
Tailoring native compilation
of Java for real-time systems

Tailoring native compilation
of Java for real-time systems

Anders Nilsson

Doctoral Dissertation, 2006

Department of Computer Science
Lund University

ISBN 91–628–6830–6
ISSN 1404–1219
Doctoral Dissertation 26, 2006
LU–CS–DISS:2006–3

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: anders.nilsson@cs.lth.se
WWW: http://www.cs.lth.se/˜andersn

Typeset using LATEX 2ε

Cover artwork by Helena Persson

Printed in Sweden by Tryckeriet i E-huset, Lund, 2006

© 2006 by Anders Nilsson

Abstract

Our everyday appliances ranging from toys to vehicles, as well as
the equipment used to manufacture them, contain an increasing num-
ber of embedded computers. Embedded systems software often im-
plement functionality that is crucial for the operation of the device,
resulting in a variety of timing requirements and resource utilization
constraints to be fulfilled. Industrial competition and the ever increas-
ing performance/cost ratio for embedded computers lead to an almost
exponential growth of the software complexity, raising an increasing
need for better programming languages and run-time platforms than is
used today. Java was chosen as an example of a safe, object-oriented
programming language that could benefit embedded systems develop-
ment.

Defined key concepts, such as portability, scalability, and real-time
performance, need to be fulfilled for Java to be a viable programming
language for hard real-time systems. In order to fulfill these key con-
cepts, natively compiling Java using a revised memory management
technique is proposed. We have implemented a compiler and run-time
system for Java, using and evaluating new object-oriented compiler
construction research tools, which enables a new way of implement-
ing optimizations and other code transformations as a set of transforms
on an abstract syntax tree.

To our knowledge, this is the first implementation of natively com-
piled real-time Java, which handles hard real-time requirements. A new
transparent garbage collector interface makes it possible to generate,
or write, C code independently of garbage collector algorithm. Exper-
iments show that we achieve good results on real-time performance.
Given our contributions and results we do see compiled real-time Java,
or a similar language such as C#, as industrially viable.

We also propose a technique for multi-level deployment of embed-
ded applications, by taking advantage of the fact that Java source code
has a well defined meaning.

The same compiler construction techniques and tools used for im-
plementing our Java compiler also appears to be suitable on a higher ab-
straction level. This is exemplified with with a prototype of a compiler-
compiler on the ontology level.

Acknowledgements

First of all, I wish to thank my supervisors; Klas Nilsson who intro-
duced me to real-time Java and has given me invaluable advice and
feedback on various real-time issues, Görel Hedin who introduced me
to compiler construction and reference attributed grammars, and pro-
fessor Boris Magnusson who is the head of the research group.

The Java compiler and run-time system would never have come as
far as it has, without all the contributions from people at the depart-
ment. I am grateful to Torbjörn Ekman for his work on JastAdd, the
Java parser, and the compiler front-end, Sven Gestegård-Robertz, Roger
Henriksson, and Anders Ive for their work on real-time garbage collec-
tion, the garbage collector interface, and various parts of the run-time
libraries. Thank you!

A very special thank you goes to Anders Blomdell at the Depart-
ment of Automatic Control. Your expert knowledge in real-time op-
erating systems, compilers, device drivers, and other nasty low-level
implementation details has been invaluable when I have done stupid
things.

I am also grateful to all those students who in various projects have
contributed code to various parts of the compiler and run-time system,
as well as pinpointed a lot of bugs which could then be fixed. Emma
Nyman, Francisco Menjíbar, Robert Alm & Henrik Henriksson, Daniel
Lindén, Patrycja Grudziecka and Daniel Nyberg, and Lorenzo Bigagli,
thank you!

Many thanks also to the rest of you at the department. It has been a
pleasure working with you.

The work presented in the thesis has been financially supported by
VINNOVA1, the Swedish Agency for Innovation Systems, and SMEr-
obot, a project funded under the EU’s sixth framework programme.

1FLEXCON and Network Programming projects.

iv

Last, but definitely not the least, I am infinitely grateful to Christina,
Amanda, and Tilde for their love and support.

Lund, May 2006

Anders

Contents

1 Introduction 1
1.1 Real-time programming 2
1.2 Compiler construction . 7
1.3 Tailoring deployment and systems 8
1.4 Problem statement . 9
1.5 Thesis outline . 10
1.6 Publications . 11

2 Preliminaries 13
2.1 Distributed embedded real-time systems 13

2.1.1 Portability . 14
2.1.2 Scalability . 14
2.1.3 Hard real-time execution and performance 15
2.1.4 Hard real-time communication 15
2.1.5 Applicability . 15

2.2 Real-time memory management 16
2.3 Real-time operating systems 18

2.3.1 RTAI and Xenomai 18
2.4 Object-oriented development 20

2.4.1 Aspect-oriented programming 20
2.5 Reference attributed grammars 21

3 An approach to Java for real-time 23
3.1 Approach . 23
3.2 Simple example . 24
3.3 Memory management . 24
3.4 External code . 26
3.5 Predictability . 28

3.5.1 Dynamic class loading 28
3.5.2 Latency and preemption 29

vi CONTENTS

3.6 Findings . 32

4 Real-time execution platform 33
4.1 Garbage collector interface 34

4.1.1 User layer . 34
4.1.2 Thread layer . 35
4.1.3 Debug layer . 36
4.1.4 Implementation layer 36

4.2 Performance issues with the GCI 36
4.2.1 Reducing the need for synchronization 37
4.2.2 Reducing the cost of synchronization 38
4.2.3 Evaluation . 41
4.2.4 Compiler optimization effects 43

4.3 Class library . 44
4.3.1 Native methods . 44
4.3.2 I/O . 46

4.4 Threads and synchronization 47
4.4.1 Real-time thread classes 49
4.4.2 Synchronization . 50

4.5 Exceptions . 53
4.5.1 Exceptions based on setjmp/longjmp 53
4.5.2 Exceptions based on goto 57
4.5.3 Exception implementation evaluation 61
4.5.4 Finally . 62

4.6 Finalizers . 62
4.7 Findings . 63

5 A compiler for Java and real-time 65
5.1 ReRAGs . 66

5.1.1 Object orientation 66
5.1.2 Aspect orientation 66
5.1.3 Reference attributed grammars 68
5.1.4 Rewrites . 68
5.1.5 Node specialization 69

5.2 Compiler architecture . 69
5.3 General parts of the back end 72

5.3.1 Removing redundant variety 72
5.3.2 Differentiating nodes 73
5.3.3 Optimizations on the source AST 75

5.4 The LJRT backend . 76
5.4.1 Simplifying to a Java subset 77

CONTENTS vii

5.5 Optimization transformations 82
5.5.1 Dead code elimination 83
5.5.2 Implicit finalization 84
5.5.3 Root alias analysis 86

5.6 Code generation . 89
5.7 Evaluation . 91

5.7.1 Compiler architecture 91
5.7.2 Modularization techniques 93
5.7.3 Extensibility . 93
5.7.4 Compiler size and speed 94
5.7.5 Observations . 95

6 Experimental verification 97
6.1 Equipment and applications 97

6.1.1 Development platform 97
6.1.2 Real-time control platform 98
6.1.3 Low-end platform 98
6.1.4 Test applications 100

6.2 Portability . 103
6.3 Scalability . 104
6.4 Hard real-time execution and performance 105

6.4.1 Hard real-time execution 106
6.4.2 Performance . 108

6.5 Hard real-time communication 113
6.6 Applicability . 114

7 Prospects 115
7.1 Multi-stage development 115

7.1.1 Multi-stage deployment 116
7.1.2 Experiences . 119
7.1.3 Outlook . 119

7.2 Ontology-based compilation 122
7.2.1 Initial prototyping 123
7.2.2 Outlook . 125

8 Future work 129
8.1 Optimizations . 129

8.1.1 More efficient GC locking scheme 129
8.1.2 Memory allocation 130
8.1.3 OO optimizations 131
8.1.4 Selective inlining 131

8.2 Networking . 131

viii CONTENTS

8.3 Dynamic class loading . 132
8.4 Ontology-based compilation 132

9 Related work 133
9.1 RTSJ . 133

9.1.1 RTSJ implementations 134
9.2 RTCE . 136
9.3 JOP . 136
9.4 Jepes . 136
9.5 SimpleRTJ . 137
9.6 GCJ . 137

10 Conclusions 139
10.1 Real-time Java . 139
10.2 Compiler construction . 141
10.3 Contributions . 141
10.4 Concluding remarks . 142

Bibliography 144

A Acronyms 153

B LJRT compiler source 155
B.1 Abstract grammar for Java 155
B.2 Reachability analysis . 160

List of Figures

2.1 Schematic view of the Xenomai structure. 19

4.1 The four macro layers of the GCI. 35
4.2 Frequent GC locking example. 40
4.3 Lazy locking implementation sketch 41
4.4 Impact of lazy locking in the GCI. 42
4.5 Performance impact of GCI synchronization. 43
4.6 The System.out.print(String) call chain. 47
4.7 Linking compiled Java with appropriate run-time. 48
4.8 Comparing exception implementations. 61

5.1 Compiler generation. 70
5.2 Typical ReRAG architecture 70
5.3 Typical simplifications in the front end. 72
5.4 Examples of splitting declarations and initializations. . . 73
5.5 Java code fragment and corresponding AST. 77
5.6 Simplifying names by means of an AST transformation . 78
5.7 Simplifying a complex method call 79
5.8 Subtree representing a for-statement. 81
5.9 Subtree representing a simplified for-statement. 82
5.10 Results of implicit finalization optimization. 85
5.11 GCI requires temporary reference variables 86
5.12 Root alias example . 87
5.13 Flowchart of compilation process. 90

6.1 Schematic picture of an SDS block. 103
6.2 Alarm-clock application running on the AVR platform. . 106
6.3 Latency and jitter with Mark-Compact GC. 109
6.4 Latency and jitter with Mark-Sweep GC. 110

x LIST OF FIGURES

7.1 The IRB-6 in the robot lab and its virtual counterpart. . . 120
7.2 Joint angles for the 5 robot arm joints 120
7.3 Step response for the 5 joints. 121
7.4 Measured sampling intervals. 121
7.5 Using OWL ontology for gripper descriptions. 124
7.6 Robotic gripper model hierarchy. 125

List of Listings

3.1 A small example Java class. 24
3.2 Simple Java method translated into C. 25
3.3 GC handling added to the small Java example class. . . . 27
3.4 Example of using preemption points. 30
3.5 Explicit preemption points may decrease GC overhead. . 32
4.1 Call a legacy function from compiled Java. 45
4.2 Mapping Java monitors on underlying OS. 51
4.3 Example of Java synchronization with compiled code. . . 52
4.4 A simple exception example. 54
4.5 C macros implementing exceptions. 55
4.6 Exception example using exception macros. 56
4.7 A simple exception example using goto. 58
4.8 C macros implementing exceptions using goto. 60
4.9 Exception example using exception macros. 60
4.10 Example of finally semantics. 62
5.1 The grammar is expressed as an object-oriented class hi-

erarchy. 67
5.2 Rewrite rule specifying splitting of variable declaration

and initialization. 74
5.3 Additional AST classes that are used for semantic spe-

cialization in the preparation phase. 75
5.4 Rewrite rule for specializing variable accesses. 75
5.5 Rewrite rule for specializing assignment statements. . . . 76
5.6 Constant folding. 76
5.7 Simplification transformation example. 79
5.8 Root alias analysis in the front-end. 88
6.1 Java version of the HelloWorld application. 100
7.1 Excerpt from OWL representation of grippers. 127
7.2 Generated abstract grammar for gripper descriptions. . . 128

List of Tables

5.1 Code sizes after dead code elimination. 84
5.2 Source code sizes for the different stages of our compiler. 94
5.3 Java compiler measurements 95

6.1 Measured performance of real-time kernel. 99
6.2 Implementation of real-time Java runtime environment. . 104
6.3 Memory usage for the alarm-clock on the AVR platform. 105
6.4 Timing characteristics of three threads. 107
6.5 Real-time performance statistics. 108
6.6 Performance measurements. 112

7.1 Properties of the different development stages 117

640 K ought to be enough for
anybody.

Bill Gates, 1981

Chapter 1

Introduction

MAYBE contrary to common belief, the vast majority of computers in
the world are embedded in different types of systems. A quick

estimate gives at hand that general purpose computers — e.g. desktop
machines, file- and database servers — comprise less than ten percent
of the total. That is, more than 90% of all computers are embedded. This
percentage is constantly increasing, as small computers are embedded
in our everyday appliances, such as TV sets, refrigerators, laundry ma-
chines — not to mention cars where computers or embedded processors
can sometimes be counted in dozens.

A number of observations can be made regarding software develop-
ment for embedded systems:

• Object-Oriented (OO) techniques have proved beneficial in other
software areas, while development of embedded software is done
mostly using low-level programming languages such as C, re-
sulting in extensive engineering needed for development and de-
bugging as the programs grow bigger. Software modules do not
become flexible from a reuse point of view since they are hand-
crafted for a certain type of application or target system.

• As embedded systems software become parts of larger systems
that require more and more flexibility, and where parts of the soft-
ware can be installed or upgraded dynamically, flexibility with re-
spect to composability and reconfiguration will require some kind
of safe approach since traditional low-level implementation tech-
niques are too fragile. Both the application and the run-time sys-
tem can crash in an uncontrollable manner.

2 CHAPTER 1. INTRODUCTION

• Embedded systems become more and more distributed, consist-
ing of several communicating nodes instead of one central pro-
cessor. It would be very beneficial to make use of available Inter-
net technologies, but with the extension that both computing and
communication must comply with strict timing requirements.

Another observation on application development in general, is that pro-
gramming languages and supporting run-time systems play a central
role, not only for the development time, but also for the robustness of
the application. These observations all point in the direction that the
benefits and properties of Java (further described below) could be very
valuable for embedded systems programming.

The languages and tools used for embedded systems engineering
need to be portable and easy to tailor for specific application demands.
Adapting programming languages, or generation of code, to new en-
vironments or to specific application needs (so called domain specific
restrictions or extensions) typically require modifications of, or devel-
opment of, compilers. However, the construction (or modification) of
a compiler for a modern OO language is both tedious and error-prone.
Nevertheless, correctness is as important as for the generated embed-
ded software, so for flexible real-time systems the principles of compiler
construction deserve special attention.

Thus, both the so call system programming (including implemen-
tation language and run-time support) and the development support
(including compiler techniques and application specific enhancements)
are of primary concern here. A further introduction to these areas now
follows, to prepare for the problem statement and thesis outline that
conclude this chapter.

1.1 Real-time programming

Two of the largest technical problem areas that plague many software
development projects are:

Managing System Complexity Given the industrial competition and
increasingly challenging application requirements, software sys-
tems tend to grow larger and more complex. This takes place at
approximately the same rate as CPU performance increases and
memory prices decrease, resulting in complexity being the main
obstacle for further development. Weak structuring mechanisms
in the programming languages used make the situation worse.

1.1. REAL-TIME PROGRAMMING 3

Managing System Development Software development projects tend
to be behind schedule. Software errors found late in the project
make the situation worse since the time needed to correct soft-
ware errors found late is approximately exponentially related to
the point of time in the project when the error was found [Boe81].
Many late hard-to-find programming errors originate from the
use of unsafe programming languages, resulting in problems such
as memory leaks and dangling pointers.

So, what is the role of programming languages here? A good program-
ming language should help the developer avoid the problems listed
above by providing:

• Error avoidance at build time. Programming errors should, if pos-
sible, be found at compile time, or when linking or loading the
system.

• Error detection at run-time. Programming errors not found at
build time should be detected as early as possible in the develop-
ment process to avoid excessive costs. For instance, run-time er-
rors should, if possible, be explicitly detected and reported when
they occur, and not remain in the system making it potentially
unstable.

Compared to other software areas, such as desktop computing, de-
velopment of embedded systems suffer even more from these prob-
lems. Errors in embedded software are typically harder to find due
to timing demands, special hardware, less powerful debugging facili-
ties, and they are during operation often not connected to any software
upgrading facilities. Nevertheless, embedded software projects tend to
use weaker programming languages, that is, C has taken over as the
language of choice from assembly languages, but the assumption still
is that programmers do things right. Since that is clearly not the reality,
there is a great need for introducing safe programming languages with
better structuring and error detection mechanisms for use in embedded
software development.

Object-oriented programming languages

According to industrial practices and experiences, object-oriented pro-
gramming techniques provide more suitable structuring mechanisms
than are found in other paradigms (such as functional languages or the
common imperative programming languages). The mechanisms sup-
porting development of complex software systems include:

4 CHAPTER 1. INTRODUCTION

Classes The class concept provides abstract data structures and meth-
ods to operate on them.

Inheritance Classes can be organized, and functionality extended, in a
structured manner.

Virtual Operations Method call sites are resolved by parameter type,
instead of by name. Method implementations can be replaced by
sub-classing.

Patterns Organize interaction between classes.

These concepts can be achieved by using simpler language conven-
tions, tools, macros, libraries, and the like. Without the built-in support
from a true object-oriented language, however, there is a obvious risk
that productivity and robustness (with respect to variations in program-
ming skill and style) is hampered. Hence, full object-oriented support
from the programming language is needed.

Implications of unsafe programming languages

Experiences from programming in industry and in academia (under-
graduate course projects) show that most hard-to-find errors stem from
the use of unsafe language constructs such as:

• Type casts, as defined in for example C/C++.

• Pointer arithmetics.

• Arrays with no boundary checks, sometimes resulting in uncon-
trolled memory access.

• Manual memory management (using malloc/free). When should
free() be called? Too early results in dangling pointers, and too
late may result in memory leaks.

The first three unsafe constructs usually show up early in the develop-
ment process. Errors related to manual memory management, on the
other hand, do often not show up until very late, sometimes only after
(very) long execution times. Because of this time aspect, the origins of
these errors can also be very hard to locate in the source code. Hence,
unsafe language constructs should not be permitted.

1.1. REAL-TIME PROGRAMMING 5

Safe programming languages

A safe programming language is a language that does not have any of
the listed unsafe language constructs. Instead, a safe language is char-
acterized by the fact that all possible results of the execution are expressed
by the source code of the program. Of course, there can still be program-
ming errors, but they lead to an error message (reported exception), or
to bad output as expressed in the program. In particular, an error does
not lead to uncontrollable execution such as a “blue screen”. If, despite
a safe language, uncontrolled execution would occur (which should be
very rare), that implicates an error in the platform; not in the application
program. Clearly, a safe programming language is highly desirable for
embedded systems. Necessary properties of a safe language include:

• Type safety. For example, it is not possible to cast between arbi-
trary types via a type cast to void* as in C/C++.

• Many programmer errors caught by the compiler. Remaining (se-
mantic) errors that would violate safety are caught by runtime
checks, e.g., array bounds and reference validity checks.

• Automatic memory management. All heap memory blocks are al-
located when objects are created (by calling the operator new) and
automatically freed by a garbage collector when there no longer
exist any live references to the object. An object cannot be freed
manually.

The characteristics of safe languages usually make it impossible to
directly manipulate hardware in such a language, as safety can not be
guaranteed if direct memory references are allowed1. Therefore, un-
safe languages are still needed for developing device drivers, but the
amount of code written in such languages should be kept as small and
as isolated as possible. One solution then is to wrote device drivers in C
and the application code in Java. There has also been interesting work
done trying to raise the abstraction level of hardware drivers using do-
main specific languages [MRC+00], which can be used to minimize the
amount of hand-written “dangerous” code in an application.

1A direct memory reference can be unintentionally, or intentionally, changed to refer-
ence application data instead of memory-mapped hardware. As a result, type integrity
and data consistency are no longer guaranteed, with a potential risk of ending up with
dangling pointers and/or memory leaks.

6 CHAPTER 1. INTRODUCTION

Java

As of today, Java is the only safe, platform neutral, object-oriented pro-
gramming language available that has reached industrial acceptance.
Not only for the previously mentioned qualities, but also for its plat-
form independence2.

The benefits of language safety are often referred to as the ”sand-box
model”, which is a core part of both the Java language and the run-time
system in terms of the JVM. The term sand-box refers to the fact that ob-
jects cannot refer to data outside its scope of dynamic data, so activities
in one sand-box cannot harm others that play elsewhere. This is par-
ticularly important in flexible automation systems where configuration
at the user’s site is likely to exhibit new (and thereby untested) combi-
nations of objects for system functions, which then may not deteriorate
other (unrelated) parts of the system. Hence, raw memory access and
the like should not be permitted within the application code. Also, the
enhancements for real-time programming should be Java compatible
and without violating the security of the programming language.

There exist other programming languages, and run-time systems,
which fulfill the technical requirements for a safe language. The most
well known Java alternative today is the Microsoft .Net environment
and the language C#, which is safe except where the keyword unsafe
is used. In principle one could argue that lack of security is built into
that language/platform, but in practice the results of this thesis would
be useful for the purpose of creating an ’RT.Net’ (dot-net for real time)
platform. One can also argue that Ada qualifies as a safe object-oriented
programming language and run-time, but there is no strict sand-box
model and the acceptance of Ada is very low outside the aerospace and
military industry. So, due to maturity, availability of source code, sim-
plicity, and cross-platform portability, Java is the natural basis for re-
search in this area.

Considering the rich variety of processors and operating systems
used for embedded systems, confronted with the licensing conditions
from both Sun and Microsoft, there are also legal arguments for avoid-
ing their standard (desk-top or server oriented) run-time implementa-
tions. Luckily, the language definitions are free, and free implementa-
tions of run-time systems and libraries are being developed. In the Java
case, the availability and maturity of a free GNU implementation of the
Java class library [gcj] solves this problem for the Java case. However,

2Or rather, its good platform portability, since it takes a platform dependent Java Run-
time Environment (JRE), and JREs are not quite fully equivalent on all supported plat-
forms.

1.2. COMPILER CONSTRUCTION 7

standard Java and the GNU libraries are not targeted or suitable for
real-time embedded systems, which brings us to the compiler technol-
ogy issue.

1.2 Compiler construction

Adapting the Java programming language and runtime to meet the re-
quirements for hard real-time execution will inevitably involve the con-
struction of various libraries and tools, including the Java compiler.

Constructing a compiler for a modern OO language, such as Java,
using standard compiler construction tools is normally a large, tedious,
and error prone task. Since the correctness of the generated code de-
pends on the correctness of the compiler and other tools, it is preferable
to have also the tools (except for core well-tested software such as a
standard C compiler) implemented in a safe language. Furthermore,
is is desirable to have a representation of the language and applica-
tion software that is convenient to analyze and manipulate. Therefore,
applicability of real-time embedded Java appears to go hand in hand
with suitable compiler constructions tools, preferably written in Java
for portable and safe embedded systems engineering.

Work on compiler construction within our research group has re-
sulted in new ideas and new compiler construction tools [HM02], which
with the aim of this work represent state of the art. The representation
of the language within that tool is based on Attribute Grammars (AGs).
AG-based research tools have been available for a long time, but there
are no known compiler implementations for a complete object-oriented
language, so this topic also by itself forms a research issue.

Optimizations and code generation

Compiling code for execution on very resource-limited platforms con-
sequently involves code optimizations. While many optimizations are
best performed on intermediate- or machine code, there are — espe-
cially for OO languages — a number of optimizations which can only
be performed on a higher abstraction level. Examples of such transfor-
mations are method in-lining, and implicit finalization of classes and
methods.

With the aim of providing as high level of portability as possible,
“Write Once, Run Everywhere” in Java terminology, the code gener-
ation phase of a compiler is very important. Should the output be

8 CHAPTER 1. INTRODUCTION

processor-specific assembly language, or would the use of a higher ab-
straction level intermediate language suit the needs better? Can a stan-
dard threading Application Programming Interface (API) such as Posix
[NBPF96] be utilized, and/or what refinements are necessary? Can the
code representation and transformation be structured in such a way
that tailoring the generated code to specific underlying kernels and
hardware configurations can be made simpler and more modular than
feasible with currently available techniques?

1.3 Tailoring deployment and systems

The perhaps most important parts of embedded real-time systems per-
form sequencing or feedback control. By far the most control functions
today are implemented in software. In the robotics research commu-
nity for instance, most attention is paid to the implementation of the
algorithmic parts of robot control systems. An industrial robot control
systems, including all supervision, mode changes, error handling, sup-
port for modular testing, user interaction, shop-floor path adjustments,
etc., consists of more than 1 million lines of code. Today this is typically
written in C in a rather static manner. For future robot control, the de-
mands on flexibility and safety is increasing and contradictory, so we
may seek other means of implementation such as code generation from
engineering tools. However, it is a small (albeit important) part of the
system that is suitable for being efficiently generated from tools such
as Simulink/RTW; we still need supporting tools and methods for de-
veloping and deploying hand-written control software (including the
building blocks of the control engineering tools).

Another dimension of engineering, typically applied to each level of
control, is the stepwise refinement of embedded control functions. As
many engineers have experienced, if you try to implement and deploy
the complete control system in one step it will not work. Instead, you
have to be able to test and run smaller core parts of the system, and
then gradually activate additional features. This applies to both control
and software engineering of the system. Recall that a feedback control
system depends on the true process dynamics and standard software
testing techniques alone are not sufficient to ensure proper operation.
While also stepwise development today is well understood in both the
control and software engineering communities, we want to address the
additional following issue:

1.4. PROBLEM STATEMENT 9

• How can stepwise deployment of embedded control software be
carried out such that the control properties (due to timing, laten-
cies, etc.) are verified in multiple smaller stages?

Finally, assuming we can efficiently develop and deploy our con-
trol software, there is the issue of interconnecting and integrating our
flexible systems. Then we have to deal with existing hardware, vendor-
specific configurations, and legacy or proprietary software. This leads
to a situation where we need to not only compile embedded software,
but also system definitions on a meta-level may need compiler support.
More as a prospect but not as the core of this work, we have looked at
combining the concepts known as Ontology and the Semantic Web with
our compiler construction tools. We believe this combination can be
valuable for efficient handling of different kinds of system definitions.

1.4 Problem statement

With the aim of promoting flexibility, portability, and safety for dis-
tributed hard real-time systems we want to utilize the Java benefits.
But, in order to enable practical/efficient widespread use of Java in the
embedded systems world there are a number of technical issues that
need to be investigated. We then need to identify current limitations
and find new techniques to advance beyond these limitations, but also
inherent limitations and necessary trade-offs need to be identified and
made explicit. In general terms, the core topic of this thesis can be stated
by posing the following questions:

Can standard Java be used as a programming language on
arbitrary hardware platforms with varying degrees of real-time-,
memory footprint-, and performance demands?

Here, standard Java means the complete Java language according to
Sun’s J2SE, and (a possibly enhanced subset of) the standard Java li-
braries that are fully compliant with J2SE.
If standard Java is useful for embedded systems,

what enhancements in terms of new software techniques are needed
to enable hard real-time execution and communication, and what
are the inherent limitations?

If possible, which tools are needed for adapting standard Java to
various types of embedded systems? What techniques enable effi-
cient development of those tools, and what limitations can be iden-
tified?

10 CHAPTER 1. INTRODUCTION

In short, based on the well-known standard Java claim, what we want
to accomplish is

write once run anywhere, for severely resource-constrained real-
time systems

and find out the resource-related limitations3.

1.5 Thesis outline

The rest of this thesis is organized as follows:

Chapter 2: Preliminaries presents short introductions to some of the
techniques used, as well as some identified important aspects con-
cerning embedded real-time systems development .

Chapter 3: An approach to real-time Java presents our approach to
compiling Java for use in real-time systems, possibly with limited
resources.

Chapter 4: Real-time execution platform presents run-time issues for
real-time Java; real-time memory management, the Java standard
class library, threads and synchronization, and exceptions.

Chapter 5: A compiler for Java and real-time describes the Java com-
piler being developed to accomplish real-time Java.

Chapter 6: Experimental verification presents some experiments per-
formed using the Lund Java-based Real Time (LJRT) platform in
order to see to what extent the ideas are applicable in reality.

Chapter 7: Prospects describes a few other projects where the tools and
techniques presented in the thesis are used. These projects are still
in an early state, but preliminary results look very promising.

Chapter 8: Future work contains the most interesting ideas for further
work with the tools and techniques presented in the thesis.

Chapter 9: Related work gives short descriptions of some related real-
time and embedded Java implementations.

Chapter 10: Conclusions presents conclusions drawn from the work
presented in the thesis. A summary of the thesis contributions
is also given.

3Note that Sun’s J2ME is neither J2SE-compliant nor suitable for (hard) real-time sys-
tems as is further discussed in Chapters 3 and 4.

1.6. PUBLICATIONS 11

1.6 Publications

This thesis largely consists of material from published papers. The ideas
about how to approach real-time Java presented in Chapter 3 were orig-
inally published as a proof of concept in

Anders Nilsson and Torbjörn Ekman. Deterministic Java in
Tiny Embedded Systems. In The Fourth IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2001), pages 60–68. IEEE Computer So-
ciety, May 2001.

and then in more developed and generalized form in

Anders Nilsson, Torbjörn Ekman, and Klas Nilsson. Real
Java for Real Time — Gain and Pain. In Proceedings of CASES
2002, pages 304–311. ACM, ACM Press, October 2002.

The Garbage Collector Interface (GCI), which is briefly described in
Chapter 4, was first published in

Anders Ive, Anders Blomdell, Torbjörn Ekman, Roger Hen-
riksson, Anders Nilsson, Klas Nilsson, and Sven Gestegård
Robertz. Garbage Collector Interface. In Proceedings of NW-
PER 2002, August 2002.

The description of JastAdd and the LJRT compiler in Chapter 5 is a
revised and extended version of the paper

Anders Nilsson, Anders Ive, Torbjörn Ekman, and Görel
Hedin. Implementing Java Compilers Using ReRAGs. Nordic
Journal of Computing, 11(3):213–234, 2004.

The descriptions and experimental results from various optimizations
in the run-time system and the LJRT compiler, found in Chapters 4 and
5, were published in

Anders Nilsson and Sven Gestegård Robertz. On Real- Time
Performance of Ahead-of-Time Compiled Java. In The Eighth
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2005), pages 372–381.
IEEE Computer Society, IEEE, May 2005.

12 CHAPTER 1. INTRODUCTION

The ideas and strategies about multi-stage deployment, presented in
Chapter 7 are also published in

Sven Gestegård Robertz, Anders Nilsson, Mathias Haage,
and Klas Nilsson. Multi-Stage Deployment of Robot Control
Software. To appear in Proceedings of the 8th International
IFAC Symposium on Robot Control, SYROCO, September
2006.

Any sufficiently advanced
technology is indistinguishable
from magic.

Arthur C. Clarke

Chapter 2

Preliminaries

ADVANCES within three research areas of computer science lay the
foundation of this work, which has the objective to make a mod-

ern object-oriented language available for developing hard real-time
systems. (Distributed) Real-Time Systems is the primary domain for this
work, while advances in Object-Orientation and Attribute Grammars have
made possible the construction of the tools used.

2.1 Distributed embedded real-time systems

Real-time systems can be defined as systems where the correctness of
the system is not strictly an issue of semantic correctness when, given a
set of inputs, the system will respond with the intended output. There
is also the issue of temporal correctness, i.e., the system must respond
with an output within a certain time frame from acquiring the inputs.
This time-frame is referred to as the deadline, within which the systems
must respond.

One usually makes a distinction between soft and hard real-time sys-
tems, depending on the influence a missed deadline might have on the
system behavior. A missed deadline in a soft real-time system results
in degraded performance, but the system stability is not affected, e.g.,
video stream decoding. A missed deadline in a hard real-time system,
on the other hand, jeopardizes the overall system stability, e.g., flight
control of an unstable airplane.

Despite the principal advantages of a safe object-oriented program-
ming language, numerous problems arise when one tries to use the
Java language — and its execution model — for developing real-time

14 CHAPTER 2. PRELIMINARIES

systems. More problems arise if one has to consider resource-limited
target environments, i.e., small embedded systems with hard real-time
constraints such as mobile phones or industrial process control applica-
tions.

In the sequel of this section, a number of identified key concepts for
being able to use Java in embedded real-time environments are listed.
These key concepts are then used to formulate the problem statement
for the thesis.

2.1.1 Portability

Portability is important when deciding on the programming language
to use for embedded systems development. It might not be clear from
the beginning which type of hardware and Real-Time Operating System
(RTOS) should be used in the final product. Good portability also pro-
motes simulating system behavior on platforms better suited for testing
and debugging, e.g., workstations. A key concept for retaining as much
portability as possible in using Java for embedded and/or real-time sys-
tems is:

Standard Java: If possible, real-time programming in Java should be
supported without extending or changing the Java language or
API. For instance, the special and complex memory management
introduced in the Real-Time Specification for Java (RTSJ) specifi-
cation [BBD+00] needs to be abandoned to maintain the superior
portability of standard Java, as needed within industrial automa-
tion and other fields.

2.1.2 Scalability

Scalability (both up and down) is also important to consider since non-
scalable techniques usually do not survive in the long term. How far
towards low-end hardware is it possible to go without degrading feasi-
bility on more powerful platforms?

Since Java has proved to be quite scalable for large systems, the key
issue for scalability in this work is:

Memory Footprint: For most embedded devices, and especially for de-
vices produced in large quantities, memory is an expensive re-
source. A trade-off has to be made between cost of physical mem-
ory and cost savings from application development in higher level
languages.

2.1. DISTRIBUTED EMBEDDED REAL-TIME SYSTEMS 15

2.1.3 Hard real-time execution and performance

Regarding feasibility for applications with real-time demands, there are
a number of issues deserving attention:

Performance: CPU performance, and in some cases power consump-
tion, is also an limited resource. The cheapest CPU that will do
the job generates the most profit for the manufacturer. The same
trade-off as for memory footprint has to be made.

Determinism: Many embedded devices need to fulfill real-time con-
straints, and for some applications, such as feedback controllers,
there might be hard real-time constraints. Computing in Java
needs to be as time predictive as current industrial practice, that
is, as predictive as when programming in C/C++.

Latency: For an embedded controller, it might be equally important
that the task latency, i.e. the time elapsed between the event that
triggers a task for execution and when the task actually produces
an output, is sufficiently short and does not vary too much (sam-
pling jitter). Jitter in the timing of a control task usually results in
decreased control performance and, depending on the controlled
process characteristics, may lead to instability.

2.1.4 Hard real-time communication

Embedded real-time systems tend to be more and more distributed.
For example, a factory automation system consists of a large number of
small intelligent nodes, each running one or a few control loops, com-
municating with each other and/or with a central server. The central
server collects logging data from the nodes and sends new calibration
values, and possibly also software updates, to the nodes.

In some cases, it is appropriate to distribute a single control loop
over a number of distributed nodes in a network. This places high de-
mands on the timing predictability of the whole system. Not only must
each node satisfy real-time demands, the interconnecting network must
also be predictable and satisfy strict demands on latency.

2.1.5 Applicability

The applicability of a proposed solution can be defined as the feasibil-
ity of using the proposed solution in a particular application. With an
application domain including systems ranging from small intelligent

16 CHAPTER 2. PRELIMINARIES

control nodes to complex model-based controllers, such as those found
in industrial robots, especially one issue stands out as more important:

External Code: The Java application, with its run-time system, does
not alone comprise an embedded system. There also have to be
hardware drivers, and frequently also library functions and/or
generated code from high-level tools. Examples of such tools gen-
erating C-code are the Real-Time Workshop composing Matlab/
Simulink blocks [Mat], generation of real-time code from declar-
ative descriptions such as Modelica [Mod] (object-oriented DAE)
models, or computations generated from symbolic tools such as
Maple [Map]. Note that assuming these tools (resembling compil-
ers from high-level restricted descriptions) are correct, program-
ming still fulfills the safety requirement.

2.2 Real-time memory management

The concept of automatic memory management has been well-known
ever since the appearance of function-oriented and object-oriented lan-
guages with dynamic memory allocation, such as Lisp [MC60] and Sim-
ula [DMN68, DN76] in the 1960’s. However, most garbage collection
algorithms are not suitable for use in systems with predictable timing
demands. This is caused by the unpredictable latencies imposed on
other threads when the garbage collector runs.

Two different Garbage Collect(ion|or) (GC) algorithms are used in
the work described in this thesis; Mark-Compact and Mark-Sweep. Both
algorithms work in two passes, starting with the Mark pass where all
live memory blocks are marked. Then follows the Compact or Sweep
pass, depending on which algorithm is used, where unused memory
is reclaimed and is available for future allocations. In our implementa-
tions, both algorithms depend on the application maintaining a list of
references to heap-allocated objects, a root stack. The root stack is used
by the GC algorithm as the starting point for scanning the live object
graph in the marking phase.

During the Compact phase in a Mark-Compact GC, all objects which
were marked as live during the marking phase are moved to form a
contiguous block of live objects on the heap. After the compact phase
has finished, the heap consists of one contiguous area of live objects,
and one contiguous area of available free memory. The Sweep phase in a
Mark-sweep algorithm, on the other hand, does not result in live objects
being moved around in the heap. Instead, memory blocks which are no

2.2. REAL-TIME MEMORY MANAGEMENT 17

longer used by any live objects are reclaimed by the memory allocator,
similar to the free() call in a standard C environment.

The GC can be run in two ways. The simplest way of running the
GC algorithm is the batch, or stop-the-world. When the memory man-
agement system determines it is time to reclaim unused memory, the
application is stopped and the GC is allowed to run through a full cy-
cle of Mark and Compact or Sweep. When the GC has finished its cycle,
the application is allowed to continue. Naturally, this type of GC de-
ployment is utterly inadequate for use in hard real-time systems since
the time needed for performing a full GC cycle varies greatly, and the
worst case is typically much larger than the maximum acceptable delay
in the application.

In order to decrease the delay impact of the GC on the application,
the deployment of the GC can be made incremental instead, in which
case the GC may give up execution after each increment if the applica-
tion wants to run.

In 1998, Henriksson [Hen98] showed that by analyzing the appli-
cation, it is possible to schedule an incremental mark-compact garbage
collector in such a way that the execution of high priority threads is not
disturbed. This is accomplished by freeing high priority threads from
doing any GC work during object allocation, while having a medium
priority GC thread performing that GC work and letting low priority
threads perform a suitable amount of GC work during allocations. The
GC increments are then chosen sufficiently small so as not to introduce
too much worst-case latency to high priority threads.

The analysis needed for computing GC parameters, to guarantee
that the application will never run out of memory when a high pri-
ority thread tries to allocate an object, is rather complex and cumber-
some. The complexity involved in calculating the maximum memory
allocation rate of an application is similar to calculating the Worst-Case
Execution Time (WCET) for all threads in the application. In 2003,
Gestegård-Robertz and Henriksson [RH03] presented some ideas and
preliminary results on how scheduling of a hard real-time GC can be
achieved by using adaptive and feedback scheduling techniques. Tak-
ing that work into account, it appears reasonable to accomplish real-
time Java without compromising the memory allocation model. This
is in contrast with what is done in for example the two real-time Java
specifications [BBD+00, Con00].

18 CHAPTER 2. PRELIMINARIES

2.3 Real-time operating systems

Real-Time Operating Systems (RTOSs) differ from more general pur-
pose desktop- and server operating systems, such as Windows, Solaris
or GNU/Linux, in a number of ways, relating to the different purpose
of the Operating System (OS). Whereas a main purpose of a general
purpose OS is to make sure that no running process is starved, i.e.,
no matter the system load, all processes must be given some portion
of CPU time so they can finish their work, RTOSs functions in a fun-
damentally different way. RTOSs are generally strict priority based.
A thread may never be interrupted by a lower priority thread, and a
thread is always interrupted if a higher priority thread enters the sched-
uler ready queue.

Despite this difference in process scheduling between general pur-
pose OSs and RTOSs, a lot of work has been done trying to combine th
strengths of both types, since general purpose OSs usually have better
support for application development.

2.3.1 RTAI and Xenomai

The Real-Time Application Interface for Linux (RTAI) project [Me04],
which originated some years ago as an open-source fork of the RT-
Linux project [FSM04], aims at adding hard real-time support to the
GNU/Linux operating system. In October 2005 Xenomai [Xen06], an-
other open source project which had earlier joined forces with the RTAI
developers in the RTAI Fusion branch, again broke lose from RTAI as
a result of the respective lead developers not agreeing upon how to
continue development. The differences between the two projects are as
of yet mostly hidden deep inside the low-level implementation, and is
barely visible in the structure or the API.

The implementation of Xenomai is modelled as three layers stacked
on top of each other, see Figure 2.1:

HAL The Adeos Hardware Abstraction Layer (HAL) module consists
of a patch to the Linux kernel adding hooks into the interrupt han-
dling routine, and a loadable kernel module that uses the hooks
to intercept interrupts before they arrive at the kernel. By control-
ling the interrupt handling mechanism, Xenomai gains full con-
trol over the execution of the Linux kernel.

Nucleus The nucleus module is an abstract real-time kernel implemen-
tation providing a scheduler and all the RTOS primitives that are

2.3. REAL-TIME OPERATING SYSTEMS 19

Hardware

Adeos HAL

Nucleus

Native
skin

Posix
skin

Real-time application

Linux kernel

Figure 2.1: Schematic view of the Xenomai structure.

needed. The scheduler runs the Linux kernel as it’s idle task.
Functions in the nucleus are not called directly from real-time
tasks, but should only be called from the different skins on top
of the nucleus.

Skins On top of the nucleus there can be several “skins” each defining
an API for the real-time tasks to use. Currently available in Xeno-
mai are one Xenomai skin and one Posix skin. The skin concept
makes it easier to port applications from other run-time environ-
ments to Xenomai.

There are two execution environments available for Xenomai tasks.
The traditional way to execute RTAI or Xenomai tasks is in form of load-
able Linux kernel modules. The real-time tasks execute alongside the
Linux kernel in the same address space, with no memory protection
available to stop a badly behaving task from thrashing the Linux ker-
nel’s state. Other problems with executing as a kernel module are that
only a subset of the standard C library functions is available, and de-
bugging is much more awkward. The RTAI project then developed a
way to execute real-time tasks in user-space, called LXRT. Now nor-
mal memory protection is used and the real-time tasks have access to
the same libraries as any other Linux process (but care must then be
taken, so that not task execution times become unpredictable). Origi-
nally, tasks running in LXRT experienced slightly longer latencies than
kernel-space tasks, but the difference has decreased since then. Run-
ning Xenomai tasks in user-space is now the preferred way, but the op-
tion to run in kernel-space is still present.

20 CHAPTER 2. PRELIMINARIES

Xenomai threads are scheduled by the strict priority based Xeno-
mai scheduler, and as they are not disturbed by Linux processes, and
therefore very good timing predictability can be achieved. A side ef-
fect is, obviously, that Xenomai threads may starve the Linux kernel,
loosing responsiveness to user interaction and resulting in a locked-up
computer, but that is no different from any other RTOS.

2.4 Object-oriented development

Object-Oriented (OO) languages have over the years proven to be a
valuable programming technique ever since the concept was first im-
plemented in the language Simula [DMN68, DN76]. Since then, many
object-oriented languages have been constructed, of which C++ [Str00],
Java [GJS96], and C# [HWG03] are the best known today.

The object-oriented technology has, however, had very little suc-
cess when it comes to developing software for small embedded and/or
real-time systems. The widespread apprehension that OO languages
introduce too much execution overhead is probably the main reason
for this. If this apprehension could be contradicted, there would proba-
bly be much to gain in terms of development time and software quality
if OO technology finds its way into development of these kinds of sys-
tems. Many groups, both inside and outside academia, are working on
adapting OO technology and programming languages for use in small
embedded systems. Most groups work with Java, for example [Ive03,
SBCK03, RTJ, VSWH02, Sun00a], but there are also interesting work be-
ing done using other OO languages, such as the OOVM [Bak03] using
Smalltalk.

2.4.1 Aspect-oriented programming

In 1997, Kiczales et al. published a paper [KLM+97] describing Aspect-
Oriented Programming (AOP) as a possible solution to many program-
ming problems that do not fit well in the existing programming para-
digms. The authors have found that certain design decisions are diffi-
cult to capture—in a clean way—in code because they cross-cut the the
basic functionality of the system. As a simple example, one can imag-
ine an image manipulation application in which the developer wants to
add conditional debugging print-outs just before every call to a certain
library matrix function. Finding all calls is tedious and error-prone, not
to mention the task of, at a possible later time, removing all debug print-
outs again. These print-outs can be seen as an aspect on the application,

2.5. REFERENCE ATTRIBUTED GRAMMARS 21

which is cross-cutting the basic functionality of the image manipulation
application.

By introducing the concept of programming in aspects, which are
woven into the basic application code at compile-time, two good things
are achieved; the basic application code is kept free from disturbing
add-ons (conditional debugging messages in the example above), and,
the aspects themselves can be kept in containers of their own with good
overview by the developers of the system.

2.5 Reference attributed grammars

Ever since Donald Knuth published the first paper [Knu68b] on At-
tribute Grammar (AG) in 1968, the concept has been widely used in
research for specifying static semantic characteristics of formal (context-
free) languages. The AG concept has though never caught on for use in
production code compilers.

By utilizing Reference Attribute Grammars (RAGs) [Hed00], it is
also possible to specify in a declarative way the static semantic char-
acteristics of object-oriented languages with many non-local grammar
production dependencies.

The compiler construction toolkit, JastAdd, which we are using for
developing a Java compiler, further described in Chapter 5, is based on
the RAG concept.

I have yet to see any problem,
however complicated, which,
when you looked at it in the right
way, did not become still more
complicated.

Poul Anderson

Chapter 3

An approach to Java for
real-time

IN Section 2.1, we have identified a number of key concepts which
need to be fulfilled in order to make Java a viable programming lan-

guage for embedded real-time systems.
In this chapter, we will discuss the suitability of different execution

strategies for Java applications in real-time environments. We will then
present and discuss the approach we have chosen, and the rationales for
why we believe it is the best strategy in order to use Java in embedded
real-time systems.

3.1 Approach

Given a program, written in Java, there are basically two different al-
ternatives for how to execute that program on the target platform. The
first alternative is to compile the Java source code to byte code, and
then have a — possibly very specialized — Java Virtual Machine (JVM)
to execute the byte code representation. This is the standard interpreted
solution used today for Internet programming, where the target com-
puter type is not known at compile time. The second alternative is to
compile the Java source code, or byte code, to native machine code for
the intended target platform.

A survey, see Chapter 9, of available JVMs, concerning their use-
fulness for embedded and real-time systems, reveals two major prob-
lems with the interpreted solution. First, JVMs are in general too big in

24 CHAPTER 3. AN APPROACH TO JAVA FOR REAL-TIME

Listing 3.1: A small example Java class.

class AClass {
Object aMethod(int arg1, Object arg2) {

int locVar1;
Object locVar2;
Object locVar3 = new Object();

locVar2 = arg2.someMethod();

return locVar2;
}

}

terms of memory footprint. Second, they are too slow, in terms of per-
formance. This leads to the alternative approach to use a conventional
execution model with a binary compiled for a specific CPU. Of course,
there are advantages with the JVM alternative but if one wants to use a
JVM it can be used as a special loadable module.

One thing in common for almost all CPUs, is that there exists a C
compiler with an appropriate back-end. In the interest of maintain-
ing good portability, using C as an intermediate language seems like
a good idea. In the sequel, C is used as a portable (high level) assembly
language and as the output from a Java compiler.

3.2 Simple example

Consider the Java class in Listing 3.1, showing a method that takes two
arguments (one of them a reference), has two local variables, and makes
a call to some other method before it returns. Compiling this class into
equivalent C code yields something like what is shown in Listing 3.2
on the next page. Note that the referred structures that implement the
actual object modeling are left out.

The code shown in Listing 3.2 on the facing page will execute cor-
rectly in a sequential system. However, garbage collection, concurrency
and timing considerations will complicate the picture.

3.3 Memory management

The presence, or absence, of automatic garbage collection in hard real-
time systems has been debated for some years. Both standards pro-

3.3. MEMORY MANAGEMENT 25

Listing 3.2: The method of the previous small Java example class translated
to C, neglecting preemption issues.

ObjectInstance * AClass_Object_aMethod(
AClassInstance * this,
JInt arg1,
ObjectInstance * arg2) {

JInt locVar1;
ObjectInstance * locVar2;
ObjectInstance * locVar3;

// Call the constructor
locVar3 = newObject();

// Lookup and call virtual method in vTable
locVar2 = arg2->class->methodTbl.someMethod();

return locVar2;
}

posals for real-time Java [BBD+00, Con00] assume that real-time GC
is impossible, or at least not feasible to implement efficiently. There-
fore they propose a mesh of memory types instead, effectively leaving
memory management into the hands of the application programmer.
Some researchers, on the other hand, work on proving that real-time
GC actually is possible to accomplish in a useful way.

Henriksson [Hen98] has shown that, given the maximum amount of
live memory and the memory allocation rate, it is possible to schedule
an incremental compacting GC in such a way that we have a low upper
bound on task latency for high priority tasks.

Siebert [Sie99] chooses another strategy and has shown that, given
that the heap is partitioned into equally sized memory blocks, it is pos-
sible to have an upper (though varying depending on the amount of
free memory) bound on high priority task latency using an incremental
non-moving GC. The varying task latency relates to the amount of free
memory in such a way that the task latency increases dramatically in a
situation when there is almost no free memory left. In a system where
the amount of free memory varies over time, the jitter introduced may
hurt control performance severely.

26 CHAPTER 3. AN APPROACH TO JAVA FOR REAL-TIME

Example with GC

Using an incremental compacting GC in the run-time system, the C
code in Listing 3.2 on the previous page will not suffice for two reasons.
The GC needs to know the possible root nodes, i.e. references outside
the heap (on stacks or in registers) peeking into the heap, for knowing
where to start the mark phase. Having the GC to find them by itself
can be very time-consuming with a very bad upper bound, so better is
to supply them explicitly. Potential root nodes are reference arguments
to methods and local reference variables. Secondly, since a compacting
GC will move objects in the heap, object references will change. Better
than searching for them, is to introduce a read barrier (an extra pointer
between the reference and the object) and pay the price of one extra
pointer dereferencing when accessing an object. The resulting code is
shown in Listing 3.3 on the facing page.

The REF(x) and DEREF(x) macros implement the needed read
barrier while the GC_PUSH_ROOT(x) and GC_POP_ROOT(n) macros
respectively register a possible root with the GC, and pops the number
of roots that was added in this scope.

If using a non-moving GC, on the other hand, references to live ob-
jects are never changed by the GC, and the read-barrier is just unneces-
sary performance penalty. A simple redefinition of the GC macros, as is
seen in Listing 3.3, is all that is needed to remove the read-barrier while
leaving the application code independent of which type of GC is to be
used.

3.4 External code

Every embedded application needs to communicate with the surround-
ing environment, via the kernel, hardware device drivers, and maybe
with various already written library functions and/or generated code
blocks from high level programming tools (such as Matlab/Real-Time
Workshop from The MathWorks Inc.). As mentioned, native compila-
tion via C simplifies this interfacing. Sharing references between gener-
ated Java code and an external code module, e.g. a function operating
on an array of data, has impact on the choice of GC type and how it can
be scheduled.

When using a compacting GC, one must make sure that the object in
mind is not moved by the GC while referred to from the external code
since that code can not be presumed to be aware of read barriers. If the
execution of the external function is sufficiently fast, we may consider

3.4. EXTERNAL CODE 27

Listing 3.3: GC handling added to the small Java example class.

/* Include type definitions and GC macros.

* Omitted in following listings

*/
#include <jtypes.h>
#include <gc_macros.h>

#ifdef COMPACT_GC
/* Compacting GC */
#define REF(x) (x **)
#define DEREF(x) (* x)
#else
/* Non-moving GC */
#define REF(x) (x *)
#define DEREF(x) (x)
#endif

REF(ObjectInstance) AClass_Object_aMethod(
REF(AClassInstance) this, JInt arg1,
REF(ObjectInstance) arg2) {

JInt locVar1;
REF(ObjectInstance) locVar2;
REF(ObjectInstance) locVar3;
GC_PUSH_ROOT(arg2);
GC_PUSH_ROOT(locVar2);
GC_PUSH_ROOT(locVar3);

locVar3 = Object();

locVar2 =
DEREF(arg2)->class->methodTbl.someMethod();

GC_POP_ROOT(arg2);
GC_POP_ROOT(locVar2);
GC_POP_ROOT(locVar3);
return locVar2;

}

it a critical section for memory accesses and disable GC preemption
during its execution. More on this topic in Section 3.5.2. A seemingly
more pleasant alternative would be to mark the object as read-only to
the GC during the operation. Marking read-only blocks for arbitrarily
long periods of time would however fragment the heap and void the
deterministic behavior of the GC.

For non-moving GCs, the situation at first looks a lot better as objects
once allocated on the heap never move. However, as a non-moving GC

28 CHAPTER 3. AN APPROACH TO JAVA FOR REAL-TIME

depends on allocating memory in blocks of constant size to avoid exter-
nal memory fragmentation in order to be deterministic, objects larger
than the given memory block size (e.g. arrays) have to be split over two
or more memory blocks. Since we can never guarantee that these mem-
ory blocks are allocated contiguously, having external non GC-aware
functions operate on such objects (or parts thereof) is impossible.

However, if we do not depend on having really hard timing guar-
antees, the situation is no worse (nor better) than with plain C using
malloc() and free() . Memory fragmentation has been argued by
Johnstone et al. [JW98] not to be a problem in real applications, given a
good allocator mechanism. Using a good allocator and a non-moving
GC, the natively compiled Java code can be linked to virtually any ex-
ternal code modules. The price to pay is that memory allocations times
are no longer strictly deterministic, just like in C/C++.

3.5 Predictability

Predictable timing is crucial to real-time systems; an unexpected delay
in the execution of an application can jeopardize safety and/or stability
of controlled systems.

Predictability and Worst-Case Execution Time (WCET) analysis in
general is by now a mature research area, with a number of text books
available [BW01], and is not further discussed in this thesis. However,
adapting Java for usage in real-time systems requires considerations
about dynamic loading of classes, latency, and preemption.

3.5.1 Dynamic class loading

In traditional Java, every object allocation (and calls to static meth-
ods or accesses to static fields) pose a problem concerning determinism,
since we can never really know for sure if that specific class has already
been loaded, or if it has to be loaded before the allocation (or call) can
be performed. In natively compiled and linked Java applications, all re-
ferred classes will be loaded before execution starts since they are stat-
ically linked with the application. This ensures real-time performance
from start. However, there are situations—such as software upgrades
on-the-fly—where dynamic class loading is needed.

Application-level class loading does not require real-time loading,
but when a class has been fully loaded, it should exhibit real-time be-
havior just like the statically linked parts of the application. This is re-
lated to ordinary dynamic linking, but class loaders provide convenient

3.5. PREDICTABILITY 29

object-oriented support. That can, however, be provided also when
compiling Java to C, using the native class loading proposed by Nilsson
et al. [NBL98]. Using that technique, we can let a dedicated low-priority
thread take care of the loading and then instantaneously switch to the
cross-compiled binaries for the hard real-time parts of the system. Dy-
namic code replacement can be carried out in other ways too, but the
approach we use maintains the type-safety of the language.

3.5.2 Latency and preemption

Many real-time systems depend on tasks being able to preempt lower
priority tasks to meet their deadlines. E.g., a sporadic task triggered
by an external interrupt needs to supply an output within a specified
period of time. Allowing a task to be preempted poses some interest-
ing problems when compiling via C, especially in conjunction with a
compacting GC. How can it be ensured that a task is not preempted
while halfway through an object de-referencing by the GC? The GC
then would move the mentioned object to another location, leaving the
first task with an erroneous pointer when it later resumes execution.
And what about a “smart” C compiler that finds the read-barrier super-
fluous and stores direct references in CPU registers to promote perfor-
mance?

Using the volatile keyword in C, which in conjunction with pre-
emption points would ensure that all root references exist in memory, is
unfortunately not an answer to the latter question since the C semantics
does not enforce its use but merely recommends that volatile refer-
ences should be read from memory before use. Though many C com-
pilers for embedded systems actually enforce that volatile should be
taken seriously.

One possible solution is to explicitly state all object references as
critical sections during which preemption is disallowed, see the exam-
ple code in Listing 3.4 on the next page.

This can be a valid technique if the enabling/disabling of preemp-
tion can be made cheap enough. On the hardware described in Sec-
tion 6.3 on page 104, for example, it only costs one clock cycle. Using
this technology, the only possible way to ensure the read barrier will not
be optimized away, is to not allow the C compiler to perform optimiza-
tions which rearrange instruction order. It may seem radical but the
penalty for not performing aggressive optimizations may be acceptable
in some cases. As shown by Arnold et al. [AHR00], the performance
increase when performing hard optimizations compared to not opti-

30 CHAPTER 3. AN APPROACH TO JAVA FOR REAL-TIME

Listing 3.4: Preemption points implemented by regarding all memory ac-
cesses to be critical sections.

REF(ObjectInstance) AClass_Object_aMethod(
REF(AClassInstance) this, JInt arg1,
REF(ObjectInstance) arg2) {

JInt locVar1;
REF(ObjectInstance) locVar2;
REF(ObjectInstance) locVar3;
GC_PUSH_ROOT(arg2);
GC_PUSH_ROOT(locVar2);
GC_PUSH_ROOT(locVar3);
ENABLE_PREEMPT();

DISABLE_PREEMPT();
locVar3 = Object();
ENABLE_PREEMPT();

DISABLE_PREEMPT();
locVar2 = DEREF(arg2)->class->methodTbl.someMethod();
ENABLE_PREEMPT();

DISABLE_PREEMPT();
GC_POP_ROOT(3);
return locVar2;

}

mizing at all is in almost all cases less than a factor of 2. Whether this is
acceptable or not depends on the application.

However, there are still many possibilities to optimize the code. The
optimizations that will probably have the greatest impact on perfor-
mance are mostly high-level, operating on source code (or compiler-
internal representations of the source code). They are best performed
by the LJRT compiler, which can do whole-program analysis (from an
OO perspective), and perform object-oriented optimizations. Some ex-
amples which have great impact on performance are:

Class finalization A class which is not declared final , but has no sub-
classes in the application is assumed to be final. Method calls do
not have to be performed via a virtual methods table, but can car-
ried out as direct calls.

Class in-lining Small helper classes, preferably only used by one or a
few other classes, can be in-lined in their client classes to reduce
reference following. The price is larger objects which may be an
issue if a compacting GC is used.

3.5. PREDICTABILITY 31

A more in-depth discussion on optimizations implemented in the Java
compiler is found in Section 5.3.3, while a more comprehensive listing
of object-oriented optimizations can be found in for example [FKR+99].

In the last example, Listing 3.4, we assumed that preemption of a
task is generally allowed except at critical regions where preemption is
disabled for as short periods of time as possible. If one considers over-
turning this assumption and instead have preemption generally dis-
abled, except at certain “preemption points” which are sufficiently close
to each other in terms of execution time, some of the previous problems
can be solved in a nicer way, see To ensure that all variable values are
written to memory before each preemption point, all local variables (in-
cluding the arguments of the method) are stored in one local structure,
the struct refStruct . By taking the address of this struct in each
call to the PREEMPT macro, the C compiler is forced to write all register
allocated values to memory before the call is made. To handle scoped
variable declarations, the names are suffixed in order to separate vari-
ables in different scopes that can share the same name. Registration of
GC roots (with the GC_PUSH_ROOT(x,n) macro) is simplified to pass-
ing the address of the struct and the number of elements it contains,
compared to registering each root individually. Listing 3.5.

The PREEMPT(x) macro checks with the kernel if a preemption
should take place. Such preemption point calls are placed before calls
to methods and constructors, and inside long loops (even if the loop
does not contain a method call). By passing the struct address, we uti-
lize a property of the C semantics which states that if the address of a
variable is passed, not only must the value(s) be written to memory be-
fore executing the call, but subsequent reads from the variable must be
made from memory. Thus we hinder a C compiler from performing (to
us) destructive optimizations.

To prevent excessive penalty from the preemption points, numerous
optimizations are possible. After performing some analysis on the Java
code, we may find that a number of methods are short and final (in the
sense that that they make no further method calls), and a preemption
point before such method calls may not be needed. Loops where each
iteration executes (very) fast, but have a large number of iterations, may
be unrolled to lower the preemption point penalty.

Since reference consistency is a much smaller problem with non-
moving GCs, the situation is simplified. No read barrier is needed,
and average performance will typically be improved. However, when
dynamically allocating several object sizes the allocation predictability
will be as poor as in C/C++.

32 CHAPTER 3. AN APPROACH TO JAVA FOR REAL-TIME

Listing 3.5: Using explicit preemption points may in many cases decrease the
GC synchronization overhead.

REF(ObjectInstance) AClass_Object_aMethod(
REF(AClassInstance) this, JInt arg1,
REF(ObjectInstance) arg2) {

JInt locVar1;
struct {

REF(AClassInstance) this;
REF(ObjectInstance) arg2;
REF(ObjectInstance) locVar2;
REF(ObjectInstance) locVar3;

} refStruct;
refStruct.this = this;
refStruct.arg2 = arg2;
GC_PUSH_ROOT(&refStruct, sizeof(refStruct)/ sizeof(void*));

PREEMPT(&refStruct);
refStruct.locVar3 = Object();

PREEMPT(&refStruct);
refStruct.locVar2 =

refStruct.arg2->class->methodTbl.someMethod();

GC_POP_ROOT();
return refStruct.locVar2;

}

3.6 Findings

Inclusion of external (non GC-aware code in a real-time Java system
raises a trade-off between Latency and Predictability. For hard real-time,
a compacting GC should be used, and no object references may be
passed to non GC-aware functions. If we need to pass object references
to non GC-aware code functions, a compacting GC is not applicable
since calls to non GC-aware functions must be considered critical sec-
tions, and task latencies can no longer be guaranteed.

Using a good allocator and a non-moving GC, the natively com-
piled Java code can be linked to virtually any external code modules.
The price to pay is that memory allocations are no longer strictly deter-
ministic, just like in C/C++.

Frenchmen, I die guiltless of the
countless crimes imputed to me.
Pray God my blood fall not on
France!

Last words of Lois XVI, 1793

Chapter 4

Real-time execution
platform

THE execution platform — scheduler, GC, class library, etc. — is very
important for the behavior of a Real-Time (RT) Java system. Com-

piled Java code will need to cooperate with the RT multi-threading sys-
tem of the underlying run-time platform. It will also need to cooperate
closely with the memory management system in such a way that tim-
ing predictability is accomplished, while memory consistency is main-
tained at all times.

Due to external requirements, we need our system to operate in an
uncooperative environment; we want to be able to use an off-the-shelf
C compiler and RTOS as well as external, legacy, or automatically gen-
erated C code. That means that we cannot rely on detailed assump-
tions on the behavior of the back-end C compiler or the thread sched-
uler, which makes implementation of a real-time GC more challenging.
For instance, it means that any synchronization required between col-
lector and application, or mutator1, needs to be done explicitly. It also
means that the generated C code must be written so that it ensures, in
a portable way, that no back-end optimization causes interference with
the GC.

In particular, the combination of uncooperative compiler, uncooper-
ative scheduler, and tight real-time requirements (low latency) makes
the problem challenging. Without control over the scheduling, some

1From the GC’s point of view, the application is a process that changes, or mutates, the
object-reference graph, causing objects to become garbage.

34 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

compiler optimizations cannot be allowed since threads may be pre-
empted at any time. For instance, if we are using a copying or compact-
ing GC algorithm, pointers must always be read from memory, and not
kept in registers, as the collector may move objects at (from the muta-
tor’s point of view) any time.

Thus we need to investigate how the Java constructs, including au-
tomatic memory management, could be implemented in an efficient
and portable way on a standard (RT)OS. This chapter will first describe
the concept of real-time garbage collection for a natively compiled Java
application, and the generic garbage collector interface. Then follows
considerations concerning the Java class library, threads and synchro-
nization, and exceptions, for some different hardware platforms and
operating systems.

4.1 Garbage collector interface

Different types of (incremental) GC algorithms, see for example Jones
and Lins [JL96], need different code constructs. For example, to guar-
antee predictability, a mark-compact GC requires all object references
to include a read-barrier, while a read-barrier would only be unnec-
essary overhead with a mark-sweep GC. These differences makes it
error-prone and troublesome to write code generators supporting more
than just one type of GC algorithm, and it gets even worse considering
hand-written code that needs a complete rewrite for each supported GC
type.

The GCI [IBE+02] is being developed within our group to overcome
these problems. The GCI is implemented as a set of C preprocessor
macros in four layers, as seen in figure 4.1. It ranges from the top user
layer, via threading and debug layers, to the implementation layer. The
two middle layers can be switched on/off to support GCI debugging
and/or multi-threaded execution.

4.1.1 User layer

The user layer contains all macros needed for the synchronization be-
tween an application and any type of GC. The macros can be divided
into eight groups based on functionality.

One time: Macros used to declare static GC variables, and to initialize
the heap.

4.1. GARBAGE COLLECTOR INTERFACE 35

User interface

Thread interface

Debug interface

Implementation interface

Programmer API

Call GC specific functions

On/Off to support debugging use of the GCI

On/Off to support preemptive threading

Figure 4.1: The four macro layers of the GCI.

Object layout declaration: Macros used for declaration of object type
structs, struct members, and struct layouts.

Reference declaration: Declaration of reference variables, push/pop
references on the GC root stacks.

Object allocation: A macro representing the language construct new.

Reference access: Reference assignment and equality checks.

Field access: Get/set object attribute values.

Function declaration: Macros for handling function declarations, pa-
rameter handling, and return statements.

Function call: Macros for different function calls, and for passing argu-
ments.

None of the macros in the user layer have a specific implementation,
but just passes on to the corresponding thread layer macro.

4.1.2 Thread layer

In a multi-threaded environment, where preemption is allowed to oc-
cur at arbitrary locations in the code, all reference operations become
critical sections concerning the GC.

The GCI thread layer adds GC synchronization calls to those macros
handling references, i.e.,

36 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

GC__THREAD_<macro> = gc_lock();
GC__DEBUG_<macro>;
gc_unlock();

4.1.3 Debug layer

The debug layer macros, if debugging is turned on, adds syntactic and
consistency checks on the use and arguments of the GCI macros. While
not adding functionality, the debug layer is very useful when manu-
ally writing code using the GCI. For instance, consistency of the root
stack is checked so that roots are popped in reversed order to the or-
der they were pushed on the stack. This functionality is of great help,
not only when implementing a code generator as part of a compiler,
but also when implementing native method implementation where GC
root stack administration is handled manually.

4.1.4 Implementation layer

The implementation layer macros, currently there are about 60 of them,
finally evaluate to GC algorithm specific dereferencing and/or calls to
GC functions, e.g., allocating a memory block on the GC controlled
heap.

There are currently three different GC algorithms implemented in
the run-time environment: one incremental mark-copy (compacting) and
one incremental mark-sweep (non moving) that both support hard real-
time, and one traditional batch-copy algorithm.

4.2 Performance issues with the GCI

The key requirements on a run-time system for real-time applications
are predictability and low latency, and the real-time properties of our
approach have been previously verified [Hen98, NEN02, Rob06]. How-
ever, for a system to be practically feasible, the inlined overhead must
not be unacceptably large. This section discusses how to achieve good
general execution performance while maintaining the hard real-time
properties.

As our Java system needs to operate in an uncooperative environ-
ment, it must ensure that correct behavior and real-time performance
is not jeopardized by compiler optimizations, concurrency issues or in-
terference from external code. In isolation, each of these aspects do not

4.2. PERFORMANCE ISSUES WITH THE GCI 37

pose a problem; the difficulty comes from the combination, which gives
conflicting requirements. According to our experience, the main bottle-
neck is the synchronization between mutator and collector.

Under an uncooperative scheduler, preemption can occur at any in-
stant. Therefore, all reference operations must be protected to ensure
mutual exclusion between collector and mutator and, if we want low
latency, the critical sections must be small. However, this means a lot
of synchronization, which may add up to a significant execution time
overhead. It should be noted that this problem is due to the uncoop-
erative scheduler, and not the ahead-of-time compilation; a JVM using
native threads would face the same problems if a non-intrusive concur-
rent GC was desired.

The execution time overhead can be reduced in two basic ways: de-
crease the number of operations that require synchronization or using
less expensive synchronization primitives.

4.2.1 Reducing the need for synchronization

The level of required synchronization is affected both by the choice of
GC algorithm (e.g., if a read barrier is required or not) and by different
implementation decisions in the compiler and run-time system. This
section gives examples of how those issues can be addressed in the run-
time system. Compiler related GCI synchronization optimizations are
addressed in Section 5.5.

Function calls: For function calls, the level of locking required de-
pends on how reference arguments are passed — as references or as
actual pointers (i.e., if the read barrier is executed in the caller or in
the callee). In our implementation, reference structures are stack allo-
cated and thus will not be moved by the GC. Therefore, if references are
called by reference (i.e., a pointer to the reference structure is passed)
no new roots are pushed in the callee and no heap locking is required.
As the caller will always out-live the callee, parameters to functions are
known to be rooted in the calling context and do not have to be rooted
again in the called context. Similarly, we know that the return value of
a function will be used in the calling function (or not at all). Therefore,
the variable that will receive the return value must already be rooted
so if we pass a reference to this variable to the called function, it can be
assigned before the return which removes the need to protect the return
value. If function arguments and return values are handled in this way,
no locking is required for function calls.

38 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

Root stacks in multi-threaded programs: Another example of over-
head caused by an uncooperative environment is the presence of root
stacks. In multi-threaded programs, each thread has its own root stack,
and therefore, all root operations (i.e. push and pop) requires a pointer
to the root stack of the current thread. In a system where the thread
scheduler is Java-aware, the root stack pointer is part of the execution
context of each thread and is saved and restored automatically.

In systems which cannot rely on scheduler cooperation, this has to
be handled in the application code. As the root operations are part of
the application code, and the current thread is not known at compile
time, this must be looked up at run time. However, looking up the
root stack at each root operation is quite inefficient so this should be
done once for each function call and cached. Similarly, if no root oper-
ations are done in a function (like in e.g. a typical math function of the
standard library), such lookup is unnecessary. Therefore, lookup of the
thread root stack is done lazily at the first root operation of each func-
tion and the result is cached. This can be implemented quite efficiently.

4.2.2 Reducing the cost of synchronization

With fine-grained memory operations and heap-intensive applications,
such as Java programs, the heap is almost always locked, so whenever
preemption occurs, the probability that the heap is locked is high. As-
sume that a thread (T1) is executing and is in the middle of a memory
operation. Then, a context switch occurs; the thread that is scheduled
to run (T2) will probably try to lock the heap very soon after the con-
text switch and be blocked. Then T1, which is holding the heap lock,
is scheduled to run again until it releases the heap lock, allowing T2
to continue its execution. This means that there will be three context
switches instead of one, increasing the execution time overhead due to
such context switch chatter.

Low latency due to locking is a requirement, so just increasing the
size of the critical sections is not a viable solution. Therefore, we need
a solution that allows very fine-grained preemption without the over-
head of frequent unlocking and re-locking. We also need to make sure
that context switches are not performed when the heap is locked.

Three possible solutions were found based on turning off interrupts,
preemption points, and lazy locking.

Turning off interrupts: The straight forward solution is to implement
gc_lock() by turning off (clock) interrupts and gc_unlock() by

4.2. PERFORMANCE ISSUES WITH THE GCI 39

turning them on again. On most architectures, interrupt requests that
arrive when interrupts are masked are latched, so that when the in-
terrupts are turned back on, any missed interrupt will be generated
and the corresponding interrupt routine is executed. On such an ar-
chitecture, this will give the desired semantics that if a time-slice ends,
and preemption should take place, when the heap is locked, the context
switch is delayed until the heap lock is released. Turning off interrupts
may, however, not be allowed by the OS, or have negative effects on
other parts of the system, such as interrupt-based drivers for peripher-
als, etc.

Preemption points: By using a scheduler which only allow preemp-
tion at certain pre-determined points in the execution flow, frequent
locking/unlocking can be avoided. In fact, if the memory accesses are
taken into account when placing preemption points so that preemption
is only allowed when the heap is in a consistent state, no additional
housekeeping or synchronization is needed in order to ensure correct
GC operation.

However, preemption points are problematic for two reasons. The
first is that most standard real-time operating systems don’t support
them. The second one is that calling external native code (that doesn’t
have preemption points) may cause priority inversion. An illustrating
example is a background thread calling an external routine with a long
execution time. As external code doesn’t have preemption points, high
priority threads may be delayed indefinitely. One solution is switching
to “native” preemption when calling external code and then switch-
ing back to preemption-points when executing known code. However,
calling external code would then have a performance penalty due to
the additional housekeeping required and scheduler implementation
would be more complex.

Lazy locking: Since turning off interrupts or using preemption points
turned out to be less suitable, an alternative strategy for reducing the
locking overhead was proposed. This is based on the observation that,
while the frequent locking and unlocking is required in order to achieve
low latency, in the common case the heap is unlocked and then shortly
re-locked by the same thread. Thus, most of the locking operations
are really unnecessary and could be removed without changing the be-
havior of the program (other than reduced overhead). The problem is
just determining which lock and unlock operations that need to be per-
formed. This could be done statically, but the analysis would be difficult

40 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

gc_lock();
...

--> gc_unlock();
--> gc_lock();
--> ...
--> gc_unlock();
--> gc_lock();

...
gc_unlock();

Figure 4.2: Locking example: Small atomic operations cause frequent locking.

and highly dependent on the low-level scheduling, control flow based
on input data, etc. Therefore, a dynamic, on-line approach is preferable.

For example, take a code sequence like in Figure 4.2. If we are ex-
ecuting in the marked region, and no clock interrupt has arrived (i.e.,
the thread will not yet be preempted), it is unnecessary to perform the
unlocking and re-locking operations. Thus, if we could dynamically
decide whether to perform the unlock/lock operations (in a way that
is much cheaper than actually performing the locking), the overhead
could be reduced. Then, when a clock interrupt occurs, the heap should
really be unlocked at the next unlock instruction and the context switch
performed.

One way of implementing this is by having two versions of the oper-
ations: the actual lock/unlock operations (which are executed when the
locking is required) and “NOP” versions that are used when unlocking
and re-locking isn’t necessary. Then, the run-time system ensures that
the correct version is run at each time to both guarantee the correct se-
mantics and achieve the best performance. In principle, an implemen-
tation of this scheme looks like in Figure 4.3. This method gives similar
behavior as preemption points with regard to heap accesses, but with-
out requiring additional housekeeping in order to allow external native
code to be run with real-time guarantees.

If modifying the scheduler is not possible, or practically feasible,
much of the benefit of lazy locking can still be obtained if the OS has a
call-back hook for a method to be called at context switches. In fact, this
is the method used in our Linux/RTAI prototype, and it gives the same
reduction of the number of locking operations, but does not address
context switch chatter. That may, however, be a reasonable trade-off for
not having to modify the scheduler.

There are, of course, many other small details that must be taken

4.2. PERFORMANCE ISSUES WITH THE GCI 41

void (* gc_lock)(void);
void (* gc_unlock)(void);

void gc_lock_real(void)
{ lock(heap_mutex);

gc_lock = f_nop;
gc_unlock = f_nop;

}
void gc_unlock_real(void)
{ unlock(heap_mutex);

yield();
}
void f_nop(void) { return; }
void reschedule(void)
{ if(is_locked(heap_mutex)) {

gc_lock = gc_lock_real;
gc_unlock = gc_unlock_real;

} else {
/* perform actual context switch */

}
}

Figure 4.3: Lazy locking implementation sketch

care of when implementing such a scheme; e.g., the system must ensure
that the heap is always unlocked before a blocking call is made or before
a thread dies; otherwise there is a risk of deadlock.

4.2.3 Evaluation

The experiment setup used in sections 4.2.3 and 4.2.3 was a low level
servo controller for an ABB IRB-2000 industrial robot. Given a desired
motor angle for each of the six joints, suitable torque values and the
corresponding AC motor currents are calculated. Both servos executed
on a 350 MHz PowerPC G3 with 32 MB RAM running Linux/RTAI.

Lazy locking

This experiment, consisting of one part of an industrial robot controller,
investigates the impact of lazy locking on the number of lock opera-
tions that are actually performed. Figure 4.4 shows the frequencies of
locks in the vanilla version and real and lazy locks in the lazy version.
This shows that only a small fraction of the locks actually need to be
performed and thus that the locking overhead can be significantly re-

42 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

Figure 4.4: Comparing the vanilla version (left) to the one with lazy locks
(right), showing the frequencies of real and lazy locks for each of the application
threads. Please note that the scale is logarithmic. In this experiment, the mark-
compact collector was used. The application was run for a fixed amount of
time, so the numbers should not add up.

duced. For instance, in the receiver thread, which performs most of the
computations, only 0.03% of the lock instructions in the code actually
cause a mutex operation.

GC algorithm, synchronization mechanism and root alias optimiza-
tion

Figure 4.5 shows how the choice of locking primitive and the root alias
optimization affects total throughput, i.e. the maximum possible sam-
ple rate. The big difference between the mark-sweep and the mark-
compact collector is caused by the extra synchronization required for
the read barrier in the mark-compact case. With synchronization turned
off2, there is no big difference between a moving and a non-moving col-
lector. In this example, the overhead of the read barrier is compensated
by the cheaper allocation3.

In this experiment, lazy locking was implemented with the call-back
method, instead of modifying the scheduler, so it only shows the sav-
ings from doing fewer locks. It remains to be investigated how large
the effects of context switch chatter are. The call-back method also adds
to the overhead of each context switch, so an implementation inside the
scheduler would yield a much bigger improvement.

2Of course, running without synchronization is not safe and may cause race conditions
and memory corruption, so this is done for reference only and is not a practically usable
configuration.

3In the mark-compact collector, allocation is done by simply incrementing a pointer,
whereas in the mark-sweep case, free-list search and block splitting is done.

4.2. PERFORMANCE ISSUES WITH THE GCI 43

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

configuration

sa
m

pl
e

ra
te

 /
H

z

mark−compact
mark−sweep

Figure 4.5: The effect on throughput of different locking primitives and root
optimization. The configurations are 1) Mutex locking, 2) Mutex locking with
root alias optimization, 3) Lazy mutex locking, 4) Lazy mutex locking with
root alias optimization, 5) Interrupt masking (cli/sti), 6) Interrupt masking
with root alias optimization, 7) No locking and 8) No locking with root alias
optimization

4.2.4 Compiler optimization effects

Another problem with locking is that the lock/unlock operations are
function calls or inline assembler, and that tend to break basic blocks
and interfere with compiler optimizations. This is, partly, intentional, as
many optimizations are not safe in the general case. E.g., we must make
sure that pointers (gotten through the read barrier) to objects are always
read from memory as objects may have moved since the last access, etc.,
when we enter the next critical section, and such race conditions will
lead to memory corruption.

However, this is really only needed when a context switch actually
has taken place; as long as the same thread is executing, any optimiza-
tion is legal, as long as the heap and all references in memory are consis-
tent at the next context switch. Thus, performance could be improved
significantly if it was possible to implement lazy locking in a way that
the fast case did not break basic blocks. We believe that this could be
done with self-modifying code, injecting the lock/unlock operations
into the code where they are needed and modifying the lock/unlock
instructions so that they ensure heap consistency. This, of course, re-
quires detailed information about the inner workings of the optimizing
back-end and target architecture and can hardly be done in a simple or
portable way.

44 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

4.3 Class library

The standard Java class library is an integral part of any Java appli-
cation. Most of the standard classes pose no timing predictability or
platform dependency problems, and will thus not be discussed here.
With the scalability aspect in mind, some adjustments may be needed
so as to lower the memory demands. The Java thread-related classes,
and the related thread synchronization mechanisms, are of such impor-
tance, that they will be treated specially in section 4.4.

When implementing a Java class library for natively compiled Java,
intended to execute on (possibly very limited) embedded systems, there
are especially two areas needing special care; native methods and I/O.

4.3.1 Native methods

The Java language was designed from the very beginning not to be able
to use direct memory pointers, for good programming safety reasons.
There are, though, many good reasons for a Java application to make
calls to methods/functions implemented in another programming lan-
guage:

• Accessing hardware.

• External code modules, as mentioned in section 3.4.

• For efficiency reasons, some algorithms are better implemented
on a lower level of abstraction where knowledge about data stor-
age is utilized..

• Input/output operations, as discussed next in section 4.3.2.

As known, native method implementations are seldom truly plat-
form independent. If the compiled Java applications is supposed to be
executable on more than one platform4, platform specific versions of
all native method implementations for all intended platforms must be
supplied. This is analogous to standard Java as defined by the Java2
Standard Edition (J2SE).

4Which is often the case when developing software for embedded systems. First de-
bug on a workstation, e.g. Intel x86 & Posix, then recompile for the target platform, e.g.
Atmel AVR & home-built RTOS. See also section 6.3.

4.3. CLASS LIBRARY 45

Method calling convention

There is a standardized calling convention for making calls from Java
classes to native method implementations, the Java Native Interface
(JNI) [Lia99]. To be able to cross the boundary between Java code exe-
cuting in a VM and natively compiled code, such as method call-back
from a native function, JNI specifies additional parameters in the call,
as well as complex methods for accessing fields and methods in Java
objects.

The situation is different for natively compiled Java code. The over-
head created by the JNI no longer needs to be there, as there is no
language- or execution model boundaries to cross. Straight function
calls using the C calling convention provides the best performance, and
since all code share the same execution model, native methods may ac-
cess Java objects, attributes, and methods in a straight-forward way.

Memory management

To ensure correctness and timeliness, all external code must access Java
references in the same way as the compiled Java code — also in cases
where a compacting garbage collector is used. For legacy code and all
code which is not GC-aware, it may be necessary to implement wrapper
functions for handling object dereferencing.

The example in listing 4.1 shows what a call to a legacy function
may look like, using a wrapper method for object dereferencing.

Listing 4.1: Example of making a call to a legacy function from compiled Java.

/*
* Java code

*/
public static native int process(byte[] arg);

public void doSomething() {
byte[] v = new byte[100];
int result;
result = process(v);

}

/*
* Generated C code from Java code above

* Most GC administration code left out

* for clarity.

*/
JInt Foo_process_byteA(

GC_PARAM(JByteArray,arg));

46 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

GC_PROC_BEGIN(Foo_doSomething,
GC_PARAM(Foo, this))

GC_VAR_FUNC_CALL(j2c_result,
Foo_process_byteA,
GC_PASS(j2c_v));

GC_PROC_END(Foo_doSomething)

/*
* Hand-written wrapper function

*/
GC_VAR_FUNC_BEGIN(JInt,Foo_process_byteA,

GC_PARAM(JByteArray,arg))

byte[] array;
#ifdef COMPACT_GC

/* Have to make copy to ensure integrity */
make_copy_of_array(array,arg);

#else
/* Objects will not move, so just get a pointer */
array = & GC___PTR(arg.ref)->data[0];

#endif

// Perform the call
return process(array);

GC_VAR_FUNC_END(JInt,Foo_process_byteA)

/*
* Legacy (non GC-aware) C function

*/
int process(byte[] arg){

// Code that does something
}

4.3.2 I/O

All no-nonsense applications will, sooner or later, have to communi-
cate with its environment. On desktop computers, this communication
takes place in some kind of user interface, e.g. keyboard, mouse and
graphics card, via operating system drivers.

Embedded systems typically have much more limited resources for
performing I/O. They often have neither normal user interface, nor a
file system. The Java streams based I/O (package java.io) then be-
comes more a source of unnecessary execution- and memory overhead,
than the generic, easy to use, class library it serves as in workstation-
and server environments.

4.4. THREADS AND SYNCHRONIZATION 47

One solution to handle this class library overhead for embedded
systems is to flatten the class hierarchy of the Java I/O classes. As an ex-
ample, consider the widely used method System.out.print(arg)
which, in an embedded system, could typically be used for logging
messages on a serially connected terminal. As is seen in figure 4.6,
printing a string on stdout starts a very long call chain before the
bytes reach the OS level. Clearly, the overhead imposed by an imple-

<<FilterOutputStream>>

PrintStream

+print(str:String): void

-print(str:String,println:boolean): void

-writeChars(str:String,offset:int,count:int): void

<<OutputStream>>

FilterOutputStream

+write(buf:byte[],offset:int,len:int): void

+write(b:int): void

Eventually to native code

Figure 4.6: The System.out.print(String) call chain, as imple-
mented in the GNU javalib.

mentation such as the one schematically shown in Figure 4.6 can not be
motivated on a resource-constrained platform. On such platforms, the
call chain can be cut in the PrintStream class by declaring native
print methods.

Aggressive inlining of methods may shorten the call chain substan-
tially, and is an interesting issue for future investigation.

4.4 Threads and synchronization

One of the benefits of using Java as a programming language for real-
time systems is its built-in threading model. All Java applications are
executed as one or more threads, unlike the lack of language support
in C or C++ where multi-threading and thread synchronization is per-
formed using various library calls (such as Posix). In an environment

48 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

running natively compiled Java applications, there are two choices on
how a Java multi-threading runtime can be implemented:

• One general Java thread runtime for all supported platforms.

+ One consistent thread model interfacing the Java class library.

- May introduce unnecessary overhead on platforms that are al-
ready thread-capable (such as Posix).

• For each supported platform, map the Java thread primitives on
native threads.

+ More efficient.

- Implementation less straight-forward.

The technique with providing the mapping from Java thread classes
to underlying OS primitives by using native methods gives both good
performance, and makes the compiled Java application portable be-
tween all supported runtime platforms. Recompiling the generated C
code and link with the appropriate set of native methods implementa-
tions is all that is needed, see figure 4.7.

Compiled
Java object file

RTAI kernel level
Executable

RTAI user level
Executable

Posix
Executable

RTAI kernel level
Runtime library

RTAI user level
Runtime library

Posix
Runtime library

Figure 4.7: A compiled Java object file can be linked to an appropriate run-
time library without recompilation.

In order to adhere to the Java thread semantics, the application start-
up needs a special twist. Instead of assigning the main symbol to the
application main class main -method, main is a hand-coded C function
performing the following to start an application:

4.4. THREADS AND SYNCHRONIZATION 49

• Initialize the GC controlled heap.

• Initialize Java classes, i.e., fill in virtual method tables and static
attributes. Run static blocks and static initializers.

• Start the GC thread.

• Create a main thread.

• Start the main thread, with the main class main method as start-
ing point.

4.4.1 Real-time thread classes

The multi-threading and synchronization semantics in regular Java are
quite flexibly specified. Though good for OS portability in a general
purpose computing environment, it is not promoting hard real-time ex-
ecution environments.

In order to enhance the thread semantics, a set of new classes for
real-time threads in the package se.lth.cs.realtime has been de-
veloped within our research group [Big98]. A brief description of the
most important classes follow below.

RTThread The real-time threads, RTThread and its subclasses, such
as PeriodicThread and SporadicThread , are the extended
real-time counterparts to the standard Java thread classes. In or-
der not to inherit any unwanted thread semantics from the stan-
dard Java threads, the real-time threads do not extend the stan-
dard java.lang.Thread class or implement the Runnable in-
terface, but form an inheritance hierarchy of their own. This way,
the thread semantics for RTThread s can be kept suitable for hard
real-time systems, if needed.

JThread The JThread class is supplied as a compatibility class, pro-
viding the event services of the RTThread while still being a sub-
class of java.lang.Thread . It is thus not suitable for real-time
tasks, but may aid porting existing Java applications to the LJRT
environment.

Semaphore The Semaphore interface represents the well-known ba-
sic primitive for synchronization and mutual exclusion within the
field of concurrent and real-time programming, which is not in-
cluded in standard Java. Supplied implementing classes include;
BinarySem , CountingSem , and MutexSem.

50 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

RTEvent The RTEvent is an abstract super-class for all time-stamped
messages objects which can be passed between instances of the
RTThread class.

RTEventBuffer All instances of the RTThread class has an attribute of
type RTEventBuffer , serving as a mailbox in inter-thread com-
munication. Both blocking and wait-free message passing is sup-
ported.

FixedPriority Any class implementing the FixedPriority interface
may not change its runtime priority after the thread has been
started. The FixedPriority property can be used in a compile time
program analysis to apply directed optimization for code which
is only executed by a high priority thread. See also section 8.1 for
some examples of such directed optimizations.

The real-time thread classes currently have no native implementa-
tions in our class library, but implementations are planned for in a near
future since some important optimizations rely on these classes, as will
be further treated in Chapter 8.

4.4.2 Synchronization

The ability to synchronize execution of two or more threads is funda-
mental to multi-threaded applications, for instance monitors and syn-
chronous inter-thread communication. In Java, thread synchroniza-
tion is built into the language with the synchronized keyword, and
the methods wait() , notify() , and notifyAll() declared in the
java.lang.Object class.

The common way of implementing Java thread synchronization is
to let each (synchronized) Java object comprise one monitor, where the
monitor keeps track of the thread locking the object and which threads
are blocked by this lock. This model is fairly simple and it is what is
currently implemented in the prototype. There are, though, disadvan-
tages with this model regarding scalability, since all objects in the sys-
tem must have a monitor object reference even if it will never be used.

An important observation on virtually any real-world Java applica-
tion is that the number of objects in the application by far outnumbers
the number of threads. Blomdell [Blo01] has presented an alternative
lock object implementation, where the monitor associated with locked
objects is stored in the thread owning the lock instead of in each object.
This way, substantial memory overhead may be saved.

4.4. THREADS AND SYNCHRONIZATION 51

Similar to thread implementation, thread synchronization is best
implemented in natively compiled Java as native methods, mapping
the Java semantics on the underlying OS thread synchronization prim-
itives. Depending on the OS support for monitors, the thread synchro-
nization implementation is more or less straight-forward. Example im-
plementations for Posix threads and RTAI kernel threads are shown in
listing 4.2.

Listing 4.2: Mapping Java monitors on underlying OS.

/**
* Posix implementation

*/

GC_PROC_BEGIN(monitor_enter, GC_PARAM(java_lang_Object, this))
pthread_mutex_t * lock;
gc_lock();
GC_GET(lock, this);
gc_unlock();
pthread_mutex_lock(lock);

GC_PROC_END(monitor_enter)

GC_PROC_BEGIN(monitor_leave, GC_PARAM(java_lang_Object, this))
pthread_mutex_t * lock;
gc_lock();
GC_GET(lock, this);
gc_unlock();
pthread_mutex_unlock(lock);

GC_PROC_END(monitor_enter)

/**
* RTAI implementation

*/

GC_PROC_BEGIN(monitor_enter, GC_PARAM(java_lang_Object, this))
pthread_mutex_t * lock;
gc_lock();
GC_GET(lock, this);
gc_unlock();
rt_sem_wait(lock);

GC_PROC_END(monitor_enter)

GC_PROC_BEGIN(monitor_leave, GC_PARAM(java_lang_Object, this))
pthread_mutex_t * lock;
gc_lock();
GC_GET(lock, this);
gc_unlock();
rt_sem_signal(lock);

GC_PROC_END(monitor_enter)

52 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

Using this mapping of synchronization primitives makes it possible
to generate portable code as output from the Java compiler, as can be
seen in code listing 4.3.

Listing 4.3: Example of Java synchronization with compiled code.

public synchronized void sync() {
HelloWorld hello;
hello = foo();
synchronized(hello) {

bar();
}

}

//

GC_PROC_BEGIN(HelloWorld_sync, GC_PARAM(HelloWorld, this))
GC_REF(HelloWorld,j2c_hello);
GC_PROC_CALL(monitor_enter, GC_PASS(this));

GC_REF_FUNC_CALL(j2c_hello,foo, GC_PASS(this));

GC_PROC_CALL(monitor_enter, GC_PASS(j2c_hello));
{

GC_PROC_CALL(bar,GC_PASS(this));
}

GC_PROC_CALL(monitor_leave, GC_PASS(j2c_hello));
GC_PROC_CALL(monitor_leave, GC_PASS(this));

GC_PROC_END(HelloWorld_sync)

Finalization of native resources

The native OS resources, such as threads and semaphores, used in the
Java thread synchronization often need to be explicitly released when
the related Java objects die. There are a couple of reasons for this. When
using Xenomai for hard real-time support, the OS resources are never
automatically reclaimed when the process that created them dies, as is
the case in normal Posix-compatible operating systems. Not only will
one run out of available resources if they have limited lifetimes, since
OS resources in a Xenomai application all have unique names it will not
be possible to stop and restart an application unless the OS is reloaded
because of name conflicts. To avoid OS resource starvation and name
conflicts, all Java objects have been given low level finalizers on the GCI
level, which are used by the GC to release all allocated OS resources
before the object is deallocated.

4.5. EXCEPTIONS 53

4.5 Exceptions

The exception concept in Java is a structured way of handling unex-
pected execution situations. If such a situation arises, a Throwable
object is created and thrown, to be caught somewhere upstream in the
call chain. There, the thrown object may be analyzed, and proper ac-
tions taken.

The Java standard states that at most one exception at a time can
be thrown in a thread. As a consequence, it is natural to implement
exceptions, in a natively compiled environment, using the setjmp()
and longjmp() C library functions. These functions implement non-
local goto, where setjmp() saves the current stack context, which can
later be restored by calling longjmp() .

4.5.1 Exceptions based on setjmp/longjmp

An example implementation, also considering memory management
issues, is shown in listing 4.4 on the next page. A few notes may be
necessary for the comprehension of this example:

{store|get}ThreadLocalException Since only one exception at a time
can be thrown in a thread, the simplest way to pass an exception
object from the throw site to the catch statement is by a thread
local reference. All Java exceptions must be sub-classed from the
java.lang.Throwable class.

{push|pop}ThreadLocalEnv The execution environment is pushed on
a thread local stack at each try statement executed. A thrown
exception is checked at the nearest catch statement and, if it does
not match, the next environment is popped from the environment
stack and the exception is thrown again.

{save|restore}RootStack In order to keep the thread root stack consis-
tent when an exception is thrown, the root stack must be saved
when entering a try block. If an exception is thrown in a call
chain inside the try block, and caught by a subsequent catch
statement, the root stack state can then be restored to the same
state as just before entering the try block.

54 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

Listing 4.4: A simple exception example.

/*
* Java code exemplifying Exceptions

*/
void thrower() throws Exception {

throw new Exception();
}

void catcher() {
try {

thrower();
} catch (Exception e) {

doSomething();
}

}

//

/*
* More or less equivalent C code (simplified)

*/
void thrower() {

ex_env_t * __tmp_env;
// Create new exception object
Exception __e = newException();
// Store reference
storeThreadLocalException(__e);
// Get the stored environment,
// from latest try()-statement
__tmp_env = popThreadLocalEnv();
// Restore context, jump to catch block
longjmp(__tmp_env->buf, Exception_nbr);

}

void catcher() {
ex_env_t __env;
volatile int __ex_nbr;
volatile int __ex_throw = 1;
// Save current status of GC root stack
saveRootStack();
// save environment
pushThreadLocalEnv(__env);
// try
if ((__ex_nbr=setjmp(__env.buf)) == 0) {

thrower();
__ex_throw = 0;

} else if (isCompatException(__ex_nbr,Exception_class)) {
// Matching exception caught
Exception e;
// Restore previously saved GC root stack
restoreRootStack();

4.5. EXCEPTIONS 55

// Fetch Exception object reference
e = getThreadLocalException();
__ex_throw = 0;
doSomething();

}
if(__ex_throw) {

// No matching exception caught,
// Pass upwards in call chain
ex_env_t * __tmp_env;
__tmp_env = popThreadLocalEnv();
longjmp(__tmp_env->buf, Exception_nbr);

}
}

LJRT compiler implementation

From a compiler writer’s point of view, the exception implementation
shown in listing 4.4 poses no really hard problems, he/she just have to
get it right once and for all. The compiler user might have an alternative
view though, since the generated code tend to get messy and hard to
read. To facilitate code readability and decrease the risk of entering
bugs, C macros, as shown in listing 4.5 are introduced.

Listing 4.5: C macros for more understandable exception implementation.

#define EXCEPTION_THROW(__nbr) \
{ \

ex_env_t * __tmp_env; \
EXCEPTION_POP(__tmp_env); \
if(__tmp_env) { \

longjmp(__tmp_env->buf, __nbr); \
} else { \

UNCAUGHT_EXCEPTION(__nbr); \
} \

}
#define EXCEPTION_TRY \
{ SAVE_ROOT_STACK(exception); \

{\
ex_env_t __env; \
volatile int __ex_nbr; \
volatile int __ex_throw = 1;\
EXCEPTION_PUSH(__env); \
if ((__ex_nbr = setjmp(__env.buf)) == 0) {

#define EXCEPTION_CATCH(__catch_nbr) \
__ex_throw = 0; \
EXCEPTION_POP_DISCARD; \

} else if (__ex_nbr == __catch_nbr) { \
RESTORE_ROOT_STACK(exception); \

56 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

__ex_throw = 0; \

#define EXCEPTION_CATCH_MORE(__catch_nbr) \
} else if (__ex_nbr == __catch_nbr) { \

RESTORE_ROOT_STACK(exception); \
__ex_throw = 0; \

#define EXCEPTION_FINALLY } {
#define EXCEPTION_AFTER_CATCH\

}\
if(__ex_throw) EXCEPTION_THROW(__ex_nbr);\

}\
}
#define EXCEPTION_PUSH(__env) \

__env.next = gc_thread_get_current()->env; \
gc_thread_get_current()->env=&__env

#define EXCEPTION_POP(__env_out) \
__env_out = gc_thread_get_current()->env;\
if(__env_out) \

gc_thread_get_current()->env= \
gc_thread_get_current()->env->next

#define EXCEPTION_POP_DISCARD \
gc_thread_get_current()->env;\
gc_thread_get_current()->env= \

gc_thread_get_current()->env->next

The reader may notice that there are many fragile parentheses in the
macro implementations, implicating a very strong dependence between
the macros. Using these macro definitions from listing 4.5, applied to
the C code in listing 4.4 yields far more comprehensible code, as shown
in listing 4.6.

Listing 4.6: Equivalent C code from listing 4.4, but using exception macros
from listing 4.5.

// Java code exemplifying Exceptions
void thrower() throws Exception {

throw new Exception();
}

void catcher() {
try {

thrower();
} catch (Exception e) {

doSomething();
}

}

//

// More or less equivalent C code

4.5. EXCEPTIONS 57

void thrower() {
Exception e = newException();
storeThreadLocalException(e);
EXCEPTION_THROW(Exception_nbr)

}

void catcher() {
EXCEPTION_TRY

thrower();
EXCEPTION_CATCH(Exception_nbr)

Exception e = getThreadLocalException();
doSomething();

EXCEPTION_AFTER_CATCH
}

Due to the rather fragile nature of the exceptions macros, it is not
recommended to write C code utilizing exceptions by hand, although
possible and even inevitable in some situations.

Some execution environments, such as RTAI kernel threads, lacks
a working implementation of setjmp() and longjmp() (for policy
reasons in the RTAI case). In these situations, an alternative exception
implementation is of interest.

4.5.2 Exceptions based on goto

Implementing the exception mechanism using setjmp()/longjmp()
may seem natural and straight-forward, but there is a possible non-
negligible performance penalty connected to the use of setjmp() . The
use of exceptions for handling unusual situations in Java program ex-
ecution leads to many executions of try statements that need to be
cheap, and much fewer executions of throw() and catch() state-
ments that can then be more expensive in terms of CPU cycles without
harming program performance. The problem with a setjmp() imple-
mentation of the try statement is that it saves the CPU context, which
on a CPU architecture with many registers might be a rather expen-
sive operation. That is, when running programs on a CPU with few
registers, such as the Intel x86, it will not matter much, whereas when
running on a register-rich CPU, such as a PowerPC, the performance
penalty can be significant.

One idea that might reduce the cost of try statements is to im-
plement exceptions by using a combination of a thread-local exception
flag, and the C goto statement in order to abort normal execution flow
and jump to the nearest catch clause or to return from the function of
no matching catch clause is to be found. This idea is most certainly

58 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

best explained by looking at an example. Listing 4.7 below shows a cor-
responding exception example to that found in Listing 4.4 earlier in this
section. Note the extra void * __eFlag__ argument to all functions
that is used as a pass-by-reference variable indicating both that an ex-
ception has occured, and which class the thrown exception instantiates.

Listing 4.7: A simple exception example using goto.

/*
* Java code exemplifying Exceptions

*/
void thrower() throws Exception {

throw new Exception();
}

void catcher() {
try {

thrower();
} catch (Exception e) {

doSomething();
}

}

//

/*
* More or less equivalent C code (simplified)

*/
void thrower(void ** __eFlag__) {

// Create new exception object
Exception __e = newException();
// Store reference
storeThreadLocalException(__e);
// Assign flag and jump to end of function

* __eFlag__ = &Exception_Class;
goto catch_0;

catch__0: return;
}

void catcher(void ** __eFlag__) {
thrower(__eFlag__);
if (* __eFlag__) goto catch__1;

catch__1:
if (* __eFlag__) {

if (isCompatibleClass(* __eFlag__, &Exception_Class)) {
// Matching exception caught

* __eFlag__ = 0;
Exception e;
// Fetch Exception object reference
e = getThreadLocalException();
doSomething();

} else {

4.5. EXCEPTIONS 59

// No matching catch found
goto catch__0;

}
}

catch__0: return;
}

Throwing exceptions

The task of throwing an exception is quite simple. After storing the
exception object for the running thread, set the exception flag and jump
to the end of the function, or to the first following catch statement if
currently inside a try block.

Catching exceptions

Catching exceptions is a little bit trickier, when trying to obey the Java
semantics. Every function call must be directly followed, or, at least be-
fore trying to use the return value or side effects from the call, by a check
of the exception flag. If an exception occurred inside the called function,
the exception flag will hold the address of the class of the thrown excep-
tion and we should jump immediately to the nearest following catch
statement (or to the end of the function if no catch is to be found).

The catch statements are implemented as a sequence of if state-
ments checking if the thrown exception matches the current catch. If
the catch matches, the flag is reset, the exception object reference is
fetched, and execution of the catch block contents begin. If no match-
ing catch can be found in the list, execution jumps to the end of the
function and exception handling is transferred to the calling function.
To maintain the Java semantics, there must be a catch-all check in the
thread main (or run) function for reporting uncaught exceptions and
other throwables.

Implementation in the LJRT compiler

Compared to the setjmp/longjmp exception implementation, this ex-
ception implementation is even harder to get right if one is to code all
details manually. To make it somewhat easier for the programmer, the
exception macros as of Listing 4.5 are redefined as shown in Listing 4.8
below.

60 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

Listing 4.8: C macros for more understandable exception implementation.

#define CHECK(__catch_lbl) \
if (* __eFlag__) goto catch_##__catch_lbl

#define EXCEPTION_THROW(__catch_lbl, __nbr) \

* __eFlag__ = __nbr; goto catch_##__catch_lbl;

#define EXCEPTION_TRY \
{

#define EXCEPTION_CATCH(__catch_lbl,__catch_nbr) \
catch_##__catch_lbl: \

if (* __eFlag__) { \
if (isCompatibleClass(* __eFlag__, __catch_nbr)) { \

* __eFlag__ = 0;

#define EXCEPTION_CATCH_MORE(__catch_nbr) \
} else if (isCompatibleClass(* __eFlag__, __catch_nbr)) { \

* __eFlag__ = 0;

#define EXCEPTION_FINALLY } {

#define EXCEPTION_AFTER_CATCH(__catch_lbl) \
}} \
if(* __eFlag__) {EXCEPTION_THROW(__catch_lbl,__eFlag__)}; \
}

Finally, Listing 4.9 below shows the same code as Listing 4.7, but
using the macros from Listing 4.8 for better readability.

Listing 4.9: Equivalent C code from listing 4.7, but using exception macros
from listing 4.8.

// Java code exemplifying Exceptions
void thrower() throws Exception {

throw new Exception();
}

void catcher() {
try {

thrower();
} catch (Exception e) {

doSomething();
}

}

//

// More or less equivalent C code
void thrower(void ** __eFlag__) {

Exception e = newException();

4.5. EXCEPTIONS 61

Figure 4.8: Comparing exception implementations.

storeThreadLocalException(e);
EXCEPTION_THROW(0,&Exception_Class)

catch__0: return;
}

void catcher(void ** __eFlag__) {
EXCEPTION_TRY

thrower(__eFlag__); CHECK(1)
EXCEPTION_CATCH(1,Exception_Class)

Exception e = getThreadLocalException();
doSomething();

EXCEPTION_AFTER_CATCH
catch__0: return;
}

4.5.3 Exception implementation evaluation

It is not intuitively clear from looking at the code that the goto imple-
mentation will give the best performance. One could also argue that
the opposite could be true due to the exception flag checks after each
and all method calls in a program. Running a couple of benchmark
applications, see results in Figure 4.8, does not give any clear answers.
For the small benchmarks the goto implementation yields better per-
formance, while the SDSBlockControl application performs better with
the setjmp/longjmp implementation.

One conclusion to draw from these results is that it depends on the
application which exception implementation will give the best perfor-
mance. Both implementations are included in the LJRT system, and de-
velopers can choose at compile time which one to use. Before making

62 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

the final decision which one to use in deployed software, one should
try both and see which one gives better performance.

4.5.4 Finally

The semantics of the optional finally clause in the Java exception
is not intuitionally clear at first glance, and is also a little bit tricky to
implement on a platform which is not a stack machine. The Java se-
mantics state that the contents of a finally clause shall be executed
regardless of what takes place in the try clause, or in any of the catch
clauses. Looking at the example method foo() in Listing 4.105, one
could draw the premature conclusion that there are five possible return
values from the method. In fact, “42” is the only possible return value
since the finally clause contains a return statement.

Listing 4.10: Example of finally semantics.

int foo() {
try {

int i = bar();
if (i > 1) return 1;

} catch (AException a) { return 2; }
catch (BException a) { return 3; }
finally { return 42; }
return 0;

}

The semantics of finally can be enforced in a Java to C translator
by inserting the contents of the finally block just before every pos-
sible exit point of the try and catch blocks. Even though that means
multiplicating identical blocks of code, the resulting code size overhead
is not expected to be significant. These finally blocks are typically
rather short, and a good C compiler have the opportunity to optimize
away duplicated code.

An analogous situation to that shown in Listing 4.10 occurs if a new
exception, which is not caught locally, is thrown in the finally state-
ment. The above described implementation works here also.

4.6 Finalizers

The finalization mechanism in Java is a way to run some code in an
object when it has become unreachable, but before it is removed from

5Which, by the way, will not pass the javac compiler since it contains unreachable
statements. It is still a good example, though.

4.7. FINDINGS 63

the heap by the GC. Finalization is implemented by overriding the
finalize() method from java.lang.Object . This method is then
called from within the JVM before the object’s heap memory is freed by
the GC. Typical reasons for using the finalization mechanism include
releasing OS resources, such as open files and/or sockets, that were
handled by the object in question. The finalize() method is not re-
stricted in any way compared to other virtual methods in Java, so in
theory any code (with unlimited complexity in time and space) can be
executed in this method.

The finalization mechanism does pose a problem for those trying to
use Java in hard real-time applications. The finalize() method must
be run in the same context as the GC (or, the execution of a finalize()
method must be synchronized with GC execution), which means that,
since the finalization method may be arbitrarily complex, we add arbi-
trarily long execution times to the GC thread, sporadically. These added
computations may then lead to the system becoming temporarily over-
loaded, or worse, memory exhaustion jeopardizing the stability of the
system.

Due to the potential impact finalization may have on the GC and
memory management, finalization should be used very carefully, if at
all, in hard real-time Java applications.

In the LJRT, there is also a lower level concept of finalization in the
run-time system. Some Java constructs, such as threads and monitors,
are mapped onto native target system OS resources, which are not vis-
ible on the Java level. When the Java objects die, also these allocated
OS resources need to be freed in order to avoid memory exhaustion or
resource starvation.

4.7 Findings

The work presented in this chapter brings forward a number of inter-
esting findings in the various topics described:

GCI: The GC algorithm transparent GCI works very well as a generic
interface to different GCs. It is, though, best suited for use in code
generators where strict control of the code can be maintained.
Manually writing code using the GCI is rather error-prone, due
to the complexity of the interface. The debug support in the GCI
is of very good use in situations where manually written code is
inevitable, such as wrapper functions to external code.

64 CHAPTER 4. REAL-TIME EXECUTION PLATFORM

Also non RT applications may benefit from using the GC algo-
rithm transparent interface and debugging facilities of the GCI.

Class Library: In natively compiled Java, since there is no execution
environment barrier to pass, native method calls are much sim-
plified compared to JNI.

Calling external non GC-aware functions imply the need for dec-
larations of wrapper functions to resolve symbol names and GCI
references.

The I/O model in Java (java.io. *) is excessively flexible and
bulky for use in resource-constrained embedded systems, with
limited I/O capabilities. In such systems, a constrained imple-
mentation of the I/O package can be used without inappropri-
ately changing the semantics and decrease portability.

Threads and Synchronization: The thread semantics are enhanced by
providing new thread classes more suited for use in real-time en-
vironments. By mapping the Java thread and synchronization
APIs on OS supplied implementations, we can achieve very good
portability of compiled Java code. The same Java application code
may be executed on many platforms (including a JVM) without
alterations, and often without recompiling the Java source code
to C.

Exceptions: Java type exceptions can be implemented on the C level
using C macros, in a way such that Real-Time Garbage Collection
(RTGC) is not jeopardized, while retaining readable code. Two
different exception implementations have been made and evalu-
ated. Experiments suggest that performance depends on the ap-
plication at hand, and that tests should be made before deciding
on which one to use.

With the techniques presented in this chapter, we are confident that the
run-time solutions for all Java constructs could be implemented, using
C and being portable with regard to the underlaying (RT)OS. Hence
a natural next step is to look at how the Java compiler could be con-
structed.

Never put off till run-time what
you can do at compile-time.

D. Gries

Chapter 5

A compiler for Java and
real-time

COMPILERS are complex systems, and implementing them in a mod-
ular way is a challenging task. In this chapter we will describe

our experiences from using Rewritable Reference Attributed Grammars
(ReRAGs) [EH04] for generating Java compilers. ReRAGs is a con-
ditional rewrite formalism that is based on object-orientation, aspect-
orientation, and reference attributed grammars.

A major challenge in implementing compilers in a modular way
is how to deal with contextual information. For example, a syntactic
source construct may have several different interpretations depending
on context, and should result in correspondingly different code instruc-
tion sequences. Many optimizations also depend on contextual infor-
mation. For example, a reference to a constant variable may be replaced
by a constant literal.

ReRAGs support rewriting of an abstract syntax tree (AST) using
contextual information. An AST for a program can be transformed in a
series of steps, allowing each computation to be expressed on the most
suitable form of AST. The Java front end uses these techniques to trans-
form the syntax-oriented source AST (produced by the parser) into an
attributed AST, which reflects the static semantics of the program. Our
back-ends use ReRAGs to further transform the AST in a series of steps,
to prepare, optimize, and generate code.

The rest of this chapter is structured as follows. Section 5.1 gives an
introduction to ReRAGs. Section 5.2 describes the architecture of our
compilers. Section 5.3 describes the general parts of the back end, and

66 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

section 5.4 the specific parts of the LJRT back-end. Section 5.7 evaluates
our approach and compares it to compilers handwritten in Java.

5.1 ReRAGs

ReRAGs is a declarative conditional rewrite formalism based on ref-
erence attributed grammars. There are two features of ReRAGs that
are particularly important and that distinguish them from many other
rewriting systems. The first is that the rewrite conditions can make
use of attributes to easily describe complex contextual conditions for
the rewrites. The second is that the formalism is declarative: attributes
and rewrites are evaluated automatically, driven by the dependencies,
rather than by explicitly given evaluation orders. This makes the eval-
uation transparent: whenever a syntax node or attribute is inspected, it
will automatically be in its final form according to the grammar.

ReRAGs have been implemented in a compiler compiler tool, Jas-
tAdd [Ekm04a]. The specification language used is an extension to Java.
There is strong support for separation of concerns through the com-
bined use of object-orientation, aspect-orientation, reference attributed
grammars, and rewrites.

The JastAdd tool does not include any support for parsing, but relies
on the use of an external parser. Any parser generator that can generate
Java code will do. We have used JavaCC [Met] and CUP [HFA+99] for
different versions of our compilers.

5.1.1 Object orientation

The AST is described in an object-oriented fashion by a class hierarchy,
as in the Interpreter pattern [GHJV95]. Behavior common to a group
of language constructs can be specified in a common super-class and
specialized in subclasses. An AST class corresponds to a non-terminal
or a production (or a combination thereof) and may define a number
of descendants and their declared types. The AST nodes must be type
consistent according to the normal type checking rules of Java. Support
for lists, optionals, and lexical items are also provided. An example of
some AST classes is shown in Listing 5.1.

5.1.2 Aspect orientation

Rather than defining the AST behavior directly in the AST classes, it
is defined in aspect modules, supporting static aspect-oriented program-

5.1. RERAGS 67

Listing 5.1: The grammar is expressed as an object-oriented class hierarchy.

// Expr is an abstract AST class and corresponds to a nonterminal
abstract ast Expr;
// Id is a subclass of Expr and corresponds to a production
// id is a String-valued token
ast Id : Expr ::= <String id>;
// BinExpr is an abstract subclass of Expr representing
abstract ast BinExpr : Expr ::= Expr left, Expr right;
// ArithmeticBinExpr is an abstract subclass of BinExpr
abstract ast ArithmeticBinExpr : BinExpr;
// AddExpr is a subclass of ArithmeticBinExpr
ast AddExpr : ArithmeticBinExpr;
// RelationalBinExpr is an abstract subclass of BinExpr
abstract ast RelationalBinExpr : BinExpr;
// LessThanExpr is a subclass of RelationalBinExpr
ast LessThanExpr : RelationalBinExpr;

ming similar to open classes or static introduction as described in As-
pectJ [KHH+01]. These modules allow behavior that crosscuts the AST
class hierarchy to be specified together. For example, name analysis,
type analysis, error checking, code generation, can be specified in dif-
ferent modules, although they add attributes and rewrites that belong
to the same classes. In addition to enhancing readability, this makes it
possible to add or remove specific aspect modules during implemen-
tation or debugging, and to reuse modules for different versions of a
compiler.

The behavior defined in the aspect modules is typically in the form
of rewrites, attributes, and equations. However, it is also possible to add
ordinary Java code that make use of the attributes. If desired, such Java
code can be added in aspect modules that extend the AST classes with
variables and methods. This is useful, e.g., for printing the generated
code to a file.

Aspects are much more powerful than the Visitor design pattern
[GHJV95]. First, they allow instance variables and interface implemen-
tation clauses to be modularized, and not only methods. Second, the
aspects allow the types of method arguments and return values to be re-
tained, whereas the Visitor pattern requires these to be up-cast to some
common type, typically Object . Third, aspects can group declarations
in an arbitrary manner. For example, if a new language construct is
added, its combined behavior concerning name analysis, type analysis,
etc. can be grouped together in an aspect if desired. Visitors can only
group implementations of the same method.

68 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

5.1.3 Reference attributed grammars

Rewritable reference attributed grammars (ReRAGs) are based on the
Reference Attributed Grammars (RAGs) [Hed00], which is an object-
oriented extension to Attribute Grammars (AGs) [Knu68a]. RAGs ex-
tend plain AGs by allowing attributes to be references to nodes in the
AST. This allows simple and straight-forward representation of non-
local relationships in the AST, such as cross references, superclass sub-
class relations, etc.

Attributes are defined by equations residing either in the node itself
(synthesized attributes) or in an ancestor node (inherited attributes).
The attributes defined by a certain module constitutes an API that can
be used by other modules. In particular, the code generation modules
use attributes defined by the name and type analysis modules.

5.1.4 Rewrites

ReRAGs extend RAGs with rewrite rules that automatically and trans-
parently rewrite nodes. The rewriting of a node is triggered by the first
access to it. Such an access could occur either in an equation in an ances-
tor node, in some imperative code traversing the AST, or even during
other rewrites. In either case, the access will be captured and a refer-
ence to the final rewritten tree will be the result of the access. This way,
the rewriting process is transparent to any code accessing the AST.

A rewrite step is specified by a rewrite rule that defines the condi-
tions when the rewrite is applicable, as well as the resulting tree. After
the application of one rewrite rule, more rewrite rules may become ap-
plicable. This allows complex rewrites to be broken down into a series
of simple small rewrite steps. Since rewrite rules are declarative, their
lexical order is irrelevant.

A rewrite rule has the following form:

rewrite N {
when (cond)
to R result;

}

This specifies that a subtree of type N will be replaced by the sub-
tree result of type R, if the condition cond holds. To maintain type con-
sistency, R must be the same type or a subtype of N. The rewrite may
be destructive in that it may reuse nodes from the original N tree to
build the result tree. Therefore, a rewrite that involves changes to sev-
eral nodes must be placed in a common ancestor of these nodes. The

5.2. COMPILER ARCHITECTURE 69

expression computing result may be written using imperative code, but
must in that case contain no side effects apart from changing the struc-
ture of the rewritten tree.

For a given node, there may be several rewrite rules that apply at
the same time. The rewrite rules should be written so that they are
confluent, i.e., that the order of evaluation is irrelevant. If the rules are
not confluent, their conditions should normally be made more specific
so that they do in fact not apply at the same time. This is discussed in
more detail in [Ekm04b].

5.1.5 Node specialization

A particularly common way of rewriting in ReRAGs is to specialize a
node, i.e., to replace the node of a class A by a node of another class
B, where B is a subclass to A. This is useful for turning an AST gener-
ated from a context-free grammar into a context-sensitive AST, i.e., one
where the nodes are selected based on their context. For example, a
use of a name can be specialized into a variable use or a method use,
depending on the meaning of the name. Because this rewrite is so com-
mon we have introduced a special shorthand syntax for it:

specialize N {
when (cond)
to result;

}

This is a shorthand for a normal rewrite rule with an additional con-
dition that the node is exactly of type N (and not of any subtype of N),
and where the result is a subtype of N.

5.2 Compiler architecture

The architecture of our compiler differs from traditional compilers in
that there is no explicit symbol table or other large external data struc-
tures. Instead, the attributed AST is itself used as the main representa-
tion.

A concrete grammar description is used to create a parser, while
an abstract grammar describes the AST class hierarchy. A collection of
aspect modules, including name- and type analysis, optimizations and
code generation, are woven into the AST classes. The generated parser,
the woven AST classes, and auxiliary hand-written Java code make up
the compiler, see Figure 5.1.

70 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

Abstract grammar

<grammar>.ast

Name Analysis

Aspects

Concrete grammar

<grammar>.jjt

JastAddjavacc

Node ClassesParser

Java Compiler
Auxiliary

Java classes

Type Analysis

Aspects
Optimization

Aspects
Code

Generation

Aspects

Figure 5.1: Compiler generation.

Source File Target File
Syntactic
Source

AST

Semantic
Source

AST

Prepared
Source

AST

Optimized
Source

AST

IR
AST

Optimised
IR

AST

FRONTEND BACKEND

Figure 5.2: Typical ReRAG architecture showing different conceptual states
of the compilation resulting from rewrites (arched arrows) or generation (hol-
low arrows).

The compilation behavior is divided into a front end, which per-
forms parsing and static-semantic analysis, and a back end, which per-
forms optimizations and generates code. Figure 5.2 shows a typical
ReRAG compiler architecture. The boxes represent APIs defined by
ReRAG aspects, and the arrows dependencies: either generational (hol-
low arrows) or rewrites (arched arrows). The boxes can also be inter-
preted as conceptual states and the arrows as phases. Thus, we can
think of the figure as showing a source file that is parsed into a syn-
tactic AST; then semantic analysis is performed resulting in a semantic
AST; then the AST is prepared for code generation and optimized; then
an intermediate representation AST is generated which is further op-
timized; and finally the target code is output. In reality, all the steps
(except for the first and the last) are applied on demand rather than
monolithically, and different parts of the program may be in different
states at a given point during evaluation.

In the front end, the parser reads the source file and produces a
syntactic source AST, i.e., an undecorated AST that closely follows the

5.2. COMPILER ARCHITECTURE 71

context-free grammar used by the parser. The static-semantic analyzer
is a ReRAG that transforms the syntactic AST into a semantic source AST
that reflects the static semantics of the program. The semantic AST is at-
tributed, and it is rewritten to capture context-sensitive properties that
could not be detected by the context-free grammar. For example, each
name node (an AST node representing the use of an identifier) is bound
directly to its corresponding declaration node through a reference at-
tribute. Furthermore, each syntactic name node is rewritten to a spe-
cialized node, e.g., corresponding to a variable name or a method name.
The AST is also rewritten to be simplified, eliminating various ”short-
hand” constructs in the language. For example, a declaration clause
listing many variables of the same type can be rewritten to a list of dec-
laration clauses, one for each variable.

The backend uses ReRAGs to go from the semantic AST and opti-
mize it and generate code. This is done in several conceptual phases.
First, the semantic AST is prepared for code generation by further spe-
cializing and rewriting some AST nodes. The goal of this preparation
phase is to allow straightforward code generation, and results in a pre-
pared source AST. For example, the semantic AST contains general vari-
able nodes, while the prepared AST has semantically specialized them
into instance variables, class variables, local variables, parameters, etc.,
since the code will differ for accessing these different kinds of variables.
Second, the prepared AST is optimized into an optimized source AST by
performing high-level transformations of the AST. In our LJRT backend,
the C code is generated directly from the optimized source AST. In our
Java2Bytecode backend, we first generate a bytecode AST (as the inter-
mediate representation). The bytecode AST initially contains a basic set
of bytecodes. A subsequent phase replaces some of the basic bytecodes
with more efficient ones, resulting in an optimized bytecode AST, which
is traversed and printed to a target class-file.

The overall view of the architecture given in Figure 5.2 is simplified:
each of the phases actually consists of several smaller aspects. For ex-
ample, the semantic analysis phase consists of both name and type anal-
ysis aspects, and the preparation phase consists of both general prepa-
ration aspects used for both backends, and target specific preparation
aspects. The linear arrangement of the phases is also a simplification,
aimed only at giving an overall picture of the compiler architecture. For
example, some of the optimization aspects depend only on the seman-
tic AST and not on the preparation phase, and could as well be placed
before the preparation phase.

72 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

5.3 General parts of the back end

Many parts of the back end are general and applicable regardless of the
kind of target code generated. This includes general preparations of the
AST in order to simplify the code generation, and also many optimiza-
tions.

5.3.1 Removing redundant variety

The Java language permits many different ways of expressing the same
behavior. This variety is desirable for programmers, but not for the
compiler implementer. One way of preparing the AST for code gen-
eration is to eliminate such redundant variety. This can be done by
rewriting the AST to express the programs in a simplified and more
homogeneous form, while preserving the semantics.

Simplifications in the front end

Some of the simplifications are done already in the front end in order to
simplify the semantic analysis and to provide a simpler API for subse-
quent phases like back ends and analysis tools. Figure 5.3 shows some
typical simplifications carried out in the front end.

Rewrite Example

Compound declaration splitting int x, y; ➔ int x; int y;

Default constructor insertion class A{} ➔ class A{A(){}}

Default super insertion A(){} ➔ A(){ super(); }

Implicit typecast insertion 9* 3.14F; ➔ (float)9 * 3.14F;

Implicit this insertion f(p); ➔ this.f(this.p);

Figure 5.3: Typical simplifications in the front end.

Splitting declarations and initialization code

The back end contains additional simplifications. An example is the
splitting of declarations from their initialization code as shown in figure
5.4. Note that the initializations of instance variables are moved into
those constructors that directly call a super constructor.

Listing 5.2 shows the rewrite rule that splits the declaration and ini-
tialization code for local variables. The relevant part of the abstract

5.3. GENERAL PARTS OF THE BACK END 73

Rewrite Example

Declaration
and
initialization
splitting

local var. int i=9; ➔ int i; i=9;

instance class A {int i=9; A() {super();}} ➔

variable class A {int i; A() {super(); i=9;}}

class class A {static int i=9;} ➔

variable class A {static int i; static {i=9;}}

Figure 5.4: Examples of splitting declarations and initializations.

grammar is shown on lines 1–4 (but are actually part of a separate file).
The rewrite rule (starting on line 6) applies to VariableDecl objects that
are in the context of a Block’s statement list (line 6), and where there
is an initialization part (line 7). When the rewrite is applied, the Vari-
ableDecl is replaced by a list of two statements (line 18): one which
is the old VariableDecl (this) without its initialization part, and one
which is a new assignment, initializing the variable.

5.3.2 Differentiating nodes

In many cases, the same kind of language construct will generate quite
different code, depending on context. In order to prepare for the code
generation, these different cases can be split up by rewriting them to
more specialized nodes. Subsequent code generation can then be spec-
ified separately for the different cases, associated with the appropriate
AST type, thus allowing simpler and more modular specification of the
code generation.

As was discussed earlier, the front end specializes the AST nodes
for names, so that different AST types will be used depending on if a
name refers to, e.g., a variable or a method. Further semantic special-
ization is carried out in the back end in order to differentiate between
accesses to different kinds of variables and methods. For example a
general VarAccess node (representing variable access) can be special-
ized to ClassVariableAccess if its declaration is a class variable, and to
InstanceVariableAccess if its declaration is an ordinary instance vari-
able. Subsequent code generation can then be specified separately for
the different cases, associated with the appropriate AST type.

In order to specialize these nodes, the abstract grammar needs to
be extended with new subclasses. This is done simply by adding an
additional abstract grammar module, as shown in Listing 5.3.

74 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

Listing 5.2: Rewrite rule specifying splitting of variable declaration and ini-
tialization.

1 ast VariableDecl: Stmt ::= Type type, IdDecl idDecl, [Expr init];
2 ast AssignExpr : Expr ::= Expr dest, Expr source;
3 ast Block : Stmt ::= Stmt stmt * ;
4 ast ExprStmt : Stmt ::= Expr expr;
5 ...
6 rewrite VariableDecl in Block.stmt() {
7 when (hasInit())
8 to List {
9 Expr init = init();

10 removeOptInit();
11 Stmt assign =
12 new ExprStmt(
13 new AssignExpr(
14 new VarAccess(new IdUse(idDecl().id())),
15 init
16)
17);
18 return new List().add(this).add(assign);
19 }
20 }

Listing 5.4 shows the rewrite rule that performs the specialization of
variable access nodes. The API of the semantic AST is used for speci-
fying the appropriate rewrite conditions. This is very simple: the ref-
erence attribute decl refers to the appropriate declaration node in the
AST. That node in turn has attributes isClassVariable , etc., in order
to find out what kind of variable it is.

A similar semantic specialization is done for assignment statements.
Depending on the assignment destination (local, instance, or class vari-
able), different code will be generated. To prepare the AST, the assign-
ment nodes are specialized to differ between these kinds of storage lo-
cations. The rewrite rule is shown in Listing 5.5. The rewrite rule uses
the API from the aspect specifying the variable access specialization,
with methods like isClassVarAccess , etc., to specify the appropri-
ate rewrites.

Method accesses (i.e., method calls) are specialized in the same way
as the variable accesses in order to differentiate between different kinds
of calls.

5.3. GENERAL PARTS OF THE BACK END 75

Listing 5.3: Additional AST classes that are used for semantic specialization
in the preparation phase.

ast ClassVarAccess : VarAccess;
ast InstanceVarAccess : VarAccess;
ast LocalVarAccess : VarAccess;

ast ClassVarAssignExpr : AssignExpr;
ast InstanceVarAssignExpr : AssignExpr;
ast LocalAssignExpr : AssignExpr;

ast ClassMethodAccess : MethodAccess;
ast InstanceMethodAccess : MethodAccess;

Listing 5.4: Rewrite rule for specializing variable accesses.

specialize VarAccess {
when (decl().isClassVariable())
to new ClassVarAccess(idUse());

when (decl().isInstanceVariable())
to new InstanceVarAccess(idUse());

when (decl().isLocalVariable())
to new LocalVarAccess(idUse());

}

5.3.3 Optimizations on the source AST

By describing source level optimizations in the form of aspect modules
with rewrites, it should be possible to easily combine and select differ-
ent optimizations. So far, we have only done experiments with some
small local optimizations using this technique. An example is constant-
expression evaluation (constant folding). Consider the following frag-
ment of Java code:

final int a=1;
x=a+2;

The expression a+2 operates only on constants and can therefore
be evaluated at compile time and replaced by the expression 3. The
rewrite rule in Listing 5.6 specifies constant folding for the primitive
types in Java. The rule makes use of the semantic AST API with at-
tributes like isConstant() , constantIntegerValue() , etc. These
attributes are already defined in the semantic AST API since they are

76 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

Listing 5.5: Rewrite rule for specializing assignment statements.

specialize AssignExpr {
when ((dest().isClassVarAccess())
to new ClassVarAssignExpr(dest(), source());

when ((dest().isInstanceVarAccess())
to new InstanceVarAssignExpr(dest(), source());

when ((dest().isLocalVarAccess()
to new LocalVarAssignExpr(dest(), source());

}

Listing 5.6: Constant folding.

rewrite Expr {
when (isConstant() && type().isInteger())
to IntegerLiteral new IntegerLiteral(constantIntegerValue());
when (isConstant() && type().isLong())
to LongLiteral new LongLiteral(constantLongValue());
when (isConstant() && type().isFloat())
to FloatLiteral new FloatLiteral(constantFloatValue());
when (isConstant() && type().isDouble())
to DoubleLiteral new DoubleLiteral(constantDoubleValue());
when (isConstant() && type().isBoolean())
to BooleanLiteral new BooleanLiteral(constantBooleanValue());
when (isConstant() && type().isString())
to StringLiteral new StringLiteral(constantStringValue());

}

needed to check that the cases in a switch statement have constant dis-
joint values.

5.4 The LJRT backend

The development of our LJRT compiler is motivated by our research on
languages for small embedded systems with hard real-time constraints.
In order to run Java on such systems, special support is needed for
memory management, in particular garbage collection. Depending on
the system constraints, different memory management schemes can be
used, e.g., different kinds of usual (non-real-time) garbage collection, or
garbage collection for systems with hard real-time constraints [Hen98]
or combinations thereof. In order to separate these constraints from the

5.4. THE LJRT BACKEND 77

a.b().c().d = e().f.g();

=

d

c

()b

a ()

g

f ()

e

()

Figure 5.5: Java code fragment and corresponding AST.

compilation, we have previously developed a Garbage Collection In-
terface (GCI) to the runtime system [IBE+02]. Before generating the C
code, we have an additional preparation phase that rewrites the AST to
make code generation to this interface simple.

5.4.1 Simplifying to a Java subset

In the runtime system for the LJRT compiler, the GCI is implemented as
a set of macros for assignment and referencing variables, involving at
most one indirect reference for each macro. To simplify the generation
of code for this runtime system, we have defined a Java language subset
[Men03] and added an additional preparation phase to the compiler
that rewrites an arbitrary Java AST to this Java subset. For example,
a complex expression will be broken down into a sequence of simple
assignments, using temporary variables, similar to three-address code.

Expressions in Java may be rather complex, as for example in the
code fragment with corresponding AST in Figure 5.5.

The mapping from the full Java language specification [GJS96] to the
simpler subset can be conveniently described as a set of transformation
on the AST, as will be shown in the following sections.

Names

Most of the simplifying transformations needed to perform on the AST
are consequences of real-time memory management and the GCI, see
Section 4 or [IBE+02] for details. Memory operations on references are
performed via side-effect macros, only allowing one level of indirection
at each step. It is therefore necessary to transform all Java expressions

78 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

with more than one level of indirection into lists of statements each con-
taining at most one level of indirection. For example, the Java statement

a.b = c;

contains one indirection, whereas

a.b = c.d;

has two indirections, and must therefore be transformed into something
like the following.

tmp_1 = c.d;
a.b = tmp_1;

Figure 5.6 shows the corresponding AST transformation.

=

b

a

d

c

StmtList

=

tmp_1 d

c

=

b

a

tmp_1

Figure 5.6: Simplifying names by means of an AST transformation. Grey
nodes and edges are inserted as result of the transformation.

The situation becomes a little more complicated with method calls,
since arguments passed in the call may contain arbitrarily complex ex-
pressions. For example, for the following method call

a(b(c()),d());

the evaluation order must be

c(), b(), d(), a()

A suitable simplifying transformation for the above expression, to meet
the indirection requirements, could then be expressed as AST transfor-
mations or as code as in Figure 5.7.

The aspect code needed for performing the simplification transfor-
mations shown in Figures 5.6 and 5.7 is shown below in Listing 5.7. For
better understanding of the aspect examples it may help to look at the
complete abstract grammar for the LJRT compiler which is included in
Appendix B.

5.4. THE LJRT BACKEND 79

a

argList

b

argList

c

argList

d

argList

StmtList

argList

tmp_0

tmp_1

tmp_2

tmp_0

=

tmp_1

==

d

argList

b

argList

c

a

argList

tmp_2

tmp_0 = c();

tmp_1 = b(tmp_0);

tmp_2 = d();

a(tmp_1, tmp_2);

a(b(c()), d());

Figure 5.7: Simplifying a complex method call. Grey nodes and edges are
inserted as result of the transformation.

Listing 5.7: JastAdd aspects performing simplification transformations for
Java names .

class Simplify {
void Stmt.simplify() {

if (stmt.needsRewrite()) {
setStmt(stmt. rewrite(),stmtIndex);

}
}

syn boolean Stmt.needsRewrite = false;
syn boolean Expr.needsRewrite = needsRewrite(0);

ExprStmt.needsRewrite = getExpr().needsRewrite();

boolean AssignExpr.needsRewrite {
return getSource.needsRewrite(0) || getDest.needsRewrite(0);

}

boolean Access.needsRewrite(int level) {
return nbrOfDeref() > level;

}

80 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

syn int Expr.nbrOfDeref = 0;
VarAccess.nbrOfDeref = 1+getEnv().nbrOfDeref();

void AssignExpr. rewrite(List l) {
int sLevel=0,dLevel=1;
VariableDeclaration varDecl = createTempVar(type());
l.add(varDecl);
Expr source = getSource(). rewrite(l,sLevel);
Expr dest = getDest(). rewrite(l,dLevel);
l.add(new ExprStmt(new AssignSimpleExpr(

accessVar(varDecl),dest)));
l.add(new ExprStmt(getSpecialAssignExpr(

accessVar(varDecl),source)));
l.add(new ExprStmt(new AssignSimpleExpr(

dest,accessVar(varDecl))));
}

Expr Access. rewrite(List l, int level) {
if (nbrOfDeref() > level) {

Expr e = getEnv(). rewrite(l,0);
if (level == 0) {

VariableDeclaration varDecl = createTempVar(type());
setEnv(e);
l.add(varDecl);
l.add(new ExprStmt(

new AssignSimpleExpr(accessVar(varDecl), this)));
return accessVar(varDecl);

} else {
setEnv(e);

}
}
return this;

}

}

Unary expressions

Unary expressions that changes the value of the operand, may need to
be simplified in order to meet indirection requirements. For example,
the simple statements

a++;
b.a++;

should be read as

a = a+1;
b.a = b.a+1;

5.4. THE LJRT BACKEND 81

ForStmt

ForInit ForUpdateCondition LoopBody

Figure 5.8: Subtree representing a for-statement.

which poses no problem in the first statement, with zero indirections,
but the latter statement now has two indirections and must be simpli-
fied to something like

tmp_0 = b.a;
b.a = tmp_0+1;

However, things get more complicated as such unary expressions may
be used inside other expressions. For example, the seemingly simple
statement

a[k.i++] = b[++k.i];

has a non-trivial evaluation order. A simplification of the above state-
ment which meet indirection requirements can be written as:

tmp_0 = k.i;
++tmp_0;
k.i = tmp_0;
tmp_1 = b[tmp_0];

tmp_2 = k.i;
k.i = tmp_2 + 1;

a[tmp_2] = tmp_1;

Note that the evaluation of a PreIncrement expression differs from the
evaluation of a PostIncrement expression to maintain semantic correct-
ness.

Control-flow statements

Expressions that are part of control-flow statements require special care
in the simplification process, so as not to alter the semantics of the pro-
gram. The for statement is the most complicated loop statement in Java,
and serves well to illustrate these issues.

A Java for-statement, as defined by the abstract grammar for Java, is
represented by the AST subtree in Figure 5.8. As defined in the Java lan-
guage specification [GJS96], the ForInit and ForUpdate nodes may hold a
list of StatementExpressions, and the ForInit may alternatively contain

82 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

a local VariableDeclaration. An example of a complex for-statement
could be

for(a=b(c(1),d),e=f[g()];a[h++]<i;a=b(c(h++),d))
// ... loop body ...

The solution to simplifying for-statements is to replace them with
while-statements by moving the ForInit ahead of the statement and then
move the ForUpdate last inside the Stmt node (which has been trans-
formed to a Block). A simplified for-statement subtree is shown in Fig-
ure 5.9.

ForStmtForInit

ForUpdate

Condition

Stmt

Stmt*

<empty><empty> Block

Figure 5.9: Subtree representing a simplified for-statement.

The resulting code after simplifying the example for-statement above
would then be

tmp_0 = c(1);
a = b(tmp_0,d);
tmp_1 = g();
e = f[tmp_1];

tmp_2 = a[h++];
for (; tmp_2<i ;) {

// Loop body

tmp_3 = c(h++);
a = b(tmp_3,d);

tmp_2 = a[h++];
}

Similar techniques are used to simplify the other Java control-flow
statements.

5.5 Optimization transformations

Also in cases when compiling to some kind of pseudo-high-level inter-
mediate language (such as C), there is need for some optimizations at

5.5. OPTIMIZATION TRANSFORMATIONS 83

the higher abstraction level which can not be taken care of by the inter-
mediate language compiler. Examples of such optimizations are typical
OO optimizations, such as implicit finalization of method calls, class
in-lining, but also, depending on the object model, (high level) dead
code elimination. Of these optimizations, only dead code elimination is
currently implemented in our compiler.

5.5.1 Dead code elimination

Constructing an Abstract Syntax Tree (AST) based on static dependen-
cies between classes in an application clearly results in a set of type
declarations including a subset of the J2SE standard classes. However,
the J2SE is so designed that, for any application, this subset will include
>200 type declarations. A static analysis of all possible execution paths
of the application reveals that there exist a set of type declarations, pos-
sibly referenced during execution, which includes much fewer classes
than static dependencies would suggest. It has also been shown by Tip
et al. [TSL03] that there is much to gain regarding the application size if
also referenced type declarations are stripped of unused code, such as
attributes, methods, and constructors.

Dead-code elimination requires static compilation of the program to
be optimized, as dynamically loaded code may try to reference meth-
ods or fields which were previously unreachable. It should also be
performed using whole-program analysis, since otherwise only private
methods and fields may be analyzed.

Implementation

We have implemented dead code elimination in our Java compiler us-
ing JastAdd aspects to calculate the transitive closure of an application,
starting from the application main method and all run methods found
in thread objects. Encountered methods and constructors are marked
as live, as are type declarations with referenced constructors, methods,
or fields. During the code generation pass only code for live types, con-
structors, and methods will be generated. See also Appendix B.2 for the
JastAdd code for performing reachability analysis.

Evaluation

The dead code optimization algorithm has been tested on a couple of
applications, with good results, as seen in Table 5.1 below. The applica-
tions are described in Section 6.1.4.

84 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

Application Without opt. (kB) With opt. (kB)
HelloWorld 458 79
EmbjBench 559 148
SDSBlockControl 1016 430

Table 5.1: Code size results from utilizing dead code optimization on some
applications.

For these example applications, ranging from extremely small to
very moderate, the savings in code footprint were substantial, with
resulting code size ranging from 17% to 42% of the original size. If
79 kB looks a little high for a simple HelloWorld application, have in
mind that this includes the footprint of an incremental GC, and that a
java.lang.String object must be instantiated for printing a simple
message on the standard output.

5.5.2 Implicit finalization

In a Java program, most methods are declared virtual and can be over-
ridden by new declarations in subclasses. Virtual methods calls can not
be fully resolved until run-time, when the call target is found through
virtual method tables.

The same technique used for code liveness analysis in the dead code
elimination can also be used for determining if methods are implicitly
final. That is, if a (virtual) method declaration has no live shadowing
declarations in subclasses of the method’s declaration class, the extra
cost for making virtual calls is unnecessary overhead and should be
avoided.

As for dead code analysis, implicit finalization is obviously depend-
ing on static full-program compilation and can not be used in systems
where dynamic loading of classes is used.

Implementation

Implicit finalization of methods has been implemented in our Java com-
piler utilizing the already existing code for liveness analysis. Methods,
which are found to be implicitly final, are marked as being final in the
AST, and the code generation module will treat them as any other (ex-
plicit) final method generating straight function calls instead of virtual
calls.

5.5. OPTIMIZATION TRANSFORMATIONS 85

Figure 5.10: Results of implicit finalization optimization.

Evaluation

Benchmark tests have been performed using some of the test applica-
tions described in Section 6.1.4 and the results are presented in Fig-
ure 5.10. The benchmarks were executed on a 350 MHz Motorola Pow-
erPC 603. Three different GC algorithms; Mark-Compact, Mark-Sweep,
and Batch-Copy were used.

As can be seen in the figure, the performance gain is substantial for
the simple Fibonacci application, which is not very surprising since this
application does virtually nothing else but performing virtual method
calls. The Mark-Compact case achieves equal performance to the Mark-
Sweep case since the temporary reference variable, with it’s associated
read barrier, is no longer needed for a direct function call.

The optimization effect is much less evident on the SDBlockControl
application, with a performance improvement between 1% and 3% de-
pending on which GC algorithm was used. This application evidently
does not spend very much CPU time performing optimizable virtual
methods calls. The source code also shows that the called methods have
multiple implementations in the class hierarchy, which makes it hard to
perform this kind of optimization.

It can the be concluded that, although it is possible to implement an
application in such a way so that the implicit finalization optimization
has little to no effect on the performance, application performance can
benefit substantially from using implicit finalization.

86 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

GC_REF(Type1, tmp1); // Type1 tmp1;
GC_REF(Type2, tmp2); // Type2 tmp2;
GC_PUSH_ROOT(tmp1);
GC_PUSH_ROOT(tmp2);
GC_GET_REF(tmp1, a, b); // tmp1 = a.b;
GC_GET_REF(tmp2, tmp1, c); // tmp2 = tmp1.c;
GC_GET_REF(foo, tmp2, d); // foo = tmp2.d;
GC_POP_ROOT(tmp1);
GC_POP_ROOT(tmp2);

Figure 5.11: Example of how GCI requires temporary reference variables

5.5.3 Root alias analysis

A GC root is a reference from outside the garbage collected heap to an
object on the heap, typically a global variable or a local variable on a
stack. The root references are used as starting points when the GC tra-
verses the reference graph to identify live objects, and a GC cycle in a
tracing collector typically starts with a stack scanning phase, where the
root references are identified [JL96].

As our implementation is constrained by an uncooperative environ-
ment, we cannot scan the C stacks directly, as they contain no type in-
formation which means that we cannot discriminate between pointers
and data. Therefore, we use an auxiliary root stack for each thread to
keep track of the set of live local reference variables [Hen98, RH05].

In a typical object oriented program, a large part of local variables
will be of reference types, and thus there will be many root references.
The use of GCI also makes it necessary to introduce many temporary
variables as complex constructs, such as foo = a.b.c.d , has to be
split up into simple attribute accesses as shown in Figure 5.11. This
means that a lot of roots has to be pushed on and popped from the root
stack, causing a significant execution time overhead, primarily from the
required synchronization.

It can, however, be observed that in order to ensure correct GC be-
havior, it is enough that each live object is reachable from one root1.
This means that the amount of necessary root operations, and thereby
the overhead, can be reduced; if it can be statically determined that a
variable will only reference objects that are also referenced by another

1This does not hold for copying collectors that use forwarding pointers in the objects,
as the roots are used for updating pointers as well as for finding live objects; for this op-
timization to work, the read barrier must be implemented using an indirect table outside
the object.

5.5. OPTIMIZATION TRANSFORMATIONS 87

void main() {
Foo f; Bar b;
...
f = new Foo();
b = new Bar();
...
proc(f,b);

}
void proc(Foo foo, Bar bar) {

Test t1, t2; Bar b1;
...
t1 = foo.test1;
t2 = foo.test2;
b1 = bar.x();
...

}
class Foo {

Test test1, test2;
...

}
class Bar {

Bar b;
...
public Bar x() { return b; }

}

Figure 5.12: Root alias example

variable with longer lifetime, the “inner” variable does not have to be
registered as a root. We call this root alias analysis, and the compile-
time analysis is trivial, as we do whole-program compilation. With this
optimization, the push and pop operations in Figure 5.11 would be re-
moved, which means that there will be no additional overhead of hav-
ing the temporary variables explicitly in the code. In a typical Java pro-
gram, the amount of “root duplication” is, in our experience, very high,
as the associativity between objects tend to be high — between 50%
and 70% of roots (including temporaries) were redundant in our exper-
iments. A large portion of the required roots are temporary references
required to keep a newly allocated object live before its constructor has
completed. This is needed to keep latency low; as the constructor can
be of arbitrary length it cannot be treated as atomic.

As an example of how the root alias analysis works, we take the
code fragment in Figure 5.12. There, f and b will (or may) reference
objects that are allocated in the context of main , so these variables must
be registered as roots, as they are the only references to the new objects.

88 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

On the other hand, in proc , we know that the parameters have been
registered as roots in the calling scope. Local analysis in proc , can stat-
ically determine that t1 and t2 only reference objects that are reachable
from (the attributes of) the parameters, and therefore it is not necessary
to register these variables as roots. In contrast, we cannot tell if b1 is an
alias for something already rooted, or not. However, by analyzing the
method Bar.x() it is seen that x only returns an object reachable from
an attribute. Therefore, b1 does not need to be registered as a root.

If we are doing whole-program compilation, all calls to functions
returning references can be analyzed and will finally boil down to ei-
ther an attribute access (which doesn’t require rooting) or an allocation
(which does). In a separate compilation context, it is not generally pos-
sible to perform the whole-program root alias analysis, but the local
analysis may still be used to get rid of unnecessary roots caused by
temporary variables.

Implementation

The implementation of the root alias analysis is quite simple, and the
majority of the code is shown in Listing 5.8. In the case of class over-
loading, the analysis of whether a method call may return a new root
must analyze all overloaded implementations of the method which may
be executed, which may yield a conservative result. For the sake of
readability, that code has been left out from the figure.

Listing 5.8: Root alias analysis in the front-end.

boolean VariableDeclaration.isNewRoot() {
boolean result = false; Stmt stmt = null;
ASTNode scope = getSurroundingScope();
foreach stmt in scope {

result |= stmt.isNewRoot(this); }
return result;

}
boolean ExprStmt.isNewRoot(VariableDeclaration varDecl) {

if (getExpr() instanceof AssignSimpleExpr) {
AssignSimpleExpr expr = (AssignSimpleExpr) getExpr();
return expr.getDest().isUse(varDecl) &&

expr.getSource().isNewRoot(); }
return false;

}
boolean MethodAccess.isNewRoot(){ return decl().isNewRoot();}
boolean VarAccess.isNewRoot(){ return decl().isNewRoot();}
boolean MethodDecl.isNewRoot(){ return returnsNewRoot();}
boolean InstanceExpr.isNewRoot(){ return true; }

boolean Block.returnsNewRoot() {

5.6. CODE GENERATION 89

boolean result = false;
for (int i=0; i<getNumStmt(); i++) {

result |= getStmt(i).returnsNewRoot(); }
return result;

}
boolean ReturnStmt.returnsNewRoot() {

boolean result = false;
if (hasResult()) { result = getResult().isNewRoot(); }
return result;

}
boolean MethodDecl.returnsNewRoot() {

// Native methods do not have bodies, so let’s be conservative
boolean result = true;
if (hasBlock()) { result = getBlock().returnsNewRoot(); }
return result;

}

Evaluation

The effect of root alias optimization is shown in Figure 4.5 on page 43.
Although the performance of the specific benchmark application is dou-
bled in the Mark-Compact case, the really dramatic performance im-
provement is seen when root alias optimization is used together with a
Mark-Sweep GC. In that case, the performance increases more than six-
fold. The main reason for the dramatic improvement lies in the fact that
an incremental Mark-Sweep GC does not rely on a read barrier in or-
der to maintain reference integrity. Since reads are typically much more
common than writes, it seems that the unnecessary root registration op-
erations for the temporary variables occupied a large percentage of the
CPU time in the Mark-Sweep case. The Mark-Compact case still suffers
from the overhead induced by the read barrier and is not affected in the
same dramatic way.

5.6 Code generation

When the AST has been prepared to fulfill the indirection requirement,
the task of generating the C code becomes straight-forward.

For each used class in the AST, a C header file is generated. The
header file contains the type declarations of the object model. That is,
structs representing the class, its instances, and its virtual method tables
(vtables). The actual code is generated into a single C implementation
file that contains the implementations of all constructors and methods,

90 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

Figure 5.13: Flowchart of compilation process.

as well as class initialization code. Handwritten C code, such as native
method implementations, can include appropriate class header files.

The process of using the LJRT compiler to compile a Java program
to an executable machine code image is sketched in Figure 5.13.

Header files

The organization of the header files is sketched below as:

<class>_ClassStruct A C struct representing the class. Has pointers to
the class’s super class struct, and a pointer to this class’ virtual
methods table. Only one instance of this struct exist in run-time.

<class>_StaticStruct A struct containing static fields of this class, and
all ancestors. Only one instance exist in run-time.

<class>_ObjectStruct A struct representing an instantiated object of
this class. Contains a pointer to the class struct and all non-static
fields of this class (including ancestors).

5.7. EVALUATION 91

<class>_MethodStruct The virtual methods table associated with ob-
jects instantiated from this class. Contains function pointers for all
methods of objects of this class. One instance of this struct exist in
run-time.

C code file

The organization of the generated C code files is sketched below as:

• Include necessary header files

• Declarations of the static object model structs for each class/inter-
face; class, class static, object layout, object static layout, vtable,
interface table (if applicable).

• Declarations of function prototypes for all constructors and meth-
ods. This is needed since declare/use order of these is free in Java.

• All function (methods and constructors) implementations.

• The Java classes init function. Pushes layouts on the GC root
stack, fill in virtual method tables, and initialize static attributes.

5.7 Evaluation

To evaluate our compiler architecture we compare our Java compiler to
two compilers and one front-end; javac included in j2sdk 1.4.2, the Java
compiler in Eclipse 2.1.3, and the polyglot 1.3 extensible Java frontend.
All four compilers implement version 1.4 of the Java programming lan-
guage.

5.7.1 Compiler architecture

We first give a brief description of the other compiler architectures to
prepare for a comparison with our architecture from a modularization
and extensibility perspective.

J2SDK 1.4.2 javac

Javac builds an AST modeled using the interpreter pattern and consists
of approximately 40 node types. In order to model the entire language
with only 40 node types, some nodes are fairly abstract and contain con-
stants to describe the actual language element. The nodes only model

92 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

the structure of the language. Contextual information is passed around
as parameters to the methods accessed during tree traversal.

Four main visitors are used to perform various computations on the
AST: attribution, data-flow analysis, flattening, and code generation.
Attribution performs the main contextual computations and calls util-
ity functions in separate modules to add implicit tree nodes, build a
symbol table, resolve syntactically ambiguous names, constant folding,
and type checking. The various activities are implemented in separate
modules but their invocation is scheduled imperatively in the attribu-
tion visitor. The data-flow analysis visitor handles exceptions, definite
assignment, and reachability computations. These computations are
mixed in one module. A full Java AST with nested classes is then trans-
formed to a flat Java AST using a tree translator. This simplifies code
generation in that the tree structure better fits the target bytecode struc-
ture.

Eclipse Java compiler

The Java compiler in Eclipse builds an AST similar to javac but has
approximately twice as many node types. Visitors are used but to a
lesser extent than in javac: some computations are placed directly in
the node types and thus scattered over the type hierarchy. Examples
include code generation, type evaluation, and generic data flow com-
putations. The generic data flow analysis computations are then, how-
ever, used by visitors that modularize computations such as exception
targets, definite assignment and various reachability computations.

The code generation is performed on an AST supporting nested
types. This, in combination with nodes that represent multiple seman-
tically different language elements, results in quite a few case blocks in
the code generation to choose the appropriate code generation.

Polyglot

Polyglot differs from the other compilers in that it is merely an extensi-
ble front-end that performs semantic analysis and does not emit byte-
code but merely Java source. This is mainly used to experiment with
source code analysis and language extensions that can be transformed
into plain Java. The AST is constructed from approximately 95 node
types. Rigorous use of interfaces and factories makes it easy to extend
the language including new language elements, changed type system,
modified scoping rules etc. The various computations in the compiler

5.7. EVALUATION 93

are separated using a set of visitors. The tree is also transformed in sev-
eral steps to simplify later computations, e.g., to add implicit nodes and
to resolve contextually ambiguous names.

5.7.2 Modularization techniques

The architectures in the described compilers, including our own, are
similar in that they are based on an object-oriented AST modeled using
the interpreter pattern. Visitors are used to separate the various com-
putations on the tree structure except for our solution that is based on
AOP techniques and open classes. Another difference is that our ap-
proach is declarative and need thus not order the computations in a list
of traversals over the AST using visitors. The declarative attributes are
computed on-demand according to their dependencies.

All solutions rewrite the AST, to some extent, during compilation
to simplify later computations. Examples include the addition of im-
plicit nodes such as default constructors, and translation of nested Java
classes to flat Java classes. Polyglot and our compiler also rewrites the
tree to reflect the semantic meaning of names, e.g. variable name, field
name, or type name. Our compiler takes this approach one step further
and tries to create a semantic AST where each node maps to a single
semantic language entity. This results in an AST class hierarchy of over
200 node types that in combination with open classes enables excellent
modularization through object-oriented techniques such as virtuality
and overriding. Another difference is that our solution is declarative
and need thus not be scheduled explicitly but is demand driven and
transparent to other computations.

5.7.3 Extensibility

The visitor pattern is a common technique to add computations on an
existing class hierarchy in a modular fashion. All the described com-
pilers can thus easily be extended with a new computation module by
adding a new visitor. The same is, however, not true for new language
elements. It is not easy to both extend the data model and the com-
putations performed on it in a modular fashion as also noted by oth-
ers [Rey94].

Polyglot is designed to allow both added computations and lan-
guage elements using a technique based on extensive use of interfaces
and factories. Our compiler does not need a similar framework, but can
easily be extended directly due to its declarative nature where equa-

94 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

tions and rewrites can be combined freely and placed in modules as
desired.

5.7.4 Compiler size and speed

We have compared the size of the implementation for the Java compil-
ers. While this comparison is not completely fair since they are some-
what different. The LJRT compiler has a C backend, Polyglot has no
backend but includes an extensible framework, and the Eclipse com-
piler is somewhat incremental, it gives some understanding of how
much code that is needed for a Java compiler. We took the source fold-
ers and removed some utility code not concerned with the compilers
and gzip:ed the source code. This technique was chosen instead of lines
of code to remove differences in formatting. The specifications from
smallest to largest:

• LJRT compiler 120 kbyte

• javac 225 kbyte

• polyglot 295 kbyte

• Eclipse Java compiler 460 kbyte

To get an impression on where the size is spent in our compiler, the
sizes of the modules of our compiler are listed in Table 5.2.

Lines of code
Front-End

Abstract Grammar 260
Semantic Analysis

Name- and Type Analysis 9200
Transformations and Optimizations

Simplifications 1275
Dead Code Optimization 401

Code Generation
Code generation 5745

Table 5.2: Source code sizes for the different stages of our compiler.

Our compiler development has focused on modularity, and so far
we have done little effort to improve the compiler speed. We have, how-
ever, run some initial benchmarks to compare the compilation speed of

5.7. EVALUATION 95

our compiler to two other Java compilers. The test platform was an or-
dinary PII 300MHz workstation with 128 MB of RAM. The operating
system was Debian GNU/Linux, kernel version 2.4.19, and the Java en-
vironment is the Sun J2SE version 1.4.1. As reference Java compilers we
used javac version 1.4.1 and gcj version 3.3.3.

Two applications were used to benchmark our compiler against the
references. HelloWorld is a very small one-class application, basically
just instantiating itself and printing the words “Hello World” on the
terminal. The RobotController is a much larger application consisting
of about 25 classes, implementing one part of a network-enabled con-
troller for an ABB industrial robot. For some reason, possibly due to
the use of native methods, it was not possible to compile the robot con-
troller application using gcj.

LJRT compiler gcj javac
HelloWorld

Memory usage (MB) 14 <5 21
Time (s) 26 0.65 3

RobotController
Memory usage (MB) 34 - 30
Time (s) 160 - 9

Table 5.3: Java compiler measurements

As can be seen in Table 5.3, the LJRT compiler is substantially slower
than the other tested compilers. One main reason is the two-pass nature
of our compiler (see Figure 5.13), the time needed for gcc to compile the
generated C file exceeds 90 s itself. Another reason for the large dif-
ference in compilation times is simply that compiler performance has
been, and still is, of low priority in the compiler development process.
Nevertheless, separate compilation of Java classes would decrease com-
pilation times significantly in most cases.

5.7.5 Observations

We have presented our experiences from generating Java compilers us-
ing ReRAGs. So far, our experience is very positive. We have been able
to successfully divide the compilers into modules that separate the dif-
ferent concerns and make each module simple to write and understand
on its own:

96 CHAPTER 5. A COMPILER FOR JAVA AND REAL-TIME

• The preparation modules contain a few simple rewrites that make
the AST streamlined for code generation.

• The optimization modules are optional and more optimization
modules can be added later without affecting other parts of the
backend.

• The generation modules consist of simple, straight-forward code.

The rewrites in the preparation and optimization modules are easy
to write due to the information available in the attributed AST, where
the attribute API from the semantic analysis can be used to specify the
context-dependent rewrite conditions in an easy way. The declarative
approach provides automatic rewrite scheduling and thereby allows
the different modules to be written independently of each other.

From our experience of compiler implementation, we have drawn
the following conclusions:

• The use of ReRAGs promotes compact compiler implementation.
The size of our ReRAG specifications is significantly smaller than
the size of the Java code of handwritten compilers based on visi-
tors.

• The use of ReRAGs enables the compiler to be better modular-
ized , for instance compared to handwritten Java code. This is
because of the aspect-oriented and declarative approach, which
permits the compiler implementer to group attributes, equations,
and rewrites that address the same concern, without having to
take evaluation order into account, and without having to follow
the class hierarchy.

• Our generated compilers are around four times slower than com-
pilers handwritten in Java, like javac. Even if there is ongoing
work on improving this performance, we find the present per-
formance sufficient for practical use, since modularity and imple-
mentation efficiency of compiler development is of primary im-
portance.

• The use of node specialization and rewriting to simpler forms re-
sults in more straight-forward code generation that is easier to
maintain and extend.

Marge, I agree with you – in
theory. In theory, communism
works. In theory.

Homer Simpson

Chapter 6

Experimental verification

IN order to verify the validity of the solutions described in Chapters 3
and 4 with respect to the identified important concepts for embed-

ded real-time Java, as described in Chapter 1, practical experiments are
needed. To that end, this chapter presents a couple of Java test appli-
cations and how they are compiled and linked for relevant run-time
platforms. Results from executing these test applications are used to
validate our real-time Java solution with respect to the identified key
concepts.

6.1 Equipment and applications

Here follows descriptions of the various execution platforms used for
experimental verification of the LJRT, as well as descriptions of the soft-
ware applications used in experiments.

6.1.1 Development platform

For the development and debugging of the LJRT, standard worksta-
tions with OSs supporting the Posix threading model are used. This
usually nowadays means a PC with an Intel x86 compatible CPU run-
ning some GNU/Linux distribution, but Sun workstations with Ultra-
SPARC Central Processing Unit, microprocessors (CPUs) running So-
laris have also been used. Executing on this kind of platform will ob-
viously not provide any form of hard real-time timing guarantees, but
is nevertheless very useful for verifying logical and concurrency cor-
rectness of an application. Compiler and run-time system debugging is

98 CHAPTER 6. EXPERIMENTAL VERIFICATION

also greatly facilitated using the standard debugging tools available in
desktop environments.

The configuration used for producing some of the results presented
in the thesis is a standard PC:

• Pentium IV 2.8 MHz CPU with hyper-threading.

• 1024 MB RAM.

• Running Debian GNU/Linux with a version 2.6 kernel.

6.1.2 Real-time control platform

For all real-time experiments, and many other, we are using VME bus
based systems equipped with Motorola PowerPC CPUs, models G3 and
G4. These systems are also, equipped with AD/DA boards, used for
controlling industrial robots and other research systems at the Depart-
ment of Automatic Control. The specific example used for producing
the results presented in the thesis has the following configuration:

• PReP MVME 2400 system.

• Motorola PPC G3 350 MHz.

• 32 MB RAM.

• Running small home-made GNU/Linux with a 2.6 kernel and
BusyBox.

• Xenomai 2.1 [Xen06] real-time support added to the Linux kernel.

6.1.3 Low-end platform

As a low-end experimental platform, we have a small experimental
board, see Figure 6.2 on page 106, equipped with an Atmel AVR 128,
a two row LCD display, 6 buttons, and a summer.

Hardware

The Atmel AVR ATmega 128 [Atm03] is a modern 8-bit RISC micro-
controller, with many features on-chip (not all listed here):

• 32x8 general purpose registers plus peripheral control registers.

• Up to 16 MIPS throughput at 16 MHz.

6.1. EQUIPMENT AND APPLICATIONS 99

• 128 kBytes in-system re-programmable flash memory with more
than 10,000 write/erase cycles endurance.

• 4K Bytes E2PROM. Endurance is 100,000 write/erase cycles.

• 4K Bytes internal SRAM. Up to 64K extended memory.

• SPI interface for in-system programming.

• Two 8-bit timers/counters and two 16-bit timers/counters. One
real-time counter with separate oscillator.

• 8-channel, 10-bit ADC.

• Dual programmable serial USARTs.

The experimental platform is equipped with an additional 128 KB
SRAM chip, of which 61184 bytes are reachable from the AVR, making
a total of 64K bytes SRAM available to the running application.

RTOS

A very small real-time kernel has been developed at the department,
for use on the Atmel AVR. The fully preemptive kernel has a footprint
of less than 10 kbytes of ROM and 1 kbyte of RAM. Worst-case execu-
tion times of operations in the kernel are summarized in Table 6.1. See
also [Ekm00, NE01].

Execution time in CPU cycles
Operation Worst Best

Context switch due
to timer interrupt

963 + 358 · k 889 + 346 · k

Context switch due
to voluntary

740 + 12 · k 728

suspension

Take a mutex 113 113
Give a mutex 1024 + 12 · k 1014

Create an object 234 + 78 · i + 54 · n 234 + 78 · i + 54 · n

Table 6.1: Measured performance with k priority levels and object size s bytes
with n pointers divided into i groups. 1 CPU cycle is 0.25 µs.

100 CHAPTER 6. EXPERIMENTAL VERIFICATION

6.1.4 Test applications

A couple of different applications has been used in the experiments pre-
sented in the thesis. They range from the minimalistic HelloWorld, to a
real-time controller implementation.

HelloWorld

The classical small test application, which in Java version may look like
Listing 6.1. Although quite minimalistic, the HelloWorld application
still tests the basics of both compiler and run-time system.

Listing 6.1: Java version of the HelloWorld application.

public class HelloWorld{
public static void main(String[] args) {

System.out.println("Hello World!");
}

}

AlarmClock

For the purpose of testing the scalability of compiled real-time Java, a
suitable application is needed. It should, at least, contain two (commu-
nicating) threads and a reasonable number of classes.

A suitable application is found in the first programming assignment
of the undergraduate course in Concurrent and Real-Time Programming1.
This application is a simple implementation of an alarm-clock with ba-
sic functionality. The alarm-clock application in itself—not considering
Java classes and threads in the Graphic User Interface (GUI)—consists
of at least two threads sharing a critical resource—the representation of
time—, and four user-written classes. A typical implementation would
contain these four classes:

AlarmClock The application main class, initializes the application and
starts the two threads.

ClockStatus A passive class containing the critical resources; the time-
and alarm time representations.

TimeHandler Contains a periodic thread which updates the time once
every second. If the alarm conditions match, a beep is also emit-
ted.

1See the EDA040 course at http://www.cs.lth.se/Education/Courses/ .

6.1. EQUIPMENT AND APPLICATIONS 101

ButtonHandler Contains a thread which waits on a semaphore for user
interaction, i.e. a button in the user interface has been pressed.
Depending on the sequence in which buttons are pressed, time or
alarm time is set in ClockStatus.

All User Interface (UI) specific code is placed in a separate Java pack-
age, which greatly enhances the portability of the alarm-clock applica-
tion. In order to run this application on the experimental AVR platform,
the UI package is substituted with a new implementation—with an
identical API—which communicates with the LCD display and hard-
ware buttons, via native methods, instead of using the java.swing or
java.awt packages, see Figure 6.2.

EmbjBench

Developed by Martin Schoeberl, originally for benchmarking Java in
tiny embedded systems, the EmbjBench [Sch06] test suite consists of
two sets of small benchmark applications. Each application is run itera-
tively for at least one second, and then number of iterations per second
is calculated and presented as the result.

In the first set, each benchmark application measure the execution
time of one bytecode. Such results are of interest when benchmarking
a bytecode interpreter implementation, bu less so when the Java source
code is compiled to native machine instructions using optimizing com-
pilers. The second set of benchmark applications consist of three small
applications:

Sieve: Calculate prime numbers. Relies heavily on array indexing.

Kfl: Implementation of one of the nodes in a distributed motor control
system, with simulated environment (sensors and actuators) and
communication (commands from the master node).

UdpIp: Measures the performance of UDP communication using a tiny
TCP/IP stack for embedded Java. This application was never
used in our experiments.

In addition to the applications originally in the EmbjBench suite, we
have added two additional application:

Fibonacci: Calculate the Fibonacci series using a double recursive al-
gorithm on a virtual method.

StaticFibonacci: The same application as Fibonacci, but explicitly de-
clared as being static.

102 CHAPTER 6. EXPERIMENTAL VERIFICATION

RTPerf

RTPerf is a small artificial application used for measuring latency, jitter,
and response times. The application consists of three periodic threads
where period, priority, and workload is easily tunable in order to vary
memory consumption and overall system load. Measured latencies and
response times for the three threads are logged and later offline process-
ing.

SDSBlockControl

Sampled Dynamic System block, see Figure 6.1, have properties permit-
ting composition such that regulator objects or other sampled dynamic
systems comprise entities with the same compositional properties as
their aggregated parts. SDS blocks are mathematically causal (outputs
are well defined and depend on former and current inputs, and time,
as defined by the timestamps of the dynamics input, is monotonously
increasing). The inputs/outputs of an SDS block are briefly explained
as follows:

DynamicsInput (DI) comprises the sampled data driving the advance-
ment in time and is the most recently obtained measured value.

DesiredReference (DR) is the most recently requested setpoint (some-
times called the reference) value. If no back-propagation of sat-
uration is done to the set-point, i.e. restricting the admitted set-
point, this object is identical to AdmittedOutput.

AdmittedReference (AR) is the set-point that is accepted to be used
by this regulator. When being different from the DesiredOutput,
this signal should be propagated backward as a argument to the
update of the SDSblock.

DesiredOutput (DO) signal is the nominal control output from this
regulator, before effected by any saturation or tracking of manual
control.

AdmittedOutput (AO) is the control output after being effected by sat-
uration or tracking of manual control.

LoadDisturbance (LD) represents uncontrollable input that has been
possible to measure or compute (externally to this block). Reg-
ulation with good disturbance rejection should as much as pos-
sible make the effect of the LoadDisturbance small. This input is

6.2. PORTABILITY 103

LD par

DO

AO

DISO

AR

DR

LD - Load Disturbance
par - parameters
DO - Desired Output
AO - Admitted Output
DI - Dynamics Input
SO - Sample Output
AR - Admitted Reference
DR - Desired Reference

Figure 6.1: Schematic picture of an SDS block.

assumed to be piece-wise constant and changing asynchronously
with the computing of the internal states, and has therefore no di-
rect (time critical) computations based on it, and there are (as seen
from the outside) no internal saturations effecting the value.

SampleOutput (SO) is the output from this block which is read by
outer blocks.

Parameters (par) represent the tunable parameters of an SDS block.

The SDSBlockControl application used in experiments is an imple-
mentation of a simple controller for all five joints of an ASEA IRB6
industrial robot, utilizing SDS blocks. In different experiments, it is
used in slightly different ways. In the hard real-time execution exper-
iments, latency of the high-priority sample-and-control thread is mea-
sured while lower priority threads use CPU time to generate garbage
at a sufficiently high rate to ensure that the GC will complete several
full cycles per minute. For other experiments, regarding execution per-
formance, the sample-and-control thread is changed from periodic to
free-wheeling, and the number of iterations executed in a fixed period
of time is measured.

6.2 Portability

Java byte code, and also the generated C code which is the output from
our Java compiler, is in itself platform independent. The adaptation to
different platforms comes with the run-time systems, or the JVM in the
Java byte code case.

104 CHAPTER 6. EXPERIMENTAL VERIFICATION

The real-time Java runtime, as described in Chapter 4, has been im-
plemented with support for 5 different threading models on 4 differ-
ent hardware platforms. Table 6.2 shows a matrix covering the current
available implementations. Of course there are no timing guarantees in
the Posix thread model on a standard Linux or Solaris OS, but it is the
best suited runtime for verifying the semantic correctness and concur-
rency behavior of an application.

Table 6.2: Current implementation status of the real-time Java
runtime environment.

AVR PPC i386 SPARC
CSRTKa X
STORKb X
Linux/RTAIc X X
Linux/Xenomai X X
Linux and Solaris Posix X X
a Small real-time kernel for the Atmel AVR developed at

the department of CS.
b real-time kernel for PPC, developed at the department

of automatic control. Deprecated, replaced with Lin-
ux/Xenomai.

c Both kernel and user level threads. Deprecated, replaced
with Linux/Xenomai.

The available implementations span a range of quite different types
of CPUs (Harvard RISC micro-controller, RISC, and CISC) and very dif-
ferent threading models. Given this diversity, porting the runtime to a
new CPU and/or threading model should be affordable, and the porta-
bility of the proposed solution can be considered agreeable.

6.3 Scalability

Experimentally verifying the scalability of natively compiled Java us-
ing the LJRT effectively boils down to trying to find the lower limit
for resource-constrained hardware, on which it is possible to deploy a
useful application. Finding the upper limit is not equally interesting,
since the main development platform is a standard Intel PC (≈3GHz,
≈1024MB RAM).

Table 6.3 on the next page shows the memory usage of the alarm-
clock application, when compiled for the AVR. Worth notice is the sig-

6.4. HARD REAL-TIME EXECUTION AND PERFORMANCE 105

nificant decrease in ROM footprint when compiling with dead code
elimination. As a comparison, running the alarm-clock as an applet
requires about 22M bytes of RAM.

Compilation flags ROM (bytes) RAM (bytes)
-w 89k <32k

89k <32k
DCE -w 61k <32k
DCE 61k <32k
DCE -Os 61k <32k

Table 6.3: Memory usage for the alarm-clock on the AVR platform. DCE
stands for dead code elimination turned on.

One interesting observation from Table 6.3 is that the size of the
ROM flash image does not depend on whether debug (-w) or size opti-
mization (-Os) flags were given to the C compiler. The reason may be
related to some of the tricks used in the GCI to disallow dangerous C
code optimizations, but this will need more investigation.

Results

Considering the alarm-clock to be of adequate complexity for a typical
real-world application in this type of hardware platform, it still leaves
half of the amount of RAM and ROM in our hardware platform unused.
We can then argue that natively compiled real-time Java is a viable so-
lution also for systems of this size.

6.4 Hard real-time execution and performance

Hard real-time performance (predictability) and general performance
(speed) are not necessarily coupled. Instead, in order to guarantee tim-
ing predictability it is often necessary to sacrifice execution speed for in-
creased timing predictability. Experiments verifying the timing predict-
ability of our real-time Java execution environment are presented in
Section 6.4.1, while general performance execution experiments are pre-
sented in Section 6.4.2.

106 CHAPTER 6. EXPERIMENTAL VERIFICATION

Figure 6.2: Alarm-clock application running on the AVR platform. The plat-
form consists of two stacked cards, with a user interface card on top of a generic
CPU card.

6.4.1 Hard real-time execution

In order to experimentally verify the alleged hard real-time capabilities
of our proposed real-time Java, we will present results from two differ-
ent experiments. First, a quite heavily loaded multi-threaded applica-
tion where latency and task response time is logged for three periodic
threads, then a long time test with a robot control application measur-
ing maximum latency. Both experiments were run on a VME-based
Motorola PowerPC running GNU/Linux with Xenomai real-time ex-
tensions, as described in 6.1.2.

Jitter

The small multi-threaded RTPerf application, see Section 6.1.4, was con-
figured with one fast (4 KHz) thread and two slower threads, each one
performing enough memory allocation work to force frequent GC exe-
cution and to obtain a high system load, see Table 6.4. The test appli-
cation was compiled and linked against two different GC implementa-
tions; one Mark-Sweep GC, and one Mark-Compact GC.

The system is quite heavily loaded with ≈65% utilization from the
threads, and then another ≈30% GC utilization from cleaning up the
garbage generated by the threads. The difference in workload when
using different GCs come from quantization effects in the workload
tuning due to different execution overhead for the different GC vari-

6.4. HARD REAL-TIME EXECUTION AND PERFORMANCE 107

ants. We then have a system where the GC thread uses practically all
idle time there is left, trying to free unused memory blocks. The three
threads will then always need to preempt the GC thread, to be able to
execute (when not waiting for a higher priority thread to finish).

Thread Period (µs) Workload (µs)
Mark-Compact Mark-Sweep

T1 250 ?35 ?50
T2 400 ?140 ?160
T3 1000 ?160 ?180

GC1 NA NA NA

Table 6.4: Characteristics of the three threads in the timing experiment.
Thread T1 has highest priority and the GC thread GC1 has lowest priority.
Neither period, nor workload is applicable for the GC thread.

Results from the experiments are shown in Figures 6.3 and 6.4, and
some statistics are found in Table 6.5. From these results, we can draw
a number of conclusions regarding the real-time behavior:

• Latency and response times are quite good. The amount of jitter is
well within margins for thread T1, bearing in mind that we have
a sampling frequency of 4 kHz and a heavily loaded system.

• There is a slight, but notable, difference in performance between
the two GC algorithms used in the experiment. The reason for
the Mark-Sweep GC giving a slightly better performance is here
due to that GC synchronization can be made more efficient. The
performance differences between the two GC algorithms will be
further discussed in Section 6.4.2 below.

From these results, there seem to be no reason why natively compiled
Java could not be a feasible programming language for hard real-time
systems.

Worst-case latency

Calculating the theoretical Worst-Case Execution Time (WCET), which
include worst-case task release latencies, is a truly gargantuan under-
taking considering the complexity of modern CPUs, operating systems,
and memory management. Running the application for a very long
time, measuring the release latency, will give ab estimate of the worst-
case scenario. If the execution is let to run for long enough, the estimate
will also get statistical significance.

108 CHAPTER 6. EXPERIMENTAL VERIFICATION

Mark-Compact Mark-Sweep
Latency µs

T1 min 0 -4
max 13 8

T2 min 0 -4
max 91 80

T3 min 69 58
max 326 224

Response µs

T1 min 34 47
max 54 66

T2 min 130 155
max 225 227

T3 min 473 462
max 738 708

Table 6.5: Real-time performance statistics.

The SDSBlockControl application was instrumented to log the maxi-
mum measured latency of the periodic sample-and-control thread. The
thread’s period was set to 5 ms (running at 200 Hz), while a low pri-
ority thread was set to allocate garbage object at a sufficient rate so as
to force the GC thread to complete several full cycles per minute on a
10 MB heap.

The System was left to run on the real-time control system, see Sec-
tion 6.1.2 for a little more than 8 days (210 hours), with more than 151
million invocations of the sample-and-control thread. The measured
latency varied between 5µs and 12 µs (the higher values when the GC
was active), with an all-time-high measured latency of 19µs. It should
be noted that these latency measurements are conservative, the execu-
tion time needed for measuring latency is included in the measured
values.

6.4.2 Performance

Although determinism and the ability to guarantee that deadlines are
met are absolutely crucial for hard real-time systems, general execu-
tion performance must not be forgotten. This is especially important
in small, resource constrained, embedded systems where a faster pro-
cessor may not be a viable alternative due to common processor con-

6.4. HARD REAL-TIME EXECUTION AND PERFORMANCE 109

Figure 6.3: Latency for three periodic threads with top-down decreasing pri-
ority. Mark-Compact GC used.

straints including power consumption (if run on battery power), heat
dissipation, and cost.

In order to investigate the efficiency of the code generated by our
Java compiler, described in Chapter 5, and to try to investigate what
kind of impact the GCI implies, we have run tests on a few different ap-
plications, see Section 6.1.4. These test applications were then compiled
with our LJRT compiler, using different GC configurations, as well as
using Sun’s javac and GNU’s gcj [gcj] java compilers for reference.
As a fairly realistic estimate of the best possible performance, equiv-
alent applications (when possible) implemented in C were compiled
with gcc . The benchmark applications are as follows:

EmbjBench The two Fibonacci implementations and two of the bench-
mark applications from the EmbjBench suite, see Section 6.1.4.

SDSBlockControl For the purpose of measuring the general execution
performance, the period of the sample-and-control thread is set

110 CHAPTER 6. EXPERIMENTAL VERIFICATION

Figure 6.4: Latency for three periodic threads with top-down decreasing pri-
ority. Mark-Sweep GC used.

to zero, effectively making it free-wheeling. The number of itera-
tions during a fixed time interval is measured.

One could argue that these small benchmark applications do not
reflect the behavior of realistic embedded and real-time applications,
which is true. However, they do bring forward the code constructs
where we believe RTGC synchronization imposes the largest impact on
performance.

Test platform

Ideally, we would have liked to run the performance benchmarks on the
same real-time control platform as was done with the real-time bench-
marks. Unfortunately, Sun Microsystems do not support a Java run-
time for the GNU/Linux OS on the PowerPC, and we could not have
compared the performance of the LJRT with that of the leading Java
runtime.

The benchmarks were executed on a typical LJRT development plat-
form (see Section 6.1.1), a 2.8 MHz Pentium IV workstation running

6.4. HARD REAL-TIME EXECUTION AND PERFORMANCE 111

Debian/GNU Linux, kernel version 2.6.16. Involved software include
GNU Compiler Collection (GCC) version 4.0.4 and Sun J2SDK version
1.5.

Compilation configurations

The different compilation (and runtime) configurations that were used
in the benchmark tests are briefly described below:

LJRT The compiled Java code was linked against both against a mark-
compact GC and a mark-sweep, to see how much the more com-
plex GC synchronization for a mark-compact GC hurts perfor-
mance. As a reference, the code was also compiled without any
GC support at all. However only usable for applications with only
static memory allocation, compiling without GC synchronization
reveals the the total cost of GC synchronization, and it also serves
as an indication of overall code efficiency compared to other Java
compilers, which lack hard real-time support.

Sun JVM The Sun JVM was run with three different configurations.
First, the default client configuration which dynamically compiles
the byte codes using the Sun HotSpot Just-In-Time (JIT) compiler.
Then, using the -server option which tries to optimize more
for speed. Last, since JIT compilation is often impossible to to in
hard real-time systems, the JVM was run using the -Xint option
which turns off all dynamic optimizations, and run the applica-
tion in the interpreted fashion.

GCJ GNU Compiler for Java (GCJ) was used to compile and link the
applications to native static binaries. Compilation was done uti-
lizing no optimizations at all, and with the most aggressive speed
optimizations.

GCC GCC was used to compile and link the applications to native
static binaries. Compilation was done utilizing no optimizations
at all, and with the most aggressive speed optimizations.

Results

Results from executing the benchmark applications are shown in Ta-
ble 6.6 below.

These results reveal a number of interesting properties of the cur-
rent compiler and runtime implementation. First, we conclude that the

112 CHAPTER 6. EXPERIMENTAL VERIFICATION

Sieve Fibonacci Fibonacci Kfl SDSBlock
(virtual) (static) Control

LJRT
Mark-Compact 12 355 5 385 81 209 73 926 6 943
Mark-Sweep 312 634 71 859 92 044 1 882 000 22 195
Batch-Copy 1 246 000 71 467 208 216 2 978 000 38 395
Other
J2SE 644 484 96 518 96 732 1 943 000
J2SE -server 937 903 146 367 151 440 2 914 000
J2SE -Xint 47 046 7 031 8 159 102 882
GCJ 390 385 80 709 90 394 1 428 000
GCJ -O3 922 230 221 592 231 575 2 008 000
C code
GCC 570 498 81 715
GCC -O3 1 505 000 259 291

Table 6.6: Performance measurements. Number of iterations in one second,
higher is better.

only really fair comparison between the LJRT and the other Java imple-
mentations, regarding execution performance, is when the Batch-Copy
GC is used. In this case, there is no overhead in the LJRT for synchro-
nizing with an incremental GC, similar to the other Java implementa-
tions which all lack real-time support. Here it is not very surprising to
see that applications compiled with the LJRT compilers delivers per-
formance well on par with the Sun HotSpot environment, and only
about 20% lower performance than highly optimized hand-written C
code (not then also that the two benchmark applications which were
ported to C are small and of a type very well suited for aggressive opti-
mizations).

The various degrees of performance degradation seen when one of
the incremental real-time GCs is used are solely due to GC synchro-
nization. As shown in Table 6.6, performance suffers heavily from us-
ing a mark-compact GC due to the read barrier; as reads are typically
more common than writes, the expensive synchronization mechanism
has a bigger impact on overall performance. The mark-sweep GC per-
forms much better, especially in the more realistic kfl and SDSBlockCon-
trol benchmark programs. The numbers do, however, illustrate that the
cost of synchronization may be devastating to performance if care is
not taken. The configuration used here corresponds to number 2 in
Figure 4.5 (using Posix mutexes which are expensive), so with more
efficient synchronization, the penalty of mark-compact would be sig-
nificantly less.

6.5. HARD REAL-TIME COMMUNICATION 113

Incrementality always comes at the cost of increased run-time over-
head, and for batch applications it yields no benefit; as the application
never sleeps, any GC work will delay the application. A typical real-
time control system, on the other hand, consists of a set of periodic
tasks. Thus, an incremental GC can be scheduled so that it will not
disturb the application, reducing the impact of the GC overhead signif-
icantly. In addition, the long GC pauses make a batch GC unsuitable
for real-time applications.

One intuitive conclusion to draw from these results would be that
using a Mark-Sweep GC is always preferable to using a Mark-Compact al-
ternative due to much higher performance. That is not always true, and
depends on the type of application being executed. A Mark-Compact
GC implies both read- and write barriers in order to ensure consistent
object references, while only the write barrier is needed for ensuring
consistency with a Mark-Sweep GC, see also Chapter 3. This difference
is very clear in the Sieve application, which is focused on reading values
from arrays, where the Mark-Compact case suffers from the read-barrier
penalty. The same phenomenon is found in the Fibonacci application,
although not as evident. For an application with few live objects, and
which generates a lot of garbage (short-lived objects), the Mark-Compact
GC may result in significantly better performance than the Mark-Sweep
GC, since considerably less work is needed to copy a few (small) live
objects than adding all memory blocks occupied by garbage to free-lists.

Although results from timing experiments suggest good real-time
characteristics with short latencies and small amount of jitter, there is
certainly future work to do in order to improve general performance
without forsaking the achieved real-time performance.

6.5 Hard real-time communication

As has been shown in Section 6.4.1, our Java execution environment
provides very predictable and stable response times, also in systems
with plenty of GC work going on.

Hard real-time communication in a compiled real-time Java envi-
ronment has been verified in a Masters thesis project done at our de-
partment [GN04]. Future work is planned to further investigate and
develop real-time communication in this environment, see Chapter 8.

114 CHAPTER 6. EXPERIMENTAL VERIFICATION

6.6 Applicability

The proposed solution to natively compile Java for real-time systems
has been tested in experiments on various hardware platforms. Tested
applications range from very small with soft real-time demands—the
alarm-clock application in Section 6.3—, to industrial robot control sys-
tems with hard real-time demands and workstations running real-time
Linux. A large number of testing applications have also been executed
on standard Linux workstations, with and without hard real-time sup-
port using the RTAI.

There are general performance issues that need to be dealt with, but
nevertheless we feel that Java will very soon be a viable programming
language for most types of embedded and/or real-time systems.

Everything that can be invented
has been invented.

Charles Duell, Director of U.S.
Patent Office, 1899

Chapter 7

Prospects

THE tools and techniques used for implementing the LJRT compiler
and run-time system are believed to be beneficial in other related

research areas. This chapter presents a few projects where we have be-
gun implementing prototypes that we think look very promising. A
robot control perspective is assumed.

7.1 Multi-stage development

One of the greatest differences between embedded systems software
development and other software development areas lies in the test-
ing and verification phase. Embedded systems, especially of small to
medium size, are typically very limited in tools and resources for verify-
ing software correctness. Timing aspects in multi-threaded applications
and hardware device driver issues make things even more complex.

The errors that can be found in a multi-threaded embedded real-
time application can roughly be categorized into one of the following
types:

Syntactical errors: Caught by the compiler and should thus not give
problems when running the application.

Logical errors: The application has unintentionally, by mistake or by
wrongful thinking, been given different semantics than what was
intended. Mostly independent of the current run-time environ-
ment.

116 CHAPTER 7. PROSPECTS

Concurrency errors: Failing to protect shared resources and/or taking
resource locks in the wrong order may lead to run-time errors
(such as deadlocks or corrupted data). Often depend on actual
run-time environment and thread model.

Timing errors: Real-time threads missing deadlines, or starvation of
lower priority threads. Depends on run-time environment and
thread model.

Due to the difficulties in verifying software correctness in the real
embedded target environment, for example running as an RTAI/Fusion
kernel module, almost all logical errors, and as many as possible of the
concurrency and timing errors, should preferably be found early in the
development process. Then, one can benefit from the high-level tools
available for desktop development, and only the (hopefully) very few
run-time environment specific errors will be left when running in the
real target environment.

To this end, a multi-stage deployment strategy is suggested. That
strategy includes stages ranging from portable desktop and simulation
suitable programming, to cross compilation into target-specific hard
real-time software functions. In principle and theoretically, just like
when a Simulink block diagram is cross compiled into embedded soft-
ware, it should be possible to go directly from the high-level block dia-
gram to the low-level software binary. In practice, we need intermedi-
ate stages of verification since we need to verify the generated code and
the platform properties for the new setup before the full robot motion
control is run1.

7.1.1 Multi-stage deployment

It is desirable to be able to do as much as possible of the development
and testing of an application in a standard desktop environment, due
to availability of powerful development environments and tools. How-
ever, the subsequent porting of the application to the hard real-time em-
bedded system can require a large effort if done in an ad hoc manner.
Therefore, a step-wise method for doing the transition from desktop to
target is more suitable. Then only one parameter is changed in each

1For instance in the Simulink case the execution order of the code blocks is not fully
predictable and slight changes of the control schema may result in one additional sample
of control delay, which can be illustrated by quite simple examples. For general purpose
software functions, assuming that the software tools are not fully safety certified, we also
need intermediate stages of deploying and testing our control function

7.1. MULTI-STAGE DEVELOPMENT 117

step, to facilitate verification of the different components or identifica-
tion of problems.

The fundamental principle is that the source code of the applica-
tion should remain unchanged during all the stages of the deployment.
What is changed, as the desktop application gradually is moved to-
wards the embedded target, is, in turn, the class library, the compiler,
the computer, the I/O drivers and the thread model. Table 7.1 gives an
overview of the properties of the different stages of deployment. We
will now review the different stages in detail, based on using Java and
our accomplished LJRT platform.

Stage VM native host target real-time kernel space
J2SE x x

JVM+classpath x x
LJRT/POSIX x x OS
LJRT/POSIX x x OS
LJRT/RTOS x x x x

Table 7.1: Properties of the different stages. OS in the real time column
means that the real-time properties depend on the OS used. For instance, some
desktop operating systems have some real-time capabilities, if, e.g., running as
the super-user.

1a. Running both the application and the simulated environment in a stan-
dard JVM (J2SE) on a workstation. Most of the work is carried out
in a standard Java environment; the application is designed and
implemented on the workstation using the J2SDK, and testing is
done against a virtual, simulated, robot. Logical bugs in the appli-
cation are found using standard high-level debug techniques and
tools for this environment. In this stage it is possible to determine
logical correctness of the application; if it does what it is supposed
to do, and in the correct order. It is not possible to determine if the
application exhibits correct real-time behavior.

1b. Running both the application and the simulated environment in a stan-
dard JVM on a workstation, but using the free Java library classpath
instead. The LJRT platform uses the GNU classpath implementa-
tion of the Java standard classes, as it is free software. If the appli-
cation was developed using the Sun J2SDK in the previous step,
the move towards the LJRT platform is started by verifying that
the application works correctly when the classpath implementa-
tion is used instead of the J2SDK one.

118 CHAPTER 7. PROSPECTS

2 Natively compile application using LJRT, and run against simulated en-
vironment on work station. When we are sufficiently convinced that
our application is correct, the next step would be to natively com-
pile and test the code using the LJRT platform, but still run with
POSIX threads on the workstation against the simulated environ-
ment, and with no real-time threading support. Here we can still
use standard debugging techniques and tools, such as DDD and
GDB, and verify that native compilation did not induce any new
undesired properties of the application.

3 Running natively compiled LJRT application with POSIX threads on
target system. The next step is to use the LJRT compiler and cross-
compile the application for the target system, still using POSIX
threads. This allows us to verify that the cross-compiler produces
correct output, and that program loading, I/O, etc., on the target
system works correctly.

4a. Running natively compiled LJRT application with native RTOS threads
in user space on target system. Finally, the transition from POSIX to
native RTOS threads is done, and the real-time behaviour of the
application is tested and verified. At this stage, any errors that
occur are known to (or at least very likely) be real-time problems.

4b. Running natively compiled LJRT application with native RTOS threads,
in kernel space, on target system. If required, for example for inter-
rupt latency reasons or efficiency in communication with hard-
ware drivers, the application may be run entirely in kernel space.

As stated in the introduction, when the tools and the platform have
been verified to work, it is possible to directly do the transition from
the simulated environment on the desktop, to the target system. The
major benefit of the intermediate steps is when things do not work, or
when doing verification (or development) of the platform. The possibil-
ity of doing the deployment in several steps also makes it much easier
to pinpoint at what stage of the deployment an error occurs and, hence,
if the source of the error is in the application code, the tools, hardware
drivers, or the operating system.

This is, of course very valuable for the developers of the tools and
the platform. However, it is equally valuable to the application devel-
oper, as it makes it easier to determine if an error is due to a mistake in
the application code or a bug in the platform and, hence, if the action to
be taken is to start a debugging session or to file a bug report.

7.1. MULTI-STAGE DEVELOPMENT 119

7.1.2 Experiences

The key feature of the presented approach is that the same source code
is used both in the simulated desktop environment and in the target
system. In order to verify the feasibility of the presented approach, a
motion control application for an ABB IRB-6 industrial robot was de-
veloped. With the exception of the drivers for the analog and digital
I/O in the target system, the complete application was written in Java.
The control software consisted of two threads; the sampling and PI con-
trol for each joint was run at 2 kHz. The reference generation was per-
formed at 100Hz.

On the desktop, the application was run,in simulated time, on a
standard JVM, with a virtual robot consisting of a simple dynamics
model and Java3D visualization ([HN99]). On the real robot, the pro-
gram was compiled to C code using the LJRT Java compiler and to na-
tive code with gcc. The target system was a Motorola MVME 2600-1
computer, with a 200Mhz PowerPC G3 CPU and the operating system
was Linux/RTAI fusion, version 0.9.1. Figure 7.1 shows the real robot
in the robot lab, and a screen-shot of the virtual robot.

When the application was executed on the target system, both con-
trol and real-time performance was measured. The measurements were
done by logging to an array in the context of the corresponding thread,
and dumped to a file after the completion of the experiment.

Figure 7.2 shows the angles of the 5 joints when a simple pattern
is run on the real robot, and the virtual one, respectively. Figure 7.3
shows the step response when all joints are driven between the origin
and 2.5rad. Figure 7.4 shows the real-time performance of the controller
thread, on the target system, and you can see that the jitter is quite low,
typically below ± 3µs.

7.1.3 Outlook

As development of embedded real-time software adds complexity com-
pared to software development in general, it is desirable to separate
platform concerns from application development. Experiences indicate
that the presented method for development and deployment provides
such a separation of concerns. Thus, we believe that the use of safe lan-
guages and a method that allows application development to be sepa-
rated from platform issues is an important step in facing the challenges
of future control software development.

120 CHAPTER 7. PROSPECTS

Figure 7.1: The IRB-6 in the robot lab and its virtual counterpart.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−100

−80

−60

−40

−20

0

20

40

60

80

100

time/s

jo
in

t p
os

iti
on

/d
eg

re
es

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−100

−80

−60

−40

−20

0

20

40

60

80

100

simulated time/s

jo
in

t p
os

iti
on

/d
eg

re
es

Figure 7.2: Joint angles for the 5 joints when the robot is driven in a pattern
of 5 configurations on the real (left) and virtual (right) robots. The differences
are that the virtual robot is run in simulated time and that the dynamics model
isn’t exact.

7.1. MULTI-STAGE DEVELOPMENT 121

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.5

1

1.5

2

2.5

time/s

jo
in

t p
os

iti
on

/d
eg

re
es

Figure 7.3: Step response for the 5 joints.

0 100 200 300 400 500 600 700 800 900 1000
485

490

495

500

505

510

515

sample number

sa
m

pl
in

g
in

te
rv

al
/u

s

0 10 20 30 40 50 60 70 80 90 100
495

496

497

498

499

500

501

502

503

504

505

sample number

sa
m

pl
in

g
in

te
rv

al
/u

s

Figure 7.4: Measured sampling intervals for 1000 consecutive sampling in-
stants; the nominal sampling period was 500 µs, and the jitter was typically
less than ± 3µs, with a maximum of ± 10µs. The right plot shows a close-up
of the first 100 samples.

122 CHAPTER 7. PROSPECTS

7.2 Ontology-based compilation

Ongoing research projects in industrial robotics2 are trying to make it
easier to install, program, and (re)configure industrial robot systems in
order to make them more accessible to small and medium enterprises.
The industrial robot systems available today are only justifiable in en-
terprises with long or repeated product series and highly trained staff
to program and configure the robots. Small to medium enterprises typ-
ically manufacture many different products in short series and need to
be able to reconfigure the manufacturing line within a day or so, which
is virtually impossible with today robots.

One of the problems to be faced when (re)configuring a robot is
how to deal with the different peripherals that are used in the robot
task. There are many different kinds of peripherals ranging from sim-
ple on/off sensors to advanced vision systems and all possible kinds
of grippers. Different peripherals have different characteristics (size,
weight, speed, payload) and are interfaced (mechanically, electrically,
and communication) in different ways. Communication is often not
standardized, and done on a quite low level. If the data describing a
peripheral was available in a structured format, it would perhaps be
possible to automatically generate the peripheral configuration for a
specific robot model.

Then there is the problem which specific peripheral mode to choose
for a task. This depends on the constraints associated with the specific
task; speed, accuracy, payload, and so on. Also here would a database
of structured peripheral descriptions be of help. A reasoning system
could them try to find the best match from the given constraints.

The idea then is to describe an ontology for robot peripherals, such
as grippers, using a standardized ontology language. In the prototype
we use OWL [W3C04], but any ontology language could be used. This
ontology then serves as specification language for peripherals, which is
rather well-suited for automatic processing using either standard XML
tools or tailor-made tools. However, a common problem with such spe-
cialized description languages is that developed tools are very tightly
connected to a specific version of a specific description language. Tools
made for gripper descriptions can typically not easily be used also for
computer vision system descriptions. Changes in a description lan-
guage will also imply changes in the tools.

2see for example the EU sixth framework programme projects SMErobot
(http://www.smerobot.org) and SIARAS (http://www.siaras.org)

7.2. ONTOLOGY-BASED COMPILATION 123

As is not uncommon, such problems become easier to manage by
raising the abstraction level one step. By implementing a meta com-
piler, a compiler for OWL that, as output, generates a compiler for the
description language specified in OWL the abstraction level is raised.
Instead of having to handle the dependencies between description lan-
guage and tools manually, there is now one single specification for both
description language and tool generation. The fact that these descrip-
tion languages are XML-based helps in that the parsing syntax is given
beforehand.

The general steps are depicted in Figure 7.5. A compiler for on-
tologies expressed in OWL is implemented using JastAdd and a suit-
able parser generator. Given an OWL ontology as input, this compiler
will then automatically generate the description of a compiler for the
given description language. The automatically generated compiler can
then be used to parse and analyze a description, and generate various
forms of output depending on how the compiler was specified. Inter-
face classes to sensors and actuators, or entries in skill server databases
are just a few examples of what is possible to achieve.

The automatically generated code will probably need some addi-
tional hand-crafted code for a specific description language. But, it is
still a far better situation than when the fundamental compiler descrip-
tion needs to be adapted after each change in the description language
specification.

7.2.1 Initial prototyping

A prototype implementation for to evaluate the above idea is in devel-
opment. We are using the JastAdd tool, see Chapter 5 together with
JavaCC to build a compiler for the OWL language. As a realistic exam-
ple on a non-trivial description language, a model hierarchy of robotic
grippers is constructed, see Figure 7.6. Robotic grippers can be divided
into four different categories based on which gripping principle is used;
vacuum grippers, magnetic grippers, finger grippers, pincer grippers, and ad-
hesion grippers. For finger- and pincer grippers, a more fine-grained di-
vision is needed because of functional differences with different me-
chanical solutions.

An OWL representation of the gripper model, see Figure 7.6, serv-
ing as input for the OWL compiler is shown in Listing 7.1. Even though
it looks rather hard to read for human eyes, as most XML syntax, it is
quite easy to write a parser for OWL descriptions since a simple gram-
mar only consists of the following productions (in JastAdd syntax):

124 CHAPTER 7. PROSPECTS

Element ::= Attribute * Element * ;
Attribute ::= <STRING_LITERAL>;

Using the JastAdd tools, it is then easy to analyse the AST returned
by the parser, and then generate a new abstract grammar from the AST.
JastAdd code for generating a parser grammar and useful aspects for
the described language has not yet been implemented. It is, however,
not more difficult than generating an abstract grammar, it is just differ-
ent syntax in the generated code.

OWL abstract grammar

OWL parsing grammar

JastAdd aspects
JastAdd aspects

OWL compilerRobotics Ontology

(OWL)

Gripper

Description

Generated
gripper description

compiler

Hand-written source code for OWL compiler

input to

input to

puts
constraints
on

Database

Generated
interface classes

Skill server

Some possible outputs from
descr. language compiler

Generated

abstract grammar

Generated

parsing grammar

JastAdd aspects
Generated

JastAdd aspects

Generated source code for descr. language compiler

Figure 7.5: Using OWL ontology to generate compiler for robotic grippers.

7.2. ONTOLOGY-BASED COMPILATION 125

Gripper

+hasSkill: GripperSkill

+weightOfGripper: float

+uniqueID: String

+mechanicalInterface: String

+electricalInterface: String

GripperSkill

VaccuumGripper

+cycleTime: float

+typeOfVacuum: String

+stiffnessOfGripper: String

+materialOfGripper: String

+degreesOfFreedom: int

+maximumVacuum: float

+elasticallySupported: boolean

+diameterOfGripper: String

MagnetGripper

+typeOfMagnet: String

+diameterOfGripper: String

AdhesionGripperFingerGripper

+cycleTime: float

+typeOfFingers: String

+materialOfGripper: String

+degreesOfFreedom: int

+numberOfFingers: int

PincerGripper

+cycleTime: float

+degreesOfFreedom: int

+insideOrOutsidePicking: String

+numberOfClaws: int

+maximumForce: float

+typeOfActuation: String

+numberOfMovableClaws: int

+sizeOfGripper: String

ElasticFingerGripper JointFingerGripper

AngleGripper ParallelGripper

CircularParallelGripper LineParallelGripper GeneralParallelGripper

OWL_Thing

Open Close DetectHolding

CloseClaws

AdjustCurrentToGrip

AdjustVacuumToGrip

CloseFingers

AdjustCurrentToRelease

OpenFingers

AdjustVacuumToRelease

OpenClaws

Figure 7.6: Robotic gripper model hierarchy.

7.2.2 Outlook

The current prototype, consisting of less than 400 lines of JastAdd code,
can analyze a non-trivial OWL document and then generate a JastAdd
abstract grammar for the description language as described by the OWL
document. Regardless of which changes are done in the OWL-based
specification, both the abstract and concrete grammars for the descrip-
tion language can be automatically generated.

In order to comprise a fully usable compiler for description lan-
guages, manually written code, here in the form of JastAdd aspects,
is surely needed. If the language specification changes, there is a pos-
sibility that one has to make changes to this code also. However, there
is a large difference between having to make minor changes in com-

126 CHAPTER 7. PROSPECTS

pact aspects, and changing the fundamental grammar descriptions in
the compiler.

The described gripper-compiler is just one example of equipment
and equipment interfaces. Many more end-effectors (for welding, glu-
ing, grinding, and so on) exist, and there are several other types of exter-
nal equipment (such as fixtures, feeders, and conveyors). Furthermore,
interfacing in a robot work-cell involves more than the equipment, so
in total there are at least the following items to cope with in terms of
data interpretation:

• External equipment and their interfaces

• Control services

• Human operations

• Interaction devices

• Work-piece data and models

• Task descriptions and robot languages

• Model data for production processes

• Production or robot skill strategies

Up to now, there have been different standardization efforts in each of
these areas. Most modern standards are XML based, which is some-
times referred to as being generic and fully portable. However, having
XML-based standards in each of the eight areas according to the items
above does not really solve the problem; if these standards are based
on different taxonomies, the data integration and coherence between
different items remains as a problem. That is, the different standards
(despite being expressed in XML) are based on different terms, and the
information integration in (or around) the robot system still requires
extensive engineering efforts.

By relating different standards to a common ontology, and using
compilation in several stages as described above, it is believed that
the information processing in the robotic work-cell can be much more
generic than possible today. Clearly it will be a substantial effort to
model all interfaces and devices and so on, but if compiler technology
can provide the means for the machine to interpret and relate termi-
nologies from different areas, it will hopefully result in a break-through
towards the aim of so called Plug-and-Produce robot systems [SME].

7.2. ONTOLOGY-BASED COMPILATION 127

Listing 7.1: Excerpt from OWL representation of grippers.

<owl:Class rdf:ID="Gripper">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasSkill"/>
</ owl:onProperty>
<owl:someValuesFrom rdf:resource="#DetectHolding"/>

</ owl:Restriction>
</ rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:someValuesFrom rdf:resource="#Open"/>
<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasSkill"/>
</ owl:onProperty>

</ owl:Restriction>
</ rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:someValuesFrom>

<owl:Class rdf:about="#Close"/>
</ owl:someValuesFrom>
<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasSkill"/>
</ owl:onProperty>

</ owl:Restriction>
</ rdfs:subClassOf>

</ owl:Class>
<owl:Class rdf:ID="MagnetGripper">

<rdfs:subClassOf>
<owl:Restriction>

<owl:someValuesFrom>
<owl:Class rdf:about="#AdjustCurrentToGrip"/>

</ owl:someValuesFrom>
<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasSkill"/>
</ owl:onProperty>

</ owl:Restriction>
</ rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasSkill"/>
</ owl:onProperty>
<owl:someValuesFrom rdf:resource="#AdjustCurrentToRelease"/>

</ owl:Restriction>
</ rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Class rdf:about="#Gripper"/>
</ rdfs:subClassOf>

</ owl:Class>

128 CHAPTER 7. PROSPECTS

Listing 7.2: Generated abstract grammar for gripper descriptions.

Gripper : Thing ::= ;
MagnetGripper : Gripper ::= <typeOfMagnet:String> ;
VacuumGripper : Gripper ::= <cycleTime: float> <typeOfVacuum:string>

<stiffnessOfGripper:String>
<materialOfGripper:String>
<degreesOfFreedom: int> ;

FingerGripper : Gripper ::= <cycleTime: float> <typeOfFingers:string>
<materialOfGripper:String>
<degreesOfFreedom: int>
<numberOfFingers: int> ;

JointFingerGripper : FingerGripper ::= ;
ElasticFingerGripper : FingerGripper ::= ;
PincerGripper : Gripper ::= <cycleTime: float> <degreesOfFreedom: int>

<insideOrOutsidePicking:string>
<numberOfClaws: int> ;

AngleGripper : PincerGripper ::= ;
ParallelGripper : PincerGripper ::= ;
AdhesionGripper : PincerGripper ::= ;
CircularParallelGripper : ParallelGripper ::= ;
LineParallelGripper : ParallelGripper ::= ;
GeneralParallelGripper : ParallelGripper ::= ;

GripperSkill : Thing ::= ;
Open : GripperSkill ::= ;
OpenFingers : Open ::= ;
AdjustCurrentToGrip : Open ::= ;
OpenClaws : Open ::= ;
AdjustVacuumToRelease : Open ::= ;
Close : GripperSkill ::= ;
CloseFingers : Close ::= ;
AdjustCurrentToRelease : Close ::= ;
AdjustVacuumToGrip : Close ::= ;
CloseClaws : Close ::= ;
DetectHolding : GripperSkill ::= ;

Perfection is reached, not when
there is no longer anything to add,
but when there is no longer
anything to take away.

Antoine de Saint-Exupéry

Chapter 8

Future work

THE Java to C compiler and associated run-time system framework
is, as of current status, capable of handling most of the Java lan-

guage, generating semantically correct C code. In addition to the fact
that neither the compiler, nor the runtime system and class library, are
complete with regard to the Java language specification and the Java
Development Kit (JDK), there are many interesting problems to look
into.

8.1 Optimizations

Generating code that will function properly in all possible executions
will result in conservative code, with sometimes unnecessary overhead
degrading application performance1. We are therefore looking at sev-
eral ways of enhancing general performance, without sacrificing real-
time performance.

8.1.1 More efficient GC locking scheme

The technique used for controlling GC critical sections is very conser-
vative regarding threads with higher priority than the GC thread. A
high priority thread can not be preempted by the GC, and thus all GC
locking/unlocking in code executed by such a thread is unnecessary
overhead.

1e.g., The wanted sampling rate of a high priority regulator thread can not be accom-
plished due to GC overhead

130 CHAPTER 8. FUTURE WORK

Hypothesis

Under certain conditions, a static analysis of the AST can reveal meth-
ods which are only called from high priority threads. GC-locking can
then be omitted in the generated code for those methods, resulting in a
significant performance gain for the highest priority thread.

Prerequisites

All threads must implement the FixedPriority interface, see Sec-
tion 4.4.1, and all thread priorities must be determinable at compile
time.

Method

• Traverse the reachable AST subtree starting from the main class
main method and all run() methods found in thread classes,
searching for thread activations.

• For each thread activation found, traverse the call graph, marking
each processed method declaration with the Min(current, called)
priority.

• During code generation, disable GC locking for those methods
which are only called in high priority threads.

8.1.2 Memory allocation

When using a mark-sweep GC, and not partitioning the heap in con-
stant size blocks, there is a critical real-time performance bottleneck
when high priority threads allocate objects from the heap. The time
needed for a memory allocator to find a suitable free block is not deter-
ministic, and may cause the thread to miss deadlines, or introduce un-
acceptable jitter. this may be a serious problem in an application where
high priority threads need to allocate memory, and, for various reasons,
it is not feasible to use a mark-compact GC or block-allocate from the
heap.

A possible solution to this problem would be to let high priority
threads allocate objects from a maintained pool, which is guaranteed to
contain free blocks of appropriate sizes at all times. The cost for main-
taining the memory block pool is added to the GC overhead paid by
low priority threads.

8.2. NETWORKING 131

8.1.3 OO optimizations

There are a number of OO optimization techniques which could be
used to increase general performance of an application. To this class
of optimizations belong such well-known techniques, see for exam-
ple [AHR00, FKR+99, TSL03], as method call de-virtualization and class
in-lining.

8.1.4 Selective inlining

In conjunction with “normal” in-lining, it would be very interesting to
investigate the possible benefits from more aggressive in-lining of code
which is called from the highest priority thread run() method.

Hypothesis

Under certain conditions, a static analysis of the AST can reveal meth-
ods which are only called from high priority threads. Aggressive class-
or method in-lining could then be used to increase performance of the
highest priority thread, by omitting indirection- and function call over-
head. Similar to the GC locking optimization above.

Prerequisites

All threads must implement the FixedPriority interface, and all
thread priorities must be determinable at compile time.

Method

Traverse the AST call graph originating from the highest priority thread
run() method. Classes or methods found during the tree traversal is
then in-lined in the highest priority thread class, if they are explicitly or
implicitly final, and are not used by any other class in the application.

8.2 Networking

The current trend towards distributed automation systems, and to close
control loops over distributed nodes in a network, introduces interest-
ing issues in the programming language and run-time environment do-
main. Two concepts which would be very interesting to study closer are
Quality of Control and Constant Bandwidth Server [HCÅÅ02].

132 CHAPTER 8. FUTURE WORK

8.3 Dynamic class loading

Although dynamic loading of classes is not of very much interest for
small embedded real-time systems, it can be useful in larger real-time
systems, e.g in industrial robot control systems where a software up-
grade on-the-fly can save a lot of money.

Method

Implement dynamic class-loading as described in [NBL98]. The new
class is loaded and initialized in a low priority thread, and the time
needed for activation can be kept very short so as not to disturb high
priority threads.

In the Xenomai runtime environment, the concept of loadable Linux
kernel modules may present one way of achieving dynamic loading of
code.

8.4 Ontology-based compilation

The prototype for ontology-based compilation presented in Section 7.2
looks very promising. Implementation should continue so that the pro-
totype can be tested and evaluated in a realistic environment.

A thing is not necessarily true
because a man dies for it.

Oscar Wilde, "The Portrait of Mr.
W.H."

Chapter 9

Related work

THE concept of natively compile Java code and/or making Java vi-
able for use in systems with hard timing constraints is not new.

There is plenty of both academic and industrial work published, and
this chapter will present some of the projects most related to our work.

9.1 RTSJ

The RTSJ [BBD+00] identifies seven areas where the Java specification
must be enhanced in order to facilitate the use of java in real-time sys-
tems. This is accomplished by adding new real-time Java packages and
by enhancing the JVM so that real-time semantics and timing guaran-
tees may be fulfilled. The seven areas, with a brief description of the
needed enhancement, are as follows:

Thread Scheduling and Dispatching: Schedulable objects are scheduled
by an instance of a Scheduler . The scheduler is priority-based,
but the actual implementation may be replaced. Two new real-
time thread classes are supplied, with different characteristics.
Instances of RealtimeThread have access to the real-time services
and may access objects in all types of memory areas including the
standard heap. Because of these heap accesses RealtimeThread in-
stances may be blocked from execution by the system GC, which
makes suitable only for soft real-time tasks. NoHeapRealtimeThread
is a specialized form of the RealtimeThread, of which instances are
forbidden to reference heap objects. This makes them insensitive
to GC work, and NoHeapRealtimeThread instances can interrupt

134 CHAPTER 9. RELATED WORK

the GC without jeopardizing reference integrity. It is the only type
of thread suitable for hard real-time tasks in RTSJ.

Memory Management: GC controlled heaps are seen as an obstacle to
achieve good real-time performance. A normal heap is supplied,
but real-time threads must not hold references to objects within it.
instead, the RTSJ defines three additional memory areas; scoped
memory, physical memory, and immortal memory, in conjunction
with the heap. Objects in scoped memory may only be accessed
from other scoped memory objects or local variables, if in visible
scope (same, outer, or shared).

Synchronization: The Java synchronization semantics is strengthened
by mandating priority inversion control by the means of priority
inheritance or priority ceiling algorithms. Wait-free communica-
tion between real-time threads and regular Java threads is also
supplied.

Asynchronous Event Handling: The support for asynchronous event
handling is not real-time specific, but a more efficient way of han-
dling external events in Java applications.

Asynchronous Transfer of Control: A more efficient (and data consis-
tent) way to make a thread abandon its execution, than can be
done using the interrupt() method and the regular exception
mechanism.

Asynchronous Thread Termination: Through a combination of asyn-
chronous event handling and asynchronous transfer of control,
threads may be forced to terminate in a clean an ordered way.

Although capable of providing hard real-time guarantees, there are sev-
eral problems associated with using an implementation of RTSJ for de-
veloping real-time applications. The new memory area types and the
set of rules for how references may cross memory area boundaries adds
more complexity to handle for the error-prone programmer.

9.1.1 RTSJ implementations

There are now a handful of implementations of the RTSJ available on
the market, or under development.

9.1. RTSJ 135

TimeSys

TimeSys Inc. [Tim06] maintain the official reference implementation of
RTSJ which can be downloaded from their website.

Mackinac

Sun Microsystems have recently released a version of the HotSpot vir-
tual machine supporting RTSJ. Based on Sun’s HotSpot technology, but
compiling Java classes at initialization time instead of during runtime,
applications executing on the real-time HotSpot is predicted to achieve
similar performance as equivalent C++ applications. Just like HotSpot,
it will take quite some CPU power and memory to run the real-time
version (this version needs a 2-way SPARC minimum in order to guar-
antee hard real-time with decent timing). Future versions are planned
to include real-time garbage collection using the ideas developed by
Henriksson and Robertz in Lund.

JamaicaVM

Aicas GmBH and IPD Universität Karlsruhe have implemented a com-
bined JVM and Java bytecode-to-native compiler called Jamaica that
is said to comply with the RTSJ, see [Sie00, Sie99, SW01, Sie04]. The
Jamaica VM is always responsible for garbage collection and the task
scheduling, while some classes may be natively compiled and call the
VM for services such as memory allocation. The GC principle used is a
non-moving type with fixed memory block size for eliminating external
fragmentation. The amount of GC work to do at each object allocation is
scheduled dynamically with respect to the current amount of free mem-
ory, and task latency (also for high priority tasks) will vary accordingly.

PERC

The PERC Java platform from Aonix Inc. [NL98] is another example of
a hybrid platform with alleged hard real-time capabilities. NewMonics
was one of the founder of the JConsortium with it’s competing real-
time Java specification, Real-Time Core Extensions (RTCE), but they
now seem to have switched side and openly support the RTSJ.

136 CHAPTER 9. RELATED WORK

JRate

JRate [CS02] is implemented as an extension of GCJ to support the RTSJ.
Since it is an ahead-of-time compiled solution, performance should be
acceptable also on modest platforms.

9.2 RTCE

The RTCE [Con00] has a slightly different approach to real-time Java
than does RTSJ. Instead of enhancing the regular Java specification, the
RTCE defines a set of Core (real-time Java) components, which can, but
must not, be used together with Baseline (regular Java) components, in
an application. Another difference is that the RTCE allows for a Core
Native Compiler and the possibility to use a conventional execution
model instead of a JVM.

Objects allocated in core memory may not access baseline objects,
and baseline objects may only access core objects via special method
calls. There is also support for stackable (short-lived) core objects.

The RTCE initiative now seems to been abandoned, and their web-
site has been shut down.

9.3 JOP

JOP [Sch05, Sch06] is a Java processor implementation in hardware de-
signed for time-predictable execution of real-time tasks. It is intended
for really small resource-constrained embedded devices. The current
implementation only support static memory allocation, but there seem
to be plans on implementing a garbage collector.

9.4 Jepes

The JEPES project [SBCK03] aims at being a high-performance, cus-
tomizable platform for Java in small embedded systems. The target
platforms range from low-end 8-bit micro-controllers with 512 bytes
of RAM, 4KB of ROM, up to 32 bit microprocessors with more than
1MB of RAM. JEPES hence places itself covering the range from javaC-
ard [Sun00b] environments to J2ME [Sun00a] environments.

The authors of JEPES introduce a nice idea, called Interface Directed
Configuration, to specify per-class compile-time configurations in a non-

9.5. SIMPLERTJ 137

intrusive way. By implementing an interface, it is possible to e.g. spec-
ify a method of a class as an interrupt handler, and the compiler can
then generate appropriate prolog/epilog code for that handler.

One feature of the JEPES compiler is the use of optimizations to
minimize memory (ROM and RAM) usage. By performing a context-
insensitive whole-program data-flow analysis on the application, it has
been shown to reduce some applications to ∼ 20% of the original size.
Optimizations include virtual dispatch elimination, method in-lining,
and dead code elimination.

JEPES was not originally intended to be used in hard real-time envi-
ronments, and thus lacks real-time memory management. JEPES appli-
cations can, though, have a predictable behavior if one does not use any
dynamic memory, all objects must be statically allocated at initialization
time.

9.5 SimpleRTJ

SimpleRTJ [RTJ] is a clean-room implementation of a Java JVM, in-
tended to run on devices with limited amount of memory. There is
support for multi-threaded applications and a GC-controlled heap, and
the typical memory footprint for the VM is around 20KB.

However, the included GC is of the ordinary three color mark-and-
sweep stop-the-world batch type, and there can thus be no timing guar-
antees in an application running on the SimpleRTJ.

9.6 GCJ

The GCJ is the Java compiler and class library part of the GNU GCC
project [gcj]. It is capable of taking Java source code or byte code as
input, producing Java byte code or a native binary as output. The GCJ
runtime provides the core class library, a garbage collector, and a byte
code interpreter, which makes it possible to run an application in mixed
mode (compiled/interpreted) and to use dynamic loading of classes.

Since GCJ share back-end with the rest of the GCC, it can be config-
ured as a cross-compiler for many types of CPUs, making it suitable for
embedded systems development. The included memory management
is though not intended for use in hard real-time applications, and thus
lacks strict timing guarantees.

"Contrariwise," continued
Tweedledee, "if it was so, it might
be, and if it were so, it would be;
but as it isn’t, it ain’t. That’s logic!"

Lewis Carroll, "Through the
Looking Glass"

Chapter 10

Conclusions

MOTIVATED by the needs to shorten the development times and to
improve software quality in embedded systems development,

we have investigated and experimentally verified the possible benefits
from using more modern programming languages. Modern, safe OO
languages with built-in support for multi-threading, distributed envi-
ronments, and platform independence have been shown to be benefi-
cial in terms of software quality and development time in other soft-
ware areas. We have chosen to use Java as an example of a modern
OO language, but our results should be valid for virtually any, safe, OO
programming language, such as C#.

Important aspects, crucial for the viability of real-time Java, have
been identified. A Java compiler, and accompanying run-time libraries,
have been developed and experimentally verified against these identi-
fied aspects. In order to use safe languages as much as possible, and
to increase efficiency in the compiler development, we used and eval-
uated a new OO compiler construction tool, which also enabled us to
implement optimizations in a new way.

10.1 Real-time Java

Many of the problems embedded systems developers are faced with,
such as memory leaks and dangling pointers, originate from the use of
unsafe low-level programming languages used. As the complexity of
embedded systems software is constantly increasing (more functional-
ity, more distributed, more flexible), there is clearly need for language

140 CHAPTER 10. CONCLUSIONS

support to manage the complexity (encapsulation), and to detect pro-
gramming errors as early as possible (safe languages).

Using Java for developing embedded real-time systems can shorten
development time, and also improve the quality of the resulting soft-
ware application. In order to make Java a viable programming lan-
guage for embedded real-time systems development, the following key
aspects have been addressed:

Portability We have successfully ported the run-time environment to
five different thread models (of which four are hard real-time),
executing on four different CPU types ranging from small 8-bit
CPUs, such as the Atmel AVR, to high-end embedded CPUs, such
as the PowerPC and the x86. Due to the diversity of both thread
models and CPU types, we find portability being accomplished
and that porting the run-time environment to yet more platforms
is quite easily done.

Scalability We have shown, by experimental verification, that the LJRT
scale down pretty well. Multi-threaded Java applications have
been run successfully on platforms with such severe resource con-
straints as having only 128 KB ROM and 32 KB RAM (AVR).

Hard Real-Time Execution and Performance By natively compiling
Java, and adding support for RTGC, hard real-time determinism
has been achieved, and verified experimentally. The GCI proto-
type implementation may impose significant overhead, hamper-
ing general execution performance. This overhead is particularly
due to frequent GC synchronization in the compiled code. GC
synchronization overhead can be decreased by a combination of;
synchronizing less frequently, more efficient synchronization im-
plementation, and utilizing compile-time knowledge about the
threads’ priorities and run-time behavior, to generate tailored syn-
chronization schemes. Some ideas on how to further improve
general performance is proposed as future work.

Hard Real-Time Communication For distributed embedded real-time
systems, the ability to communicate with other nodes with tim-
ing guarantees is by definition very important. By using a real-
time network protocol in conjunction with a real-time Java ap-
plication, hard real-time communication can be achieved, as has
been shown in [GN04].

Applicability Experiences clearly indicate that, by providing flexibil-
ity in the choice of GC algorithm and run-time libraries, real-

10.2. COMPILER CONSTRUCTION 141

time Java can be made applicable for many different applications.
Linking a Java application with external non GC-aware code mod-
ules is feasible also in hard real-time systems, if some care is taken
when choosing a GC algorithm.

We have found an inherent limitation associated to linking the Java
application to legacy, non GC-aware, code modules, where a trade-off
must be made between thread latency and timing predictability. In all
other cases are our initial requirements fulfilled, and we can argue that
Java can be made feasible for implementing hard real-time systems.

10.2 Compiler construction

For the construction of a Java compiler, academic state-of-the-art tools
based on RAGs and AOP techniques were used. The compiler was con-
structed in a modular fashion, with a number of aspects for the JastAdd
tool, comprising the normal phases of a compiler; static semantic anal-
ysis, optimizations, and code generation.

Having implemented a compiler for a complete modern OO pro-
gramming language, using the JastAdd tool, we have drawn the fol-
lowing conclusions:

• The OO fashion of the generated AST and the use of semantic
equations renders a very compact, yet comprehensible, compiler
implementation.

• Source code analysis, refactorings, and optimizations, can be con-
veniently described as cross-cutting aspects performing computa-
tions and transformations on an OO AST.

• Although substantially slower to compile Java applications than
other Java compilers (javac and gcj), it is still fast enough to build
embedded software using standard workstations.

10.3 Contributions

The research contributions in this thesis are related to the two different
research areas, compiler construction and real-time Java. The listing
below is thus divided into two sections to reflect the different research
areas.

142 CHAPTER 10. CONCLUSIONS

Compiler construction

• A compiler for a complete real-world object-oriented program-
ming language, Java, has been constructed, and experimentally
verified, using reference attributed grammars and aspect-oriented
programming tools.

• A new way of implementing high-level code optimizations is de-
vised. Using ReRAGs and AOP techniques, code transformations
can be very conveniently implemented as node transformations
on the AST.

• Especially for object-oriented languages, where very complex ex-
pressions are possible, intermediate or back-end code generation
can be very difficult. We have implemented simplifying code
transformations using RAGs and AOP techniques, which appears
to be easier and more elegant than creating a complex code gen-
erator.

Real-time Java

• A prototype implementation of real-time Java, showing that Java
(based on J2SE) is a viable programming language, also for se-
verely resource-constrained, real-time systems. This is, to our
knowledge, the very first implementation of compiled (efficient)
hard real-time Java.

• The transparent Garbage Collector Interface (GCI), which makes
it possible to generate, or write, code independent of which type
of GC algorithm should be used.

• Two different implementations of the Java exception mechanism
which can be used together with an incremental RTGC.

• The Latency versus Predictability trade-off, concerning the use of
non-GC-aware (legacy) code in a real-time Java application, is
brought forward.

10.4 Concluding remarks

With these conclusions and contributions, we can now look back at the
problem statement in Section 1.4 with more confidence and rephrase
the original question as a statement:

10.4. CONCLUDING REMARKS 143

Standard Java can be used as a programming language on
arbitrary hardware platforms with varying degrees of real-time-,
memory footprint-, and performance demand.

To make this possible, enhancements to the Java semantics need to be
made. The Java application should in many cases be natively compiled
in order to meet memory footprint and performance requirements. In
order to meet real-time requirements, support for (and synchronization
with) RTGC is needed.

An inherent limitation of real-time memory management raises a
trade-off to be made between latency and predictability when external,
non GC-aware code is needed.

During the implementation of a prototype compiler, we have found
that compiler construction tools based on AOP and RAGs are very ben-
eficial to the compiler development in terms of encapsulation and ex-
pressiveness, and thus also increasing code readability and quality.

And then, finally, due to our contributions and experiences
from a prototype implementation, there are strong reasons
to believe that our main goal is well within reach:

Write once run anywhere, for resource-constrained real-time
systems, is feasible and can become mature enough for industrial
usage in a near future.

Bibliography

[AHR00] Matthew Arnold, Michael Hind, and Barbara G. Ryder. An
empirical study of selective optimization. In Proceedings of
the International Workshop on Languages and Compilers for Par-
allel Computing. (LCPC ’00), August 2000.

[Atm03] ATmega128(L) Preliminary (Complete), December 2003.
http://www.atmel.com.

[Bak03] Lars Bak. Object-oriented virtual machine for embedded
systems., 2003. http://www.oovm.com .

[BBD+00] Greg Bollella, Ben Brosgol, Peter Dibble, Steve Furr, James
Gosling, David Hardin, and Mark Turnbull. The Real-Time
Specification for Java. Addison-Wesley, June 2000.

[Big98] Lorenzo A. Bigagli. Real-Time Java, - A Pragmatic Ap-
proach. Master’s thesis, Department of Computer Science,
Lund Institute of Technology, October 1998.

[Blo01] Anders Blomdell. Efficient Java Monitors. In The Fourth
IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2001), pages 270–276. IEEE
Computer Society, May 2001.

[Boe81] Barry W. Boehm. Software Engineering Economics. Prentice
Hall PTR, October 1981. ISBN: 0138221227.

[BW01] Alan Burns and Andy Wellings. Real-Time Systems and Pro-
gramming Languages (Third Edition) Ada 95, Real-Time Java
and Real-Time POSIX. Addison Wesley Longmain, March
2001. ISBN: 0201729881.

[Con00] J Consortium. Real-Time Core Extensions. P.O. Box 1565,
Cupertino, CA 95015-1565, September 2 2000.

146 BIBLIOGRAPHY

[CS02] Angelo Corsaro and Douglas C. Schmidt. The design and
performace of the jRate real-time Java implementation. In
Proceedings of the 4thInternational Symposium on Distributed
Objects and Applications, DOA 2002, October 2002.

[DMN68] Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard.
SIMULA 67 Common Base Language. Technical report,
Norwegian Computing Center, 1968.

[DN76] Ole Johan Dahl and Kristen Nygaard. SIMULA – A lan-
guage for Programming and Description of Discrete Event Sys-
tems. Norwegian Computing Center, Oslo, Norway, 5th edi-
tion, September 1976.

[EH04] Torbjörn Ekman and Görel Hedin. Rewritable Reference At-
tributed Grammars. In Proceedings of the 18th European Con-
ference on Object-Oriented Computing (ECOOP) 2004, Olso,
June 2004.

[Ekm00] Torbjörn Ekman. A real-time kernel with automatic mem-
ory management for tiny embedded devices. Master’s the-
sis, Department of Computer Science, Lund Institute of
Technology, November 2000.

[Ekm04a] Torbjörn Ekman. A casy study of separation of concerns in
compiler construction using JastAdd II. In Proceedings of the
Third AOSD workshop on Aspects, Components, and Patterns
for Infrastructure Software (ACI4IS), 2004.

[Ekm04b] Torbjörn Ekman. Rewritable Reference Attribute Grammars.
Licentiate thesis LU-CS-LIC:2004-3, Lund Institute of Tech-
nology, Lund University, Sweden, June 2004. LU-CS-
LIC:2004-3.

[FKR+99] Robert Fitzgerald, Todd B. Knoblock, Erika Ruf, Bjarne
Steensgaard, and David Tarditi. Marmot: An Optimizing
Compiler for Java. Technical report, Microsoft Research, 1
Microsoft Way Redmond, WA 98052, June 1999.

[FSM04] FSMLabs - the RTLinux Company. http://www.fsmlabs.com/,
2004.

[gcj] The GNU compiler for the Java programming language.

BIBLIOGRAPHY 147

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object–Oriented Software.
Addison–Wesley, 1995.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language
Specification. The Java Series. Addison-Wesley, 1st edition,
August 1996.

[GN04] Patrycja Grudziecka and Daniel Nyberg. Real-Time Net-
work Communication in Java. Master’s thesis, Department
of Computer Science Lund University, 2004.

[HCÅÅ02] Dan Henriksson, Anton Cervin, Johan Åkesson, and Karl-
Erik Årzén. On Dynamic Real-Time Scheduling of Model
Predictive Controllers. In Proceedings of the 41st IEEE Con-
ference on Decision and Control, Las Vegas, Nevada, 2002.

[Hed00] Görel Hedin. Reference Attributed Grammars. In Informat-
ica (Slovenia), 24(3), 2000.

[Hen98] Roger Henriksson. Scheduling Garbage Collection in Embed-
ded Systems. PhD thesis, Department of Computer Science,
Lund Institute of Technology, July 1998.

[HFA+99] Scott E. Hudson, Frank Flannery, C. Scott Anaian, Dan
Wang, and Andrew W. Appel. CUP Parser Generator
for Java. http://www.cs.princeton.edu/ appel/modern/java/CUP/,
1999.

[HM02] Görel Hedin and Eva Magnusson. The JastAdd system -
an aspect-oriented compiler construction system. SCP - Sci-
ence of Computer Programming, 1(47):37–58, November 2002.
Elsevier.

[HN99] Mathias Haage and Klas Nilsson. On the scalability of vi-
sualization in manufacturing. In In Proceedings of ETFA ’99,
1999.

[HWG03] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The
C# Programming Language. Addison-Wesley Pub Co, 1st edi-
tion, October 2003. ISBN 0-321-15491-6.

[IBE+02] Anders Ive, Anders Blomdell, Torbjörn Ekman, Roger Hen-
riksson, Anders Nilsson, Klas Nilsson, and Sven Gestegård-
Robertz. Garbage collector interface. In Proceedings of NW-
PER 2002, August 2002.

148 BIBLIOGRAPHY

[Ive03] Anders Ive. Towards an embedded real-time Java virtual
machine. Licentiate thesis, Department of Computer Sci-
ence, Lund Institute of Technology, 2003.

[JL96] Richard Jones and Rafael Lins. Garbage Collection: Algo-
rithms for Automatic Dynamic Memory Management. John Wi-
ley & Sons, 1996.

[JW98] Mark S. Johnstone and Paul R. Wilson. The Memory Frag-
mentation Problem: Solved? In International Symposium on
Memory Management, Vancouver B.C. (ISMM 98), pages 26–
36. ACM, October 1998.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of As-
pectJ. Lecture Notes in Computer Science, 2072:327–355, 2001.
http://eclipse.org/aspectj/.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and John
Irwin. Aspect-oriented programming. In Mehmet Akşit and
Satoshi Matsuoka, editors, Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages 220–
242. Springer-Verlag, Berlin, Heidelberg, and New York,
1997.

[Knu68a] Donald E. Knuth. Semantics of context–free languages.
Mathematical Systems Theory, 2(2):127–145, June 1968. Cor-
rection: Mathematical Systems Theory 5, 1, pp.95–96 (March
1971).

[Knu68b] Donald E. Knuth. Semantics of context-free languages.
Mathematical Systems Theory, 2(2):127–145, 1968. Published
by Springer-Verlag New York Inc.

[Lia99] Sheng Liang. The Java Native Interface. Addison-Wesley,
1999. ISBN 0-201-32577-2.

[Map] Waterloo maple inc. http://www.maplesoft.com.

[Mat] Mathworks inc. http://www.mathworks.com.

[MC60] John Mc Carthy. Recursive Functions of Symbolic Expres-
sions and Their Computation by Machine, Part I. Communi-
cations of the ACM, 3(4), April 1960.

BIBLIOGRAPHY 149

[Me04] Paolo Mantegazza et.al. Rtai - the realtime linux application
interface for linux. http://www.aero.polimi.it/ rtai/, 2004.

[Men03] Fransisco Menjíbar. Portable Java compilation for Real-
Time Systems. Master’s thesis, Dep. of Computer Science
Lund University, September 2003.

[Met] Java-CC Parser Generator. Metamata Inc.
http://www.metamata.com.

[Mod] Modelica. http://www.modelica.org.

[MRC+00] F. Merillon, L. Reveillere, C. Consel, R. Marlet, and
G. Muller. Devil: An idl for hardware programming. In
Proceedings of the Fourth Symposium on Operating Systems De-
sign and Implementation, pages 17–30, San Diego, California,
October 2000. USENIX.

[NBL98] Klas Nilsson, Anders Blomdell, and Olof Laurin. Open
Embedded Control. Real-Time Systems, 14(3):325–343, May
1998.

[NBPF96] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Far-
rell. Pthreads Programming. O’Reilly, 1st edition, September
1996. ISBN: 1-56592-115-1.

[NE01] Anders Nilsson and Torbjörn Ekman. Deterministic Java in
Tiny Embedded Systems. In The Fourth IEEE International
Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC 2001), pages 60–68. IEEE Computer Society, May
2001.

[NEN02] Anders Nilsson, Torbjörn Ekman, and Klas Nilsson. Real
Java for Real Time – Gain and Pain. In Proceedings of CASES-
2002, pages 304–311. ACM, ACM Press, October 2002.

[NL98] Kelvin Nielsen and Steve Lee. PERC real-time API, July
1998. http://www.newmonics.com.

[Rey94] John C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data abstrac-
tion. In Theoretical aspects of object-oriented programming:
types, semantics, and language design, pages 13–23. MIT Press,
1994.

150 BIBLIOGRAPHY

[RH03] Sven Gestegård Robertz and Roger Henriksson. Time-
triggered garbage collection — robust and adaptive real-
time GC scheduling for embedded systems. In Proceedings
of LCTES’03. ACM Press, June 2003.

[RH05] Sven Gestegård Robertz and Roger Henriksson. Accurate
concurrent GC in an uncooperative environment — perfor-
mance vs predictability? In preparation, 2005.

[Rob06] Sven Gestegård Robertz. Automatic memory management for
flexible real-time systems. PhD thesis, Dep. of Computer Sci-
ence, Lund University, May 2006.

[RTJ] SimpleRTJ. http://www.rtjcomm.com.

[SBCK03] Ulrik Pagh Schultz, Kim Burgaard, Flemming Gram Chris-
tensen, and Jørgen Lindskov Knudsen. Compiling Java for
Low-End Embedded Systems. In Proceedings of the 2003
ACM SIGPLAN conference on Language, compiler, and tool for
embedded systems, pages 42–50. ACM, ACM Press New York,
NY, USA, June 2003.

[Sch05] Martin Schoeberl. JOP: A Java Optimized Processor for Em-
bedded Real-Time Systems. PhD thesis, Vienna University of
Technology, 2005.

[Sch06] Martin Schoeberl. JOP - Java Optimized Processor. World
Wide Web, 2006. http://www.jopdesign.com.

[Sie99] Fridtjof Siebert. Hard real-time garbage collection in the Ja-
maica virtual machine. In The 6th International Conference on
Real-Time Computing Systems and Applications (RTCSA ’99),
Hong Kong, December 1999. IEEE.

[Sie00] Fridtjof Siebert. Eliminating external fragmentation in a
non-moving garbage collector for Java. In Compilers, Ar-
chitectures and Synthesis for Embedded Systems (CASES 2000),
San José, November 2000.

[Sie04] Fridtjof Siebert. The impact of realtime garbage collec-
tion on realtime Java programming. In Seventh IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2004), pages 33–40. IEEE Computer So-
ciety, IEEE, May 2004.

BIBLIOGRAPHY 151

[SME] SMErobot — The European Robot Initiative for Strength-
ening the Competitiveness of SMEs in Manufacturing.
http://www.smerobot.org.

[Str00] Bjarne Stroustrup. The C++ Programming Language (Special
Edition). Addison-Wesley Pub Co, February 2000. ISBN 0-
201-70073-5.

[Sun00a] Java 2 Platform Micro Edition (J2ME) Technology for Cre-
ating Mobile Devices, May 2000. Sun Microsystems Inc.
White Paper. http://www.java.sun.com.

[Sun00b] JavaCard 2.1.1 Runtime Environment Speci-
fication, May 2000. Sun Microsystems Inc.
http://java.sun.com/products/javacard/.

[SW01] Fridtjof Siebert and Andy Walter. Deterministic execution of
Java’s primitive bytecode operations. In Java Virtual Machine
Research & Technology Symposium ’01, Monterey, CA, April
2001. Usenix.

[Tim06] Timesys inc. website, 2006. http://www.timesys.com/java/.

[TSL03] Frank Tip, Peter F. Sweeney, and Chris Laffra. Extract-
ing Library-based Java Applications. Communications of the
ACM, 46(8):35–40, August 2003.

[VSWH02] João Ventura, Fridtjof Siebert, Andy Walter, and James
Hunt. HIDOORS - A high integrity distributed de-
terministic Java environment. In 7th IEEE Interna-
tional Workshop on Object-Oriented Real-Time Dependable Sys-
tems (WORDS 2002), pages 113–118. IEEE, April 2002.
http://www.hidoors.org.

[W3C04] Web ontology language owl. http://www.w3.org/2004/OWL/,
2004.

[Xen06] Xenomai real-time framwork for linux. http://xenomai.org,
2006.

Appendix A

Acronyms

AG Attribute Grammar

AOP Aspect-Oriented Programming

API Application Programming Interface

AST Abstract Syntax Tree

CPU Central Processing Unit, microprocessor

GC Garbage Collect(ion|or)

GCC GNU Compiler Collection

GCJ GNU Compiler for Java

GCI Garbage Collector Interface

GUI Graphic User Interface

HAL Hardware Abstraction Layer

J2ME Java2 Micro Edition

J2SE Java2 Standard Edition

JDK Java Development Kit

JIT Just-In-Time

JNI Java Native Interface

154 APPENDIX A. ACRONYMS

JRE Java Runtime Environment

JVM Java Virtual Machine

LJRT Lund Java-based Real Time

OO Object-Oriented

OS Operating System

RAG Reference Attribute Grammar

RT Real-Time

RTAI Real-Time Application Interface for Linux

RTCE Real-Time Core Extensions

RTGC Real-Time Garbage Collection

RTSJ Real-Time Specification for Java

RTOS Real-Time Operating System

UI User Interface

WCET Worst-Case Execution Time

Appendix B

LJRT compiler source

B.1 Abstract grammar for Java

Below is the complete Java context-free grammar used by the JastAdd
tool to produce appropriate AST node types in the LJRT compiler front-
end.

Program ::= CompilationUnit * ;

// 7.3 Compilation Units
CompilationUnit ::= PackageDecl:IdDecl * ImportDecl * TypeDecl * ;

// 7.5 Import Declarations
abstract ImportDecl ::= Access;
SingleTypeImportDecl : ImportDecl;
TypeImportOnDemandDecl : ImportDecl;

abstract Access : Expr;

AbstractDot : Access ::= Left:Expr Right:Access;
PackageDot : AbstractDot;
FieldDot : AbstractDot;
MethodDot : AbstractDot;
TypeDot : AbstractDot;
ThisDot : AbstractDot;
SuperDot : AbstractDot;
ArrayTypeDot : AbstractDot;
ArrayNameDot : AbstractDot;
ArrayDot : AbstractDot;
ClassDot : AbstractDot;
SuperConstructorDot : AbstractDot;

Dot : AbstractDot;

// Specialized static/virtual types used in Liveness analysis
StaticMethodDot : MethodDot;
VirtualMethodDot : MethodDot;
StaticMethodAccess : MethodAccess;

156 APPENDIX B. LJRT COMPILER SOURCE

VirtualMethodAccess : MethodAccess;

TypeAccess : Access ::= Package:IdUse * IdUse;
ArrayTypeAccess : TypeAccess ::= /Package:IdUse * /

/IdUse/
Access
<Dimension: int>;

ThisAccess : TypeAccess;
SuperAccess : TypeAccess;

ArrayAccess : Access ::= Expr;

VarAccess : Access ::= IdUse;
MethodAccess : Access ::= Arg:Expr * IdUse;
ConstructorAccess : Access ::= Arg:Expr * IdUse;
SuperConstructorAccess : ConstructorAccess;
PackageAccess : Access ::= Package:IdUse * ;
PackageOrTypeAccess : Access ::= IdUse;
AmbiguousAccess : Access ::= IdUse;
ArrayNameAccess : Access ::= <Dimension: int> <dummy:boolean>;

ClassInstanceExpr : Access ::= Access Arg:Expr * [TypeDecl];
ClassInstanceDot : AbstractDot;

ClassAccess : Access ::= ;

ParseName : Access ::= IdUse;
ArrayTypeName : Access ::= EmptyBracket * ;
ParseArray : Access ::= Dims * ;
ParseMethodName : Access ::= IdUse Arg:Expr * ;

abstract TypeDecl ::= Modifiers IdDecl BodyDecl * ;

// 4.1 The Kinds of Types and Values
abstract ReferenceType : TypeDecl;
PrimitiveType : TypeDecl ::= Modifiers

IdDecl
[SuperClassAccess:Access]
BodyDecl * ;

NullType : TypeDecl;
VoidType : TypeDecl;

UnknownType : ClassDecl;
IllegalType : ClassDecl;

// 4.2 Primitive Types and Values
abstract NumericType : PrimitiveType;
BooleanType : PrimitiveType;
abstract IntegralType : NumericType;
ByteType : IntegralType;
ShortType : IntegralType;
IntType : IntegralType;
LongType : IntegralType;
CharType : IntegralType;
FloatingPointType : NumericType;
FloatType : FloatingPointType;
DoubleType : FloatingPointType;

// 4.3 Reference Types and Values
ClassDecl : ReferenceType ::= Modifiers

IdDecl

B.1. ABSTRACT GRAMMAR FOR JAVA 157

[SuperClassAccess:Access]
Implements:Access *
BodyDecl * ;

InterfaceDecl : ReferenceType ::= Modifiers
IdDecl
SuperInterfaceId:Access *
BodyDecl * ;

ArrayDecl : ClassDecl ::= Modifiers
IdDecl
[SuperClassAccess:Access]
Implements:Access *
BodyDecl *
<ElementType:TypeDecl>
<Dimension: int>;

AnonymousDecl : ClassDecl ::= Modifiers
IdDecl
/[SuperClassAccess:Access]/
/Implements:Access * /
BodyDecl * ;

abstract BodyDecl;
InstanceInitializer : BodyDecl ::= Block;
StaticInitializer : BodyDecl ::= Block;
ConstructorDecl : BodyDecl ::= Modifiers

IdDecl
Parameter *
Exception:Access *
[ConstructorInvocation:Stmt]
Block;

abstract MemberDecl : BodyDecl;

FieldDecl : MemberDecl ::= Modifiers TypeAccess:Access Va riableDecl * ;
FieldDeclaration : MemberDecl ::= Modifiers

TypeAccess:Access
IdDecl
[AbstractVarInit]; // Simplified

// FieldDecl

VarDeclStmt : Stmt ::= Modifiers TypeAccess:Access Variab leDecl * ;
VariableDeclaration : Stmt ::= Modifiers

TypeAccess:Access
IdDecl
[AbstractVarInit]; // Simplified

// VarDeclStmt

VariableDecl ::= IdDecl EmptyBracket * [AbstractVarInit];

Parameter ::= Modifiers TypeAccess:Access IdDecl EmptyBr acket * ;
ParameterDeclaration : Parameter ::= Modifiers

TypeAccess:Access
IdDecl
/EmptyBracket * /; // Simplified

// Parameter

EmptyBracket;

abstract AbstractVarInit;
VarInit : AbstractVarInit ::= Expr;
ArrayInit : AbstractVarInit ::= AbstractVarInit * ;

158 APPENDIX B. LJRT COMPILER SOURCE

MethodDecl : MemberDecl ::= Modifiers
TypeAccess:Access
IdDecl
Parameter *
EmptyBracket *
Exception:Access *
[Block]; // Create simplified version

// 8.5 Member Type Declarations
abstract MemberType : MemberDecl ::= TypeDecl;
MemberClass : MemberType ::= ClassDecl /TypeDecl/;
MemberInterface : MemberType ::= InterfaceDecl /TypeDecl /;

IdDecl ::= <ID>;
IdUse ::= <ID>;

abstract Expr;

abstract AssignExpr : Expr ::= Dest:Expr Source:Expr;

AssignSimpleExpr : AssignExpr ;
AssignMulExpr : AssignExpr ;
AssignDivExpr : AssignExpr ;
AssignModExpr : AssignExpr ;
AssignPlusExpr : AssignExpr ;
AssignMinusExpr : AssignExpr ;
AssignLShiftExpr : AssignExpr ;
AssignRShiftExpr : AssignExpr ;
AssignURShiftExpr : AssignExpr ;
AssignAndExpr : AssignExpr ;
AssignXorExpr : AssignExpr ;
AssignOrExpr : AssignExpr ;

abstract PrimaryExpr : Expr;
abstract Literal : PrimaryExpr ::= <LITERAL>;
IntegerLiteral : Literal ;
LongLiteral : Literal ;
FPLiteral : Literal ;
DoubleLiteral : Literal ;
BooleanLiteral : Literal ;
CharLiteral : Literal ;
StringLiteral : Literal ;
NullLiteral : Literal ;

ParExpr : PrimaryExpr ::= Expr;

StringLiteralExpr : PrimaryExpr ::= StringLiteral;

PrimTypeClassExpr : PrimaryExpr ::= <ID>;

ArrayInstanceExpr : PrimaryExpr ::= TypeAccess:Access Di ms* [ArrayInit];
Dims ::= [Expr];

abstract Unary : Expr ::= Operand:Expr;
PreIncExpr : Unary ;
PreDecExpr : Unary ;
MinusExpr : Unary ;
PlusExpr : Unary ;
BitNotExpr : Unary ;

B.1. ABSTRACT GRAMMAR FOR JAVA 159

LogNotExpr : Unary ;

CastExpr : Expr ::= TypeAccess:Access Expr;

abstract PostfixExpr : Unary;
PostIncExpr : PostfixExpr ;
PostDecExpr : PostfixExpr ;

abstract Binary : Expr ::= LeftOperand:Expr RightOperand:Expr;

abstract ArithmeticExpr : Binary;
MulExpr : ArithmeticExpr ;
DivExpr : ArithmeticExpr ;
ModExpr : ArithmeticExpr ;
AddExpr : ArithmeticExpr ;
SubExpr : ArithmeticExpr ;

abstract BitwiseExpr : Binary;
LShiftExpr : BitwiseExpr ;
RShiftExpr : BitwiseExpr ;
URShiftExpr : BitwiseExpr ;
AndBitwiseExpr : BitwiseExpr ;
OrBitwiseExpr : BitwiseExpr ;
XorBitwiseExpr : BitwiseExpr ;

abstract RelationalExpr : Binary;
LTExpr : RelationalExpr ;
GTExpr : RelationalExpr ;
LEExpr : RelationalExpr ;
GEExpr : RelationalExpr ;
EQExpr : RelationalExpr ;
NEExpr : RelationalExpr ;

InstanceOfExpr : Expr ::= Expr TypeAccess:Access;

abstract LogicalExpr : Binary;
AndLogicalExpr : LogicalExpr ;
OrLogicalExpr : LogicalExpr ;

QuestionColonExpr : Expr ::= Condition:Expr TrueExpr:Exp r FalseExpr:Expr;

Modifiers ::= Modifier * ;
Modifier ::= <ID>;

// Statements

abstract Stmt;
abstract BranchTargetStmt : Stmt;
Block : Stmt ::= Stmt * ;
EmptyStmt : Stmt;
LabelStmt : BranchTargetStmt ::= Label:IdDecl Stmt;
ExprStmt : Stmt ::= Expr;

SwitchStmt : BranchTargetStmt ::= Expr Case * ;
abstract Case ::= Stmt * ;
ConstCase : Case ::= Value:Expr Stmt * ;
DefaultCase : Case ::= Stmt * ;

IfStmt : Stmt ::= Condition:Expr Then:Stmt [Else:Stmt];

160 APPENDIX B. LJRT COMPILER SOURCE

WhileStmt : BranchTargetStmt ::= Condition:Expr Stmt;

DoStmt : BranchTargetStmt ::= Stmt Condition:Expr;

ForStmt : BranchTargetStmt ::= InitStmt:Stmt *
[Condition:Expr]
UpdateStmt:Stmt *
Stmt;

BreakStmt : Stmt ::= [Label:IdUse];
ContinueStmt : Stmt ::= [Label:IdUse];

ReturnStmt : Stmt ::= [Result:Expr];

ThrowStmt : Stmt ::= Expr;

SynchronizeStmt : Stmt ::= Expr Block;

TryStmt : Stmt ::= Block Catch * [Finally:Block];
Catch ::= Parameter Block;

AssertStmt : Stmt ::= first:Expr [Expr];

LocalClassDeclStmt : Stmt ::= ClassDecl;

B.2 Reachability analysis

As an example on what the LJRT compiler source looks like, the com-
plete source code for performing reachability analysis is shown below.

aspect Reachable {
syn boolean BodyDecl.reachable() circular [false] {

return false;
}

syn boolean InstanceInitializer.reachable() circular [false] {
return getThisClassDecl().reachable();

}

syn boolean StaticInitializer.reachable() circular [false] {
return getThisClassDecl().reachable();

}

syn boolean MethodDecl.reachable() circular [false] {
if (name().equals("main") || name().equals("run")) {

return true;
}
for (Iterator iter = callers().iterator(); iter.hasNext();) {

BodyDecl m = (BodyDecl) iter.next();
if (m.reachable()) return true;

}
return false;

}

syn boolean ConstructorDecl.reachable() circular [false] {
if (signature().equals("Thread()")) return true;

B.2. REACHABILITY ANALYSIS 161

for (Iterator iter = callers().iterator(); iter.hasNext();) {
BodyDecl m = (BodyDecl) iter.next();
if (m.reachable()) return true;

}
return false;

}

syn boolean TypeDecl.reachable() circular [false] {
for (Iterator iter = callers().iterator(); iter.hasNext();) {

BodyDecl m = (BodyDecl) iter.next();
if (m.reachable()) return true;

}
return false;

}
}

aspect CallerCrossRefs {
// Fill in cross-references for callee -> caller

boolean Program.callerCrossRefsFilledIn = false;
private Set BodyDecl.privateCallers = new HashSet();
protected Set TypeDecl.privateCallers = new HashSet();

public Set BodyDecl.callers() {
Program root = getProgram();
if (!root.callerCrossRefsFilledIn) {

root.fillInCallerCrossRefs();
root.callerCrossRefsFilledIn = true;

}
return privateCallers;

}

public Set TypeDecl.callers() {
Program root = getProgram();
if (!root.callerCrossRefsFilledIn) {

root.fillInCallerCrossRefs();
root.callerCrossRefsFilledIn = true;

}
return privateCallers;

}

void ASTNode.fillInCallerCrossRefs() {
for(int i=0; i<getNumChild(); i++) {

getChild(i).fillInCallerCrossRefs();
}

}

void BodyDecl.fillInCallerCrossRefs() {
for (Iterator iter = calls().iterator(); iter.hasNext();) {

BodyDecl m = (BodyDecl) iter.next();
m.privateCallers.add(this);

}
super.fillInCallerCrossRefs();

}

void TypeDecl.fillInCaller(BodyDecl caller) {}

void ClassDecl.fillInCaller(BodyDecl caller) {
privateCallers.add(caller);
for (int i=0; i<getNumImplements(); i++) {

162 APPENDIX B. LJRT COMPILER SOURCE

((TypeAccess) getImplements(i)).type().fillInCaller(caller);
}
if (hasSuperClass()) {

getSuperClass().fillInCaller(caller);
}

}

void InterfaceDecl.fillInCaller(BodyDecl caller) {
privateCallers.add(caller);

}
}

aspect GetProgram {

syn Program ASTNode.getProgram() = getParent().getProgram();

eq Program.getProgram() = this;

}

aspect TCG {
// Total Call Graph
syn Set BodyDecl.calls() {

HashSet s = new HashSet();
this.collectCalls(s);
return s;

}

void ASTNode.collectCalls(Set s) {
for (int i = 0; i < getNumChild(); i++) {

getChild(i).collectCalls(s);
}

}

void MethodDot.collectCalls(Set s) {
s.addAll(potentialTargetMethods());
super.collectCalls(s);

}

void FieldDot.collectCalls(Set s) {
s.addAll(potentialTargetMethods());

}

void ClassInstanceExpr.collectCalls(Set s) {
// Normal Constructor calls
s.addAll(potentialTargetMethods());

}

void ConstructorAccess.collectCalls(Set s) {
// Inside Constructor declaration
s.addAll(potentialTargetMethods());

}

void InstanceOfExpr.collectCalls(Set s) {
// Inside Constructor declaration
s.addAll(potentialTargetMethods());

}

void Catch.collectCalls(Set s) {
// It is not sure that the caught exception is referenced in
// the catch block.

B.2. REACHABILITY ANALYSIS 163

s.addAll(potentialTargetMethods());
super.collectCalls(s);

}

syn Set Expr.potentialTargetMethods() = new HashSet();

eq StaticMethodDot.potentialTargetMethods() {
MethodDecl m = methodAccess().decl();
m.getThisClassDecl().fillInCaller(m);
HashSet s = new HashSet();
s.add(m);
return s;

}

eq VirtualMethodDot.potentialTargetMethods() {
TypeDecl f = getLeft().type();
MethodDecl m = methodAccess().decl();
if (m.getThisClassDecl() != null) {

m.getThisClassDecl().fillInCaller(m);
}
HashSet s = new HashSet();
s.add(m);

for(Iterator iter=m.overriders().iterator(); iter.hasNex t();) {
MethodDecl mo = (MethodDecl) iter.next();
if (mo.hostType().instanceOf(f)) {

if (mo.getThisClassDecl() != null) {
mo.getThisClassDecl().fillInCaller(mo);

}
s.add(mo);

}
}
return s;

}

eq ClassInstanceExpr.potentialTargetMethods() {
ConstructorDecl m = decl();
m.getThisClassDecl().fillInCaller(m);
HashSet s = new HashSet();
s.add(m);
return s;

}

eq ConstructorAccess.potentialTargetMethods() {
ConstructorDecl m = decl();
m.getThisClassDecl().fillInCaller(m);
HashSet s = new HashSet();
s.add(m);
return s;

}

eq FieldDot.potentialTargetMethods() {
FieldDeclaration f = decl();
if (f.getThisClassDecl() != null) {

f.getThisClassDecl().fillInCaller(getThisBodyDecl());
}
HashSet s = new HashSet();
return s;

}

Set Catch.potentialTargetMethods() {

164 APPENDIX B. LJRT COMPILER SOURCE

getParameter().type().fillInCaller(getThisBodyDecl());
HashSet s = new HashSet();
return s;

}

eq InstanceOfExpr.potentialTargetMethods() {
getTypeAccess().type().fillInCaller(getThisBodyDecl ());
HashSet s = new HashSet();
return s;

}

}

aspect SpecializeStaticVirtualCalls {
syn boolean MethodDot.isExactMethodDot() = true;
eq StaticMethodDot.isExactMethodDot() = false;
eq VirtualMethodDot.isExactMethodDot() = false;

rewrite MethodDot {
when (isExactMethodDot() &&

methodAccess().decl().isStatic())
to StaticMethodDot

new StaticMethodDot(getLeft(), getRight());
when (isExactMethodDot() &&

!methodAccess().decl().isStatic())
to VirtualMethodDot

new VirtualMethodDot(getLeft(), getRight());
}

syn boolean MethodAccess.isExactMethodAccess() = true;
eq StaticMethodAccess.isExactMethodAccess() = false;
eq VirtualMethodAccess.isExactMethodAccess() = false;

rewrite MethodAccess {
when (isExactMethodAccess() && decl().isStatic())
to StaticMethodAccess

new StaticMethodAccess(getArgList(), getIdUse());
when (isExactMethodAccess() && !decl().isStatic())
to VirtualMethodAccess

new VirtualMethodAccess(getArgList(), getIdUse());
}

}

aspect OverridesCrossRefs {

// Fill in cross-references for
// - overrides -> overriders
// - TODO: handle implements relation
// - TODO: handle sub/super-interfaces

public Collection MethodDecl.overriders() {
Program root = getProgram();
if (!root.overridesCrossRefsFilledIn) {

root.overridesCrossRefs();
root.overridesCrossRefsFilledIn = true;

}
return privateOverriders;

}

private LinkedList MethodDecl.privateOverriders =

B.2. REACHABILITY ANALYSIS 165

new LinkedList();

boolean Program.overridesCrossRefsFilledIn = false;

void ASTNode.overridesCrossRefs() {
for(int i=0; i<getNumChild(); i++) {

getChild(i).overridesCrossRefs();
}

}

void MethodDecl.overridesCrossRefs() {
for (Iterator iter = overrides().iterator(); iter.hasNext() ;) {

MethodDecl m = (MethodDecl) iter.next();
m.privateOverriders.add(this);

}
super.overridesCrossRefs();

}

}

The reachability analysis module consists of about 400 lines of code,
of the around 16 000 comprising the complete LJRT compiler.

