu bar

The mem bar is present in almost every window:; there you can get help on how to use the
program at any given time Most of the functionality available through the buttons is also
available through the menn. Therefore, you will in this guide. only find information about the
menu when it contams functionality that 15 not covered by the buttons.

116

12 - Appendix D — User guide

Importing requirements

BT ~io| x|

Import Requirements

Roursrent Fro s

2 LAl shal b prossible do meru ey oo chngs fo the mpored st

i
= acalix] [Thior o vl B Tonctior sl 10 Maesl iy ek aoch regramant with @ roles - 3
w3 (1] he Inpori ed reguirermenms Bl chall be sble dapley three cobrmra: one witht. 3
FH2311 A w0 st e (0 IMpoing requirenenls, B B posshe o nanusky e
P The lool =t be able bo hand s beeeon 10 and 50 regur etz 2
1|
Tpen | Edkf row Aot Canoel |

Figure 3 Tha Inport Window where the requirements to process ara entered.

There are two ways to enter requirements into the program: both are done through the Import
Window, see Figure 3, that you open by pressing the Import-button mn the main window.
Either you enter the requirements you want manually or you import the requirements from an
Excel sheet. If you wish to reset and clear the table. go to the Edif-menu and choose Clear
tabla.

Only the requirements’ oumbers are necessary, the numbers must be unigue and there
must be at least two requirements before you can continue.

When the table contains all the requirements vou want to import, yvou press the decapr-
button. This will retum vou to the main windew, where the left table now contains the
imported requirements.

Enter requirements manually

By double-clicking the row in the table where vou want the requirement to be entered will let
you enter a requirement mamually. You can also edit a row by selecting it and pressing the
Edit Row-button or by pressing the Enter-key. This will open the Edit Window, shown in
Figure 4, where you enter the information you want. Then, you press the Accept-button in the
Edit Window and the information you entered will be added to the table in the Import
Window.

Only the last, Release # column can be edited directly in the Import Window. This is to
prevent users from changing a requirement by mistake.

- Dt g remEnt =10 x|

Edit selected requirement

g # Fagquesmard Fvlans o

Acrap | Concal

Figure 4 The Edit Windewr whare requraments can be adited or enteved.

117

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

Import requirements from Excel
The Excel-sheet vou want to import from must be formatted in the correct way. That is, the
requirements’ mumbers, descriphions and release munbers must each be n their own column
and there must only be one requirement on each row. It is, however, only necessary to have
and import the requirements” numbers. The requirements” descriptions and release mumbers
are optional.

To import from an Excel-sheet, press the Open-button in Import Window. This will open
a file chooser dialog, where vou select the Excel-file to open. The opened Excel-file will be
read into the Excel importer window, Figure 5, this is a read-only window that will not and
cannot edit the Excel-file.

BT ol

Requirement Sampler (Excel)

=l =)
Press “Accepl” to import selected reduirements

N S D e |

Fizure § Excel inporter windew.

In the Excel importer window, follow these steps:

1. Select the sheet with the requirements you want to import
2. Double-click the cell contaiming the first requirement to import

3. Double-click the cell containing the last requirement to import. Thos will seleet all the
requirements between the first and last requirement.

4. Double-click anywhere in the column containing the requirements’ descriptions to
select them.

5. Double-click anvwhere in the column containing the requirements” release numbers to
select them.

6. Press the dcespt-button

Step 4 and 5 are optional. You can skip step 4 by pressing the Shp-button. You do not have to
press the Skip-button if you want to slap step 5 or both step 4 and 5. pressing Accept will
automatically skip the remaining steps and close the window.

By pressing the dccspr-button, you are retiened to the Import Window.

118

12 - Appendix D — User guide

Reprioritizing requirements

When you have imported the requirements. it is time to reprioritize them. Pressing the
FReprigritize-button 10 the main window will open a dialog, Figure 6. where you choose the
appropriate method

propome BT oz
criteria to prioritize by. Hel
There are three
predefined. commeonly used, Im = e
criteria: Value. Cost and Risle = ot o I
There are also two text fields

if you wish to define your

own criteria 3 D Tachriue I ' —

Fizure 6 The window where pricnitizing method and critenia are selected.

Planning Game

In the Planming Game the cards on the desk are sorted mto the three boxes, where each box
corresponds to a level of importance to the criteria. Within each box the cards are sorted by
the user, where the card most relevant to the criteria is put on the top.

[piansngame S =S

File Hep
Crianpe Fiio, Crisris
The tool aball be able to
namile betoeen L0 and 50
ESHULEELERLE, ¥ aquramant s
==

Ir shall be paasible co
impoct cequicenents fron Faquirsmant

{shall be pooible is
T A0 hak et

The impocted ceguiremsnts tr e impaned iz

=hall be displaged in s
149T Chac che U=er ean ..o

It aball be posaible to

] mamually do changea co the
toporcad Liat.

Fancricnal lity to manually
mock each cequirement w...

42 an alremmarise o
inporting reguir=sent=, Lk
akall he possible to DA

Fizure 7 The Plannmg Game window.

119

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

First choose which criteria to start priontizing after by using the combobox in the upper nght
cotner. This can only be done before the first card has been put in a box.

Then, for each card, click & drag it to one of the boxes. When a box is lighlighted vou
can drop the card m that box. More than one card can be selected by dragping a selection
square or by holding down the Ctrl-key while clicking on the cards you want to select. The
selected cards can then be moved and dropped in a box together. Dragging and dropping
multiple cards deo not guarantee the order the cards will have in the box.

Tha dspaczas
Lise shall be
ibee DOLEKS |

Te whmil bu pe -
LaFOLT CEYRIESRETE Tl
B Bacsl,

Figure § Window representing a
box

adni

To sort the cards i a box, open it by double-clicking
on that booc, then click & drag the cards. If you notice that a
card is in the wrong box, you can highlight that card and
press the Send fo desk-butten, the card sent to the desk can
now be put in another boer This is the only way to move the
cards between the boxes or between a box and the desk.

When you are finished with the prioritization for the first
criteria, press the Next Criterig-button and a window will
appear with an overview of the priontization In this
window you can choose if you want to confirm the
priortization, you can also choose to assign relative values
to the requirements.

If you press Assign values, a window for assigning
relative values using a modified $100-technique will be
shown. If you choose to assign. or not to assign. values for
the first criteria, you must do the same for the last criteria as
well The same procedure is then used when wyou are
finished with the prioritization for the last cniteria.

120

12 - Appendix D — User guide

Pair-Wise Comparisons

In the Paw-wise Compansons technigque the priorities are decided by comparing the
requirements two and two. To get the correct result, all possible pairs should be compared.
However, thus means that i practice there can be a huge number of needed comparisons.
Therefore, approximate priorities can be calculated using am incomplete pair-wise
comparisons techmique, this is what is done in this pregram if you choose to stop before all
possible pairs have been compared. Although, you are encouraged to keep in mund that this
may result in a less acourate priority list.

- pewice Comaaniions B izl 7 ; i
R When the window is open. the
current companson 1s shown
_ HEE _ in the text fields and their
ottt st SEERREER | relative importance to each
— other 13 set using the radio

e pa vt reeeeee s | DUMtODS below
) First choose which criteria
S o start prioritizing after by
remscmene | using the combobox in the
s ppper right comer. This can
only be dome before the first
P e e comparison have been done.

E— = —4 To set the relative
Bk et | || significance, either double-
pr— click a radio button or select a
= — radic button and press the

Next-button. This will bring up
the next pair to compare. The
more significant one
reguirement 1s. than the other, a radio button firther to that side should be selected. If vou
hold the mouse over a radio button, an explanation will be shown.

You can go back to look at and change previously compared pairs by pressing the Back-
button.

Thyough the progress bar at the bottom of the window and the information to the right in
the window, you can follow youwr progress and see how many pairs vou have left. throughout
the priontization.

You must complete at least the same number of comparisons as the amount of
reguirements to be able to get any result at all.

Under the Options-menw., you can choose whether or not to show radio buttons for
intermediate values. These intermediate values are used when a compromise between two
adjacent judgments must be done.

Another feature that is found under the Opfions-menu is the pessibility to set the number
of paths in the graph to use when calculatng priorities with the incomplete pair-wise
comparisons (IPC) algorithm [3]. If you are unfamiliar with the TPC algorithm it is
recommended that you do not change these values.

Fizure 9 The Pan-Wise Compartsons window.

121

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

$100-Technique

In the $100-technique the priorities are decided by giving each requirement a share of a total
budget of $100. This means in practice that each requirement is given a rate in percent of
significance according to the currently used critera.

If a large number of requirements are being prioritized. the 5100 limit can be extended to
51000 to make it easier to divide the money.

If this window is opened after an initial prioritization with the Planning Game technigue.
ie. it was chosen to assign relative values from the Planming Game’s Confirm window; the
order of the requirements in the table mmst be sustained when assigning priorities. This means
that you cannot assign a higher value to a requirement positioned in a lower row.

1=
s Prin. e
fimie =
¥ stisl s i evmvioh 3 chargss o et | haron dallr ek
Pz Thaers sl b functionaily b msrwsly rmart machre... | |
Pz Thes oot FBupuinsw et Sl 8 ks dioply | | o =
[Tl 4 a0 sevmetvn o wprRTrecr ez chve .|
L | Thea 4o sl B il e 1) ool Bt 1l S0 e |
= el
Wt [0

Figure 10 The $100 Technigue windew.

First choose the prioritization criteria to start with by using the combebox in the upper right
corner of the window. This combobox will be disabled when the first value has been assigned
to a requirement. Then choose if $100 or $1000 shall be used as a limit for the prioritization.
This parameter can be changed anytime until the Next Criteria-button is pressed for the first
time.

You then prioritize by assigning values to the requirements by clicking the $-field and
entering the desired amount for each requirement. If vou leave a requirement wnassigned. it
will receive $0.

When all 5100/51000 has been assigned for the first criteria, press Naxt Criferia to
priontize after the last criteria.

When the prioritization is done after an intial Planming Game priortzation, the Done-
button must be pressed mstead of the Next Criferig-button to return to the Planning Game
window.

When both criteria have been completed, you can choose to finish the prientization or let
another user repeat the prioritization When the latter is done, the average value for each
requirement will be calculated and used as the prionity.

122

12 - Appendix D — User guide

Root-cause analysis

The root-cause analysis is the phase of the process where requirements i need of further
analysis are identified When the identification is done, a Root-cause analysis and an
elicitation of improvement suggestions are done. The support provided by the tool for thus
part is divided into two windows, the Graph window and the Root-cause matrix.

The Graph window
In fhis window. the results from the reprioritization are displayed in a graph.

Each requirement's position 15 shown with an 1con. This icon can either be a "+ or one ot
maore citcles, to tell releases apart. The requirements marked with a "+" have no release
mumber assigned. The number of circles are decided in alphabetical'mumerical order. for
instance if we have releases 1. 2 and 3 they would have one. two and three circles
respectively.

T almi
- Retguire et grapd

PRI 4 i b gk e

Trrmer: o s i

Figure 11 An example of the graph after the plaiming zame method.
The Graph window has a number of functionalities. You can:
¢« Show the full requirement description by selecting the requirement to show the
information about it in the text field in the upper right corner of the window. Anocthet

way to see the full requirement description is to hold the mouse pointer over the
recuirement to see the description as a tooltip.

» Select a requarement by clicking on the icon in the graph.

* Add a requirement to the Root-cause matrix, either by double-clicking on the graph
icon or by first selecting the requirements and then pressing the ddd o Mantx
button/selecting the Add fo Manix menu item.

* Visualize dependencies between requirements in the graph by holding down the shifi
key and pressing a mouse button and dragging a line between two requirements.

10

123

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

When the mouse button is released over the second requirement a dialog will be
shown where yvou can enter a description for the dependency. The description area can
be left empty 1f not description 1s wanted.

* Save the graph as a png-file by pressing the Save Graph-button.
Invert the axes of the graph by pressing the Invert Graph-button.

+ Choose to hide the dependencies and the text for dependencies and requirements by
selecting the hide options from the Edit-menn.

+ Open the Root-cause matrix window if it 15 numinnzed or closed by pressing the Show
Manix-button

» Switch between two different modes of showing the suppot lines by choosing Change
view in the Edit-menu. Either fixed values can be used to draw the support lines or
values relative based on the requirements' positions in the graph.

There are two main types of Graph windows as shown in Figure 11 and Figure 12

The graph with the horizontal and vertical support lines in Figure 11 is shown when the
planning game was used for prioritization, where each area in the graph represents a box-
combination from the planmng game By default the support hines are dravwn as equally sized
boxes. But by switching viewing mode the boxes’ size will be adjusted to the mumber of
requirements in them.

The other priotitization methods will result in a graph like the one in Figure 12. There are
two support lines in this graph. that by default have the equations 2x and x/2. By switching
viewing mode the lines will be drawn with an equal number of requirements in each area. If
the number of requirements is not equally dividable by three, esther the puddle area or the two
outer areas will contain an extra point m the graph to sustain symmetry in the graph.

ETEEE———— ~Liz
iy
Ewauiremmnit graph
F T
T R nE.
o
W i
P ———
- T e e
BCRN2 o ot

R

L

Figure 12 An example of the zizph after the pair-wise compansons methed.

11

124

12 - Appendix D — User guide

The Root-cause matrix

This 1s the window where you can define root-causes and improvement suggestions for the
analyzed requirements. Root-causes and improvement suggestions are entered in the left part
of the table. In the right part of the table each requirement added from the graph window is
represented by a column. The results of this analvsis can then be exported to an Excel-
spreadsheet.

- DL dise Miatsis
Al Edt Hel

=TT

Rool-Cause Matrix
mant Cumer | FpravemeTs |m|mmn|mm|mu|
% =

5 pooma sy reqestadl by the oustorier Jreachss the curia ey sarlier i the dessiop ey process i
L rader etivation o businees wakie: e ——]

Esqoi A T SEI J =] |

Figure 13 The root-canse matre

You link each requirement to cne or more root-causes/improvement suggestions by double-
clicking the cell on the same row as the root-causes/improvement suggestions you want to
link it with. (Double-click again to unlink)

To remove a tequurement from the root-cause matrix, click on the colunm header to select
and highlight that colnmn, and then press the Remove-button.

If you need more rows, pressing the Add row-button will add an additional row at the
bottom of the table.

Exporting and saving results
From the root-cause matrix you can export the results to an Excel-file by pressing the Export-
button. This will open a save-file dialog where vou can choose where to save the Excel-file. I
Yyou choose to save it to an already existing file, that file will be overwritten. All the colummns
are always exported but only the rows that have been marked by checking the checkbox in the
Expert column.

You will also be prompted 1f you want to include the graph in the Excel-file or not. If you
choose to include the graph it will be exported to the second sheet while the matrix always 1s
imported to the first sheet.

125

Development and Evaluation of Tool Support for
Retrospective Analysis in Requirements Engineering

References

[1] Eerth, N1., Project Refrospectives: 4 Handbook for Team Reviews, Dorset House
Publishing, 2001

[2] Karlsson, L., Regnell B.. Karlsson, J. Olssen, 5. “Post-Release Analysiz of
Reguirements Selection Quality — An Industrial Case Study”, & Infernational Workshop
on Requirements Enginesving. Foundation for Seftware Quality, Velden, Austria, 2003

[3] Harker, P. T., "Incomplete Pairwise Comparisons in the Analytical Hierarchy Process”,
Mathematical Modelling, Vol 9, pp. 837-848, 1987

—
Lad

126

12 - Appendix D — User guide

127

