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Abstract

Embedded computer systems are subject to a multitude of requirements.
These include real-time requirements, that is, such computers must re-
spond to external events within limited time. Many systems, such as
satellites and telephone switches, must also operate unattended for long
periods of time. They must not fail due to defective software.

Modern object-oriented programming languages, particularly Java, of-
fer type safety, automatic memory management (garbage collection), dy-
namic loading of code, and object-oriented abstraction mechanisms. All
these features, designed to increase software quality and flexibility, are
highly desirable in embedded systems. Yet object-oriented languages are
often avoided in such applications. One reason for this is that previous
techniques for worst-case execution time (WCET) predictions are unsuit-
able for object-oriented languages. WCET predictions are necessary to
guarantee fulfilment of real-time requirements.

We present techniques for predicting the WCET of programs in object-
oriented languages. We also show how to predict the amount of memory
required by an object-oriented program; such information is required for
safe scheduling of real-time garbage collection. The techniques are mainly
automatic (assisted by manual annotations) and benefit from integration
with a compiler. They are being implemented in an interactive develop-
ment environment for a subset of the Java programming language.

The presented techniques make object-oriented programming langua-
ges with garbage collection more predictable and thus more appropriate
for hard real-time systems. The declarative implementation technique
(reference attributed grammars) facilitates a clear and concise implemen-
tation suitable for our interactive environment. This interactivity allows
timing problems, requiring revision of design or requirements, to be de-
tected early.
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Introduction

— The Hare, the Tortoise, and Plato

A hare one day ridiculed the short feet and slow pace of the Tor-
toise, who replied, laughing: “Though you be swift as the wind,
I will beat you in a race.” The Hare, believing her assertion to
be simply impossible, assented to the proposal; and they agreed
that the Fox should choose the course and fix the goal. On the
day appointed for the race the two started together. The Tortoise
never for a moment stopped, but went on with a slow but steady
pace straight to the end of the course. The Hare, lying down by
the wayside, fell fast asleep. At last waking up, and moving as
fast as he could, he saw the Tortoise had reached the goal, and
was comfortably dozing after her fatigue.

Slow but steady wins the race.

— Aesop, The Hare and the Tortoise

This thesis treats the development of software for embedded real-time
computer systems. The term embedded means that the computer is an
integral component of some system, rather than being a system of its own
(such as a PC). The term real-time means that the system operates under
special timing requirements, which we will soon elaborate on.

Embedded real-time systems are increasingly important to our society.
They exist both in consumer products and industrial applications, ranging
from mobile phones to industrial robots. Some of these systems are safety-
critical in that a failure can jeopardize people’s safety, such as an aircraft
engine control system.

Programming of real-time systems is, in some respects, different from
other types of programming. The timing requirements, typically expressed
as limitations on program execution time, must be verified. As we will
discuss in Section 3, it is not as simple as running the program and mea-
suring how long time it takes. It is often necessary to predict how long the
execution time of a program can possibly be.
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However, programming of real-time systems also has much in common
with programming in general. In particular, it is desirable to use modern
object-oriented programming languages for the programming of these sys-
tems. Object-oriented languages are often avoided in embedded real-time
systems, partly because they complicate the execution time predictions
just mentioned.

The specific topic of this thesis is techniques and tools for the pre-
diction of execution times, with focus on object-oriented languages. In
Section 1, the area of real-time systems is presented, followed by an in-
troduction to real-time task scheduling in Section 2. Various approaches
to, and aspects of, execution time prediction are presented in Section 3
along with an overview of previous work in the area. Finally, in Section 4,
the approach and contributions of the papers in this thesis are outlined,
including some directions for future research.

1 Real-Time Systems

A real-time system is often defined as a system whose correctness depends
not only on the logical results, but also on the time at which the results are
produced [33]. Such timing requirements are often expressed as deadlines
for computations. With this terminology, a real-time system is one that
must compute results within deadlines. Missing a deadline is considered
to be a failure.

Note that ’real-time’ is not the same as ’fast’. Rather, we want a real-
time system to be predictable, that is, we want to be able to guarantee (to
some degree) that the system will fulfill its timing requirements. A cache
memory, for example, improves average-case performance but is challeng-
ing to predict. (The classic fable of the hare and the tortoise also illus-
trates this point.)

This is not to say that performance is not important for this class of
systems; performance and predictability are just distinct properties.

1.1 Hard and Soft Real-Time Systems

It is common to classify real-time systems as hard or soft. In a hard real-
time system, missing a deadline is a complete failure — a late result is
virtually useless. Worse yet, in a safety-critical system, such a failure
may put humans in physical danger. Embedded real-time systems are
often classified as hard.

Soft real-time systems, on the other hand, can be allowed to miss a
deadline as long as it does not happen too often. Consider a telephone
switch. Specifications state that upon lifting the receiver from the hook,
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a dialing tone should be given within a certain amount of time (say, 0.4
seconds). However, a small additional delay (say, another 0.2 seconds) is
not really a failure. The caller may become slightly puzzled, but can still
make the call.

In practice, many real-time systems are neither completely hard nor
completely soft. Rather, these two models represent the extremes of a
continuum. There is a tradeoff between temporal correctness (i.e., keeping
deadlines) and utilization of computing power.

2 Scheduling of Real-Time Tasks

The software in a real-time system is typically decomposed into a set of
concurrent tasks according to some design strategy (e.g., [7, 30]). The
tasks are often assumed to be periodic. (Even if they are not, they pre-
sumably have maximal frequencies at which they must run — hence, the
worst-case behavior can be expressed as periodic.) To ensure that the sys-
tem fulfills its timing requirements, the execution of these tasks must be
properly scheduled.

Over the last decades, a variety of real-time scheduling techniques
have been developed. The most straight-forward approach is static sched-
uling, that is, to assign execution time slots for all tasks off-line, once
and for all. This approach is easy to implement, behaves predictably, and
has low run-time overhead. However, in many systems tasks are created
and destroyed at run-time (in response to external events). Such dynamic
behavior is difficult to handle using static scheduling.

In dynamic scheduling techniques the real-time kernel decides which
task to execute at any given instant. Since these decisions are not made
in advance, changes to the task set at run-time can be accommodated
relatively easily. A number of dynamic scheduling techniques have been
developed, and many of them have come to industrial use. They generally
have at least the following elements:

A scheduling algorithm for use by the real-time kernel.

A schedulability test, that is, a method to determine whether a given
task set can be safely scheduled using the algorithm. This test can
be used both by a system designer (for the scheduling of the ini-
tial task set of the system) and by the real-time kernel (to decide
whether a new task can be accepted at run-time).

It is also of interest to be able to compute timing properties such as
maximal response times for tasks. Such computations are based on a
number of parameters (in addition to the scheduling technique at hand),
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such as properties of the real-time kernel and its synchronization primi-
tives.

2.1 An Example: Rate Monotonic Scheduling

To exemplify dynamic scheduling, we briefly sketch the rate monotonic
scheduling (RMS) technique [21]. It is a fixed priority scheduling tech-
nique, that is, once a task has entered the system its priority will not
change over time. (The underlying assumption is that the timing proper-
ties of tasks do not change over time.) Of all tasks that are enabled for
execution, the one with the highest priority is executed by the real-time
kernel. The scheduling algorithm is thus established; the question of how
to select task priorities remains.

The rate monotonic task scheduling assumes tasks to be periodic (as
is often the case). It is based on two parameters for each task i: the (fixed)
period Ti and the execution time Ci. The deadline is assumed to equal Ti,
that is, each task execution is required to finish before the next execution
(of the same task) is scheduled for execution.

Priorities are assigned to tasks according to their rate of execution;
the shorter period a task has, the higher priority it gets. A rather simple
condition then states whether a system with n tasks is schedulable (that
is, whether all task executions will complete within their deadlines):

nX
i=1

Ci

Ti
� n(21=n � 1)

If the inequality holds, then the system is schedulable.

3 Predicting Execution Times

Any real-time scheduling technique, such as the rate monotonic schedul-
ing outlined in Section 2.1, assumes the task execution times to be known.
However, the execution time of a task typically varies from one execution
to another. For example, the number of iterations in a loop may vary, and
a memory access may or may not hit the cache memory.

To ensure that the scheduling can accommodate any possible execution
of each task, we need to base the scheduling on the worst-case execution
time (WCET) of tasks. Given that we typically do not know the actual
WCET in advance, we must somehow predict it.

Prediction of WCETs is an area of extensive research. A prediction
of the WCET will, in general, differ from the actual WCET. In a hard
real-time system, the error must be on the conservative side, that is, the
WCET prediction must be equal to or longer than the actual WCET. In
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some softer real-time systems, on the other hand, it may be preferable
to base the scheduling on a shorter execution time than the WCET. In
systems where the average- and worst-case execution times differ signif-
icantly, such an approach can increase utilization of the CPU at the cost
of a few missed deadlines. Real-time applications where this trade-off is
explicit, and even negotiated at run-time, include Quality of Service (QoS)
and feedback scheduling systems [8].

To predict the WCET of a task, two general approaches are possible: to
measure and analyze actual execution times for a number of executions,
or to statically analyze the code and automatically predict the WCET. We
will now review these two approaches in more detail.

3.1 Dynamic Measurements

We need to know how long time a task will take to execute. An obvious
approach, then, is to execute it and measure its execution time. To allow
for variations in execution time, we could perform these measurements on
a number of executions and make sure to cover as many different execu-
tions as possible. We could then add some safety margin to the measured
execution time, and use the result as a WCET prediction.

The primary drawback of this approach is that it is inherently opti-
mistic. There is, in general, no way to guarantee that the longest time
we observe is indeed the longest execution time that can ever occur. The
execution typically depends on some input data, and in an embedded sys-
tem interacting with its environment (e.g., a control application), it may
be impossible to come up with the worst-case input data. Even if a safety
margin is added to the time, it is impossible to tell whether that margin is
sufficient to cover all future executions (unless a very conservative margin
is chosen).

With this drawback in mind, dynamic measurements can indeed be
useful, at least for softer real-time systems. In addition to WCET predic-
tions (albeit optimistic ones), dynamic measurements can provide infor-
mation about the distribution of execution times [31]. They can also show
whether the worst-case execution times are substantially longer than the
average-case ones, and in which contexts the worst-case execution times
occur [28]. Such information can be useful when a task scheduling strat-
egy is chosen.

Another dynamic approach is evolutionary testing [24], where the in-
put to the system is automatically and iteratively adjusted to seek the
worst-case behavior. However, there is still no guarantee that the longest
observed execution time is indeed the longest possible.
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3.2 Static Worst-Case Execution Time Analysis

A complementary approach to dynamic measurements is static analysis.
The purpose of a WCET analysis is to automatically compute a WCET
prediction for a given program. The computed prediction should be con-
servative, that is, the predicted WCET should be at least as long as the
actual WCET. It should, however, be as close to the actual WCET as pos-
sible to ensure proper utilization of the processor.

The most primitive approach is to manually examine the machine code
of interest and compute the WCET as the sum of the individual instruc-
tions’ execution times. This is, however, only feasible for very small and
simple (i.e., trivial control flow) assembler programs running on deter-
ministic processors. High-level languages, complex control flow, and high-
performance hardware require special treatment.

As suggested by Shaw in [32], there are two fundamental aspects of
WCET analysis:

Source level analysis (or structure level analysis) concerns determin-
ing the longest possible execution path in a program, and the execu-
tion time for that path.

Hardware level analysis concerns determining the WCET of segments
of object code with respect to the processor and the memory hierar-
chy (data and instruction cache memories).

Although these two aspects are largely separate, they do interact in
some important ways. The time to execute the longest possible path de-
pends on the processor; conversely, the timing properties of cache memo-
ries depend on the past history, such as the path of execution. Hence, both
aspects should be considered.

3.3 Source Level Analysis

From the perspective of the source code, determining the worst-case exe-
cution time is a matter of control flow. The execution path that takes the
longest time to execute, with respect to loops and conditional statements,
must be identified.

The problem of bounding the number of loop iterations is thus impor-
tant in WCET analysis. The general problem of bounding loops, however,
constitutes a special case of the halting problem (which is known to be
undecidable).

On the other hand, infinite loops are rarely of interest in real-time sys-
tems. Although the cyclic nature of real-time tasks is typically expressed
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/**

* Compute integer approximation to square root of x

* where x is known to be in the range [0..1000].

*/

int sqrt(int x) {

int a = 0;

if (x < 0 || x > 1000) abort("sqrt: x out of range");

while ((a + 1) * (a + 1) <= x) /*$ loop-bound 32 */

a++;

return a;

}

Figure 1 A loop (in C/Java syntax) whose loop bound is difficult for a tool
to deduce automatically, but straightforward for a programmer to provide.
The loop will terminate after at most

�p
1000

�
= 32 iterations. The syntax

of the annotation permits the timing information to be utilized by a WCET
analysis tool, yet ignored by a traditional compiler. (The example is taken,
with cosmetic changes, from [32].)

as an infinite loop, it is not the execution time of that loop we are inter-
ested in. Rather, it is the body of the loop that operates under real-time
requirements.

Programmers write loops that they expect to terminate within some
number of iterations, the loop bound. That bound may be more or less
obvious from the code, but the programmer should always be aware of it.
If no loop bound exists, the WCET is unbounded and the system cannot
possibly be scheduled safely.

Given that a loop bound exists, we could perform some sort of auto-
matic analysis to determine it. Such an analysis would certainly fail for
some complicated loops. (This is inevitable, given the relation to the halt-
ing problem.) However, it may provide useful information in many com-
mon situations, such as for loops with simple integer induction variables.

In other cases, where the loop bound is known to the programmer but
less obvious in the code, annotations (or assertions) can be used to provide
these bounds to a WCET analysis tool. Such situations include, for exam-
ple, loops traversing data structures. An example of an annotated loop is
given in Figure 1. As the example indicates, these annotations are typi-
cally expressed as source code comments adhering to some defined syntax.
They can thus be identified and parsed by a WCET analysis tool, but are
ignored by a traditional compiler.
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Timing Schema

An early conceptual framework for WCET analysis, the timing schema,
was established by Shaw in [32]. Park and Shaw also later developed a
tool based on this concept [26]. The straightforward idea of the timing
schema is to describe timing properties of programs in terms of source
code constructs. For example, the worst-case execution time of the while
statement in Figure 1 is modeled as

Twhile = (Nbound + 1)� Tcond +Nbound � (Ta++ + Tloop ) + Texit

where Nbound denotes the loop bound (32), Tcond denotes the WCET of
the loop condition evaluation ((a + 1) � (a + 1) <= x), Ta++ denotes the
WCET of the statement inside the loop, Tloop denotes the overhead of the
loop (e.g., branching to the loop header), and Texit denotes the time to leave
the loop. Of course, Tcond can in turn be expressed in terms of the times
for multiplication, addition, and comparison.

The timing schema approach thus models execution times in a divide-
and-conquer, syntax-oriented fashion. These times ultimately depend on
times for some atomic blocks, such as individual multiplications or the
loop overhead ascribed Tloop above. The exact boundary of an atomic block
(that is, the interface to the hardware level analysis) is chosen by the tool
designer.

The Balance between Annotations and Analysis

There is a balance to keep between programmer annotations and auto-
matic analysis. On one hand, some properties of the developed program
cannot be deduced by a tool. The halting problem says, simply put, that it
is impossible (in the general case) for an automatic analysis to determine
whether a given program will terminate. This implies that we cannot
expect a WCET analysis tool to handle arbitrarily complex loops.

When restricted approaches to analyzing loops (such as identifying
and analyzing induction variables) are not enough, manual annotations
are needed. Such annotations represent the programmer’s interpretation
of the timing requirements, and it is thus quite reasonable for them to
be explicit in the code. In addition, measurements on existing embedded
code [9] indicate that rather simple control flow dominates, requiring few
and straight-forward annotations.

On the other hand, programmers can certainly make mistakes, and
automatic analysis can sometimes be used to replace or verify annota-
tions. Several researchers have devised techniques for computing loop
bounds and other related properties. Such automatic analyses can, in
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if (x < 5) a = 3;

if (x > 7) a = 9;

Figure 2 A program with a false path. The conditions in the if state-
ments cannot possibly both be true in a single execution (assuming x can-
not be modified by another thread of execution). Thus, the execution path
including both assignments to a is a false one.

some cases, provide loop bounds that are hard to describe using program-
mer annotations. Such a case is nested loops where the number of itera-
tions in the inner loop depends on the value of the index in the outer loop.
(The bubblesort algorithm, for example, is often implemented this way.)

The loop bound prediction technique devised by Healy et al. [12] is
based on classic control-flow analysis. Using information about block dom-
inance and loop frontiers, their analysis can give quite tight predictions
of the number of iterations in loops with integer indices. In particular,
their technique gives tight results for nested loops where the number of
iterations in an inner loop depends on the index of an outer one.

Gustafsson [11] used abstract interpretation to automatically deter-
mine loop bounds and false paths, that is, paths of execution that cannot
possibly be executed due to semantic dependencies. A simple example of
such a false path can be seen in Figure 2. Without consideration to false
paths, the WCET of this code excerpt would include both assignments and
thus be overly conservative.

Park [27] and Bernat [4] used explicit annotations to identify false
paths. Lundqvist [22] used instruction-level symbolic execution for path
analysis. Liu and Gomez [18] used similar techniques (on the source code
level) to determine loop bounds, recursion depths, and false paths. Al-
tenbernd [2] used a related approach to exclude false paths.

Several of the WCET analysis techniques just mentioned can be cate-
gorized as symbolic execution (or abstract interpretation) of the program.
In this context, such symbolic execution differs from ordinary execution
in that variables may assume the value unknown in addition to regular
values. (Input to the program, for example, can be assumed to have that
initial value.) Computations involving unknown values give the result
unknown.

For example, the WCET of an if statement

if (x) s1; else s2;

can then be modeled (in a timing schema fashion) as
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Tif = Tx + Tbranch +

8><
>:

Ts1 x = true
Ts2 x = false
max (Ts1; Ts2) x = unknown

where Tbranch denotes the overhead of any necessary branching in the
if statement.

3.4 Hardware Level Analysis

The rapid development in computer architecture provides a plethora of
research opportunities in WCET analysis. A fundamental principle in
modern computer design is to “make the common case fast” [16]. This
principle focuses on average-case performance, rather than the worst-case
performance considered in real-time systems. Pipelines and cache mem-
ories, both common in modern high-end processors, are average-case per-
formance enhancements with insidious worst-case performance.

It should be noted that such hardware facilities are quite rare in em-
bedded systems, which are typically based on quite simple 8-bit or 16-bit
dedicated microcontrollers [9]. However, as caches and pipelines possibly
become more common in the future, a number of analysis techniques have
been developed to predict their behavior. These analyses typically operate
on an object code representation of the program. This approach results in
some restriction on the code that can be analyzed; in particular, many
approaches below cannot analyze recursive calls and jumps to addresses
given by register contents. As we will discuss in Section 3.5, such indirect
jumps are common in code generated for object-oriented programs.

Pipeline Prediction

Pipelined processors exhibit instruction-level parallelism: several instruc-
tions are processed simultaneously in different stages of execution, ana-
logous to an assembly line. The pipeline stalls (that is, the processor is
halted for a clock cycle) if two or more instructions in the pipeline inter-
fere in some way (for example, if one instruction depends on a result cur-
rently being computed in another stage of the pipeline). During this stall
cycle, the instruction producing the result continues execution, while the
one anticipating the result is suspended. (Stalls may also occur for other
similar reasons.)

To determine the worst-case behavior of a pipelined processor, it is
necessary to predict for which instructions a stall can possibly occur. This
depends not only on the instruction itself, but also on other preceding
instructions.
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Healy et al. [13] predict the worst-case effects of pipelining by associat-
ing pipeline information with each instruction. That pipeline information
is a model of the instruction’s worst-case usage of the pipeline stages. The
pipeline effect of a sequence of instructions can then be computed by con-
catenating the pipeline information for individual instructions.

The extended timing schema devised by Lim et al. [20] associates a
worst-case timing abstraction (worst-case pipeline information) with each
program construct (rather than an execution time, as in the original tim-
ing schema). Timing abstractions are recursively combined, in a fashion
analogous to the original timing schema, to produce timing abstractions
for larger parts of programs.

Lundqvist’s approach [22] also takes pipeline effects into account, as
does the integer-linear programming (ILP) approach taken by Li, Malik,
and Wolfe [19].

Cache Memory Prediction

In modern high-end computers, there is a discrepancy between the cycle
time of the processor and the latency of the main memory. The processor
needs instructions and data at much higher rate (often one or two orders
of magnitude, or more) than the memory can provide. To support a high
processor clock frequency, a small but fast cache memory is used to hold
instructions and data expected to be needed in the near future. In most
cases a required value can be found in the cache; hit rates of 98% are
common. If the value is not found, a cache miss occurs and the value must
be fetched from main memory. Such misses are usually infrequent, but
costly in terms of execution time.

The cache memory is typically divided into an instruction cache and
a data cache, since these kinds of memory accesses follow different pat-
terns. Whereas instruction fetching follows a fairly regular pattern, data
memory accesses are more difficult to model. A given load instruction, for
example, always appears at the same position in memory, but the mem-
ory cell it accesses may vary from one execution to another (depending on
register values).

Predicting the worst-case timing behavior of cache memories is thus a
question of predicting when cache misses can possibly occur. As one might
suspect from the preceding discussion, data caches are more complex to
predict well than instruction caches are. The analysis techniques we re-
view in this Section typically treat these two cache types differently. Since
less information is available (at analysis time) about data memory refer-
ences than instruction fetching, the prediction of data caches is usually
less accurate than that of instruction caches.

Cache prediction requires a rather detailed model of the actual cache
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design at hand. Such a model includes information about whether the
cache is direct-mapped or set-associative [16]. For set-associative caches,
the policy for block replacement must also be known.

The extended timing schema of Lim et al. [20] handles both instruc-
tion and data caches. They also discuss possible hardware support to
increase the accuracy of data cache prediction. Alt et al. [1] use abstract
interpretation to predict the behavior of instruction and data caches. The
ILP approach of Li, Malik, and Wolfe [19] includes prediction of a direct-
mapped instruction cache. Lundqvist’s symbolic execution [22] treats set-
associative instruction and data caches.

Healy et al. [13] categorized instruction cache accesses as always
miss, always hit, first miss, and first hit (conflict) using data-flow ana-
lysis. White et al. [35] extended this approach to handle set-associative
data caches, and Mueller [23] extended it to multi-level caches.

Other Issues

In addition to the pipeline and cache issues previously mentioned, a num-
ber of other considerations exist in hardware level WCET analysis. Con-
text switches and interrupts, for example, invalidate any assumptions
about cache contents in the cache analyses above and thus require spe-
cial treatment. Also, direct-memory access (DMA) interfaced hardware
affects the WCET of executing programs [17, 26].

3.5 Considerations in Object-Oriented Languages

As we will motivate further in Section 4, we are interested in using object-
oriented languages for the development of real-time embedded software.
However, the source language WCET issues discussed in Section 3.3 are
generally aimed at procedural languages such as C. Although most object-
oriented languages share much of their imperative semantics with pro-
cedural languages, there are some additional issues that need to be ad-
dressed.

One such issue is calls to virtual methods (dynamic binding). The
method implementation actually called is determined at run-time (based
on type information) and is thus, in general, not statically known. To
predict the WCET of such a call, a conservative estimation of the set
of possibly called implementations can be made. Related analyses have
been made to facilitate optimizations in compilers for object-oriented lan-
guages [5, 34].

Note that the problem is not solved by resorting to simpler, non-object-
oriented languages such as C. A virtual method in Java essentially corre-
sponds to a function pointer in C. Such function pointers are considerably
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more difficult to handle for a WCET analysis. Thus, an implementation of
a given design may well be more difficult to analyze if it is expressed in C
than in Java.

The Java language supports dynamic loading, which means that such
a conservative estimation may be impossible. Any assumptions about pos-
sibly called methods need to be reevaluated when new code is loaded. As
we will discuss further in Paper III, annotations (similar to those pre-
sented in Section 3.3) can be used in this situation.

Analysis of virtual methods generally requires source code informa-
tion. Most approaches based solely on object code analysis fail when a
jump instruction whose target address is given by a register is encoun-
tered. It is common to implement virtual method calls with such instruc-
tions.

Another important issue is the garbage collection employed by most
object-oriented languages. If the garbage collector is not designed for real-
time use, unpredictable delays will make a WCET analysis impossible.
A number of real-time garbage collection schemes have been developed
using approaches such as scheduling [15, 29] and hardware support [25].
However, these schemes require information about the amount of memory
the garbage collector should manage. We will treat this issue in Paper II.

There is little previous work on WCET analysis for object-oriented lan-
guages. Bernat [4] devised an approach to predict the WCET of Java
bytecode, but did not address the issues of virtual methods and garbage
collection. Gustafsson [11] used type inference to make WCET predictions
in a special real-time dialect of Smalltalk. However, it is unclear how the
garbage collector in that system deals with real-time requirements.

3.6 Analysis Time and Precision

Ideally, a WCET analysis tool should provide exact predictions, be able to
analyze large and small programs with equal ease, and compute its re-
sults in diminutive time. However, these requirements are contradictory
and trade-offs have to be made in a practical tool design.

In WCET analysis approaches based on abstract interpretation, sym-
bolic execution, and related techniques, an analysis is itself an execution
of the analyzed program (only slower). Although such an analysis can
provide much information, the analysis time may be substantial, making
the techniques less suitable for interactive environments.

The halting problem implies that we cannot, in general, even guar-
antee such an analysis to terminate. In particular, for some loops and
recursive calls depending on unknown values, the analysis will not ter-
minate, even if the analyzed program will. Gustafsson [11] evaded this
problem by allocating time budgets to tasks.
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Another issue is the inherently exponential growth of the number of
possible execution paths in a program. Consider, for example, a program
section with N consecutive if statements. The number of possible execu-
tion paths in the program is then 2N . For an analysis that operates on the
object code, such alternative paths occur whenever a conditional branch
appears in the code. For large programs it is infeasible to analyze all these
paths independently; hence, a trade-off must be made for the analysis to
be scalable.

Various approaches are possible to reduce this exponential growth. Al-
Yaqoubi [3] partitioned control flow; while analysis within such a (prefer-
ably small) partition still has exponential complexity, the results for par-
titions can be combined in linear time. In Lundqvist’s approach [22], in-
formation about two execution paths is merged whenever they meet.

These techniques reduce analysis time and complexity at the expense
of precision. Other approaches, such as the timing schema and its vari-
ants, avoid explicit path enumeration and thus make similar trade-offs
implicitly.

4 Approach and Contributions

Object-oriented programming dominates the software development of to-
day. Interestingly, although object-oriented languages have been used in
various contexts since the 1960’s, their fundamentals have not changed
significantly in that time. The semantics of Java [10] are very similar to
those of Simula 67 [6]. Perhaps object-orientation simply suits the way
we think — it does have some striking resemblances to Plato’s theory of
Forms1, an ancient model of the world.

Object-oriented languages are becoming more and more used in real-
time software development, but simpler languages such as C or assembly
code are quite common. One reason for this is that the timing proper-
ties of object-oriented programs are relatively complex to predict, as the
discussion in Section 3.5 suggests. Nevertheless, as increasingly com-
plex embedded systems become ubiquitous in our society, it is desirable
to use modern languages to develop their software. Object-orientation
is indeed already popular for analysis and design of embedded real-time
systems [7]; now we need the language support for their implementation.

4.1 Java in Embedded Real-Time Systems

We base our approach on (a subset of) the Java language [10], which has
received much attention in the community of embedded real-time sys-

1See, for example, the Republic.
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tems. Java is compiled to bytecode, a stack-based code model for a Java
virtual machine (JVM). The JVM is almost always a piece of software
which can be implemented on more or less any hardware platform.

Java’s bytecode approach was originally taken to support code mobil-
ity over the Internet (applets), but has some interesting applications for
embedded systems. Java is designed to support dynamic loading of code,
that is, to load code while the system is running. Such dynamic loading is
desirable in some embedded systems, such as industrial robots, telephone
switches, and satellites, which often cannot be taken off-line without sig-
nificant economic penalties.

The Java language rules enforce safety. The language is designed to
use compile-time checks in as many cases as possible, and to use run-
time checks in the remaining ones. Such checks prevent, for example,
stray pointers from destroying data structures and code in other parts
of the system (thus leading to strange crashes). Violation of Java’s se-
mantics results in a defined behavior (a run-time exception with an error
message at the point of error), rather than the unpredictable behavior of
unsafe languages (a bus error, segmentation fault, or erroneous behavior
at some later, unknown time). Also, the use of garbage collection relieves
the programmer of the notoriously error-prone labor of manual memory
management, reducing the risk for memory leaks and fragmentation.

This safety is especially important in embedded systems, which must
operate autonomously for long periods of time. Unlike some personal com-
puters, they cannot simply be restarted due to crashes a few times a day.
The static typing and run-time checks allow faults to be identified early
during development.

We use Java bytecode not only as the interface between the compiler
and the virtual machine, but also as the the interface between the source
level and the hardware level of WCET analysis. This interface thus repre-
sents the hardware level analysis aspect of our tradeoff between analysis
complexity and precision, as discussed in Section 3.6. The path (source
level) analysis approach is that of the timing schema.

Our work is aimed towards relatively predictable processors, since
these are by far the most common ones in embedded systems. However,
the bytecode approach makes a more aggressive hardware level analysis
within individual bytecode instructions possible.

4.2 Enclosed Papers

In this thesis, we present the foundations of an environment for devel-
opment of object-oriented real-time software. The rest of the thesis is
organized as follows:
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Paper I shows how to use the timing schema as an actual implemen-
tation of the WCET analysis, rather than a specification as originally in-
tended. This is done in a declarative manner using an extended attribute
grammar formalism (reference attributed grammars, or RAGs [14]) which
facilitates a clear, concise, and modular implementation.

The use of RAGs also facilitates an interactive analysis, which is fur-
ther considered in Paper III.

Paper II addresses real-time garbage collection. Existing schemes for
real-time garbage collection require certain information about the pro-
gram, in particular, an upper bound on the amount of live memory used by
the program. That information can be used to schedule real-time garbage
collection safely and is thus analogous to a WCET prediction. In the paper
we show how a live memory analysis can be used to compute a live memory
bound in an object-oriented program. Our approach uses straight-forward
annotations regarding size and shape of data structures. The analysis
takes object-oriented language features, such as inheritance and virtual
methods, into account.

Paper III treats our experimental tool Skånerost. The tool integrates
syntax-oriented editing with Java bytecode compilation, WCET analysis,
and live memory analysis. WCET prediction of virtual method calls in the
presence of dynamic loading of code is discussed. Special consideration is
given to interactivity, that is, allowing the programmer to obtain timing
and memory predictions at any time throughout development.

Whereas the first two papers present our analysis techniques, the
third paper shows how these techniques fit into the development tools
and the associated work process.

4.3 Key Contributions

In this thesis, we show techniques for predicting execution time and mem-
ory bounds of real-time software. Special attention is paid to techniques
for object-oriented languages with garbage collection. Our work is a step
towards making object-oriented languages predictable enough for hard
real-time systems.

The declarative implementation techniques used facilitate not only a
clear and concise implementation, but also interactivity in the resulting
tools. This interactivity is desirable in real-time software development,
where design changes due to timing problems become costly if these prob-
lems are not detected early.
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4.4 Directions for the Future

Several important issues in our work remain. As mentioned in Section 3.5,
virtual methods and garbage collection require special treatment in real-
time systems. Further research is needed to understand how analysis
tools, the run-time system, and the programmer should interact.

Practical experiments to validate our approach will be made. Planned
such experiments target a small embedded microprocessor running the
Infinitesimal Virtual Machine (IVM), a very compact real-time Java vir-
tual machine currently in development at Lund University. However,
much of our work is independent of the bytecode approach and can also
be used in conjunction with compilation of Java to native (machine) code.

While static WCET predictions are useful for hard real-time systems,
dynamic measurements (Section 3.1) can be useful for scheduling of softer
real-time systems. Applications include, e.g., feedback scheduling [8].
Feedback from such measurements in the development environment is
an interesting extension to the present work.

An object-oriented design can convey important timing information.
For example, it can be used to classify tasks as periodic or non-periodic,
and express which parts of the code operate under real-time requirements.
The relation between object-oriented frameworks, annotations, and ana-
lysis needs to be further investigated.

The Skånerost environment is currently under implementation; that
work continues.
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Paper I

Interactive Execution Time Predictions
Using Reference Attributed Grammars

Patrik Persson and Görel Hedin

Abstract

A central problem for real-time scheduling is to acquire tight
but conservative upper bounds on task execution times. We
present a prototype for an environment where such bounds are
interactively presented in terms of source code constructs to
the programmer during development. The prototype is based
on the language development tool APPLAB and uses an ex-
tended attribute grammar formalism, reference attributed
grammars (RAGs), which overcomes some drawbacks of con-
ventional attribute grammars in this context (e.g., description
of non-local dependencies). In this paper we show how timing
schemata can be implemented as RAGs. Our experience is that
the RAG approach allows timing schemata to be implemented
in a clear, concise, and modular manner.



22 INTERACTIVE EXECUTION TIME PREDICTIONS USING RAGS

1 Introduction

Real-time scheduling algorithms, such as [9], generally assume the worst-
case execution time (WCET) of tasks to be known. However, few tools to
predict the WCET are available. Without prediction tools, the only way to
estimate the WCET is to perform actual measurements of execution times
with what is believed to be the worst-case input data. Such measurements
are hard to make and generally not reliable — there is typically no way
of telling whether the longest observed time is in fact the longest time
possible.

Our research is concerned with techniques and tools for predicting the
WCET of real-time programs. We base our WCET analysis on a concep-
tual framework known as timing schema [12]. Since the timing schema is
a set of equations for the execution times of various language constructs,
it would appear suitable to implement using attribute grammars (AGs).
As we will demonstrate, however, conventional AGs have a few drawbacks
in this context, and we instead use an extended variant known as refer-
ence attributed grammars (RAGs). RAGs allow non-local dependencies
(for example, between procedure definition and procedure call sites) to be
expressed concisely [5].

Our WCET analysis techniques are designed for integration with a
compiler, allowing the analysis to be based on both source level infor-
mation and generated code. We base our prototype tool on APPLAB [1],
an environment for interactive development of domain-specific languages.
The environment integrates structure-oriented editing with semantic ana-
lysis and code generation. Our tool provides WCET predictions of the
program (both in parts and as a whole) continuously as the program is
developed.

APPLAB uses a specification language based on the RAG formalism.
The timing schema is described as a module of its own, textually sepa-
rate from the remaining semantic analysis. Other modules include name
analysis, type analysis, and code generation.

In this paper, we show how the timing schema formulation can be used
for the actual implementation of a WCET analysis tool, rather than as a
reasoning methodology as was originally intended. We show the draw-
backs of using traditional AGs for this purpose, and how these drawbacks
are overcome using RAGs. We also report from other experiences from
implementing our WCET prediction tool in APPLAB.

1.1 Paper Outline

In Section 2, we motivate our requirements for a WCET prediction tool.
We also present some related work, including the original timing schema
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concept and its relation to attribute grammars. Section 3 is an overview of
our prototype implementation using RAGs. Section 4 concludes the paper.

2 Timing Properties of Real-Time Systems

Stankovic [13] characterizes real-time systems as follows:

A real-time system is one in which the correctness of the system
depends not only on the logical results, but also on the time at
which the results are produced.

In other words, a real-time system performs its computations within
some timing constraints. This manifests itself in the scheduling of such a
system, where the system’s tasks are scheduled in time to meet the sys-
tem’s timing constraints (task deadlines). Depending on the nature of the
system, a missed deadline may be more or less critical: in a multime-
dia application it may result in a transient distortion in a video stream,
whereas in an engine control system it may result in an engine explosion.

2.1 Predicting the Worst-Case Execution Time

An important area of research is the prediction of the WCET of real-time
tasks. A tool for this purpose should provide a prediction that is a tight
upper bound of the actual WCET. That is, WCET estimations should be
close to, but no lower than, the actual WCET.

The timing schema approach (presented in more detail in Section 2.2)
was originally developed by Shaw [12] and was the basis for an experi-
mental timing tool targeted at a subset of the C language [11]. However,
in that work the timing schema concept was used as a “reasoning method-
ology for deterministic timing” rather than as an actual implementation.

As suggested in [11], the problem of bounding the WCET is twofold:

Hardware level analysis: determining the WCET (in cycles or nanosec-
onds) of a piece of object code on a particular hardware platform.
Modern processors employ a variety of techniques to enhance per-
formance, such as caching, pipelining, and speculative execution [6].
Although these techniques enhance average-case performance, they
also make it considerably more difficult to predict the worst-case
performance. Existing hardware level analysis techniques include
low-level data-flow analysis [14] and the extended timing schema
[8].

Structure level analysis: determining the execution time of the longest
possible path in a program (or part of it) based on the execution



24 INTERACTIVE EXECUTION TIME PREDICTIONS USING RAGS

times of individual pieces of the program. This analysis may be per-
formed at the object code level [10] or the source code level [3].

The research we describe in this paper is focused on structure level
analysis. We do, however, intend to integrate some kind of hardware level
analysis in the future.

A related and interesting problem is to provide the user with feedback
about the program at hand. For this information to be useful and under-
standable, we believe it should be expressed in terms of the source code.
Consequently, we work with source code level concepts; more specifically,
abstract syntax trees (ASTs).

2.2 Timing Schemata and Attribute Grammars

In the timing schema approach, a WCET prediction with each “atomic
block”, where an atomic block is essentially any piece of sequential source
code. (The original timing schema approach is concerned with source code
rather than object code.)

The granularity of atomic blocks is a design parameter of the timing
schema. In our present prototype, we have chosen to associate a constant
WCET prediction with each terminal symbol. We concentrate on combin-
ing those predictions into composite predictions for non-terminals such as
loops, procedures, and tasks.

Once timing predictions have been produced for the atomic blocks in a
program, predictions can be calculated for composite constructions using
their constituents. For example, the time of the assignment statement

a = b * c;

may be described as T (b) + T (c) + T (�) + T (a) + T (=), where T (X)

denotes the worst-case execution (or evaluation) time of the node X in the
abstract syntax tree. Similarly, the time of the if statement

if (exp) stmt1; else stmt2;

may be described as T (exp) + T (if ) + max(T (stmt1); T (stmt2)), where
the function max(a; b) is defined to return the larger of the numbers a and
b.

The timing schema formalism is clear and intuitive, and it seems an
attractive option is to implement a schema using an attribute grammar.
The execution time bounds of the AST nodes can be represented by syn-
thesized attributes, and the timing schema by semantic rules. However,
some important drawbacks arising in practice will be addressed in Section
3.1.
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2.3 The Role of Timing Assertions

The timing constraints mentioned in the beginning of Section 2 are typi-
cally known at the time of system design. Software engineers developing
a real-time system must be aware of these requirements throughout the
development, including during the implementation phase. A while loop,
for example, must never loop more than some fixed number of times. If no
such bound exists, the WCET of the algorithm is unknown and the sys-
tem cannot be safely scheduled. Although this information could in some
special cases be extracted by an analysis tool, it is in fact an important
part of the design.

We allow timing information to be explicitly expressed in the code us-
ing what we call timing assertions. These represent system design pa-
rameters and facilitate a more accurate analysis.

Assertions can also play a slightly different role. In some applica-
tions (in particular, multi-media applications), it is desirable to schedule
some tasks within tighter bounds than the WCET (giving higher perfor-
mance/throughput at the cost of sporadic missed deadlines). Timing as-
sertions complemented with time-out exceptions allow real-time tasks to
fall back on simpler algorithms when deadlines are missed.

A third use of timing assertions relates to object-oriented languages.
The actual code to execute at a virtual method call is determined at run-
time based on object type information. Except in some special cases, it
is not possible to statically determine which code is actually called. In
cases where a global analysis of all possible implementations of a vir-
tual method is not possible, a timing assertion can be associated with the
top-level declaration of a method. This way each implementation of the
virtual method can be checked to ensure that its execution time does not
exceed the execution time specified by the assertion.

2.4 Desired Tool Support

To conclude this section, we propose a WCET prediction tool with the fol-
lowing properties:

� Interactive, source code oriented user feedback. Tools and methods
for non-real-time systems do not generally address the execution
time; it is considered a low-level property of the finished implemen-
tation. For real-time systems, however, the timing properties (in par-
ticular, the execution time) are an inherent part of the system’s be-
haviour. Execution time requirements are specified at design time.
A tool should allow the user to monitor the execution time through-
out development, at different granularity levels such as loops, pro-
cedures, and entire tasks.
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� Possible integration with low-level hardware specific WCET predic-
tion techniques. In Section 2.1, the WCET prediction was separated
into two subproblems. While we focus on the structure level as-
pects of WCET analysis, it is desirable to provide for integration
with hardware level prediction.

� Support for assertions in the WCET analysis. A system should al-
low the user to specify timing constraints (maximum bounds for the
execution time/number of loop iterations) for loops, procedures, and
tasks.

3 An Interactive WCET Prediction Tool Based on
Reference Attributed Grammars

We have implemented a prototype for a WCET prediction tool. The pro-
totype tool operates on a simple experiment language supporting some
advanced object-oriented language concepts such as classes, inheritance,
and qualified access. The language bears some similarities to Java [4],
which we intend to support in the near future.

In the rest of this section, we present some of the considerations that
have to be made when implementing timing schemata using attribute
grammars. We also show how timing schemata may be implemented us-
ing RAGs.

3.1 Implementing Timing Schemata using Conventional At-
tribute Grammars

In Section 2.2, attribute grammars were suggested as an attractive tech-
nique for implementing timing schemata. Although viable for small ex-
amples in simple languages, this approach has a number of drawbacks
when applied to a typical procedure- or object-oriented programming lan-
guage. To see why, consider a function call:

f(a, b)

A reasonable approach to describing the execution time of the call
might be T (a) + T (b) + T (fcall) + T (fbody), where T (a) and T (b) refer to the
time to evaluate the arguments, T (fcall) refers to the time for the func-
tion call itself, and T (fbody) refers to the execution time of the function
body. The problem is the term T (fbody). While the other terms are directly
available as attributes of either the call itself or its immediate children,
the body of the called function is, in general, not automatically available
at the call site. Instead it may be located arbitrarily far away in the AST.
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One possible approach to making the timing information available is to
integrate the timing analysis with the name analysis. The usual approach
to name analysis is to make use of an inherited attribute env containing
a mapping from visible identifier names to declaration information (such
as variable types and function signatures). The declaration information
in this mapping could be extended with an execution time value, i.e. a
relatively modest modification of the specification. However, modularity
is lost since WCET analysis is integrated with the conceptually quite un-
related name analysis.

To keep WCET analysis separate from name analysis, a table could
be associated with each scope in the program. Such a table would hold
the execution time of the body of every procedure declared in the scope.
In a conventional procedural language, the execution times of function
bodies would be available at the call sites by making the table an inherited
attribute in the son nodes of the scope. In other words, this approach
involves another name analysis.

Name analysis for object-oriented languages with inheritance and
qualified access is more complex, since the dependencies between decla-
rations and uses of identifiers do not follow the block structure of pro-
grams. Regardless of which of the two approaches above is chosen, this
complexity is reflected in the WCET analysis. Either modularity is lost
or a substantial amount of administration is required to describe what is
essentially a simple relationship between a function call and the corre-
sponding function body.

3.2 The RAG Implementation in the APPLAB System

We have implemented WCET analysis for a simple object-oriented lan-
guage in our interactive language tool APPLAB (APPlication language
LABoratory), an environment originally designed for interactive develop-
ment of domain-specific languages [1, 2]. APPLAB is based on reference
attributed grammars (RAGs) which is an extension to attribute grammars
that allows attributes to be references to syntax nodes, supporting speci-
fication of non-local dependencies. For example, a use of an identifier may
have a reference attribute denoting the corresponding declaration node.

The APPLAB system allows language specifications (RAGs) and pro-
grams to be edited simultaneously. A program is edited using a language
based editor controlled by the language specification, allowing attributes
of the syntax tree for the program to be displayed. We used this feature to
interactively monitor the WCET for the edited program. Figure 1 shows
a screendump from the system.

In our prototype, WCET analysis is implemented as a separate gram-
mar module. That module is concerned solely with the WCET analysis
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Figure 1 Example WCET analysis in APPLAB. The window labelled T
shows the WCET prediction (the attribute T) of a portion of the program
in the PROGRAM window.

(thus corresponding directly to a timing schema) but uses results (at-
tributes) computed by the name analysis module, as will be shown below.

We focus on the structure level of WCET prediction as described in
Section 2.1, that is, computation of WCET predictions for programs, loops,
and methods based on given WCET predictions of individual atomic blocks.
(In our case, these atomic blocks correspond to terminal symbols.) In the
present prototype, we have assigned constant WCET predictions to all
basic operations, such as assignment, arithmetic operations, and so on.

The remainder of this section is based on on the small object-oriented
language whose context-free syntax is given in Table 1. The language sup-
ports variables, classes, non-virtual functions, qualified access, and state-
ments such as assignments and while statements. The grammar notation
in APPLAB makes use of an object-oriented extension of RAGs where the
nonterminals may be organized in a class hierarchy, and where the pro-
ductions are leaves in this hierarchy. In Table 1 a superclass is shown to
the left of its subclasses (e. g. Use is a subclass of Exp). Attributes and
semantic rules are inherited (in the object-oriented sense) along this hier-
archy. For example, an attribute declared in the Exp nonterminal will be
present in any node which is a subclass of Exp, e.g. QualUse, SimpleUse,
or FuncCall.

The name analysis attribution module connects uses of identifiers to
their declarations. The details of this attribution module are described
in [5] and results in a synthesized attribute decl of the Use nonterminal
denoting the corresponding Decl node. Table 2 shows this brief interface
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Nonterminals Productions
Program ! program { Block }

Block ! Decls Stmts
Decls ! Decl*
Stmts ! Stmt*

IntDeclType: ! int

DeclType BoolDeclType: ! boolean

RefDeclType: ! SimpleUse
ClassDecl: ! class ID SuperOpt

{ Block }

Decl
VarDecl: ! DeclType ID
FuncDecl: ! DeclType ID

( FormalParams )

{ Block }

SuperOpt
Super: ! extends Use
NoSuper: !

FormalParams ! VarDecl*
AssignStmt: ! Use = Exp

Stmt
WhileStmt: ! while ( Exp )

LoopBound Stmt
CompoundStmt: ! { Block }

QualUse: ! Use . UnQualUse
Exp Use

UnQualUse
SimpleUse: ! ID
FuncCall: ! ID ( Params )

LoopBound ! /*$ loop-bound INT */

Params ! Exp*

Table 1 Context-free grammar. (Some minor details, mainly syntactic
sugar, have been omitted.)

to the name analysis module.
The WCET analysis module is shown in Tables 3, 4, and 5. In Table 3,

a synthesized attribute T (modelling the WCET) is declared for the non-
terminals Stmt and Exp, and semantic rules in AssignStmt, SimpleUse,
and QualUse define values for this attribute. (We have denoted the WCET
of the actual assignment by �, the WCET of a variable access by �, and
the WCET of dereferencing a pointer by .) These equations could be ex-
pressed in most attribute grammar formalisms, since the Use and Exp
instances associated with an AssignStmt instance are immediately avail-
able.

Function calls are described as a special use of identifiers, that is, we
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Nonterminals Attributes
Use " decl : ref Decl

Table 2 Interface to name analysis module.

Nonterminals Attributes and Semantic Rules
Exp " T : integer
Stmt " T : integer

AssignStmt T := �+ Use:T + Exp:T
SimpleUse T := �

QualUse T :=  + Use:T + UnQualUse:T

Table 3 Excerpt from the timing schema module.

Nonterminals Attributes and Semantic Rules
Decl " T : integer

FuncDecl T := Block:T
FuncCall T := Æ + Params:T + decl:T

Params
" T : integer
T :=

X
e2Exp*

e:T

Block
" T : integer
T := Stmts:T

Stmts
" T : integer
T :=

X
s2Stmt*

s:T

Table 4 Timing schema for function declarations and calls.

Nonterminals Semantic Rules

WhileStmt
T := �+ Exp:T+

LoopBound:INT:val � (� + Exp:T + Stmt:T )

Table 5 Timing schema for while statements with timing assertions.
The expression INT:val denotes the numeric value of the integer constant
INT.
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have a production FuncCall which is a subclass of Use (refer to Table 3).
Table 4 shows how function calls are described in our timing schema. The
WCET of a function call is represented as a sum of the time for the actual
call (represented by the constant Æ), the time to evaluate the parameters,
and the time to execute the function.

The WCET analysis uses non-local references to analyze function calls.
The decl attribute defined in the name analysis module is a reference to
the declaration of the called function, a non-local reference. The refer-
ence attribute allows the T attribute of the declaration (a FuncDecl) to be
accessed directly in the FuncCall production, without the need for intro-
ducing auxiliary attributes on the path from the FuncDecl to the FuncCall
in the syntax tree. The WCET analysis module is thus completely inde-
pendent on the scope rules of the language: the rule for FuncCall is the
same regardless of if the language is a procedural language with nested
functions, or an object-oriented language (like here) where functions are
inherited from superclasses to subclasses and can be accessed via a qual-
ifying reference, or if any other scope rules are applied. However, to sup-
port also virtual functions (where the function body is not decided until
runtime) the specification has to be extended.

A use of timing assertions is given in the while statement in Table 5.
The statement has an associated loop bound (an integer constant) that
states the maximal number of loop iterations. (INT is a predefined non-
terminal modelling an integer constant.) The WCET of the while state-
ment also includes the constants � and �. The former accounts for any
administration associated with the start and end of the while statement,
and the latter for the overhead associated with each iteration.

A while statement in the language may, for example, look as follows
(the compound statement is executed at most 10 times):

while (flag) /*$ loop-bound 10 */ {

...

}

The assertion represents the programmer’s knowledge about the max-
imal number of iterations. (As discussed in Section 2.3, such bounds must
exist and be known in hard real-time systems.) Compatibility with tra-
ditional compilers is ensured by expressing assertions in terms of special
‘tagged’ comments, similar in concept to the ones used by Javadoc [4].
This technique allows other compilers to parse the code without problems,
while our tool can still predict the WCET.
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3.3 Discussion

Implementation of timing schemata using RAGs in APPLAB suggests at
least three major advantages:

� RAGs provide reference attributes. These permit timing schemata to
be implemented in a clear and concise manner. While the traditional
AG formalism resembles the timing schema concept, the non-local
dependencies that frequently occur in WCET analysis are difficult
to describe in traditional AGs. RAGs allow these non-local depen-
dencies to be described in a concise way.

� RAG modules provide modularity. The timing schema of a language
is described as a module of its own, separate from the name ana-
lysis module. The WCET module is concerned solely with the timing
properties of the language at hand, and strongly resembles the tim-
ing schema. Although the timing schema is textually separate from
other modules, it can exploit results from those modules. The timing
schema module uses, for instance, the decl reference from a proce-
dure call site to the corresponding procedure declaration. That refer-
ence is defined in the name analysis module. This makes the timing
schema module independent of the scope rules of the language.

� APPLAB provides interactivity. For reasons given in Section 2.4,
we want WCET predictions to be readily available throughout the
development of real-time software. APPLAB allows an attribute,
such as the WCET prediction of an arbitrary subtree of the AST, to
be viewed at any time without noticeable delay.

4 Conclusions

We have presented an approach to predicting the worst-case execution
time of real-time tasks. In our tool these execution time predictions are
associated with source level constructs and continuously updated as the
program is developed. We suggest this interactivity to be especially use-
ful in the development of real-time software, where the timing properties
must be kept in mind throughout the development process.

We base our approach on the timing schema concept [12], an intu-
itive way of expressing timing properties of programming languages. Al-
though attribute grammars seem superficially suitable for implementing
timing schemata, the frequently occurring non-local references are not
easily described. The reference attributed grammar (RAG) formalism [5]
overcomes this problem and allows timing schemata to be described as
equations in a straightforward manner.
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Rather than just using the timing schema as a specification, we use
it for the actual implementation. The RAG based specification language
of APPLAB allows attributes and equations for a particular purpose to
be encapsulated into a separate module. In our prototype, one module is
concerned solely with the timing schema and contains only the attributes
and equations associated with that analysis. That module bears a striking
resemblance to the timing schema formulation and holds all information
that is required for the structure level WCET analysis.

Although our work is concerned with structure level analysis, we ac-
knowledge the need to predict the low-level hardware timing behaviour.
For example, the extended timing schema approach [8] (developed to pre-
dict timing behaviour of RISC processors utilizing caches and pipelining)
seems suitable for integration with our approach.

4.1 Future Work

The initial prototype presented in this paper deals with a fictive program-
ming language. We intend to extend our environment to handle the Java
programming language [4] in the near future. This would require us to
address some WCET prediction problems specific to object-oriented lan-
guages:

� Predicting the WCET of virtual method invocations. It is not possible
(in general) to statically determine which code is executed upon an
invocation of a virtual method. We plan to make use of timing asser-
tions (as briefly mentioned in Section 2.3) to handle this problem.

� Predicting the overhead of automatic memory management. Java
employs garbage collection, which may impose unpredictable inter-
ruptions of the execution unless special action is taken. The prob-
lem of predicting execution time overhead recently has been ad-
dressed by integrating garbage collection work with task scheduling
[7]. However, some work remains, such as predicting the maximal
allocation rate and the maximal amount of live memory possible in
a task. We plan to investigate a technique similar to timing schema
for this purpose.
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Paper II

Live Memory Analysis for Garbage
Collection in Embedded Systems

Patrik Persson

Abstract

Real-time garbage collection is essential if object-oriented lan-
guages (in particular, Java) are to become predictable enough
for real-time embedded systems. Although techniques for hard
real-time garbage collection exist, they are based on estima-
tions of the maximum amount of referenced (live) memory.
Such estimations may be difficult to derive manually for com-
plex programs.

We present techniques for predicting the maximum amount
of live memory in object-oriented languages with inheritance
and virtual methods. Annotations are used to bound recur-
sively defined data structures. The annotations may also be
used for timing analysis of code traversing annotated struc-
tures.

A prototype live memory analysis tool has been developed.
The tool interactively provides predictions of the maximum
amount of live memory referenced from an arbitrary reference
or block in an object-oriented program.
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1 Introduction

Object-oriented programming (OOP) and Java are currently attracting
substantial research interest in the embedded systems community. Al-
though OOP is well established in other areas of software development,
some obstacles remain for OOP to become predictable enough for hard
real-time systems.

One such obstacle is the garbage collection (GC) employed in Java and
other languages. The worst-case GC overhead in execution time must
be bounded and known in order to guarantee that the system will fulfill
its timing requirements. Still, the worst case should be as close to the
average case as possible to allow good hardware utilization in a system
scheduled using fixed-priority scheduling.

As shown by Henriksson [10], GC can be used in a hard real-time sys-
tem by integrating GC with task scheduling. However, that scheduling
requires certain information about the program, in particular, the max-
imum amount of memory possibly used by it. The worst-case execution
time of the garbage collection task depends on the worst-case memory
consumption.

We use the term live memory to denote the memory actually referenced
by a program, i.e. the memory occupied by objects the program can use.
In this paper, we present techniques for predicting the maximum amount
of live memory in programs written in a type-safe object-oriented lan-
guage such as Java. We also show how this live memory analysis relates
to and interacts with timing analysis and traditional semantic analysis.
The developed techniques have been implemented in a prototype envi-
ronment allowing the user to interactively monitor predictions of memory
consumption and execution time of a program during development.

1.1 Related Work

A number of efforts exist to adapt Java for use in real-time embedded sys-
tems, both by Sun Microsystems [6] and others [19]. Real-time garbage
collection is fundamental to real-time Java. However, Henriksson’s sche-
duling-based technique [10] requires information about the maximum
amount of live memory for task scheduling. Nilsen’s hardware-assisted
technique [17] requires similar metrics, which must somehow be deter-
mined during system configuration.

Analysis of pointers and references is done in a variety of contexts.
Alias analysis [13, 14] determines whether pointers possibly (or, in some
cases, definitely) point to the same location and is used to decide which op-
timizations can be made during compilation. Shape analysis techniques
[11, 23] determine the shape of data structures by analyzing the code.
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Such analyses can provide conservative classifications of structures into
a few broad classes (such as trees, directed acyclic graphs, or generally
cyclic structures), but cannot be used to bound the sizes of these struc-
tures.

A related area is that of conflict analysis in parallelizing compilers. In
the approach taken by Hendren et. al. [9], data structures are annotated
with brief information about their shape, facilitating a relatively accurate
conflict analysis.

None of the techniques above attempt to bound the amount of live
memory possible in a program. Alias analysis and shape analysis tech-
niques may provide partial information to a live memory analysis, but
in general the information is not sufficient to determine the maximum
amount of live memory.

As will be shown, our work is related to worst-case execution time
(WCET) analysis [12, 15, 20, 24]. The present work is primarily related
to source code level analyses [1, 5, 18].

1.2 Paper Outline

In Section 2 we present our approach and introduce some concepts and
terms, followed by the live memory analysis algorithm in Section 3. Sec-
tion 4 presents our prototype environment, including a brief overview of
the kind of information the environment provides to the user. We discuss
the applicability of the presented techniques in Section 5, where we also
show the relation to real-time garbage collection. In Section 6 we present
our conclusions and directions for future work, such as integration with
other analyses.

2 Terminology and General Approach

In general, it is difficult (in practice impossible) to statically predict the
exact behavior of garbage collection due to variations in input data. If
such predictions were possible, we would be able to replace the garbage
collection with properly placed deallocations altogether.

However, the garbage collector handles more information than we are
interested in here; for example, we are not concerned with the specific
identities of objects that may be referenced during run-time. We focus
our work on determining an upper bound on the amount of live memory
that can possibly exist in a given program at any time. This is a simpler
problem than predicting the actual garbage collection in the general case.

To handle recursive data structures, our approach employs annota-
tions on data structure declarations to aid the analysis. Such annotations
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indicate, for instance, the maximum length of a linked list or the maxi-
mum depth of a binary tree. In general, these annotations indicate the
longest possible sequence of linked objects in the annotated data struc-
ture. Note, however, that several such bounded data structures of the
same type may exist simultaneously.

Although such annotations are probably overly restrictive in general,
they are quite reasonable in real-time software for embedded systems.
The amount of live memory affects the garbage collection overhead and
thus we need an upper bound. In addition, dedicated embedded systems
are typically designed for a specific task and are equipped with a suitable
amount of memory for that task. (Virtual memory is generally not used in
these systems due to the high costs for the infrequent page misses.) These
memory limitations must be known and considered throughout develop-
ment. Thus, the annotations represent information that should already
be known to the programmer.

2.1 Type System Assumptions

Throughout this paper, we assume a Java-like object-oriented type sys-
tem. Dynamic memory is allocated by creating objects. Every object is
an instance of a class. A class contains declarations of data (scalar vari-
ables, such as ints and booleans), references (referencing objects, or being
null-valued), and methods. Subclasses may introduce additional data, ref-
erences, and methods. A class may provide alternative implementations
of methods inherited from its superclass.

Every reference is qualified by a class. We call this class the static
qualification of the reference. The type system guarantees every refer-
ence to either have the null value, or reference an instance of its static
qualification (or a subclass of it).

2.2 Bounding Recursive Data Structures

As long as inheritance and recursive data structures are avoided, the max-
imum amount of live memory can be conservatively (although rather pes-
simistically) estimated by assuming all references to refer to unique ob-
jects. However, the following three circumstances complicate the problem:

� Recursive data structures. Without additional information, it is im-
possible to determine the number of elements in a general recursive
data structure, and thus the amount of memory occupied by it.

� Unnecessary pessimism due to aliasing. The assumption that all
references reference unique objects is generally not true; references
may be used for traversing data structures (similar to loop induction
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variables) or to otherwise simplify data structure traversals (such
as the back reference in a double linked list). Such references are
redundant from a live memory analysis point of view.

� Inheritance and method dispatching as used in object-oriented lan-
guages. Inheritance implies that a reference with static qualification
c also may refer to objects of subclasses of c. Since objects of these
subclasses may contain more data and references than those of their
superclass, the amount of live memory may be affected.

Memory is referenced from activation records for procedures and
methods. Consequently, we also need to consider method dispatch-
ing in our live memory analysis. This will be treated in Section 3.4.

2.3 Classification of References

To cope with recursive data structures, we need class declarations to be
annotated with a maximum traversal length. Consider, for instance, a
linked list. An annotation may be associated with the list element class
and denote the maximum length of a linked list. We call a recursively
defined class with such an annotation a bounded class and a reference to
such a class a bounded reference.

Using the simple declarations in Figure 1 as an example, we divide
references into four categories:

Entry: a reference to some sort of ’root’ in the data structure, such as the
first element of a linked list, the root node of a tree, or the first node
in a directed acyclic graph (DAG). The first reference in Figure 1 is
an entry in this sense.

Link: a reference introducing recursion into a class, such as the next ref-
erence in the example.

Redundant: a reference that always refers to data referenced by other
non-redundant references, thus not referencing any additional live
memory. Such redundant references are used, for example, as ’cur-
rent’ references while iterating through data structures, or to enable
traversals in different directions (as the pred reference in Figure 1).

Simple: a reference to a non-recursively defined class.

To minimize the specification work for the programmer, we would like
to automatically classify references into one of these categories. We em-
ploy a conservative classification scheme which may be complemented by
annotations. References to recursively defined classes are either entries
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class List {

Element first;

}

class Element {

int data;

Element next;

Element pred;

}

Figure 1 A simple recursive data structure: a doubly linked list.

or links: references within the declaration cycle are links, and references
outside the cycle are entries. References to non-recursively defined classes
are automatically classified as simple. Annotations are used to declare
that a reference is redundant.

An interesting extension is to use additional analyses to assist the
programmer in annotating the program. Such analyses may be used both
to verify whether the annotations are consistent with the remaining pro-
gram, and to refine the automatic default annotations (e.g. to detect re-
dundant references). We address this topic further in Section 6.1.1.

The Element class in Figure 1 is recursively defined and can thus not
be analyzed without additional information. The class further contains
two recursive references. However, knowing that the class is in fact a
doubly linked list, the programmer can immediately deduce that the pred
reference is redundant.

The doubly linked list is given in its annotated form in Figure 2. This
representation includes information about the maximum possible length
of a list, as well as the usage of the list (the pred reference is redundant).
The path-bound annotation indicates the longest possible sequence of ob-
jects in the recursive data structure, which in this case corresponds to the
maximum length of a list.

Note that without the redundancy information, the data structure
above would be indistinguishable from a binary tree of depth 50. Such
a tree may contain up to 250 � 1 � 1:12 � 1015 elements rather than the
50 in a list. A live memory analysis without the redundancy information
would clearly be exceedingly pessimistic.
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class List {

Element first;

}

class Element /*$ path-bound 50 */ {

int data;

Element next;

Element pred; /*$ redundant */

}

Figure 2 The doubly linked list in annotated form.

3 Live Memory Analysis

The maximum amount of live memory depends on the execution point.
Memory can be referenced from not only references within the current
activation record, but also from all activation records throughout the call
chain, from the current record to the outermost scope of the program. To
handle this chain of activation records, the prediction of the maximum
amount of live memory is performed in two steps:

1. Predicting the maximum amount of memory referenced by a given
reference variable.

2. Predicting the maximum amount of memory referenced from a block,
possibly via a set of method activation records.

We start with a basic algorithm in Section 3.1. Although this algo-
rithm is unable to deal with some data structures, it serves as an in-
troduction to the more general algorithm in Section 3.2. In Section 3.3,
we present a further generalization to accommodate inheritance, and in
Section 3.4, we present techniques for predicting the amount of memory
referenced from a block.

The algorithms are given in a form suitable for implementation us-
ing attribute grammars in, for instance, a compiler-compiler environment.
We outline an environment based on such an implementation in Section 4.
However, a number of other implementation schemes are possible.

3.1 Basic Algorithm

The idea of our basic live memory analysis algorithm is to recursively
compute the size (in bytes) of the maximum set of objects in the bounded
data structure. The function R(p; c; n) recursively computes the maximum
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amount of memory referenced from the reference p. The two additional
parameters, c and n, are used to convey information between recursive
calls regarding the analyzed recursive data structure. The currently tra-
versed bounded class is c. The integer n represents the remaining depth
to analyze, i.e., the number of times a link to c yet can be traversed.

The algorithm is initially called with the parameters (p;NO_CLASS; 0),
meaning that no bounded class is initially traversed.

R(p; c; n) = sizeof(cp) +
X

q2refs(cp)

R0(q; c; n)

In this equation we denote the static qualification of a reference p by
cp, the size of an object of class c by sizeof(c), and the set of references
declared in class c by refs(c). We thus compute the maximum amount of
memory referenced from p as the sum of the size of the referenced object1

and the sum of the memory referenced by references in cp.
For non-recursive data structures, the function R0 is identical to R,

intuitively computing the maximum amount referenced memory. To cope
with recursive data structures, however, R0 is defined as follows:

R0(q; c; n) =

8>>>>>>>>>><
>>>>>>>>>>:

0 q redundant (i)
R(q; cq; B(cq)) q entry ^ c = NO_CLASS (ii)
R(q; c; n� 1) q link ^ c = cq ^ n > 0 (iii)
0 q link ^ c = cq ^ n = 0 (iv)
R(q; c; n) q simple (v)
– Error – c 6= cq ^ c 6= NO_CLASS (vi)

^ (q entry _ q link)

Case (i) handles redundant references, which do not contribute to the
maximum amount of live memory. Case (ii) occurs when an entry is en-
countered; the reference is traversed as usual, but the c and n parameters
are set to the class cq and its bound B(cq). Case (iii) occurs on traversals
of a link in the data structure; again, the reference is traversed, but the
n parameter is decreased. Case (iv) is the base case, which occurs when
a link has been traversed the number of times the class bound specifies.
Case (v) represents traversals of other (non-recursive) unbounded classes.
The final case, (vi), occurs when a reference to a bounded class (entry or
link) is encountered while traversing a another bounded class. Since the
two parameters of the function can only represent the traversal of one
bounded class at a time, the algorithm fails in this case.

This algorithm can be used to analyze several common data structures,
such as linked lists and trees. However, it prohibits the use of two or more

1We assume a compacting real-time GC algorithm, as in [10]. This implies that no
fragmentation overhead between objects needs to be accounted for.
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different bounded classes in the same data structure, such as a bounded
binary tree with a bounded linked list in each node. If such data struc-
tures are to be analyzed, we must be able to perform an analysis even
when multiple bounds are interleaved, rather than signaling an error as
is done above. The following general algorithm is designed to analyze
such interleaved bounds.

3.2 General Algorithm

For the general form of the algorithm, we use a bound set S consisting of
tuples of the form hc; ni. Each such tuple indicates that the longest possi-
ble remaining sequence of c references is n. We have thus generalized the
second and third parameter of the basic algorithm to a set of such pairs.
(Note, however, that any particular class c occurs in at most one tuple in
S; i.e., S is a mapping from classes to integers.) This generalization allows
us to analyze data structures with multiple cooperating bounds.

As a shorthand, we introduce two infix binary operators. The first is
called the insert operator, is written S � c, and adds the tuple hc;B(c)i to
S. If c is already associated with some integer in S, that association is
removed. The operator is defined as

S � c =

(
(S � fhc; aig) [ fhc;B(c)ig 9 a : hc; ai 2 S

S [ fhc;B(c)ig otherwise

where � is the relative complement operator and [ is the union oper-
ator.

The second operator is called the decrease operator, is written S�c, and
decreases the integer associated with a class c in S by one. It is defined
only if S contains the tuple hc; ni for some n:

S � c = (S � fhc; nig) [ fhc; n � 1ig

We then generalize the R function as follows:

R(p; S) = sizeof(cp) +
X

q2refs(cp)

R0(q; S)

R0(q; S) =

8>>>>><
>>>>>:

0 q redundant (i)
R(q; S � cq) q entry (ii)
R(q; S � cq) q link ^ 9 a > 0 : hcq; ai 2 S (iii)
0 q link ^ hcq; 0i 2 S (iv)
R(q; S) q simple (v)

The five cases in this version of the R0 function correspond directly
to the first five cases of the previous version. However, there is no sixth
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error case; interleaved traversals of multiple bounded classes are accom-
modated by case (ii).

3.3 Inheritance in Object-Oriented Languages

The inheritance mechanism in object-oriented languages is not accounted
for in the algorithms just presented. A reference declared to reference
objects of class c can point to not only c objects, but also to objects of
subclasses of c. Subclasses may add data to the object layout, causing
objects of subclasses of c to be larger than c objects. The analysis above is
thus optimistic in presence of inheritance.

We now describe the extensions necessary for the general algorithm
to give safe predictions of referenced memory when inheritance is used.
These extensions are based on the following two observations:

� Subclasses may introduce additional data or references. A reference
declared to reference objects of class c can reference objects of sub-
classes of c. The function R(p; S) must thus compute the maximum
amount of referenced memory from an object of class cp or any of its
subclasses.

� Superclasses may introduce bounds. Every instance of a class can
be considered to be an instance of any of its superclasses. When
traversing a bounded class c, it is not sufficient to test the static
qualification of an encountered reference p for exact equality with
c; if the static qualification of p is a subclass of c, it must still be
considered to point to a part of the bounded data structure. That
is, bounds should be inherited. (Bounds must not be redefined by
subclasses, however.)

With these observations in mind, the extensions to the general algo-
rithm are straight-forward. Using the notation cp � cq (cp � cq) to indicate
that cp is equal to or a subclass (superclass) of cq, the algorithm looks as
follows:

R(p; S) = max
c�cp

0
@sizeof(c) +X

q2refs(c)

R0(q; S)

1
A

In this equation, we assume refs(c) to include references declared in c

as well as in superclasses of c.

R0(q; S) =

8>>>>><
>>>>>:

0 q redundant (i)
R(q; S � cq) q entry (ii)
R(q; S � cq) q link ^ 9 c � cq; a > 0 : hc; ai 2 S (iii)
0 q link ^ 9 c � cq : hc; 0i 2 S (iv)
R(q; S) q simple (v)
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Again, the five cases in this algorithm correspond directly to those in
the previous algorithms.

3.4 References from Entire Blocks and Activation Records

When extending the techniques above to bound the memory referenced
from an entire block (compound statement, procedure body etc), the ef-
fects of references from activation records throughout the call chain must
be taken into account. Bearing this in mind, we estimate the maximum
amount of memory referenced from a block as

Rblock(b) =

0
@ X

d2b:decls

R(d)

1
A+

�
max

s2b:stmts
Rstmt(s)

�

where Rstmt(s) is the maximum amount of memory referenced during
the execution of statement s, b:decls is the set of reference declarations in
b, and b:stmts is the set of statements in b. For procedure calls, Rstmt(s) is
computed from the procedure body using the same equation as above; for
other statements, Rstmt(s) = 0.

Virtual methods require special consideration. Since the executed
code is not determined until run-time, Rstmt(s) must equal the maximum
amount of live memory referenced from any implementation of the called
method.

These considerations can be summarized as

Rstmt(s) =

8>><
>>:

Rblock(s:decl:block); s procedure call
max

d2impl(s:decl)
Rblock(d:block); s method call

0; otherwise

where impl(s) denotes the set of implementations of the method s and
s:decl:block denotes the body of the called procedure or method.

Recursive procedures and methods require special care, since the num-
ber of recursive calls somehow must be bounded. This requirement is
common in real-time systems; for the worst-case execution time to be
bounded, the depth of recursive calls must also be bounded. Such bounds
may either be given in explicit annotations from the programmer, or de-
termined by special analyses such as the one presented in the following
subsection.

3.5 Relation to Timing Analysis and Semantic Analysis

As mentioned in Section 1, live memory analysis can provide input to
the scheduling of garbage collection in real-time systems. In addition,
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the following three analyses (amongst others) are applicable for real-time
systems:

� name analysis, that is, the mapping of occurrences of identifiers to
declarations,

� type analysis, and

� worst-case execution time (WCET) analysis.

Although the area of WCET analysis is specific to real-time systems,
the former two analyses are performed during compilation of programs
in all high-level languages. Live memory analysis can be performed in
isolation for many programs, but much can be gained from integration
with these other analyses, both in terms of higher accuracy and lower
complexity.

The algorithms presented in this section all use information that can
be obtained from name analysis. The algorithms for bounding referenced
memory in Sections 3.1, 3.2, and 3.3 all require information about the lay-
out of referenced objects. Such a mapping from reference declarations to
classes is typically computed during name analysis. Similarly, the equa-
tions in Section 3.4 require information about procedure/method declara-
tions at the call site, which is also determined during name analysis.

In addition to this name analysis information, the algorithm in Sec-
tion 3.3 requires information about inheritance relationships between
classes. These relationships are typically determined during type ana-
lysis.

The result of the same algorithm also depends on the depth of recur-
sive calls. Determining an upper bound for that depth is a task for the
WCET analysis.

The WCET analysis can benefit from an integration with live memory
analysis. An important subproblem in WCET analysis is to determine up-
per bounds for the number of iterations in loops. Although such bounds
are difficult to compute in general, they can in some important special
cases be derived from the data structure annotations presented in Sec-
tion 2.3. A general discussion of bounding loop iterations and recursive
calls using data structure annotations is beyond the scope of this paper,
but we outline some interesting points of contact with the present work.

One important use of loops is to traverse data structures. Such traver-
sals often follow a generic pattern:
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int traverseList(List l) {

Element e = l.first;

while (e != null) {

...

e = e.next;

}

...

}

If the list is null-terminated (which may be indicated by an annota-
tion, say /*$ null-terminated */), and the list is not modified during the
iteration, we can conclude that the while loop will not iterate more times
than the bound annotation of the Element class specifies.

Similarly, a common use of recursion is to traverse data structures.
Consider the following method (assumed to be declared in the Element
class):

Element find(int data) {

if (data == this.data)

return this;

else if (next != null)

return next.find(data);

else

return null;

}

The depth of the recursive call next.find(data) is bounded by the
bound of the Element class. Again, we require the data structure to be
null-terminated.

4 The Environment

We have implemented prototype analyses of memory allocation and exe-
cution time for a simple object-oriented language in APPLAB (APPlica-
tion language LABoratory), an environment originally designed for inter-
active development of domain-specific languages [2, 3]. APPLAB inte-
grates structure-oriented editing with semantic analysis and code gener-
ation and is based on reference attributed grammars [8], an extended at-
tribute grammar formalism. The language our tool operates on supports
advanced object-oriented language concepts such as classes and inheri-
tance.

Separate attribute grammar modules hold specifications of live mem-
ory analysis, WCET analysis, type analysis, name analysis, and code gen-
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Figure 3 Example live memory analysis. The window labelled R shows
the maximum amount of memory referenced from the first reference. In
addition, the loopBound window shows the maximum number of iterations
in the for loop.

eration. In Figure 3 a screendump is given, showing excerpts of an ex-
ample program as well as the memory analysis module. The screendump
also shows sample predictions of memory consumption and loop iteration
bounds. Such predictions can be interactively viewed while the program
is being edited.

The tool uses data structure annotations as presented in Section 2.3.
These annotations are expressed as special ’tagged’ comments and thus
pose no problem to a traditional compiler, but our tool can parse them and
use the information therein.

The live memory analysis currently implemented is based on a subset
of the algorithms presented in Section 3. The environment provides pre-
dictions of the amount of memory referenced from an arbitrary reference
or block. The WCET analysis is based on the timing schema approach [20]
and provides timing information in terms of source code constructs to the
programmer during development.

The live memory analysis utilizes information from name analysis,
type analysis, and data structure annotations. The WCET analysis uses
information from name analysis, code annotations, and data structure an-
notations. The implementations of the different modules are separated,
however; for example, the complexity of name analysis for object-oriented
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languages is not reflected in either the live memory analysis or the WCET
analysis.

5 Discussion

The algorithms presented in Section 3 are applicable for live memory ana-
lysis of data structures with increasing degree of complexity. The basic
algorithm in Section 3.1 is the least complex to implement and has no
analysis-time memory requirements beyond function call administration.
It cannot analyze data structures where two or more bounds are com-
bined (such as a DAG with a bounded list of edges in each node, as well
as a path bound for nodes themselves). However, it can be used as-is for
large classes of common data structures, such as lists and trees. If a DAG
is implemented with an array of edges (rather than a bounded list) in each
node, the basic algorithm can be used for that data structure as well.

The general algorithm in Section 3.2 handles data structures with in-
terleaved bounds, like the DAG just mentioned. This generality brings a
slightly higher analysis-time cost since the set of traversed bounds must
be maintained. However, we expect the size of the bound set to rarely
become larger than three or four elements.

An extension of the general algorithm to provide safe approximations
in the presence of inheritance was presented in Section 3.3. This exten-
sion may also be adapted to the basic version of the algorithm without
difficulty.

As outlined in Section 3.5, bounds for loop iterations and recursion
depth can in some common important cases be derived from data struc-
ture annotations. This saves work on the programmer’s part, since no
additional annotations need to be associated with traversal loops. Since
the size of a data structure is a property of the data structure rather than
the code using it, we also consider these annotations to be more intuitive
than code annotations.

The presented techniques are primarily intended to be used off-line
during system development to determine scheduling parameters. How-
ever, if dynamic class loading is to be employed (as is possible in Java),
a live memory analysis must be performed on-line whenever a class is
loaded to determine whether the garbage collection can still be scheduled.
Some of the presented algorithms also require global information, such
as the subclasses of a particular class or implementations of a particular
method. If that information is not available at compile time (for example,
due to restrictive separate compilation), the live memory analysis may be
performed on-line at class loading time.

We have based our analyses on explicit annotations associated with
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data structure declarations, similar to the annotations used by Hendren
et. al. for parallelizing compilers [9]. In practice, however, it is desirable
to associate bounds with uses of (i.e. references to) data structures. Such
an extension would allow the existence of data structures of the same type
but with different bounds in a program. This extension is outside the
scope of this paper; however, it does not affect the presented algorithms,
only the form of the annotations.

5.1 Real-Time Garbage Collection — an Application for Live
Memory Analysis

As mentioned in Section 1, an important application for live memory ana-
lysis is to obtain metrics for scheduling real-time garbage collection. In
the remainder of this section we give a brief overview of the approach
developed by Henriksson for his thesis [10].

In this approach, the tasks of a real-time system are divided into two
groups: high-priority (HP) tasks and low-priority (LP) tasks. (The ex-
act priorities of tasks are not important here, as long as all HP tasks
have higher priorities than all LP ones.) An additional garbage collection
process, with priority between the LP and the HP tasks, is scheduled to
guarantee that initialized (i.e. zeroed) memory is always available for the
HP tasks when they require it. The LP tasks, on the other hand, perform
initialization and garbage collection work along with object allocations
within their own contexts.

The garbage collection algorithm used is a variant of Brooks’ algorithm
[4], which is a compacting algorithm. The garbage collection work W that
must have been performed at any given time can be expressed as

W �
Wmax

S �Emax �MHP
� A

where A is the amount of new objects (allocated within the current
garbage collection cycle). Wmax denotes the worst-case amount of work to
perform during a garbage collection cycle and depends on the maximum
amount of live memory. For the purposes of this overview, W and Wmax

can be considered to be measured in seconds. In addition, S denotes the
amount of available memory2, Emax denotes the maximum amount of live
memory, and MHP denotes the amount of memory that is pre-initialized
to be directly available to HP tasks. (MHP depends on the worst-case
allocation rate of HP tasks, which we do not deal with in this paper.)

2More precisely, S denotes the size of tospace as used in Brooks’ algorithm [4].
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6 Conclusions

We have presented techniques for determining an upper bound on the
amount of live memory possible in a task. Such bounds are necessary
for predictable garbage collection in embedded systems. The live mem-
ory analysis algorithms compute conservative estimations which may be
tightened by annotations representing programmer knowledge.

We base our approach on annotations associated with data structure
declarations. These annotations allow us to analyze recursive data struc-
tures in a type-safe object-oriented language such as Java. Care is taken
to accomodate object-oriented language concepts such as inheritance and
virtual methods.

We have outlined how the WCET analysis can benefit from the anno-
tations as well. An important and common use of loops and recursive calls
is to traverse data structures, and the presented data structure annota-
tions can in many cases be used to compute bounds for loop iterations and
recursion depths. We claim this approach to save the programmer from
unnecessary repetitive code annotations.

Although our prototype tool operates on a simple fictive language, it
shows how data structures in a type-safe object-oriented language like
Java may be conveniently annotated and automatically analyzed.

6.1 Future Work

We are working on extending our tool to handle the Java language and
further investigate the interplay between live memory analysis, WCET
analysis, and semantic analysis. As mentioned in Section 5, it would be
advantageous to associate bounds with uses of data structures rather than
declarations. Such an extension allows data structures of the same type
but with different bounds to co-exist. We would also like annotations
to reference other annotations. For instance, annotations for complex
traversing loops (which cannot be analyzed using the techniques outlined
in Section 3.5) may reference annotations for the traversed data struc-
ture. Similarly, iterator objects (as used in the Java libraries) may exploit
this information.

As mentioned in Section 5.1, Henriksson’s real-time garbage collector
requires some more information than a live memory analysis can provide,
such as the worst-case allocation rate of high-priority processes. We plan
to investigate an approach analogous to the timing schema [20] for this
purpose.
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6.1.1 Combination with Other Analyses

The presented live memory analysis can be complemented by a number
of other analyses. In Section 3.3 a reference with static qualification c

was assumed to possibly reference an object of class c or any subclass of
c. A points-to analysis [21] can provide more detailed information about
which objects a given reference actually can refer to, excluding a number
of impossible cases. Similar analyses can be used to determine which
implementations of a virtual method can be called from a given call site
[22], thus improving on the pessimistic assumptions in Section 3.4.

The redundancy annotations presented in Section 2.3 would probably
benefit from a complementing alias analysis. Such an analysis can pro-
vide redundancy information automatically in some cases. However, since
such an analysis must be conservative, we believe explicit programmer
annotations to be useful where an alias analysis may be unable to give a
sufficiently exact result. The redundancy annotation in the doubly linked
list example in Section 2.3 may be difficult to determine by an alias ana-
lysis, but significantly influences the live memory analysis. In such cases,
an alias analysis may be used to verify explicit annotations by attempting
to find contradictions between annotations and uses of references.

Although alias analysis may be used to verify some annotations, com-
plete static verification is not possible in the general case. (As in all veri-
fication work, we can ultimately only find faults, not prove their absence.)
A reasonable approach would be to use various run-time checks during
development, and disable those checks in the final product in a fashion
similar to contracts [16].
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Paper III

An Interactive Environment for
Real-Time Software Development

Patrik Persson and Görel Hedin

Abstract

Object-oriented languages, in particular Java, are beginning
to make their way into embedded real-time software devel-
opment. This is not only for the safety and expressiveness
of the source language; the mobility and dynamic loading of
Java bytecode make it particularly useful in embedded real-
time systems.

However, using such languages in real-time systems makes
it more difficult to predict the worst-case execution time of
tasks. Such predictions are necessary for predictable task sche-
duling in the developed system. Garbage collection, common
in object-oriented languages, must be considered; to schedule
garbage collection safely, we must know how much memory it
has to handle. Dynamic binding in conjunction with dynamic
loading of code also needs treatment.

We show how techniques for predicting time and memory
demands of object-oriented programs are integrated into the
Skånerost development environment. The environment explic-
itly targets an iterative development process, which is partic-
ularly important in real-time software development since time
and memory demands cannot be determined until the code is
written. Design changes due to timing problems become more
costly as development progresses, and Skånerost allows such
problems to be detected early.
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1 Introduction

In the past, programming of embedded hard real-time systems was of-
ten done by hardware engineers primarily to make the hardware work.
The programs were small and typically written in assembly or low-level
C code.

Today, more microprocessors are sold for use in embedded systems
than for desktop computers. Embedded real-time systems become more
commonplace, but they also become more complex. Mobile telephones,
photocopiers, and industrial robots are today all based on substantial
amounts of software. At the same time, many embedded systems (such
as aircraft control systems) are safety critical.

To reduce development effort and increase portability and reliability,
a number of efforts [16, 22] are made to adapt high-level languages, in
particular Java [5], to hard real-time applications. Besides being a mod-
ern object-oriented source language, Java is compiled to portable bytecode
for execution by a Java virtual machine. This enables dynamic loading of
code, which is of particular interest in many embedded systems, such as
industrial robots and satellites.

Java is designed to be a safe language. Compile-time checks are used
as far as possible, and run-time checks are used in the remaining cases.
This safety of the language facilitates early detection of errors and thus
implies safety in the developed system. Such safety is important in the dy-
namically configured systems mentioned above, where dynamically loaded
code must not cause any existing code to fail. In other cases, where pre-
dictability requirements rule out dynamic solutions, the need for safety is
yet more emphasized.

Real-time software development also places pressure on the software
development tools. One of the most fundamental features of a piece of
real-time software, its worst-case execution time, is also one of the most
difficult ones to predict. Modern object-oriented languages, with mecha-
nisms such as dynamic binding (virtual methods) and garbage collection,
complicate the problem further.

Since the correctness of the real-time system as a whole depends on
whether timing requirements are met, it is of paramount importance to
provide continuous timing feedback to the programmer during develop-
ment. The Skånerost1 development environment, presented in this paper,
is designed to provide such feedback.

1The name refers to a rather strong coffee blend originating in the Skåne province in
southern Sweden.
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1.1 Paper Outline

In Section 2 we present the aspects of real-time software development
that influence our development tool design, including some related work.
In Section 3 we present our approach to predictable real-time Java and
some associated analysis techniques. In Section 4 we present the Skåne-
rost environment. Section 5 concludes the paper.

2 Aspects of Real-Time Software Development

The key property of a real-time system is that it performs its computa-
tions within some sort of deadlines. The severity of missing a deadline
depends on the application; in an engine control system, it may result in
permanent engine damage, whereas in a real-time video application, it
may merely result in a transient image distortion.

2.1 Worst-Case Execution Time

Real-time systems are typically modeled as a set of concurrent, periodic
tasks. These tasks must be scheduled in a way that ensures that the sys-
tem can fulfill its timing requirements. More precisely, the task schedule
in a real-time system is based on the following parameters:

Task period: the interval with which the task is launched for execution.

Task deadline: the point in time when a particular execution of the task
must be finished.

Worst-case execution time (WCET): the largest amount of execution
time possibly required for any execution of the task.

Real-time scheduling is a well established research area and a number
of scheduling techniques are available, e.g., [13]. However, they all require
values for the parameters above (and possibly more).

Whereas the first two parameters (periods and deadlines of tasks) are
usually design parameters, the third parameter, the worst-case execution
time, cannot be deduced from the requirements. Instead it is a property
of the executable code and the hardware it runs on. A WCET analysis
of the code is required to predict its WCET, based on some model of the
target environment. (Our target environment is described in Section 3.) A
requirement for the WCET can be stated, of course, but that requirement
must still somehow be verified.
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2.2 Supporting an Iterative Development Model

It is desirable to obtain WCET predictions throughout development, not
just for the final code. Such predictions may concern the execution time
of individual loops, methods, or entire tasks. Should these predictions
indicate that the system’s timing requirements cannot be met, either the
design must be revised or the timing requirements must be reassessed.
In any case, such a timing problem should be detected as early as possible
during development.

2.3 Related Work

Most approaches to WCET analysis are targeted towards object code, e.g.,
[11, 12, 14, 25]. Such analyses have difficulties with object-oriented lan-
guages, where invocations of virtual methods are compiled to indirect
jumps via pointers. Object code analyses can, in general, not analyze such
function pointers.

There are very few publications available on WCET analysis for object-
oriented languages besides our own work. Bernat [2] presents an ap-
proach to WCET analysis of Java bytecode, but does not discuss dynamic
binding or garbage collection. Gustafsson [6] uses abstract interpretation
to analyze programs in a special real-time dialect of Smalltalk. He uses
type inference to facilitate a WCET analysis of method calls, but does not
address the issues of dynamic loading and garbage collection as done in
this paper.

The tool we will present allows the programmer to obtain predictions
of code portions throughout development. Other approaches typically use
less interactive techniques such as integer-linear programming (ILP) [11]
or abstract interpretation (symbolic execution) of the object code [6, 14]
(which may not terminate). Ko et al. [10] describe an interactive timing
analysis environment; however, in that work, the interactive user inter-
face is invoked after a complete analysis of the entire program. They
further focus on compiled C code and hardware aspects, rather than the
Java bytecode approach in the present work.

3 Predictable Real-Time Java

The target language of our techniques is a subset of Java, supporting
classes, inheritance, and dynamic binding. Excluded language features
currently include method overloading, interfaces, and exceptions; these
will be considered in the future.

We also support the compilation of Java to portable bytecode, a tech-
nique originally developed to facilitate code mobility over the Internet in
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the form of applets. Our motivation is somewhat different. Being able to
transport code over a network and dynamically load it into a virtual ma-
chine in a safe manner is particularly useful in the context of embedded
systems, and has enabled interesting consumer technologies such as Jini
[23]. The bytecode approach can also add safety to dynamic loading of
embedded controller code as previously done in C/C++ [18].

The bytecode language constitutes a clean cut between the high-level
language and the execution environment. This division is useful for WCET
analysis. By encapsulating the timing properties of the virtual machine
into a special virtual machine timing model, porting of the WCET ana-
lysis to new platforms is made easier. In our current timing model, we
ascribe a constant WCET to each bytecode instruction.

As we will discuss more when we treat the analyses, we use annota-
tions in the source code to provide information that should be obvious to
the programmer but is difficult for a tool to deduce. These annotations are
expressed as source code comments adhering to a special syntax. Such an-
notations can be identified and used by an analysis tool, yet ignored by a
traditional compiler.

One particular case where annotations are sometimes needed is loops.
In many important cases, the maximal number of loop iterations can be
deduced automatically from the code. For more complicated loops, how-
ever, explicit annotations are required to indicate the upper bound. In any
case, the halting problem implies that no tool can automatically analyze
arbitrary loops.

Although this may at first appear to be a restriction of the language,
it is in fact an ubiquitous circumstance of real-time software: if no loop
bounds exist, the WCET cannot be bounded either, and the code cannot
be scheduled safely. The programmer must thus be aware of these bounds,
and it is reasonable to require this knowledge to be stated in the source
code.

3.1 WCET Analysis Techniques

A WCET analysis is used to predict the worst-case execution times of
tasks. Using object-oriented languages like Java in real-time systems
complicates the analysis:

Garbage collection requires special treatment. In a real-time system,
a classic “stop-the-world” garbage collector would introduce indeter-
ministic response times and invalidate the assumptions of the task
scheduling.

Dynamic binding (virtual methods) must also be considered. Unlike or-
dinary function or procedure calls, the code to execute upon a virtual
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method call is not statically known: it is determined at run-time.
Static WCET prediction of such a call requires special techniques.

Our general approach to WCET analysis is based on the timing schema
[21] in an attribute grammar context [20]. We will now discuss our ap-
proach to the just mentioned issues in WCET analysis for object-oriented
languages.

3.2 Real-Time Garbage Collection

As shown by Henriksson [9], a garbage collector can be used in a hard real-
time system by proper scheduling of the garbage collector. The garbage
collection work is scheduled into suitable time slots, and high-priority
tasks are guaranteed instant access to free memory. We base this dis-
cussion on Henriksson’s real-time garbage collection approach.

Predictable garbage collection is not only a matter of execution time.
It is also important that the fragmentation of memory is predictable (and,
of course, preferably small). If it is not, real-time tasks cannot be guaran-
teed access to memory. To handle fragmentation, a compacting garbage
collector is used; that is, the heap is constantly re-organized to keep frag-
mentation low. (Such a garbage collector may appear to harm the re-
sponse times of real-time tasks. To the contrary, however, the scheduling
approach allows these response times to be reduced, since memory man-
agement administration is handled entirely in a separate task.)

As the preceding discussion suggests, the amount of garbage collection
work that needs to be scheduled depends on the memory consumption of
the program at hand. Henriksson’s approach requires information about
the amount of live memory used by the program, that is, the memory oc-
cupied by objects the program can use. Other real-time garbage collectors
use similar parameters [17].

Analogously to the WCET analysis, a live memory analysis can be used
to compute an upper bound on the amount of live memory required by a
program. For simple, non-object-oriented programs this upper bound can
be conservatively (but pessimistically) estimated by assuming all refer-
ences to refer to unique objects. In general, however, some considerations
must be made:

Recursive data structures. Without additional information, it is im-
possible to determine the number of elements in a general recursive
data structure, and thus the amount of memory occupied by it.

Aliasing. The assumption that all references reference unique objects is
generally not true; references may be used for traversing data struc-
tures (similar to loop induction variables) or to otherwise simplify
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data structure traversals (such as the back reference in a double
linked list). Such references are redundant from a live memory ana-
lysis point of view.

Inheritance. Inheritance implies that a reference with static qualifica-
tion c also may refer to objects of subclasses of c. Since objects of
these subclasses may contain more data and references than those
of their superclass, the amount of live memory may be affected.

Dynamic binding. Dynamic binding affects control flow, which in turn
affects memory use.

We use annotations from the programmer to get information that is
known to the programmer but difficult for a tool to deduce accurately, such
as shape and size of data structures. The exact form of our annotations
will be presented in Section 4, where we present our tool.

Information about the sizes of data structures is, of course, vital to
the live memory analysis. Information about the shape of data structures
is equally important; without it, a doubly linked list of length 50 would
be indistinguishable from a binary tree of depth 50. (Both are typically
described by a class C containing two recursive references to C itself.)
Such a tree may contain up to 250 � 1 � 1:12 � 1015 elements rather than
the 50 in a list. Although techniques for shape analysis exist for other
purposes, these are too conservative to facilitate an accurate live memory
analysis. Other researchers have recognized the need for annotations to
improve the accuracy of shape analysis [8].

Based on these rather straight-forward annotations, our live memory
analysis algorithm [19] computes an upper bound on the amount of live
memory in a program.

3.3 Dynamic Binding

An automatic WCET analysis of method calls is possible in some cases.
If information about all possibly called implementations of a particular
method are available for analysis, one safe WCET estimation is the longest
WCET of these implementations.

This approach assumes that any of the existing implementations may
be called from a given call site. Such an approximation may be improved
by using existing type analysis techniques (e.g., [24]) developed for opti-
mizing compilers. A similar approach is taken in [6].

However, a global analysis is not always possible. Java’s dynamic class
loading allows new implementations of a given virtual method to be intro-
duced at run-time. We suggest another approach to handling timing re-
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quirements on virtual methods (in the context of dynamic class loading),
based on two observations:

� The WCET of a method call should be known to the programmer im-
plementing that call, even if the implementation is not yet available.
If the execution time of the call is unknown, the programmer has no
way of fulfilling the timing requirements.

� When a new class is loaded, it must not break the timing assumptions
of the existing system. A new implementation of a virtual method
should not cause any code calling that method to miss its deadline.

These requirements are analogous to those for the type system in any
statically typed programming language. For example, assume that the
function f accepts a single integer argument. This information is used
both for semantic analysis of calls to f (to ensure that a call passes an
integer argument) and of f itself (to ensure that it accepts an integer ar-
gument).

Timing constraints, such as bounds on WCETs of virtual methods, con-
stitute interface information and should be treated in a manner similar
to type information. We thus advocate expressing timing constraints on
a virtual method in the method’s signature, along with the types of the
parameters and the return value. This information is expressed as anno-
tations, as discussed in the beginning of Section 3.

To give concrete form to the preceding discussion, Figure 1 shows a
small example of an embedded PID controller. The framework allows a
method display in the operator interface to be called (to display, e.g., the
control signal and reference value) upon each iteration of the controller.
The controller should be possible to use with a variety of operator inter-
faces. As an example, an implementation of the operator interface can
use display to buffer results for use by another task. Regardless of the
implementation, we want to bound the WCET of display to maintain pre-
dictability of the controller.

4 The Skånerost Environment

In Figure 2 an overview of the Skånerost environment is given. It shows
the principles of how the tool, the programmer, and the execution envi-
ronment (the virtual machine) are interconnected.

Three key properties of the environment are shown in this figure:

� Integration of analysis and compilation. Both WCET analysis and
live memory analysis gain from using information from the compi-



THE SKÅNEROST ENVIRONMENT 67

class PIDController extends RealTimeThread {

private double uc, y, u, v;

private GUI myGUI = null;

...

public synchronized void setGUI(GUI g) { myGUI = g; }

public synchronized GUI getGUI() { return myGUI; }

public void run() {

long t = currentTime();

while (true) {

y = IO.getY();

uc = IO.getUc();

calc_output();

IO.setU(u);

update_states();

GUI g = getGUI();

if (g != none) g.display(uc, y, u); // ............ (A)

t += 100;

waitUntil(t);

}

}

}

class GUI {

...

abstract public void display(double uc,

double y,

double u)

/*$ time-bound 25ms */; // ........................... (B)

}

class BufferedGUI extends GUI {

...

public void display(double uc,

double y,

double u) {

// Real-time stuff goes here. ........................ (C)

}

}

Figure 1 Expressing WCET bounds for the operator interface in a PID
controller. The call at (A) has a bounded WCET, since the top-level decla-
ration of the called method at (B) has a WCET bound associated with it.
The implementation at (C) must adhere to this bound.
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Figure 2 Overall design of Skånerost.

lation, such as name/type information and generated code. This in-
tegration thus reduces the complexity of the analysis implementa-
tions.

� Continuous feedback to the programmer.

� Compilation to bytecode.

Skånerost is based on the APPLAB language tool [3, 4]. We use AP-
PLAB’s specification language for implementation of all aspects of compi-
lation and analysis: semantic analysis, code generation, WCET analysis,
and live memory analysis. The specification language uses Reference
Attributed Grammars (RAGs) [7], a special kind of attribute grammars.
RAGs allow attributes to be references to syntax nodes, making it easy to
express non-local dependencies (such as those between declarations and
uses of variables). Non-local dependencies are especially complex to han-
dle in object-oriented languages, where they do not necessarily follow the
block structure of programs.

The syntax-directed editor in APPLAB allows an arbitrary attribute
(as defined in an attribute grammar) to be inspected by the programmer
at any time during development. The WCET of a part of the developed
code (such as a loop or a method) is represented by an attribute in the cor-
responding syntax node. The amount of live memory possibly referenced
by a particular declaration in the program is represented in the same way.

We will now outline the internals of the components of Skånerost: com-
pilation, WCET analysis, and live memory analysis.
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Figure 3 Source code (left) and the corresponding compiled bytecode
(right).

4.1 Compilation to Bytecode

Java source code is compiled to an internal representation of Java byte-
code. This internal representation is used both for additional analyses
and unparsing to a text representation for use by the Jasmin bytecode
assembler [15].

One such additional analysis of the internal bytecode representation
is used to determine the required stack depth of each method. Since the
Java virtual machine is stack-based and an operand stack is allocated in
each method frame, the stack depth requirements for each method must
be specified in the compiled bytecode. This information is computed by an
analysis of the internal bytecode representation.

An example showing Skånerost containing an edited Java class and
the compiled bytecode is given in Figure 3.

4.2 Worst-Case Execution Time Analysis

The WCET analysis uses the internal bytecode representation just men-
tioned. It also uses information from the source code, such as annota-
tions from the programmer. In Figure 4, the source code of a polynomial
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Figure 4 Source code of a polynomial controller and predictions for that
code. The T window shows the worst-case execution time of the calc_u
method, and the R window shows the amount of memory referenced from
a PolyController instance.

controller is shown. The output of the controller is computed from the
equation

R(q)u(k) = T (q)uc(k)� S(q)y(k)

where u(k) is the output at (discrete) time k, uc(k) is the command
signal, y is the measured process output, and R(q), S(q), and T (q) are
polynomials in the forward-shift operator [1, Eq. 5.2].

The predicted worst-case execution time of the calc_u method is shown
in the T window. (The exact value depends on the virtual machine timing
model mentioned in Section 2.2.) This prediction can be used both as a
scheduling parameter and as feedback (regarding the program’s ability to
meet its deadlines) to the programmer.
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4.3 Live Memory Analysis

As discussed in Section 3.2, recursively defined data structures require
special treatment in live memory analysis. The class PolyTerm in Figure 4
has an annotation (/*$ path-bound 10 */), indicating that at most 10 in-
stances of that class appear in sequence (that is, each polynomial in this
controller has at most 10 terms). Without this information, the amount
of live memory cannot be bounded since the PolyTerm class is recursively
defined. However, the programmer’s domain knowledge about the con-
trol algorithm, expressed as an annotation, makes an accurate analysis
possible.

The /*$ redundant */ annotation on the local reference term in the
calc_u method indicates that any object referenced by term is always ref-
erenced by another, non-redundant reference. Hence, term does not con-
tribute to the amount of live memory.

The tools interactively provides worst-case predictions of the memory
demands of the program at hand. Analogously to WCET analysis, the ob-
tained prediction can be used both as a scheduling parameter (to compute
the amount of execution time required for garbage collection; the exact
form of this computation depends on the garbage collector) and as pro-
grammer feedback. However, the use of live memory predictions is not re-
stricted to scheduling of garbage collection. It is often important to know
how much memory a program requires, particularly in cost-sensitive em-
bedded systems where memory is scarce.

5 Conclusions

The key property of a real-time system is its ability to perform its compu-
tations within deadlines. Should such a system turn out to be unable to
keep its deadlines, the design or the requirements (or both) must be re-
assessed. Such changes become more and more expensive as development
progresses, and it is thus imperative that such schedulability problems
are discovered as soon as possible.

It is highly desirable that the timing properties of the developed pro-
gram can be continuously observed, and the interactive nature of the tool
we have presented allows just that. It provides interactive predictions
of time and memory bounds for selected parts of the developed program,
along with the generated code.

The target language is Java, a language well suited for embedded real-
time systems programming, with respect to both the source representa-
tion (a contemporary type-safe object-oriented language) and the portable,
dynamically loadable bytecode.
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This tool is novel in that these predictions are available directly in
the development environment throughout development. It is also novel in
its support for a modern, statically typed, object-oriented language with
garbage collection and dynamic loading of code.

5.1 Future Work

The present work is related to the development of the Infinitesimal Vir-
tual Machine (IVM), a real-time Java virtual machine designed for a very
small memory footprint (tens of kilobytes). The IVM is currently in devel-
opment at the Department of Computer Science, Lund University. Future
plans include development of a timing model for the IVM on a small em-
bedded system, and possibly extending our work to handling more elabo-
rate timing models.

Work on the Skånerost tool continues to support a larger Java subset
and integrate analyses further.
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