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Abstract

 

Semantic analysis is a central part of the compilation process. The main subproblems include 
name analysis, type checking, and detection of static-semantic errors. In an interactive program-
ming environment it is useful to perform the semantic analysis incrementally, keeping the static-
semantic information up to date while the program is edited. This allows advanced browsing and 
editing facilities to be implemented, based on the semantic information. Furthermore, incremen-
tal semantic analysis is a prerequisite for making also the rest of the compilation process 
incremental in order to reduce the turnaround time between editing and execution.

This work is directed towards incremental semantic analysis for object-oriented program-
ming languages. These languages have comparatively complex static-semantics which could not 
be adequately handled with earlier techniques such as attribute grammars.

The main contribution of this work is a new technique for developing incremental semantic 
analyzers: 

 

Door Attribute Grammars

 

. This technique extends standard attribute grammars by 
allowing objects and references to be specified as part of the attribution of a syntax tree. This 
extension results in space-efficient attributions for which incremental updates can be performed 
efficiently. In particular, the complex naming semantics of object-oriented languages can be han-
dled in a straight forward way by attributing the tree with explicit visibility graphs built using 
objects and references.

The price for using objects and references in an attribution is that non-local attribute depen-
dencies are introduced which prevent incremental attribute evaluators to be generated 
completely automatically from the grammar. We solve this problem by splitting the grammar in 
two parts: one part (the main grammar) which can be treated by automatic methods, and another 
part (the door package) for which a manual, but systematic, implementation technique is devel-
oped. A door package can implement general aspects of a family of programming languages. To 
specify a new language in the supported family it suffices to write a main grammar, using the 
door package as a tool box.

The techniques have been developed and tested in practice. A complete incrementally com-
piling environment has been built: 

 

Mjølner/Orm

 

, which currently supports the major part of 
Simula.
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Chapter 1

Introduction

 

The development of high-performance low-cost graphical workstations during the last decade 
has made it possible to assign considerable amounts of computing power to advanced user inter-
faces. This development has revolutionized the way people work with computers. Today we are 
accustomed to interactive applications where information is presented and manipulated in an 
intuitive way. In order to build such interactive applications, 

 

incremental computation

 

 is funda-
mental: the information presented to the user is modified according to the user’s actions, and 
derived information is updated in the process. The specific application area of interest in this the-
sis is interactive systems for program development.

The use of interactive and incremental techniques can simplify and speed up the programming 
process in several respects: By allowing the programmer to browse and manipulate programs in 
terms of their inherent structure, by performing compilation and linking automatically as need-
ed, and by giving integrated support across editing and execution, allowing the programmer to 
switch easily between these activities. A basic approach to building such systems is 

 

structure-
oriented programming environments

 

 [DEFH87] where programs are represented internally as 
abstract syntax trees described by a context-free grammar. A central component in such environ-
ments is an 

 

incremental semantic analyzer

 

 which computes and incrementally updates static-
semantic information derived from the program. The static-semantic information is represented 
as an attribution of the abstract syntax tree and is incrementally updated while the user edits the 
program. This allows advanced browsing and editing facilities to be implemented, based on the 
semantic information. Furthermore, incremental semantic analysis is a prerequisite for making 
also the rest of the compilation process incremental in order to reduce the turnaround time 
between editing and execution.

 

Goals

 

The goal of the research presented in this thesis was to develop techniques allowing efficient 
incremental static-semantic analyzers to be constructed. In particular, we were interested in 
enabling such analysis to be performed for 

 

object-oriented languages

 

. The static-semantic rules 
for object-oriented languages are comparatively complex, and existing techniques for develop-
ing incremental analyzers were not adequate for these languages.
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Chapter 1 Introduction

 

The research presented here has been conducted within the 

 

Mjølner project

 

, an experimental 
research project on building programming environments for object-oriented languages 
[DLMM87]. The project ran from 1986 through 1991 and involved universities and industrial 
partners in Denmark, Finland, Norway, and Sweden.

One of the environments built in this project is 

 

Orm

 

 [MHM+90], a complete incrementally com-
piling environment, currently supporting the major part of Simula [DMN68]. This system was 
implemented by the author and colleagues at the Department of Computer Science at Lund Uni-
versity. The system has been used on an experimental basis in courses on introductory 
programming, compiler construction, and programming environments, at Lund University and 
a few other universities. The problems which needed to be addressed in order to build environ-
ments like Orm constituted the motivation for the development of the techniques proposed in this 
thesis.

 

Method

 

The most well-studied high-level technique for developing incremental analyzers is the one 
based on 

 

attribute grammars

 

 [Knu68]. Incremental static-semantic analyzers can be generated 
automatically from such grammars [Rep84]. The principle idea of attribute grammars is very 
useful and attractive for the implementation of incremental systems: the attribution of a syntax 
tree is described declaratively, and an incrementally updating attribute evaluator can be automat-
ically derived from the specification. This gives robust implementations which are easy to 
change and maintain.

However, 

 

incremental name analysis

 

, an important part of incremental static-semantic analysis, 
cannot be done effectively using the standard approach of [Rep84]. These problems are even 
more pronounced for object-oriented languages, due to their more complex naming rules. 
Attribute grammars are not well suited for describing such rules and this leads to poor incremen-
tal behavior, even when using updating algorithms which are optimal within the context of 
attribute grammars. We find the most serious problem with attribute grammars to be that the attri-
butions they can define are too limited to be practical.

The approach used in this thesis has been to develop a new technique for incremental computa-
tion which preserves the declarative property of standard AGs, but extends the range of 
attributions which can be described. This is done by extending the attribute grammar formalism 
to support specification of 

 

objects

 

 and 

 

references

 

 as attributes of the syntax tree. This is a radical 
step away from standard AGs which restrict the attributions to have value semantics only. The 
proposed technique is called 

 

Door Attribute Grammars

 

, after the special “door objects” acting 
as an interface between the syntax tree and its object attribution. The use of objects and refer-
ences allows very flexible structuring of the static-semantic information and makes it possible to 
describe the static-semantics of object-oriented languages in a straight-forward manner. The 
resulting attributions are space efficient and suited for efficient incremental updates.

The introduction of objects and references in the syntax tree attribution results in non-local 
dependencies which, in general, prevent attribute evaluators to be generated automatically from 
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the grammar. We have addressed this problem by splitting the Door AG into a 

 

main grammar

 

 
and a 

 

door package

 

. The main grammar is very similar to a standard AG and can be implemented 
automatically by standard methods. The door package isolates the non-local dependencies and 
must be implemented by hand. We have developed a systematic implementation technique to 
support this manual construction.

Door packages are independent of the context-free grammar, and can be designed to handle gen-
eral static-semantic properties of a family of languages. This allows a door package to be used 
as a tool box by many different main grammars, in order to implement different languages. Thus, 
although the door package must be implemented by hand, the same door package can be used 
for many programming languages, and attribute evaluators for each of these languages can be 
generated automatically from the main grammars.

An object-oriented variant of standard AGs has been developed to be used for specifying the 
main grammars of Door AGs. This allows the modelling and specialization principles of object-
oriented programming to be applied to grammars, resulting in more compact and readable spec-
ifications compared to the traditional formalism.

 

Results

 

The main contribution of this thesis is the Door Attribute Grammar formalism and the imple-
mentation techniques developed for constructing incremental evaluators for such grammars. The 
techniques have been tested in practice. A precursory form of the Door AGs is used in the Orm 
system which supports the major part of Simula. The Door AGs and the implementation tech-
niques as presented in this thesis have also been implemented and tested for the key problems 
appearing in static-semantic analysis for object-oriented languages. These applications of Door 
AGs show that the technique is suitable for practical construction of highly interactive program 
development environments.

 

1.1  Thesis outline

 

This thesis is structured in four major parts: background, object-oriented attribute grammars, 
door attribute grammars, and conclusions.

 

Background

 

• Chapter 2: The Orm Environment
An overview is given of the Orm programming environment with particular emphasis on the 
aspects related to static-semantics. The requirements on incremental techniques for building 
such environments are discussed.
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Chapter 1 Introduction

 

• Chapter 3: Incremental Static-Semantic Analysis 
Major problems in incremental static-semantic analysis are reviewed with particular empha-
sis on the problems appearing for object-oriented languages. Existing techniques for 
incremental name analysis are reviewed.

• Chapter 4: Standard Attribute Grammars
Attribute grammars are reviewed and the problems of using them as a tool for incremental 
static-semantic analysis are identified. 

• Chapter 5: A Basic Object-Oriented Specification Language
A basic object-oriented specification language, OOSL, is introduced. This language will be 
used for specifying object-oriented AGs and Door AGs. The language was developed specif-
ically for this thesis and is useful both for specifying the declarative grammars and the 
imperative incremental update algorithms.

 

Object-oriented Attribute Grammars

 

• Chapter 6: Object-Oriented Attribute Grammars 
An object-oriented reformulation of standard AGs is introduced. It is shown how the advan-
tages of object-oriented description techniques can be applied to grammars, in particular how 
behavior can be defined at suitable levels of generalization.

• Chapter 7: Attribute Evaluation Techniques
Techniques for demand-driven and 1-visit data-driven evaluation of standard AGs are dis-
cussed. These techniques will be used as the basis for attribute evaluation in the main 
grammars of Door AGs. It is shown how the implementation of evaluation algorithms is sim-
plified by using an object-oriented implementation language. A new technique employing 
static skipping of visit instructions is introduced.

 

Door Attribute Grammars

 

• Chapter 8: Door Attribute Grammars
Door Attribute Grammars are introduced. An example is given of how Door AGs can be used 
to specify the static-semantics of a simple block structured language. The technique is com-
pared to standard AGs.

• Chapter 9: Door AG Implementation, part I
The principles for implementation of visit-oriented incremental evaluators for Door AGs are 
described. A systematic technique for analyzing non-local dependencies is developed.

• Chapter 10: Door AG Implementation, part II
An incremental visit-oriented evaluation algorithm for Door AGs is given and a systematic 
technique for constructing visit procedures for door packages is developed. It is shown how 
incremental algorithms for standard AGs can be adapted for evaluation of main grammars.
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• Chapter 11: Advanced Attributions
It is shown how some central problems arising in object-oriented languages can be handled 
by Door AGs. Problems treated include subclassing, remote access, and type-checking of ref-
erence assignments.

 

Conclusions

 

• Chapter 12: Evaluation
This chapter reports on practical experience from using Door AGs in the Orm environment. 
We discuss actual time consumption and estimates of space consumption.

• Chapter 13: Conclusions and Future Work
This chapter summarizes the contributions of this work and some possibilities for future 
work are suggested.
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Chapter 1 Introduction



 

Chapter 2

The Orm Environment

 

This chapter gives an overview of the Orm programming environment with focus on issues relat-
ed to incremental static-semantic analysis. The requirements on incremental techniques for 
building such environments are discussed.

 

2.1  Introduction

 

Orm is an interactive programming environment based on structure-oriented editing and incre-
mental compilation. The environment includes both a programming level and a meta level. The 
programming level supports program development, from editing to execution. The compilation 
tasks such as static-semantic analysis, code generation, and loading are all done incrementally 
and automatically as needed by the system. The meta level supports structure-oriented editing of 
grammars. These grammars describe the abstract syntax, concrete syntax, static semantics, and 
code generation for a specific language. The Orm environment is aimed towards object-oriented 
languages and the current version supports the major part of Simula. This is in contrast to earlier 
structure-oriented environments like the Cornell Program Synthesizer [TR81], Gandalf [MF81], 
DICE [Fri84], and Pecan [Rei84], which are all aimed towards procedural languages like C and 
Pascal.

The major goal of Orm is to provide advanced interactive support for program development, in 
particular:

• Allow programs to be edited and browsed at a semantic level, and not only at a syntactic or 
textual level.

• Allow editing and execution to be mixed freely, and also to continue execution after program 
changes.

• Allow interactive observation of the object structures present during execution.

• Support the full software development cycle including design and documentation, version 
and variant control.



 

8
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An additional goal of Orm is to support interactive 

 

language

 

 development, by allowing the user 
to edit both programs and grammars at the same time in order to interactively try out changes to 
a language.

Interaction in Orm can be said to be “object-oriented” rather than “tool-oriented”. The goal is to 
allow the user to interact directly with programs, executions, and grammars, rather than via 
explicit tools. To support this “object-oriented” interaction style, the user interface of Orm is 
based on direct manipulation. Objects of interest to the user are presented as icons/windows, 
similar in flavor to the Star office automation system [SIKV82] and to its successors like the 
Macintosh finder. In contrast to Star and Macintosh, the interface of Orm is based on a 

 

hierar-
chical

 

 window system [Osc89] which allows windows (objects) to be shown in their local 
context. For example, a program window can contain class windows which in turn can contain 
procedure windows [HM88].

In addition to the support for programming, which we will discuss in more detail below, Orm 
supports version- and revision control of the programs and grammars created by the system 
[Gus90]. There is also a future goal of supporting programming of real-time systems. This has 
motivated research on real-time garbage collection algorithms with low predictable response 
times [Ben90].

 

2.1.1  Implementation status

 

Orm is implemented in Simula and runs on SUN SPARC-stations. The implementation consists 
of approximately 100 000 lines of code. It is a complete environment supporting both editing 
and execution of programs. The executing program runs in a separate UNIX process and com-
municates with the environment over a pipe. Currently, the execution is performed by an 
interpreter, interpreting intermediate three-address instructions, but a binary run-time system is 
under development. The largest programs written so far in Orm are about 1000 lines. The largest 
grammar is the grammar for Simula, consisting of about 100 productions.

 

2.2  Programming level

 

2.2.1  Source program

 

A program in Orm is presented to the user as a hierarchy of nested classes and procedures, each 
shown as a window. The window nesting reflects the block nesting structure of the program. 
Local declarations and statements are presented inside the blocks as a textual unparsing of syn-
tax trees. Three editing mechanisms are available: menu-driven structure-oriented editing, 
textual input which is incrementally parsed, and context-sensitive editing which will be further 
explained below. Incomplete parts of the syntax trees are represented by placeholders, shown as 
question marks in the unparsed text.
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Static-semantic information such as name bindings, type information, and static-semantic errors, 
is maintained incrementally by a static-semantic analyzer. The incremental analysis is performed 
after each single edit step. The most recent static-semantic information is thus always available 
to be used in editing and browsing. Normally, the incremental analysis is immediate and not 
noticed by the user, even for changes to declarations. Static-semantic errors are presented by 
unobtrusive markings on the unparsed text for the erroneous constructs. The markings disappear 
automatically when the user corrects the error. Explanations of errors are available via a menu 
command.

Figure 2.1 A source program in Orm
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2.2.1.1  Example program in Orm

 

Figure 2.1 shows an example program in Orm. The program draws fractal trees. Four classes 
appear in the program:

• class 

 

Tree

 

 which models a fractal tree

• class 

 

TreePart

 

 which models a part of a fractal tree (an abstract class)

• classes 

 

Branch

 

 and 

 

Leaf

 

, both subclasses of 

 

TreePart

 

.

The program imports two modules: 

 

simset.mjol

 

 which contains the standard linked list facility 
of Simula (classes 

 

Head

 

 and 

 

Link

 

), and 

 

uil.mjol

 

 which is a graphical drawing package. The 
program furthermore contains a procedure 

 

fractalExample

 

 which constructs a fractal tree out 
of 

 

Branch

 

 and 

 

Leaf

 

 components and tells it to draw itself. (The fractal tree draws itself recur-
sively, smaller for each recursion, until a certain threshold.) The class windows in Figure 2.1 are 
all closed, but opening any of them would reveal inner structure such as procedures, local vari-
ables, and class statement body.

 

2.2.1.2  Static-semantic errors

 

Figure 2.2 shows an example of a static-semantic error. A call to a procedure 

 

beep

 

 has been add-
ed at the bottom of the procedure 

 

fractalExample

 

. However, the procedure has not yet been 
declared, so the error is marked on the screen by a dashed rectangle surrounding the call.

When a new procedure 

 

beep

 

 is added to the program, as shown in Figure 2.3, the mark on the 
call disappears immediately. The new procedure is added at the global program level and is thus 
visible throughout the whole program, including the four classes. Nevertheless, the response 
time for the incremental analysis is not noticeable by the user. This is because the work done by 
the incremental analyzer is related only to the actual number of uses of the new procedure, and 
is independent of the size of the whole program. One of the major goals of the work reported in 
this thesis is to find techniques which make such immediate response possible, regardless of the 
size of the program.
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Figure 2.2 A static-semantic error

Figure 2.3 Correction of static-semantic error
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2.2.1.3  Context-sensitive editing

 

Context-sensitive editing in Orm is centered around a “Names” menu which gives a list of all 
declared names visible at the current edit focus [Hed92]. This editing mechanism provides a 
powerful way of constructing dot-expressions, procedure calls, etc. It also works as a simple 
browsing mechanism. Figure 2.4 shows an example of context-sensitive editing in Orm.

The edit focus is located at the last statement in the procedure (the question-mark placeholder). 
The edit menu (

 

Expand/Names/Transform/...

 

) is a hierarchical menu. Pulling right at 
“

 

Names

 

” gives a sub menu with a list of all declared names visible at the edit focus. Selecting 
any of these names (

 

root/factor/...

 

) replaces the edit focus by the selected name. In the fig-
ure, we have instead pulled further right at 

 

root

 

, bringing up yet another sub menu (

 

dx/dy/

draw/...

 

). This menu shows the accessible variables and procedures of the root object. I.e., 
since 

 

root

 

 is declared as a reference qualified by class Tree, this menu shows all the variables 
and procedures declared in Tree. By selecting draw in this sub menu, the placeholder is replaced 
by the statement 

root.draw(?,?,?)

Figure 2.4 Context-sensitive editing in Orm
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where the question marks are new placeholders for the actual parameters of the procedure draw. 

This mechanism for context-sensitive editing is an example of the kind of advanced editing sup-
port which is possible to obtain in an integrated incremental system, where static-semantic 
information is kept up to date after each edit operation.

2.2.2  Program execution

The user can switch freely between editing and execution of the program. Code generation and 
linking is done automatically and incrementally as needed. A program does not have to be com-
plete or free from static-semantic errors to be executed. Placeholders and erroneous constructs 
simply give the effect of a breakpoint in the execution.

Objects and activation records created during program execution are presented as windows, sim-
ilar to the class and procedure windows in the source program [THM87]. Also in the execution, 
the window hierarchy reflects the block nesting structure. For example, the execution of a call 
“obj.draw” is shown as a procedure activation window for draw nested inside an object window 
for the object denoted by obj. Local declarations and statements are presented in a similar way 
as in the source program. In the statement part, the current execution point is highlighted. In the 
declaration part, the actual values of local variables are shown. For reference variables, the value 
field shows the actual qualification of the referenced object, and works like a hypertext link but-
ton which links to the window of the referenced object.

2.2.2.1  Execution example

Figure 2.5 shows an example execution state of the program of Figure 2.1. The execution win-
dow contains an activation of the fractalExample procedure and four objects: a Tree object, 
two Branch objects and a Leaf object. Inside the Leaf object is an activation of the procedure 
draw for this object. The current execution point is at the call of MoveTo, which is highlighted in 
the procedure draw. Each procedure activation and object has local variables whose current val-
ues are shown. Clicking on a reference variable will either briefly highlight the corresponding 
object window, or bring up a new window (if the corresponding object window was not already 
on the screen). 

2.2.2.2  Continued execution after changes to program

It is a goal of Orm to allow continued execution after program changes. Such functionality can 
be very useful when developing programs in an exploratory fashion. Another setting where this 
can be useful, or even necessary, is the maintenance of persistently executing programs. Changes 
to code which is not active are straight-forward to handle. But, in the general case, changes to 
executing programs give rise to consistency and version issues, and also to synchronization 
issues in case of on-the-fly updates to a running program. Some environments like INTERLISP, 
Gandalf, and DICE support continued execution after changes by transforming procedure acti-
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Figure 2.5 A program execution state in Orm



2.3 Meta level 15

vations or popping the activation stack in difficult cases [Fri83]. At present, Orm does not yet 
support continued execution, but requires the execution to be restarted after any change to the 
program source. However, an earlier prototype of Orm did support continued execution. The 
default scheme used was to let existing instances continue to execute the old code, but let new 
instances execute the new code version  [HM86], [HM87]. Transformations between the old and 
the new version were made on request. 

2.3  Meta level

The Orm programming environment is driven by a number of grammars, controlling the abstract 
syntax, concrete syntax, static semantics, and code generation. These grammars are represented 
in the same way as programs, i.e., as abstract syntax trees, and can be edited within the environ-
ment itself. The compilation tools: the structure-oriented editor, the static-semantic analyzer, and 
the code generator all interpret grammars (or slightly preprocessed representations for the two 
latter tools), which allows changes to the grammars to be tried out more or less directly on a sam-
ple program. In this way, Orm supports interactive development of language-based 
environments.

2.3.1  Abstract and concrete syntax

The abstract syntax for a language is described by a BNF style grammar. The concrete syntax is 
described by a parallel document, giving the unparsing specification for each production in the 
abstract syntax.

The structure-oriented editor used in Orm interprets the grammars for abstract and concrete syn-
tax directly, in their abstract syntax tree form. The editor uses these grammars to control the 
syntax of a target program also represented in the same abstract syntax tree form. By cascading 
a series of editor instances working on grammars and programs it is possible to change the gram-
mars and immediately see the effects in a sample program [Min90]. This way, Orm can be used 
as a highly interactive laboratory for language development.

This technique has been used not only for the development of grammars for programming lan-
guages, like Simula, but also for the development of the grammar formalisms themselves, which 
are then described by meta-grammars. All these grammars have in fact been developed within 
the system itself, except for two small meta-grammars needed to bootstrap the system.

2.3.2  Static semantics

The grammar for static semantics is based on attribute grammars, but extended with a kernel of 
primitives making use of objects and side-effects in a controlled manner [Hed88]. These exten-
sions allow efficient incremental processing to be implemented. This method is a precursor to 
the Door Attribute Grammars treated in this thesis.
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The functionality implemented by the primitives in the kernel are, for example:

• adding a declaration to a symbol table

• changing the type of a declaration

• binding an identifier according to a given declaration environment

• mark a static-semantic error on the screen

To preserve the declarative nature of attribute grammars, the primitives are formulated as invari-
ants rather than as imperative operations. The static-semantic grammar is very similar to an 
ordinary attribute grammar, but makes use of these primitives instead of the usual approach of 
building symbol tables and environments as attributes. The primitives themselves make use of 
objects and side-effects, and cannot be expressed in terms of attribute grammars.

The static-semantic analyzer is implemented as an incremental attribute evaluator running a vis-
it-oriented evaluation algorithm. The visit sequences which drive the evaluation are generated 
from the grammar by sorting the attributes topologically according to their local dependencies. 
The visit sequences are represented as object structures which are interpreted by the attribute 
evaluator. However, the kernel primitives are compiled and executed directly. This gives a suit-
able mix of flexibility and efficiency. The grammar can easily be changed and tried out on 
programs without having to recompile and link the Orm system. Nevertheless, the incremental 
evaluation is sufficiently efficient for practical use because the “inner loops” of the incremental 
processing are performed in the compiled kernel.

2.3.3  Code generation

Code generation in Orm is done incrementally with the granularity of a block. Each block results 
in a template (a structural description of the block) and a code object (a sequence of instructions). 
Since there is no need for feedback to the user, the templates and code objects do not have to be 
kept up-to-date with the source program at all times. The blocks needing new template and/or 
code are only marked by a flag during the incremental static-semantic analysis. When the user 
gives the command to execute the program, information about which blocks are changed is 
downloaded to the runtime system. New code for the changed blocks is generated and download-
ed incrementally on demand from the runtime system as the program is executed. In principle, 
this process could be speeded up by doing code generation and loading in advance in a back-
ground process, similar to what was done in the Magpie system [DMS84]. This is, however, 
currently not implemented in Orm.

The code generation grammar is an attribute grammar defining the code for a block as a sequence 
of three-address instructions. The front-end of the code generator is an exhaustive attribute eval-
uator which evaluates the code attributes for a block at a time. The resulting sequence of 
instructions is then translated to native code by a code generator back-end. The code generation 
grammar makes use of attributes defined in the static-semantic grammar, e.g. identifier bindings, 
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types, and error information, and is a comparatively straight-forward mapping from syntax to 
instructions.

Similarly to the static-semantic analyzer, the code generator front-end interprets a preprocessed 
form of the code generation grammar. It is therefore possible to modify the code generator gram-
mar interactively and try it out on a sample program. The code generator back-end is, on the 
other hand, a program created using a traditional generative approach. Generating code for a new 
target machine thus requires re-generation and re-compilation of the back-end.

2.4  Requirements on incremental techniques

The incremental static-semantic analyzer plays a central role in an environment like Orm. It 
derives static-semantic information from the source program, and maintains this information as 
the program is edited. The static-semantic information is essential for many other components 
of the environment. For example:

• Error messages are communicated to the editor to be displayed in the unparsed presentation 
of the program.

• Symbol table information is made available to the context-sensitive editor to produce menus 
of visible names.

• Bindings between identifiers and declarations can be made available to facilities for browsing 
and “masterscope” [TM81] in the environment.

• Symbol tables, bindings, type, and error information is used by the code generator.

Ideally, the time for updating the static-semantic information after each edit step should be so 
low that the user does not notice any delay. A simple approach to this problem would be to use 
a fast machine and compute all the static-semantic information from scratch after each edit step. 
However, this exhaustive approach does not scale up. Regardless of how fast the machine is, it 
will always be possible to create a larger program for which the exhaustive strategy does not give 
the proper response time. A more general solution to the problem is to use incremental tech-
niques and recompute only affected parts of the static-semantic information. To scale up, the 
response time for an incremental technique must depend only on the size of the affected parts, 
and be independent on the program size (or at least grow very slowly with the program size). 

For any incremental analysis technique to be successful, it is necessary that a small change to 
the program gives a correspondingly small change in the derived static-semantic information. To 
obtain this property, the actual structure of the information is of paramount importance. It is nec-
essary to find information structures which are suitable for incremental updating. Furthermore, 
the information should be structured so that the affected parts for a given change correspond in 
size to what the user intuitively finds reasonable.

The hardware platform for interactive applications is personal workstations where the process-
ing power is completely at the disposal of the user. In contrast to the old mainframes, the cost 
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for processing power does not depend on how much of the processing power is actually used. 
This implies that if an incremental updating technique is fast enough to give a response time 
which is not noticeable by the user, it is not meaningful to optimize the technique further. Since 
an incremental computation usually operates on a small amount of data, it is often acceptable to 
use algorithms with worse performance than would be acceptable for batch tools. Flexibility, 
simplicity of the algorithm, and low space consumption may be more important than low time 
consumption. For example, it may be acceptable to use linear searching to do symbol table look-
up, whereas faster algorithms would be preferable for batch compilers. 

Memory consumption, on the other hand, is useful to try to keep small. It lies in the nature of 
interactive applications that they consume large amounts of memory in order to keep information 
readily available to the user. There is a tendency that no matter how much memory is added to a 
workstation, the user will make good use of it, by running more applications on larger data. As 
long as reasonable response times can be met by the system it is therefore better to consume time 
than memory. In addition, maintaining more information does not necessarily decrease response 
time since it takes time to update the added information as well.

To sum up, the desired properties of incremental techniques are the following:

• Low, preferably unnoticeable, response times for common editing operations, independent of 
program size.

• The response time should stand in proportion to the amount of information the user perceives 
as affected.

• Space consumption should be kept low.

The key to obtaining a system with these properties is to find structures for static-semantic infor-
mation which are suitable for incremental updates and for which changes match the changes 
perceived by a user. The first issue addressed by this thesis is therefore to analyze what problems 
occur in incremental static-semantic analysis for object-oriented languages. We then propose a 
technique for describing and updating such structures. Although the main motivation for the 
work reported in this thesis is to handle the specific problems appearing for object-oriented lan-
guages, the proposed technique to solve these problems: Door Attribute Grammars, is not limited 
to this application area. It is a general technique for describing and updating information derived 
from syntax trees. 



Chapter 3

Incremental Static-Semantic Analysis

This chapter discusses the static-semantic analysis problems appearing for object-oriented lan-
guages, and techniques for solving these problems incrementally. Since there are many different 
views on what object-oriented programming is, we also give some remarks on the views taken 
in this thesis. 

3.1  Introduction

Static program analysis is the process of analyzing a program and deriving context-dependent 
information from its syntax tree. This is in contrast to dynamic analysis which deals with analy-
sis of a program execution. In this thesis, we are particularly concerned with static-semantic 
analysis problems, and not so much with other static analysis problems such as code generation 
and data flow problems. Static-semantic analysis includes the following subproblems:

• Name analysis. Each name application is bound to the corresponding name declaration 
according to the scope rules of the language.

• Type analysis. Each expression is associated with a type.

• Error detection. Detection of violations of static-semantic rules (“compile-time errors”).

In incremental static-semantic analysis, name bindings, type information, and error information 
is incrementally kept up to date as the user edits the program.

This chapter discusses techniques for incremental static-semantic analysis with particular 
emphasis on object-oriented programming languages. Static-semantic analysis for these lan-
guages is more complex than for the procedural languages treated in standard textbooks on 
compiler construction. In particular, name analysis for object-oriented languages is substantially 
more complex, due to the combination of block structure and subclassing. Incremental analysis 
is correspondingly more complex for object-oriented languages.

The rest of this chapter is organized as follows.
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• §3.2 discusses the view on object-oriented programming taken in this thesis.

• §3.3 describes in some depth the name analysis problems occurring in object-oriented 
languages

• §3.4 reviews and compares methods for incremental name analysis

• §3.5 and §3.6 describe type analysis and error detection problems particular to object-orient-
ed languages

• §3.7 discusses briefly different techniques for incremental updating

3.2  Object-oriented programming

Object-oriented programming began with the Simula-67 programming language [DMN68]. This 
language was the inspiration source of many newer languages including Smalltalk [GR83], C++ 
[Str86], and Eiffel [Mey88]. The intense current interest in everything with the label “object-ori-
ented” has diluted the term and made it applicable to almost everything. Perhaps a better term 
for the original use of object-oriented programming techniques, such as subclassing and virtual 
procedures, would be “class-oriented programming”. 

Even within “class-oriented programming”, there are diverging views on what classes and the 
related mechanisms of subclassing and virtual procedures are good for. These mechanisms are 
interesting from many different aspects: modelling, code reuse, data protection, parallelism, etc. 
By putting different aspects in the center, different object-oriented languages and schools have 
emerged. In this thesis we follow the school developed along with the Simula and BETA 
[KMMN87] languages, and which is sometimes referred to as the “Scandiavian school” of 
object-oriented programming [Coo88]. This school emphasizes modelling: Classes are used for 
modelling concepts and subclassing for modelling specialized concepts. We will not go into 
details of the philosophy behind this school, but simply point out a few views relevant for this 
thesis.

• Types. Classes are types and static typing is important because it makes programs more 
descriptive and easier to understand. Further, by performing static type-checks, many errors 
in the program are caught early without having to run the program. However, in order to not 
hamper power of expression, dynamic type-checks are needed in some cases, as discussed in 
[MMM90].

• Subclassing. Subclassing is a concept specialization mechanism, rather than a mere code 
sharing mechanism. This view is closely connected to that of regarding classes as types and 
subclasses as subtypes. An object of a subtype should be possible to use wherever an object 
of its supertype is allowed. Code sharing usually comes out as a nice side-effect of special-
ization, but other code sharing mechanisms such as aggregation are often better from a 
modelling point of view.
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• Multiple inheritance. The value of multiple inheritance is questionable. For object-oriented 
languages which include multiple inheritance, the motivation has usually been code sharing 
and not modelling. From a modelling and typing point of view, the full implications of mul-
tiple inheritance are unclear.

• Block structure. Block structure, or lexical nesting, is an important modularization mecha-
nism as it allows definitions to be localized. In object-oriented programming, nesting is 
useful in several interesting ways [Mad87]. Few object-oriented languages, other than Sim-
ula and BETA, have unlimited block structure allowing, for example, classes to be nested 
inside classes. However, most object-oriented languages can be seen as having at least a lim-
ited block structure where an outer (sometimes implicit) level contains the classes, and each 
class contains a number of procedures. Some languages have additional block structure, e.g. 
Smalltalk has a local block concept used inside the procedures (methods) and C++ has a lim-
ited form of nested classes.

• Data protection. In some views on object-oriented programming, access to a variable in an 
object from another object is forbidden or considered bad programming style. This is not the 
view in the Scandinavian school. The view here is that the individual object is seldom the 
right level for data protection. I.e., it is perfectly fine to access variables in an object directly 
from another object. Usually, several objects are closely tied together, e.g. in forming a larger 
aggregate, and “protecting” them from mutual access gives no benefit. The issue of data pro-
tection is often more relevant on a larger granularity, such as a module. This view is similar 
to the one presented in [Szy92].

These views have influenced the way object-oriented techniques are used in this thesis. They 
have also affected which static-semantic analysis problems are treated in detail. Literature 
describing the Scandinavian school of object-oriented programming include [Nyg86], [KM88], 
[MM88], [KMMN91]. 

3.2.1  Object terminology

We make a sharp distinction between objects and values. A value is an immutable entity whereas 
objects are mutable. Although objects are mutable, each object has a unique immutable identity. 
Object identities are values, but they are different from the values normally used in mathematics 
in that they denote mutable entities. To distinguish object identities from the numerical values, 
sets, cartesian products, and other values normally used in mathematics, we refer to the latter as 
regular values.

By having access to an object identity value, the mutable contents of the denoted object can be 
accessed. An expression or attribute holding an object identity value is called a reference.

We will use the class and type system introduced by Simula and the notation used in [MMM90]. 
Each object is an instance of a class. Classes are arranged in a subclass hierarchy. We use the 
symbol ⊂ for the (transitive) relation subclass of and the symbol ⊃ for the (transitive) relation 
superclass of. I.e., we write B ⊂ A to indicate that B is a direct or indirect subclass of A. This nota-
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tion reflects the extension of classes. I.e., the set of all possible B objects is a subset of the set of 
all possible A objects.

Each reference r has a formal qualification, written qual(r) (a class). The formal qualification 
restricts the set of objects which r is allowed to denote. The type system guarantees that in any 
object structure, the reference r will denote either an object of a class D such that D ⊂ qual(r), 
or it will have the special value NONE, denoting no real object. For technical purposes, NONE is 
considered to be the identity of an object of class NOCLASS which is not in the class hierarchy. 
The class of the object denoted by r is called the actual qualification of r, and is written 
qual(object(r)). This type system is used in many object-oriented languages including Sim-
ula, BETA, C++, and Eiffel. Smalltalk adheres partially to this type system: References have 
actual but no formal qualifications.

We differ between dynamic and static reference attributes as in BETA. A dynamic reference 
attribute has the value NONE at object creation time and can later be changed to denote other 
objects. A static reference attribute of an object x denotes another object y created automatically 
as part of creating x. A static reference can never be changed to denote another object. y is said 
to be a part-object of x. We also say that x is the owner of y.

3.3  Name analysis

We now turn back to the main topic of this chapter: the static-semantic analysis problems which 
occur for object-oriented languages.

In name analysis, each name application is associated with the corresponding name declaration, 
and information about the declared name, for example its type, is made available to the name 
application. The association between a name application and its name declaration is called a 
binding. The process of finding the appropriate binding for a name application, according to the 
scope rules of the language, is called lookup. Lookup can be performed by a function which 
takes as parameters the name and a declarative environment of the name application. The declar-
ative environment contains information about which name declarations are visible at the name 
application site.

Name analysis is a fundamental problem in static analysis - nearly all other static analysis prob-
lems require the name analysis to have been done. Name analysis is further one of the hardest 
static analysis problems to handle incrementally because of the non-local dependencies intro-
duced by using names. In object-oriented languages, the name analysis problem is more 
complex than in procedural languages, because of the combination of subclassing and block 
structured visibility rules.

A general model for describing and implementing name analysis is Garrison’s Inheritance Graph 
Model [Gar87]. We use a similar but simpler model, suitable for languages based on Algol-like 
block structure. This model assumes that the order of declarations within a block is of no impor-
tance. It handles the usual shadowing principle: that a declaration in one block will shadow other 
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declarations with the same name in outer blocks. With block we mean here a syntactic construct 
which introduces a new name space. A block is also a template for run-time units (block instanc-
es or objects). Examples of blocks are Algol block statements, Simula classes and procedures, 
and Pascal records. Name analysis applies to all kinds of named entities, e.g. classes, procedures, 
and variables. Although the dynamic semantics for accesses may differ substantially (e.g. 
between a procedure call and a variable access), the static name analysis is done in the same way 
for all entities. The model makes use of a visibility graph defined as follows.

 3-1 Definition Visibility graph

A visibility graph is a directed acyclic graph G = (V, E). The vertex set V is divided into three 
disjoint sets T, P, and {null} as follows.

• T is a set of table vertices. A table vertex represents a local symbol table giving access to 
the declarations of one block. It has no outgoing edges.

• P is a set of path vertices. A path vertex represents a specific combination of tables. It has 
one or more outgoing edges, e1 .. en, n ≥ 1. The edges are ordered, representing the pre-
cedence of combination with respect to shadowing. I.e., a declaration accessible via an 
edge ek will shadow declarations of the same name accessible via edges (ek+1 .. en).

• Null is a distinguished vertex with no outgoing edges. It is used as a sentinel.

 end 3-1

The lookup sequence of a vertex v, denoted by LS(v) = (t1 : t2 : ... : tm), is defined as the sequence 
of table vertices obtained by doing “in-line substitution” in the following way. A vertex v with 
outgoing edges e1 .. en, n ≥ 1, ending in vertices v1 .. vn, is substituted by the sequence v1 : v2 : 
... : vn. The distinguished vertex null is ignored if encountered. This results in a sequence of only 
table vertices. A table will occur several times in the sequence if it is reachable via several edge 
paths. Since the graph is acyclic, the lookup sequences are finite.

We will sometimes use an expanded form of the lookup sequence which includes the set of 
declared names for each block. The following notation is used: (t1 {...} : t2 {...} : ... : tm {...}). 
Empty sets are dropped in the notation.

Let X = (x1 : ... : xn) be a lookup sequence. The subsequence (x1 : ... : xk), 1 ≤ k ≤ n, is said to be 
the xk-prefix sequence of X. Analogously, the subsequence (xk : ... : xn), 1 ≤ k ≤ n, is said to be 
the xk-suffix sequence of X.

To implement name analysis, a visibility graph is constructed for the program to be analyzed. 
The graph contains a table vertex for each block in the program. Path vertices are added to com-
bine the tables in useful ways. Each name application is then associated with one of the path 
vertices in the graph. This path vertex is said to be the lookup vertex of the name application. The 
lookup vertex represents the declarative environment of the name application, and gives access 
to the declarations of all names visible at the name application site. Lookup can be implemented 
as a simple recursive procedure which looks in the tables encountered in a left-to-right traversal 
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of the graph, starting at the lookup vertex. The tables are thus visited in the order of the lookup 
sequence.

3.3.1  Block Structure 

The visibility graph of a block-structured program can be constructed as follows: 

 3-2 Construction Visibility graph for block structure

For each block b in the program a table vertex tb and a path vertex sb is added to the graph. 
The path vertex sb is called the static path and has two outgoing edges. The first edge ends in 
tb. The second edge ends in the static path of the enclosing block. For the outermost block, 
the second edge ends the distinguished vertex null.

 end 3-2

The static path vertices serve two roles: To be used in construction of the static path vertices of 
enclosed blocks, and to be used as lookup vertices. An example is shown in Figure 3.1. Table 
vertices are shown as large boxes. Path vertices are shown as smaller boxes with one slot for each 
outgoing edge. The slots are ordered; the leftmost slot corresponding to the first outgoing edge. 
An outgoing edge ending in the null vertex is shown as a diagonal line through the slot.

The static path vertex sb of a block b is used as the lookup vertex of the name applications inside 
b. For example, the name application x (in the “x:=1” assignment) has the lookup vertex sD which 
has the expanded lookup sequence (tD : tC : tA {x}). The declaration of x is thus found in tA. 

For plain block structure, there is a one-to-one correspondence between table vertices and path 
vertices. A simpler visibility model could have been used here. However, in the following we 
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will see plenty of examples where there is no such one-to-one correspondence, and where it is 
necessary to distinguish between tables and paths. 

Figure 3.1 Block Structure

3.3.2  Subclassing and block structure

Object-oriented languages have more complex visibility rules because of the combination of 
subclassing and block structure. Consider the following Simula program and its associated vis-
ibility graph.

Figure 3.2 Subclassing Combined with Block Structure

begin (A)

integer x;

begin (B)
end;

begin (C)

begin (D)
x := 1;

end;

begin (E)
end;

end;

end;

tA

tB tC

tD tE

sA

sEsD

sC
sB

begin (A)

class B; (B)
begin
integer x;

end;

B class C; (C)
begin

begin (D)
x := 1;

end;

begin (E)
end;

end;

end;

tA

tB tC

tD tE

sA

sEsD

sCsBpB pC
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The expanded lookup sequence of sD is in this case (tD : tC : tB {x} : tA {B, C}) and the declaration 
of x is found in tB as appropriate. The graph is constructed as follows.

 3-3 Construction Visibility graph for combined subclassing and block structure

There are two kinds of blocks: simple blocks (procedures or Algol block statements) and 
classes. For simple blocks, the same construction rules are used as in the plain block-structure 
case (construction 3-2). For a class c, one table vertex tc and two path vertices pc and sc are 
added to the visibility graph. The prefix path pc has two outgoing edges. The first ends in tc 
and the second ends in the prefix path of the superclass. If the class has no superclass the sec-
ond edge ends in the null vertex. The static path sc also has two outgoing edges. The first ends 
in pc and the second in the static path of the enclosing block.

 end 3-3

The prefix path vertex here serves the role of being used in the construction of other prefix and 
static path vertices. In §3.3.3 we will see how it is associated with name applications in remote 
accesses.

The construction of visibility graphs for subclasses in combination with block structure works 
also in the case of nested classes. An example Simula program with nested classes is the follow-
ing one.

Figure 3.3 Nested Classes

begin (A)

class B; (B)
begin

integer x;

class BL; (BL)
begin
end;

end;

B class C; (C)
begin

BL class CL; (CL)
begin
x := 1;

end;

end;

end;

tA

tB tC

sA

sCsBpB pC

tBL tCL
sCLsBLpBL pCL
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The expanded lookup sequence of sCL is (tCL : tBL : tC {CL} : tB {x, BL} : tA {B, C}) and the dec-
laration of x is thus found in tB.

A straight-forward construction of the visibility graph for an erroneous program with cyclic sub-
classing would lead to a cyclic visibility graph. This must be prevented since our definition of 
visibility graphs (3-1) allows only acyclic graphs. One way to solve this problem is to select one 
of the classes on the cycle, and treat it as if it had no superclass. This breaks the cycle. The select-
ed class can be associated with a static-semantic error to indicate that its superclass is considered 
invalid. Which of the classes on the cycle to select can be an error handling policy, as will be 
discussed in more detail in §3.6. In the example below, class B has been selected to break the 
cycle, and the visibility graph is constructed as if B had no superclass. The dashed line shows the 
edge which would be present if the cycle was not broken. Class B is marked with a static-seman-
tic error “invalid superclass” in the program.

Figure 3.4 Cyclic Subclassing. Breaking the cycle in the visibility graph.

3.3.3  Remote access

Remote access is a visibility construct which gives access to entities in explicitly referred 
objects. Simula (and also many other languages) use dot-notation for remote access. A remote 
access has the following syntactic form:

<remote access> ::= <object expression> . <selector>

The object expression can itself be a remote access, thus leading to a series of remote accesses. 
The selector is a name application whose declarative environment depends on the type (class) of 
the object expression. The prefix path vertex of the class describes this declarative environment. 
Consider the following program:

begin (A)

C class B; (B)invalid superclass
begin
end;

B class C; (C)
begin
end;

end;

tA

tB tC

sA

sCsBpB pC
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Figure 3.5 Program Including a Remote Access

This is the same program as Figure 3.2, with the addition of a reference variable rC and an 
assignment statement including a remote access. These additions do not affect the visibility 
graph, which is thus the same as in Figure 3.2. The class of the object expression rC is C, and the 
lookup vertex of the selector x is consequently the prefix path vertex pC. The expanded lookup 
sequence of pC is (tC : tB {x}) and the declaration of x is thus found in tB.

3.3.4  The Inspect Statement in SIMULA

The inspect statement of Simula (called “connection statement” in the language definition for 
Simula) “opens” an object so the entities of the object can be accessed directly by name appli-
cations inside the inspect statement. In case the inspected object does not contain declarations 
of the name applications, the declarative environment outside the inspect statement applies. The 
“with” statement of Pascal works in a similar way. The inspect statement is not typical for object-
oriented languages. Nevertheless, it is a useful construct in certain situations. Since it has inter-
esting visibility rules we have included a discussion of it here.

To represent the declarative environment of name applications inside the inspect statement, spe-
cial inspect path vertices need to be added to the visibility graph, as follows:

begin (A)

class B; (B)
begin
integer x;

end;

B class C; (C)
begin

begin (D)
x := 1;

end;

begin (E)
end;

end;

ref (C) rC;
rC.x := 2;

end;
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 3-4 Construction Inspect path vertex

For each inspect statement, inspecting an object of class C, an inspect path vertex is construct-
ed with two outgoing edges. The first edge ends in pC, and the second in the path vertex 
applicable outside the inspect statement.

 end 3-4

The following program example shows an inspect path vertex v.

Figure 3.6 An Inspect Path Vertex

The expanded lookup sequence of the inspect path vertex v is (tC : tB {x} : tD {y} : tA {B, C, rC}). 
Thus, we see that both x and y are accessible inside the inspect statement.

A variant on the inspect statement contains “when”-clauses to allow an object to be inspected as 
an object of a specific class. This allows the inspect statement to be used as a case-statement, 
dispatching on the type of the object. For this variant, an inspect path vertex is needed for each 
“when”-clause.

3.3.5  Virtual Classes in BETA

The virtual concept in BETA is far more general than in most other object-oriented languages. 
In particular, it applies not only to procedures, but also to classes [MM89]. If the type (class) of 
a reference attribute is a virtual class, the actual type of the attribute depends on where the 

begin (A)

class B; (B)
begin
integer x;

end;

B class C; (C)
begin
end;

ref (C) rC;

begin (D)

integer y;

inspect rC do
begin
x := y;

end;

end;

end;

tA

tB tC

sA

sCsBpB pC
tD sD

v
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attribute is used. The special type mechanism “like current” in Eiffel works similarly. An impor-
tant use of BETA’s virtual classes is in general classes such as set, vector, and list, where they 
can be used to achieve an effect similar to type parameters.

The example below illustrates a simple use of virtual classes in BETA. The virtual class V is 
declared inside class A and is extended inside A’s subclass B. The reference rV denotes a “part-
object”, i.e. an object automatically generated at the same time as the enclosing A object. Inside 
class A, all we know is that rV denotes (at least) a V object. Thus, we know that rV has an x 
attribute, but we cannot know if it also has other attributes, e.g. y. Inside class B, we know that 
rV actually denotes an object of (at least) the extended V definition, which is seen as an anony-
mous subclass of V. Here, we know that rV has both an x and a y attribute.

Figure 3.7 Reference to object of virtual class in BETA

The type of an rV application depends on where the application occurs. Inside A, the type is V. 
Inside B, the type is the extended V. We differ between the declared type of rV, which is V, and 
the actual type of an rV application, which depends on where the application occurs. The decla-
ration of rV can be found using ordinary lookup. The actual type can then be found by a function 
ACTUAL(ApplBlk, Decl), where ApplBlk is the block containing the application, and Decl is the 
declaration of rV. This function traverses the block, class, and declaration structure in order to 
find the actual type. We do not include the details of this function as it is rather complex. The 
important thing to note here is that the addition of virtual classes and the use of them as virtual 
types does not affect the way the visibility graph is constructed. It only affects the way actual 
types of name applications are located.

The situation becomes more complicated if virtual classes are used as superclasses. Consider the 
example below. In this case, the virtual class V has a subclass W. Inside class A, W is known to have 
a superclass which is at least V. The object denoted by rW is thus known to have at least the x and 
the y attributes. In class B, the virtual class V is extended. Thus, inside B, W is known to have a 
superclass which is at least the extended V, and rW is known to have at least the x, y, and z 
attributes. The class W is virtual in the sense that its superclass is not fixed. Whenever an exten-
sion to V is introduced, this means an implicit introduction of an actual definition of W. This actual 
definition, W’, is a new anonymous class with its own prefix vertex pW’, with edges ending in (tW, 

(#
A: class
(# V: virtual class (# x: @integer #);

rV: @V;
do

1 -> rV.x;
INNER;

#);

B: class A
(# V: extended class (# y: @integer #);
do

rV.x -> rV.y;
#);

#)
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pV’) , as shown in Figure 3.9. The selectors in the rW remote accesses in B are associated with 
the pW’ vertex. Since W’ is not an explicit class it has no enclosed entities. There is therefore no 
need for any table vertex or static path vertex for W’.

Figure 3.8 Virtual superclass in BETA

Figure 3.9 Visibility graph for virtual superclass

To summarize, the presence of a virtual class affects the visibility graph if the virtual class is used 
as a superclass. If the virtual class is only used as a type on references, the visibility graph con-
struction of 3-3 is sufficient.

(# (M)
A: class
(# V: virtual class (#x: @integer; do 1 -> x; #);

W: class V (#y: @integer #);
rW: @W;

do rW.x -> rW.y;
INNER;

#);

B: class A
(# V: extended class (#z: @integer #); (V’)
do rW.x -> rW.y -> rW.z;
#);

#)

pW’

tM

tA tB

sM

sBsApA pB

tV tV’
sV’sVpV pV’

tW sWpW
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3.3.6  Cyclic Dependencies

Types, bindings, symbol tables, and visibility graphs depend on each other. In several situations 
the dependencies are inherently cyclic. We will here mention some of these situations in an intu-
itive way.

• Arbitrary declaration/application order. This means that within a block, the declarations 
contribute to the symbol table of the block, but they can also utilize the information in the 
symbol table, e.g. if their type makes use of a name application which could be declared in 
the block. This leads to a cyclic dependency between the symbol table and the declaration, 
as in the figure below.

Figure 3.10 Cyclic dependencies between symbol table and declaration.

• Reference variables. In a reference variable declaration “ref (x) y”, x must be the name of 
a class. Clearly, the meaning of y depends on what “ref (x)” means, and the name applica-
tion x in this construct depends on the declaration of x. The following example is correct 
according to the context-free syntax, but constitutes a static-semantic error since a is a refer-
ence variable and not a class. In this case, the dependencies lead to a cycle:

Figure 3.11 Cyclic dependencies within a reference variable.

ref (A) B

symbol table

declaration

ref (a) a
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• Cyclic subclassing. As mentioned earlier, cyclic subclassing must be especially taken care of 
to avoid cycles in the visibility graph. However, even if the visibility graph is constructed to 
not contain any cycle, there is still a cyclic dependency between the classes since changing 
the superclass of either of them will affect which identifiers are visible in the other one:

Figure 3.12 Cyclic dependencies between classes.

3.3.7  Other features and variations

As noted by Garrison [Gar87], there are about as many subtle variations on visibility rules as 
there are languages. Our goal here has not been to describe them all, but to describe some basic 
typical rules for block structured and object-oriented visibility mechanisms. Examples of other 
mechanisms which influence visibility are overloading, multiple inheritance, visibility restric-
tions, and significance of declaration-application order.

• Overloading. In overloading, it is not only the name which influences declaration lookup, but 
also the operand types. The lookup function would need to be modified to take this into 
account. However, the same visibility graphs as described above can be used.

• Multiple inheritance. The visibility graphs above can be extended in a straight-forward way 
to handle multiple inheritance. Instead of having only one edge ending in the prefix path ver-
tex of the superclass, a path vertex of a class needs a set of outgoing edges, one for each 
superclass. The ordering of edges would resolve name clashes in an ad-hoc left-to-right man-
ner. The workings of the lookup function would have to be changed if other name clash 
resolution schemes were desired.

• Visibility restrictions. Many languages have visibility restriction mechanisms. These restric-
tions can either be defined by the language, or can be possible to express explicitly in the 
program. E.g., in Simula, attributes can be explicitly declared as “hidden” or “protected” 
which restricts access from subclasses or from outside the class, respectively. Visibility 
restrictions can be seen as “filters” which apply during lookup.

• Declaration-application order. In some languages, the order of declarations is significant, 
and a declaration must precede all its applications in the program text. Such restrictions are 
mainly motivated by implementation reasons, with the goal of being able to write one-pass 
batch compilers. From a language design point of view, such restrictions make little sense. 
As noted by Garrison [Gar87], restricting declaration order leads to very complex visibility 
graphs. In incremental compilers, restricting the declaration order does not simplify the 

A class B

B class A
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implementation. On the contrary, the restrictions add new dependencies which have a nega-
tive effect on the possible performance of the incremental compiler. Thus, we see only 
negative effects of restricting declaration order, and do not treat such languages further in this 
thesis.

3.4  Incremental name analysis

In incremental name analysis, the bindings between applied and declared names, and the infor-
mation transmitted via bindings, are kept up to date as the program is changed. Adding or 
removing a name application affects only the binding for that particular name application. 
Changes to declarations, on the other hand, can have widespread consequences, affecting many 
name applications. We distinguish between the following kinds of changes to declarations:

I Add a declaration.

II Remove a declaration. 

III Change a declaration. With this we mean simple changes which do not affect the bindings 
or the visibility graph. A typical example is changing the type of a variable declaration.

IV Change the visibility graph. Some changes to declarations can affect the visibility graph. A 
typical example is replacing the superclass of a class declaration.

For each of these changes there is a set A of directly affected name applications which either have 
to be rebound, or for which the transmitted declaration information has changed. Changes II and 
III are comparatively easy to handle, as they affect only the name applications bound to the 
changed declaration. If there is some suitable data structure for following bindings from name 
declarations to name applications, the affected sites are easily located. Adding a declaration (I), 
is considerably more complicated. Here, the affected sites can either be name applications for 
which there was earlier no declaration, or name applications bound to declarations which 
become shadowed by the new declaration.

Changes which affect the visibility graph (IV), are also more difficult to handle. Suppose an out-
going edge of a path vertex v has been replaced. Let R be the set of name applications which have 
a lookup vertex from which v is reachable. The affected name applications A is a subset of R. For 
example, consider changing the superclass of a class declaration c in a language with block 
structure, subclassing, and remote access. The change affects the visibility graph by replacing 
the second edge in the prefix path pc. Here, R consists of the following name applications:

• Name applications lexically inside class c or its subclasses.

• Selectors in remote accesses where the type of the object-expression is c or a subclass to c.

We will now review a number of methods which are used in different systems for handling the 
above changes and comment on their time complexity and applicability. The methods will be 
characterized in terms of the cardinals of the following sets:
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A The set of directly affected name applications which either have to be rebound, or for 
which the information transmitted across its binding has changed.

R The set of name applications which have a lookup vertex from which changed dec-
larations or changed edges in the visibility graph are reachable.

T The set of nodes in the whole syntax tree.

These sets are related as A ⊆ R ⊆ T. The lower bound for any method is O(|A|). Some methods 
take as much time as O(|T|). Clearly, such methods do not scale up. Most notably, the methods 
resulting from standard attribute grammars are O(|T|). Methods which are better than O(|T|) usu-
ally require extra bookkeeping data and operations. Typically, such bookkeeping is performed 
for each name application and the extra time is thus spread out during the incremental analysis. 
However, space is usually a scarce resource in incremental systems, and since name applications 
are very common in programs - perhaps up to half of the nodes in a syntax tree are name appli-
cations - the extra bookkeeping space should be minimized. What is acceptable in practice 
depends on many factors: the frequency of different changes, the usual structure and size of pro-
grams, the actual implementation and hardware, how large space consumption is acceptable, 
how long maximum delay for any change is acceptable, etc. One should also note that applying 
one method for one kind of program change will often affect the performance at other program 
changes. Compromises are thus necessary. 

1. Give Up. This method does incremental analysis only for changes in statements and expres-
sions, but recompiles the whole program if one of the changes  I-IV occurs. Clearly, the 
method is O(|T|) and it does not scale up. The Cornell Program Synthesizer [TR81] used 
this approach.

2. Search Smallest Subtree. The idea here is to find the smallest subtree outside which there can 
be no affected name applications. Each name application within this area is then checked, 
typically by redoing the lookup and comparing the result with the previous binding. In a plain 
block structured language this means that the search can be restricted to the block subtree 
containing the changed declaration, and the time complexity is in this case O(|R|). However, 
in the more general case, e.g. for object-oriented languages, the visibility graph may have 
edges which do not follow the structure of the syntax tree. In such cases, the method may 
degenerate to be O(|T|) for most changes of type I-IV. For example, since a declaration inside 
a class can be accessed by name applications syntactically outside the class (by remote access 
or subclassing), this in effect leads to that the smallest subtree containing possible name 
applications coincides with the whole syntax tree. Thus, in general, the method is O(|T|) and 
does not scale up. Optimal incremental evaluation for standard attribute grammars [Rep82], 
[Yeh83] behaves this way in practice, although the attribute evaluation method is implicit and 
not formulated as an explicit search.

3. Follow reverse edges. The idea with this method is to follow the visibility graph edges in the 
reverse direction to find syntax subtrees which may contain affected name applications. This 
method is similar to the previous one, but achieves O(|R|) complexity without requiring the 
visibility graph edges to follow the syntax tree structure.
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4. Maintain Cross-References. By maintaining a set of references at each declaration to all its 
name applications, changes II and III can be handled in O(|A|). The bookkeeping space 
amounts to one cross-reference for each name application.

5. Search Environment. Some simple languages have the property that a declaration d in a block 
b can only shadow declarations visible via the static path of b. We call this the shadows-vis-
ible property. Languages with block structure, subclassing and non-nested classes have this 
property. For such languages, the following ad-hoc method can be used to handle addition of 
declarations (I).

Consider a new declaration d in a block b. Search the declarations in LS(sb). For 
example, in the case of pure block structure, search the declarations in the enclosing 
blocks. If a declaration d’ with the same name as d is found, locate the name applications 
bound to d’, e.g. using cross-reference information. Of these name applications, the ones 
which have tb in their lookup sequence are affected.

This method, although formulated only in the special case of pure block structure, was used 
by Johnson and Fischer in [JF82]. However, this method does not work for languages with 
more complex visibility constructs, e.g. languages with nested classes and inspect state-
ments. To see this, consider the following lookup sequences of the program with nested 
classes in Figure 3.3.

LS(sBL) = (tBL : tB : tA)

LS(sCL) = (tCL : tBL : tC : tB : tA)

We see that the table tC occurs after tBL in the latter sequence, but not in the former. Thus, a 
declaration in the block BL may shadow a declaration in C although the declarations in C are 
not visible from the declarative environment sBL. The program is thus not shadows-visible. 
If the Search Environment method is applied it will not find affected name applications bound 
via the sCL vertex. By a similar example, comparing the lookup sequences of sD and v in Fig-
ure 3.6, it is seen that inspect statements may also result in programs which are not shadows-
visible and where the method thus fails.

Another drawback with the Search Environment method is that it may locate more name 
applications than necessary. In many practical situations, the method is, however, close to 
O(|A|). The same bookkeeping information can be used as in the Cross-References method.

6. Maintain Traces. A general method for handling additions of declarations (III) is to make use 
of “traces”. The idea is to let each name application leave traces in the symbol tables tra-
versed during lookup. A trace includes information both about the name of the searched 
identifier and about the location of the name application which has tried to bind to that sym-
bol table. When adding a new declaration to a symbol table, the trace information is inspected 
to find name applications which have previously tried to bind to that name in that symbol 
table, but failed to find a matching declaration.

The cost of adding a new declaration using this method is O(|A|) if the trace information con-
tains direct information about the location of the affected name applications. There is also a 
bookkeeping cost when binding a name application a. This cost is proportional to the number 
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of symbol tables l traversed during lookup before finding a matching declaration. The book-
keeping cost in time is thus proportional to the time for lookup and should not be any problem 
in an incremental system.

However, the overhead in space may be more serious. If half of the number of syntax nodes 
in the tree are name applications this leads to a space overhead of O(lave(|T| / 2)) where lave 
is the average value for l. Depending on the value of  lave and the actual space cost for each 
trace, this could be a problem in practice. In the worst case l is equal to the length of the look-
up sequence for a. This happens if the matching declaration is a global declaration or if a is 
undeclared. For practical purposes, the maximum length of a lookup sequence could be esti-
mated to around 10, corresponding to 3 static block levels and 7 subclass levels.

If trace information is added also to the symbol tables where matching declarations are 
found, these traces are equivalent to cross-references and the method can thus be extended to 
handle also removals and changes to declarations (II, III).

The method can also handle changes to the visibility graph (IV) if traces are maintained also 
in connection to the visibility graph edges. Suppose the endpoint of an edge is changed from 
a vertex v to another vertex w. The affected name applications can then be found by inspect-
ing all the trace information associated with the changed edge. In principle, the set of name 
applications B found this way may be a superset of A since some of the name applications 
bound via the changed edge may end up being bound to the same name declaration also after 
the change. For example, if the superclass of a class declaration is replaced, name applica-
tions within the class which are bound to global declarations will leave traces at the class-
superclass edge, but are not necessarily affected by a replacement of this edge. In practice, it 
is reasonable to assume that local accesses are much more common than global accesses and 
that |A ∩ B| is much smaller than |A|. This method is then O(|A|) also for changes of type IV.

The Mjølner/Orm system performs incremental name analysis based on this method. A 
slightly simpler variant was used in a precursory system for simpler block-structured lan-
guages [MM85], [Min85]. Several other systems also use variants of this method. Hoover 
describes a technique for handling aggregate values [Hoo87], suitable for incremental name 
analysis for block-structured languages, where key trees serve the role of traces. Vorthmann 
developed a system for incremental name analysis for general graph based visibility rules 
[VL88], [Vor90a]. This system uses a technique very similar to the one used in Orm, repre-
senting graph edge endpoints by views, which maintain the trace information. Vorthmann 
uses the term bread crumbs for the trace technique.
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The following table summarizes the worst-case time complexity and applicability of the above 
methods. 

Figure 3.13 Complexity of incremental name analysis methods

3.4.1  Compromises between time and space

As mentioned above, the “Maintain traces” method has a space overhead of O(lave(|T| / 2)) where 
lave is the average number of symbol tables traversed during lookup. In practice, it can be moti-
vated to reduce this overhead and store less information at the expense of a somewhat longer 
time for finding the affected name applications.

Compromise used in Orm

In the Orm system, the traces include information only for quickly identifying which blocks 
actually contain affected name applications. These blocks are then searched linearly. This reduc-
es the space needed for trace information but still gives a reasonable response time since most 
blocks are rather small. This approach is thus a compromise between searching and maintaining 
information.

A hybrid method

If space costs must be kept very low, another alternative could be to use cross-references (method 
4) for deletions and changes of declarations (II, III), reverse edges (method 3) for changes to the 
visibility graph (IV), and a variant of maintain traces (method 6) for additions of declarations (I). 
The latter method would keep only a reference count in the symbol tables as trace information, 
counting the number of name applications which tried but failed to bind to a given name in a 
given symbol table. This combination of methods would have the advantage of reducing the 
space overhead for trace information substantially. For addition of declarations, it would still be 
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able to handle the very common case of |A|= 0 in constant time (O(|A|)). The disadvantages 
would be that in the |A|> 0 case and for changes to the visibility graph, method 3 would have to 
be used. However, since these changes occur comparatively infrequently, the disadvantages of 
the O(|R|) response of method 3 might be outweighed by the advantages of a lower space 
consumption.

Special handling of accesses to global standard names

An interesting possibility is to consider handling global accesses differently from non-global 
accesses. If the program is dominated by local accesses, lave is approximately 1 and the space 
overhead O(|T| / 2). On the other hand, if the program is dominated by global accesses and the 
maximum length of lookup sequences is, say, 10, the space overhead could be as much as 
O(5|T|). If the space for one trace is the same as the space for a syntax node, this would mean 
that the traces would take up 5 times the space of the syntax tree. Although programs are not 
likely to be dominated by global accesses, this indicates that there is a lot of space to save if glo-
bal accesses are comparatively frequent.

It is reasonable to expect most programs to be dominated by local accesses, but there may also 
be a fair amount of global accesses. For example, standard functions and types can be considered 
to be declared at the global level. Suppose e.g. that the name “integer” is not a reserved word in 
the language, but can in principle be declared in the program and thereby hide the standard use 
of this name. There may then be a rather large proportion of name applications which are bound 
to such standard global names. It could be worthwhile to treat these name applications different-
ly: First, the trace information needed is large since traces for these name applications have to 
be added along the whole lookup sequence. Second, the user is not likely to add declarations of 
these names, although it is allowed by the language. One possibility to handle this in a more 
space efficient way would be to keep a hash table of all such standard names and check it when 
a declaration is added. If such a name was re-declared by the user, it would take time to find the 
affected name applications. On the other hand, this allows the trace information to be avoided 
for all applications of these standard names.

3.4.2  Incremental name analysis, summary

This section has reviewed a number of methods for performing incremental name analysis. It can 
be noted that evaluators for standard attribute grammars correspond to the “Search smallest sub-
tree” method, a method with poor performance, O(|T|) in the worst case, where |T| is the number 
of nodes in the syntax tree. The best method reviewed is the “Maintain Traces” method which 
achieves the lowest bound, O(|A|), for all four types of changes. (|A| is the number of affected 
name applications.) The Mjølner/Orm environment uses a variant of this method. 

In implementing incremental name analysis in practice, it can be motivated to make tradeoffs 
between time and space. A couple of examples have been given to illustrate this.



42 Chapter 3 Incremental Static-Semantic Analysis

3.5  Type analysis

In type analysis, each name application and expression in a program is associated with a type. 
We use the term type in a rather broad sense, covering also terms like “kind”, “mode”, and “for-
mal qualification”. The type information is used for certain kinds of name analysis (e.g. remote 
access as in §3.3.3), for code generation, and for type checking. The type system of Simula is 
rather heterogeneous as it includes both simple built-in types such as Integer and Boolean, com-
plex built-in types such as Text, and user-defined types such as the classes appearing in a 
program. We can regard also other entities, such as procedures and Algol block statements, as 
types. For error handling, it is useful to extend the type system with a type Unknown, which can 
be used for incomplete and erroneous expressions, e.g. name applications for which there is no 
declaration.

The classes defined in a Simula program form a forest of trees, according to the class (type) hier-
archy. In type checking, it is useful to extend this forest to a complete lattice with a top and a 
bottom. In the lattice, a subclass appears below its superclass. The top, ObjectClass, is an 
implicit class which corresponds to a Smalltalk-like “class Object”. Although there is no explicit 
class Object in Simula, classes which have no explicit superclass can be considered to be sub-
classes of the implicit ObjectClass. The bottom of the lattice, NoClass, models the fictitious 
class of the reference value NONE. Although NoClass is not related to any other class, it can, for 
type checking purposes, be seen as a subclass of all other classes, and thus be placed as the bot-
tom of the lattice. The example below shows the class lattice for a Simula program. 

Figure 3.14 A Class Lattice

Each class type introduces a unique reference type. Type-checking reference expressions 
involves comparing classes in terms of the class lattice. The reference assignment statement rX 
:- rY illustrates this. Both rX and rY should have reference types. Let qual(r) be the formal 
qualification of a reference r. For Simula, the formal qualification of a reference is always known 
at compile-time. There are then the following cases:

1. qual(rX) is above or equal to qual(rY). In this case, the assignment is always legal at run 
time (its legality is statically checkable).

begin
class A;
begin
end;

A class B;
begin
end;

A class C;
begin
end;

end;
NoClass

ObjectClass

A

B C
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2. qual(rX) is below (and not equal to) qual(rY). In this case, it depends on the actual quali-
fication of rY if the assignment is legal. A run-time test is needed to check the actual 
qualification of rY, and if it fails, the assignment will result in a run-time error.

3. qual(rX) and qual(rY) are incomparable, i.e. neither one of them is below the other and 
they are not equal. In this case, the assignment can never be legal at run time (it is a static-
semantic error).

Class comparisons are needed to check also other Simula constructs, e.g. is, in, qua, and inspect. 
Other languages, like BETA, Eiffel, and C++, make use of class comparisons in similar ways.

In the previous section it was discussed how a change of superclass led to the replacement of an 
edge in the visibility graph. Similarly, this change leads to replacement of an edge in the class 
lattice. Class comparisons depending on this change must then be recomputed.

3.6  Error detection

An incremental static-semantic analyzer can detect and report static-semantic errors continuous-
ly as the program is edited. Examples of such errors are:

• Missing declaration of name application.

• Multiple declarations of the same name in the same block.

• Illegal type of an expression with respect to its context.

• Cyclic subclassing.

In an interactive system, error detection can be history-dependent, i.e. it is possible to let the 
order of program changes influence the error detection behavior. Consider a block with multiple 
declarations of the name a. By taking the editing history into account, the oldest declaration of 
a can be considered the “real” one, whereas the other ones are considered as faulty. Thus, new 
errors are associated with the latest changes, rather than with previously existing code. This is 
advantageous both because the error can be reported in terms of the current editing context, and 
because it minimizes the necessary incremental re-analysis (adding a new declaration with the 
same name as an existing one does not lead to any rebinding of name applications). Naturally, if 
the “real” declaration is removed, the next oldest comes into effect, and rebinding will occur. 
Cyclic subclassing can be handled in a similar way, by regarding one of the classes as causing 
the cycle, and treating it semantically as if it had ObjectClass as its superclass. The class treated 
this way can be chosen depending on the editing history.

Error reporting can be done in several ways in an interactive system. One way is to highlight the 
erroneous language constructions on the screen. Another way is to maintain a list of errors in a 
separate window. Regardless of how it is done there is a need for a communication mechanism 
in the incremental analyzer which updates the report as the program is analyzed.
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3.7  Techniques for incremental analysis

A number of techniques have been proposed for implementing incremental static-semantic anal-
ysis. One line of development is based on semantic action routines, i.e., procedures connected 
to productions. The Gandalf system uses this approach [Med82]. The advantage of the action 
routine approach is that it allows efficient incremental static-semantic analysis to be implement-
ed. The disadvantage is that the action routines are difficult and error-prone to implement. The 
editor calls the action routines according to given patterns, but it is up to the programmer of the 
routines to make sure they implement the correct actions in the correct order.

There are also some language-specific systems with completely hand-coded incremental static-
semantic analyzers. In particular, the Rational system [WL86] which is a commercial environ-
ment for Ada. This system is interesting as it is actually used for large practical programming 
projects. Although the implementation technique used is ad hoc, it proves that it is possible to 
use incremental techniques for practical systems in industrial settings.

The by far most influential technique for incremental static-semantic analysis is the one based 
on attribute grammars. This techniques was introduced by Reps, Teitelbaum, and Demers 
[DRT81], [RTD83], [Rep84] and their work also resulted in a comprehensive practical system: 
the Cornell Synthesizer Generator which supports generation of language-based editors from 
attribute grammar specifications [RT88]. 

The major benefit of attribute grammars in incremental systems is that they allow an attribution 
of a syntax tree to be specified declaratively. General algorithms can be employed to automati-
cally build the attribution and to update it in the event of changes to the syntax tree. Attribute 
grammars thus free the compiler implementor from programming explicitly how the attribution 
is to be built. It is sufficient to specify what the attribution should be like when it is correct. This 
is especially attractive in incremental systems, since there may be complex dependencies 
between attributes which would make hand-coding of updating the attribution very complex and 
error-prone.

The disadvantage of attribute grammars is that they are poorly suited for some of the problems 
in static-semantic analysis. In particular, name analysis is difficult to express in attribute gram-
mars, and results in poor efficiency for incremental systems. These problems are even more 
pronounced for object-oriented languages which have comparatively complex naming 
semantics.

Many proposals have been made for improving the attribute grammar technique in various ways, 
with the goal of keeping the declarative nature of the specification while achieving efficient 
incremental evaluators. However, these suggested improvements are primarily directed towards 
procedural languages and do not solve the problems for object-oriented languages. 

The next chapter covers attribute grammars in more detail, pinpoints the problems with this tech-
nique, and discusses earlier suggested enhancements.
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3.8  Summary

We have shown how a simple visibility-graph based model for name analysis can be used to 
describe important name analysis problems occurring in object-oriented languages: block struc-
ture, subclassing, remote access, nested classes, Simula’s inspect statement, and BETA’s virtual 
classes. Problems like overloading and visibility restrictions have not been taken into account, 
but could be added to the basic model.

We have reviewed a number of existing methods for performing incremental name analysis and 
compared their worst-case time complexity. The best method reviewed is the “Maintain Traces” 
method which achieves the lowest bound for all the investigated edit cases: add declaration, 
remove declaration, change declaration, change visibility graph. However, the space overhead is 
larger for this method than for the other methods. In a practical system, it can be motivated to 
make tradeoffs between time and space and use hybrid methods.

Type checking of object-oriented programs involves comparison of class types, arranged accord-
ing to the class hierarchy. Such comparisons need to be performed at each reference assignment, 
and also at some other language constructs. In the incremental situation it must be taken into 
account that changes to the class hierarchy may affect the results of such comparisons. 

For detection of static-semantic errors, we have proposed the use of a history-dependent policy. 
Such a policy associates errors with the latest program changes in case there are multiple causes 
of the error. For example, adding a new declaration of an already existing name causes the new 
declaration to be considered erroneous, whereas the old one remains in effect. We find this a 
highly desirable behavior of an interactive system.
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Chapter 4

Standard Attribute Grammars

This chapter reviews standard attribute grammars, incremental attribute evaluation, and the prob-
lems of using standard attribute grammars in the incremental setting.

4.1  Introduction

Attribute grammars were introduced by Knuth in 1968 [Knu68]. The idea gave rise to intense 
research activity, both in developing the theory and in experimental compiler construction. An 
extensive bibliography on attribute grammars was published in 1988 [DJL88]. The attribute 
grammars in their original form as introduced by Knuth will be referred to as standard attribute 
grammars, to distinguish them from other variations and extensions such as the Door Attribute 
Grammars introduced later in this thesis.

4.2  Definitions and notation

A standard attribute grammar G is an extension of a context-free grammar which associates 
with each nonterminal X a set of attributes A(X), and with each production p: X0 ::= X1 . . Xn(p) 
a set of equations E(p). In a syntax tree T of G, each nonterminal instance (syntax node) x of a 
nonterminal X will have instances of the attributes in A(X). An attribute a ∈ A(X) is denoted by 
X.a and an attribute instance of a in a node x of X is denoted by x.a.

An equation in E(p) has the following form:

a0 = f(a1, . . , am)

where a0 . .  am are attributes in ∪ A(Xk), 0 ≤ k ≤ n(p), and f is a semantic function defining the 
value of a0 in terms of the arguments a1 . .  am. The equations of a production apply to all instanc-
es of the production, and a0 . .  am then denote attribute instances. Both in the case of attributes 
and attribute instances, a0 is said to depend on a1 . .  am. A dependency graph D(T) is a directed 
graph whose vertices are attribute instances in T, and where there is an edge from a to b iff b 
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depends on a. In practice, the semantic function is often the identity function. In this case, the 
equation is referred to as a copy equation. 

Each set A(X) is divided into two disjoint sets: a set of synthesized attributes S(X) and a set of 
inherited attributes I(X). G is said to be well-formed if the start nonterminal does not have any 
inherited attributes, and if, for each production p, E(p) contains equations defining all the syn-
thesized attributes of X0, all the inherited attributes of Xk, 1 ≤ k ≤ n(p), and no other equations. 
If G is well-formed, each attribute instance in any syntax tree of G will have exactly one defining 
equation. We will only consider well-formed attribute grammars in this thesis, unless explicitly 
stated otherwise.

An attribute instance x.a has either the special value null, or a non-null value. If the value is non-
null, the attribute is available. An attribute instance x.a is evaluated by applying its semantic 
function to the arguments and assigning the resulting value to x.a. Such evaluation may only be 
performed if all the arguments are available. An attribute instance x.a is consistent if all its argu-
ments are available and if its defining equation holds, i.e. if the value of x.a equals its semantic 
function applied to the arguments. The tree T is consistent if all its attribute instances are consis-
tent. G describes an equation system for T, where all the attribute instances are variables in the 
equation system. If T is consistent, its attribution is a solution to the equation system.

An attribute grammar is said to be well-defined if every possible syntax tree has at least one solu-
tion. If every possible syntax tree has exactly one solution, the grammar is said to be uniquely-
defined. If the grammar is well-defined, but some syntax trees have more than one solution, the 
grammar is said to be underdetermined.

An exhaustive evaluator takes as input a syntax tree T where all the attribute instances are null, 
and evaluates semantic functions until T is consistent. An incremental evaluator restores consis-
tency in a tree T which was initially consistent, but was then modified by syntactic changes.

4.3  AG classes and evaluation techniques

There are two principle kinds of evaluation techniques: data-driven and demand-driven evalua-
tion. In data-driven evaluation, which is the usual technique, attribute instances are represented 
by memory cells, whose values can be read and stored. To obtain an attribution, the attribute 
instances are evaluated in topological order, i.e. according to a topological sort of the dependen-
cy graph. In demand-driven evaluation, each attribute is represented by its semantic function. 
The attribute values are thus not stored using this technique. Accessing the value of an attribute 
is implemented by calling its semantic function. This actually obviates the whole evaluation pro-
cess - all attributes are automatically available and consistent. The drawback of this techniques 
is that it may be extremely slow since the same semantic function can be called many times. In 
the worst case, the time complexity is exponential in the total number of attributes. Lazy attribute 
evaluation is a variant on demand-driven evaluation which stores the value of an attribute the 
first time its semantic function is called, and uses that value in subsequent calls. This technique 
is time-optimal (linear in the number of attributes). Data-driven and demand-driven techniques 
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can be freely combined by selecting some attributes to be data attributes, treated by data-driven 
techniques, and others to be demand attributes, treated by demand-driven techniques. This can 
be a useful way to trade evaluation time (in demand-driven evaluation) for space (used by the 
attributes in data-driven evaluation). In incremental systems it may even be possible to save both 
space and time by using demand or lazy attributes: If an attribute value is not always needed, 
time is saved by not having to update it at incremental evaluation. Lazy attributes only have to 
be marked as invalid but do not need to be recomputed until they are actually needed. Examples 
of incremental systems employing demand and lazy attribute evaluation schemes include 
[LMOW88] and [Hud91].

A data-driven evaluation algorithm can be either dynamic or static, depending on when the eval-
uation order is computed. A dynamic algorithm builds and sorts the dependency graph at 
evaluation time, whereas a static algorithm analyzes the attribute dependencies in the grammar 
at evaluator construction time, and can then evaluate any tree without doing dependency analy-
sis. Static evaluators are in practice much faster than dynamic evaluators and also consume much 
less storage.

Attribute grammars are classified according to the dependencies between attributes. The classes 
of interest in this thesis are the following:

• Non-circular. An attribute grammar is non-circular if D(T) of every possible syntax tree T is 
acyclic. All non-circular grammars are uniquely-defined, i.e., there exists exactly one solu-
tion for each possible syntax tree.

• Ordered. An attribute grammar is ordered (OAG), according to Kastens definition [Kas80]. 
This is a subclass of the non-circular grammars.

• 1-visit. This is a subclass of the ordered attribute grammars. In [DJL88] these grammars are 
called “simple-1-sweep”. 

• Circular. An attribute grammar is circular if, for some T, D(T) has a cycle. Circular grammars 
may be well-defined under certain circumstances.

General non-circular AGs require dynamic evaluators. The first time-optimal incremental algo-
rithm for this general class was a dynamic change propagation algorithm by Reps [Rep82]. 
Ordered AGs by Kastens [Kas80] is an important class of grammars for which static evaluators 
can be applied. Ordered AGs are sufficient for many practical applications. E.g., compilers for 
complex existing programming languages like Ada have been implemented using ordered AGs 
[KHZ82]. Incremental versions of Kastens’ algorithm for ordered AGs have been presented by 
Yeh [Yeh83] and Reps [Rep84], and the version of this algorithm which is used in the Cornell 
Synthesizer Generator is presented in detail in [RT88].

Kastens’ evaluator for ordered AGs (and its incremental versions) is based on a very simple prin-
ciple of visit sequences. A visit sequence is a sequence of instructions of the following three 
types:

• EVAL(a) Evaluate the attribute instance a.
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• VISIT(i, r) Visit the i’th descendant node for the r’th time.

• RETURN(r) Return to the ancestor node for the r’th time.

At evaluator construction time a visit sequence is computed for each production according to the 
attribute dependencies of the grammar. At evaluation time a simple evaluator walks the tree and 
visits descendant nodes and ancestor nodes according to the VISIT and RETURN instructions, 
and evaluates attributes according to the EVAL instructions. Such an evaluator can be pro-
grammed using co-routines, recursive procedures, or a finite state automaton.

We use the term n-visit AG to mean an ordered AG which requires at most n visits to any node. 
I.e., n is equal to the maximum value of r occurring in any instruction in the visit sequences. The 
special case of 1-visit grammars is of particular interest for this thesis. Standard 1-visit AGs are 
useful only for rather simple applications such as one-pass compilers. A more complex language 
like Simula would require at least a 3-visit AG in order to handle that class declarations, variable 
declarations, and name applications of these declarations may occur in any order. However, as 
will be discussed in detail in §8.11, the Door attribute grammars introduced in this thesis often 
have less complex dependencies than standard AGs and 1-visit dependencies are often sufficient 
even for quite complex languages like Simula. 1-visit grammars are attractive because evaluators 
for them are even simpler to implement than general evaluators for ordered attribute grammars. 
Using object-oriented techniques, both exhaustive and incremental evaluators can be implement-
ed in a very simple way for such grammars, as will be demonstrated in Chapter 7. 

In Knuth’s original definition of attribute grammars, circular AGs were considered erroneous. 
Most subsequent work has dealt only with non-circular AGs or subclasses thereof. However, it 
is quite possible to consider circular AGs, and several practical problems can be expressed in a 
simpler way if circularities are allowed. Typical examples are live-analysis in data-flow, and 
arbitrary declaration/application order in static semantics. Incremental algorithms for handling 
circular attribute grammars have been developed by e.g. Farrow [Far86] and Jones [JS86], 
[Jon90].

In contrast to non-circular AGs, a circular AG does not necessarily have a solution for every syn-
tax tree. A tree with a cycle in its dependency graph may have zero, one, or many solutions. The 
attributes on a cycle can be evaluated iteratively, and if the consecutively computed values con-
verge, a solution is found. Under certain circumstances it is possible to decide if a circular 
grammar always has such converging behavior. The usual approach is to arrange the possible 
values of each attribute on the cycle in a lattice. If the semantic functions are monotone and if 
the lattices are of finite height the iteration is guaranteed to converge. Furthermore, by using the 
bottom elements as start values, the iterative evaluation is guaranteed to find the least solution 
(the least fixed point). The least solution is usually the only interesting solution, and by choosing 
it as the solution, the circular grammar is uniquely-defined. 

As discussed in §3.3.6 there are several constructs in object-oriented languages which lead to 
cyclic dependencies, at least on an informal intuitive level. It is reasonable to expect that these 
dependencies are simpler to express in a formal specification language which allows cyclic 
dependencies than in one which does not allow cycles. 
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4.4  Limitations of standard AGs

Standard AGs make it possible to define attributions of syntax trees. However, the nature of these 
attributions and the ways they can be defined is limited by the definition of standard AGs. In 
particular:

I Regular values. The attributes of individual syntax nodes are limited to have regular val-
ues, and must not be object identity values, denoting objects whose contents can be altered 
(as a consequence of syntax tree modifications).

II Whole attributes. A semantic function always defines a whole attribute, never just part of it.

III Simple assertions. An AG equation is an assertion which states something about the attribu-
tion and which can be true or false. Taking a more general view on attributions, a solution 
is an attribution for which all assertions are true. In this perspective, AGs restrict the asser-
tions to be of a very simple form. 

IV Local dependencies. The attributes in an equation always involve only attributes belonging 
to the nodes of a single production, i.e. all attribute dependencies are local (with respect to 
the syntax tree). If there is a dependency between attributes of two nodes distant from each 
other in the syntax tree, such a dependency has to be expressed by a chain of dependencies 
via all intermediate nodes. There is thus no way to express a direct non-local dependency.

V Rigid dependencies. The dependencies between attributes are rigid in the sense that they are 
completely governed by the form of the syntax tree and not at all by the values of the 
attributes. Also, the dependencies are rigid in the sense that an attribute is always considered 
to depend on whole other attributes, not just on parts of them.

VI Uniquely-defined. Standard non-circular attribute grammars are always uniquely-defined. 
In some situations underdetermined grammars would be preferrable. For example, this is 
useful to handle history-dependent error reporting as discussed in §3.6.

As an example of what it can mean to relax the above restrictions, consider defining name anal-
ysis of an object-oriented language like Simula. By following the visibility graph approach of 
§3.3, the following attributes can be used:

• Each declaration node has a declaration object which contains the name, represented as a text 
string, and the type, represented as a reference to a type object.

• Each block node has a symbol-table vertex object which contains a set of references to the 
declaration objects of declaration nodes appearing in the declaration part of the block. A 
block node also has a static path vertex object, containing references to other vertex objects 
(representing the outgoing edges in the visibility graph).
Each class node has in addition a prefix path vertex object.

• Each name application node has: a declarative environment, represented by a reference to one 
of the vertex objects; a binding, represented by a reference to the appropriate declaration 
object (according to the name and the declarative environment); and a type attribute, repre-
sented by a reference to the same type object as is referred in the declaration object.
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It is clear that this kind of attribution cannot be described by a standard AG. We see immediately 
that (I) is relaxed. For example, the contents of the set in a symbol-table object is altered if dec-
laration nodes are added or removed. In defining such an attribution, it is useful to relax also the 
other limitations. For example:

• An equation could define the type of a declaration object. Since the declaration object is an 
attribute of a declaration node, this means defining only part of an attribute, thus relaxing (II).

• To state which declaration objects belong to a specific symbol table, a membership assertion 
could be used, thus relaxing (III).

• Via the binding reference attribute in the name applications, each name application is made 
directly dependent on the corresponding name declaration, thus relaxing (IV).

• The dependencies from name declarations to name applications are flexible in the sense that 
they may change due to changes in the attribution, even if the syntax tree structure between 
these nodes remains intact. For example, if the name of the declaration or application is 
changed, or if the structure of the visibility graph is changed (e.g. by changing the superclass 
of a class), the bindings (and thereby the dependencies) will change. Thus, (V) is relaxed.

• To handle multiple declarations of the same name, the symbol table contents could be defined 
to include declaration objects in such a way that all the declaration objects would have unique 
names. Thus, if there were more than one declaration object with the same name, only one 
of them would be included in the symbol table. This leads to an underdetermined grammar 
since it does not express which of the declaration objects to include. Thus, (VI) is relaxed.

One of the main goals of the work presented in this thesis has been to develop a formalism which 
allows these kinds of relaxations. An additional requirement on such a formalism is that it should 
be reasonably simple to develop efficient incremental attribute evaluators for a given specifica-
tion in the formalism. The Door attribute grammars, presented in Chapter 8 and onwards is the 
proposed solution to meet these goals.

4.5  On optimality

The performance of an incremental evaluation algorithm is usually characterized by the number 
of attribute evaluations performed after a modification to the syntax tree [Rep82]. The set of 
attributes requiring new values, due to the syntax tree modification, is referred to as AFFECTED. 
Each attribute evaluation is considered to take unit time. Clearly, the lower bound is |AFFECT-
ED|. If the algorithm uses O(|AFFECTED|) time, it is said to be (asymptotically) optimal. It is 
with respect to this measure that the algorithm for non-circular AGs of Reps [Rep82] and the 
algorithm for ordered AGs of Yeh [Yeh83] are optimal. We refer to this measure as the traditional 
performance measure.

However, the traditional measure is useful only for comparing evaluation algorithms within one 
formalism (e.g. standard attribute grammars). It is not useful for comparing the performance 
between evaluators based on different formalisms. The problem with the traditional measure is 
that it assumes that all attributes defined in an attribute grammar are interesting. This is usually 
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not the case. A better measure is obtained if we only consider interesting attributes, i.e. attributes 
which are of interest to maintain with respect to the application, and disregard additional 
attributes introduced for technical reasons. We refer to this measure as the interesting perfor-
mance measure. A formalism, e.g. standard attribute grammars, may force us to use a lot of 
uninteresting attributes, simply in order to define the interesting ones. Now, let AFFECTED 
mean only the interesting attributes which require new values. If the interesting measure is used, 
the traditional algorithms are no longer optimal.

To illustrate this, consider maintaining only a type attribute for each name application, but no 
other attributes. To define the type attributes in a standard attribute grammar, additional (unin-
teresting) attributes are needed which propagate the type from each name declaration node to all 
its name applications. This can only be done by defining a large dictionary-like attribute which 
maps names to types and which is propagated throughout the scope of the declaration. The tra-
ditional algorithms store and update also these uninteresting dictionary attributes. Suppose the 
type is changed of a globally visible declaration for which there are n name applications. 
AFFECTED is in this case the type attributes of these n name applications, and |AFFECTED| = 
n. This change leads to all dictionary attributes receiving new values. The updating of the dictio-
nary values can actually be done in a comparatively efficient way since many of them can share 
implementation. Worse is, however, that all type attributes in the whole program are re-evaluat-
ed, since they depend on a dictionary attribute which has changed value. The performance in this 
case is thus O(|T|) rather than O(|n|) and clearly very far from optimal.

4.6  Related work

Several methods have been proposed for overcoming the problems of standard AGs in the incre-
mental setting. Some approaches aim at developing improved evaluation schemes while staying 
within the standard AG formalism. Others extend the standard AG formalism with new con-
structs to allow improved description and evaluation. There are also some approaches which 
abandon standard AGs altogether and propose other declarative formalisms. Most approaches 
are directed towards improving incremental name analysis for block structured languages. A few 
methods have been applied to modular languages, but we have not found any method applied to 
object-oriented languages, except for the author’s earlier work. Most of the proposed methods 
are based on dynamic attribute evaluation algorithms rather than on the more efficient static 
algorithms.

Extending AGs with additional constructs

Johnson and Fischer suggested extending AGs with context-sensitive relation sets [JF82], a 
mechanism allowing a declaration site to be linked to its application sites based on block-struc-
tured scope rules. The mechanism allowed information to flow directly over these links and 
special procedures were developed to handle addition and deletion of declarations. The mecha-
nism was later developed into non-local productions [JF85]. This approach is more formal but 
unfortunately has the same efficiency problems as standard AGs for additions and deletions of 
declarations.
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Beshers and Campbell suggested extending standard AGs by maintained and constructor 
attributes [BC85], [Bes87]. A maintained attribute is an instance of a data type with a given set 
of operations. Instead of defining the value of the maintained attribute with an equation, the value 
is defined by constructor attributes which each corresponds to an operation pair (an action and a 
retraction). A construction attribute is associated to the nearest maintained attribute on the path 
to the root of the syntax tree. The value of a maintained attribute is equal to the value obtained 
by applying the action operation of all its associated constructor attributes. Trigger clauses serve 
a similar purpose as the context-sensitive relation sets of Johnson and Fischer. The technique 
allows name analysis of block structured languages to be defined by using maintained attributes 
to represent symbol tables, constructor attributes for adding declarations to the symbol tables, 
and trigger clauses to allow information flow directly from declaration sites to application sites. 
The evaluation algorithm is based on the dynamic algorithm of [Rep82].

Kaiser introduces action equations [Kai85], an extension to AGs primarily intended for specifi-
cation of dynamic semantics. Some of the action equation constructs are relevant also for 
specifying static semantics. Set-valued attributes can be defined to model symbol tables, a mem-
bership construct can be used to assert the membership of a declaration in a symbol table set, 
and a propagation construct to link declaration sites to application sites. The evaluation algo-
rithm is based on the dynamic algorithm of [Rep82].

Improving evaluation of standard AGs

Hoover et al. [Hoo86], [HT86b], [Hoo87] and Reps et al. [RMT86] have the goal of improving 
incremental evaluation without extending or changing the attribute grammar formalism as such. 
The technique used is to provide special evaluation support for a pre-defined dictionary data type 
supporting block structured scope rules and for accelerating change propagation by supporting 
non-local dependencies. In [RMT86] the latter is done by allowing access to attributes of ances-
tors in the syntax tree, while Hoover uses a more general approach of bypassing copy equations. 
Evaluation in [RMT86] is based on the dynamic algorithm of [Rep82]. Peckham [Pec90a] 
defines a subclass of AGs which can handle the non-local dependencies of [RMT86] using a stat-
ic evaluation algorithm. Hoover develops a new dynamic evaluation algorithm, approximate 
topological ordering, based on assigning priorities to attributes. Although this algorithm is 
dynamic and although it may be sub-optimal, it is reported to perform well in practice.

Support for advanced name analysis

All the above methods have in common that they support incremental name analysis for languag-
es with block structure. None of them supports specification of languages with more advanced 
scope rules like object-oriented languages.

The author proposed extending standard AGs with operational constraints [Hed88]. An opera-
tional constraint expresses an invariant and is associated with a pair of operations. An evaluation 
operation enforces the invariant and a de-evaluation operation undoes the side-effects of the pre-
vious evaluation operation. The operational constraints are in this respect similar to the 
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constructor attributes of Beshers. A kernel handling incremental name analysis for Simula-like 
object oriented languages was implemented and interfaced to the operational constraint mecha-
nism. This technique was used to implement the incremental static-semantic checker of Mjølner/
Orm [MHM+90]. Evaluation is based on a static algorithm. 

Vorthmann uses a similar but more language independent approach by extending standard AGs 
by a special language designed for handling name analysis [VL88], [Vor90a]. This naming spec-
ification language, NSL, allows specification of scopes, scope connections, name declarations 
and applications. The approach is quite flexible and can be used to implement the naming seman-
tics of languages like Modula-2, Pascal, and C. The evaluation algorithm is based on the dynamic 
algorithm of [Rep82]. The principle ways in which scopes can be combined is equivalent to the 
visibility graphs used in §3.3. Therefore, the NSL approach should be suited also for implement-
ing object-oriented languages. However, NSL has not been applied to object-oriented languages 
in practice and apparently some mechanisms are missing in order to implement such languages. 
In particular, there is no mechanism for dealing with erroneously cyclic subclassing, as was dis-
cussed in §3.3.2 and there is no mechanism for comparing class types which is needed to do type 
checking, as was discussed in §3.5.

Other approaches based on context-free grammars

Demers et al. suggest a declarative message-passing formalism as an alternative to attribute 
grammars [DRZ85]. Instead of propagating symbol table attributes to declarations and uses, the 
declarations and uses send messages to the symbol table to request or assert information. How-
ever, since messages may flow only along the syntax tree structure (apart from replies which may 
flow directly back to the request site), the approach seems suitable only for simple block struc-
tured languages and not for languages with more advanced scope rules.

Horwitz and Teitelbaum suggest combining attribute grammars with a relational database 
[HT86a]. Attributes can depend on the values in database relations and the database relations can 
depend on attribute values (provided no circularity is introduced). Symbol tables can be main-
tained as relations and it is reported that the approach may prove more cost effective after 
changes to declarations than the pure attribute grammar approach. 

Bahlke and Snelting have built a generator system PSG, which is based on a concept of context 
relations instead of attributes [BS86]. Instead of propagating symbol table information down to 
all use sites, as is normal in attribute grammars, the sets of “still-possible attribute values” for 
use sites are collected in relations which are propagated upwards in the tree. By performing uni-
fication on such relations it is possible to detect type-checking errors even for incomplete 
program fragments where declarations are missing. A special scope-analysis specification lan-
guage is used which offers various built-in concepts, but is not a general mechanism. In [Sne91] 
it is reported that incremental type inferencers for Ada and Fortran 8x have been generated based 
on this approach.

Ballance has developed the notion of logical constraint grammars where contextual constraints 
are expressed by annotating productions in a context-free grammar with goals written in a logic 
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programming language [Bal89]. This allows declarative specification of logic databases of facts 
which can be used to model symbol tables. Incremental evaluation is accomplished by a consis-
tency manager which detects inconsistencies between the syntax tree and derived data and 
invokes the backtracking evaluator to (re-)attempt goals. These ideas have been implemented in 
the system Pan [BGV92] and the technique has been used to specify the static-semantics of 
Modula-2.

Approaches based on graphs

Attribute grammars and the related methods described above are all based on attributing a syntax 
tree in one way or the other. A different approach is to start out with a graph substrate rather than 
a syntax tree. This is useful if the underlying edited structure is a graph rather than an abstract 
syntax tree. Applications include consistency checking of module interfaces. Alpern et al. have 
developed a formalism for specifying attributed directed graphs [ACR+88] and incremental 
attribute evaluation algorithms for such graphs [ACR+87]. Kaplan and Goering suggest a similar 
approach but based on graph grammars [KG89]. Graph grammars describe graphs derived from 
strings, analogously to how context-free grammars describe parse trees derived from strings 
[ENR83].

Other approaches to incrementality

A completely different approach to incrementality is that of making a batch computation incre-
mental. The idea here is to start out with a batch algorithm (or function) which computes a result 
from an input, and to derive a corresponding incremental version of this algorithm which updates 
the result after changed inputs (rather than re-computing the result from scratch). The work of 
[YS91], [PT89], and [SH91] is in this direction. This approach is not directly comparable to 
attribute grammars since the idea of AGs is to describe invariant properties of the resulting attri-
bution. I.e., the initial description is not a batch algorithm. Rather, the approach of making batch 
computations incremental is orthogonal to that of declarative approaches like attribute 
grammars.

4.7  Summary

We have reviewed the standard attribute grammar formalism and its properties in the incremental 
setting. We find the fundamental idea of attribute grammars to be very useful and attractive for 
the implementation of incremental systems: the attribution of a syntax tree is described declara-
tively, and an incrementally updating attribute evaluator can be automatically derived from the 
specification. This gives robust implementations which are easy to change and maintain. 
Although the technique has serious limitations in other respects, it would be preferable to over-
come these limitations while preserving the idea of a declarative description of the attribution.

We find the most serious problem with attribute grammars to be that the attributions they can 
define are too limited to be practical. We have listed a number of problems which need to be 
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overcome in order to solve the static-semantic analysis problems reviewed in Chapter 3 in an 
adequate manner.

We have also reviewed a number of existing methods for improving attribute grammars and 
related methods for incremental evaluation. However, except for the author’s own earlier work, 
none of these approaches is reported to have been applied successfully to object-oriented 
languages.
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Chapter 5

A Basic Object-Oriented Specification 

Language

In this chapter we introduce a basic object-oriented specification language developed specifical-
ly for this thesis. For the sake of convenience, it will be called OOSL. OOSL has basic object-
oriented features similar to those of Simula. It will be extended by grammar related features as 
needed during the rest of the thesis. One important feature of OOSL is that it distinguishes firmly 
between declarative and imperative constructs. In specifying grammars, only the declarative 
constructs are used. The imperative constructs are used only in the implementation of attribute 
evaluators. All constructs of OOSL are straight-forward to implement in any object-oriented 
language.

It is not necessary to read this chapter thoroughly to understand the subsequent chapters. It 
should suffice to skim through it to get an idea of what constructs are included, and then return 
later to more detailed reading if the syntax is not obvious enough.

5.1  Declarative constructs

5.1.1  Classes and subclasses

Classes in OOSL are arranged in a single-inheritance hierarchy. A declaration of a class defines 
the class name, the name of the superclass (optional), and the class body which is a list of dec-
larations (also optional). If the superclass is not given, the class is considered to be a subclass of 
a most general class ANYCLASS. The class may also have a formal parameter part discussed in 
more detail in §5.1.11.

<class-decl> ::= 
<class-id> ‘:’ ‘class’ [<formal-par-part>] [<superclass>]
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[ ‘{’ <decl-body> ‘}’]

<superclass> ::= <superclass-id>
<decl-body> ::= (<decl>, ‘;’)*

for example

A: class B { };

For clarity, we will use boldface for the most important keywords. Comments are written as (* 
this is a comment *).

5.1.2  Variable declarations

Although the term “variable” suggests imperative programming, variables are relevant also for 
declarative specifications. It is possible to define the value of a variable declaratively rather than 
imperatively. This is exactly what is done in attribute grammars, where the attributes correspond 
to variables.

A variable may be of one of the built-in types: integer, boolean, and string. In addition, a variable 
may be a reference. The following syntax is used:

<decl> ::= <var-decl>

<var-decl> ::= <var-id> ‘:’ <type>

<type> ::= ‘integer’ | ‘boolean’ | ‘string’ | ‘ref’ <class>

<class> ::= <class-id>

for example

i: integer;
b: boolean;
s: string;
r: ref A;

5.1.3  Objects

Objects can be introduced in a declarative way by declaring static references, as in BETA. The 
object denoted by the static reference is created automatically at the same time as the object 
declaring the static reference.

<decl> ::= <stat-ref-decl>

<stat-ref-decl> ::=
<stat-ref-id> ‘:’ ‘object’ [<class>] [ ‘{’ <decl-body> ‘}’]

Notice that an object may (as in BETA) have a body. If it has a body, it is considered to be an 
instance of an anonymous class which is a subclass of the <class> (or a subclass of ANYCLASS 
if no <class> is given). For example:
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A: class
{ x: object C;

y: object D
{ a: integer;
};

};

For each A object which is created, there will be a C object and an extended D object created as 
well. These objects are denoted by the static references x and y respectively. The object denoted 
by y is an instance of an anonymous subclass of D.

5.1.4  Virtual functions

Functions in OOSL are applicative in the sense that they have no side-effects and two calls will 
yield the same result when called with the same parameters in a given object configuration. How-
ever, if objects are changed between two calls, the function results may differ. Function results 
and parameters may be references as well as regular values.

Functions are virtual and may be overridden in subclasses. A virtual function specification 
declares the name, result type, and parameters. It may optionally also contain an implementation 
defining the result value. A separate function implementation contains only a definition of the 
result value. In defining the function result, the value assignment operator “:=” is used for reg-
ular-valued functions and the reference assignment operator “:-” is used for functions returning 
references.

<decl> ::= <func-spec> | <func-impl>

<func-spec> ::=
<func-id> ‘:’ ‘func’ <type> [‘(’ (<form-par>, ‘,’)+ ‘)’]
[(‘:=’ | ‘:-’) <expr>]

<form-par> ::= <param-id> ‘:’ <type>

<func-impl> ::=
‘impl’ <func-id> (‘:=’ | ‘:-’) <expr>

For example,

A: class
{ f: func ref C (x: integer) :- c0;
};
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B: class A
{ impl f :-

if x>0
then c1
else c2;

};

Here, the function f is both specified and implemented in class A. In the subclass B an implemen-
tation of f is given which overrides the implementation in A. 

5.1.5  Super

Similar to Smalltalk, an implementation of a function f declared in a class C may call the imple-
mentation of f declared in the superclass of C. This is done by calling f via the special reference 
super. The following syntax is used:

<exp> ::= <super-exp>

<super-exp> ::= ‘super’

The following example illustrates the use of super:

A: class
{ f: func integer (x: integer);

impl f := x*x; (* 1 *)
};

B: class A;

C: class B
{ impl f := (* 2 *)

if x=0
then 1
else super.f(x);

};

Suppose f is called for a C object. The implementation at (* 2 *) is then invoked. If the param-
eter x is not 0 the function calls f via super. This results in an invocation of the function 
implementation of f which is closest above in the class hierarchy, i.e. the implementation at (* 
1 *).

5.1.6  Regular value expressions

For arithmetic expressions, boolean expressions, and relations, we use the usual syntax used in 
most programming languages. Also for the conditional expression we use the usual syntax:

<exp> ::= <cond-exp>

<cond-exp> ::= ‘if’ <exp> ‘then’ <exp> ‘else’ <exp>
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5.1.7  Reference expressions

For simple expressions involving references to objects, we use the syntax of Simula:

<exp> ::= <ref-eq> | <ref-neq> | <in-exp> | <this-exp> |
<none-exp> | <remote-access>

<ref-eq> ::= <exp> ‘==’ <exp>
<ref-neq> ::= <exp> ‘=/=’ <exp>
<in-exp> ::= <exp> ‘in’ <class-id>
<this-exp> ::= ‘this’ <class-id>
<none-exp> ::= ‘NONE’
<remote-access> ::= <exp> ‘.’ (<id> | <call>)

For example,

• “r1 == r2” is true if r1 and r2 denote the same object.

• “r1 =/= r2” is true if r1 and r2 denote different objects.

• “r in C” is true if r denotes an object which is at least of class C. I.e., the object is of a class 
D such that D ⊆ C.

• “this C” denotes the C object in which the expression occurs.

• “NONE” is the special object identity value denoting “no object”.

• “r.a” is a remote access to the entity a of the object denoted by r. The remotely accessed 
entity may be either an identifier (e.g. for a variable), or a function call. If the resulting value 
of a remote access is an object identity, it may be used as the left operand of another remote 
access. For example, “r.f(x).c” is an access to c in the object denoted by the reference 
returned by the function call f(x) of the object denoted by the reference r.

5.1.8  Let-expression

OOSL includes let-expressions. A let-expression defines the value of a local variable which may 
be accessed in the body of the let-expression. The value of the let-expression is the same as the 
value of its body. The local variable is not explicitly declared, but will have the same type as the 
expression used to define its value. We use a special lexical identifier for such local variables, 
starting with a “$”-sign. As for functions, the “:=” or the “:-” operator is used depending on if 
the variable has a regular value or if it is a reference.

<exp> ::= <dollar-id> | <let-exp>

<let-exp> ::= ‘let’ <dollar-id> (‘:=’ | ‘:-’) <exp> in <exp>

For example, 

let $X := a*b in
$X *($X-1)
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5.1.9  Inspect-expression

OOSL includes an “inspect-expression” which does case analysis on the actual qualification of 
an object. The inspect-expression is inspired by Simula’s inspect statement, but works as an 
expression rather than an imperative statement. Another difference from Simula is that the 
inspect-expression uses an explicit variable for the inspected object. Thus, entities in the inspect-
ed object must be accessed by remote access via this inspect variable, instead of directly as in 
Simula. In our view, this leads to easier reading of the code. 

<exp> ::= <inspect-exp>

<inspect-exp> ::=
‘inspect’ <dollar-id> ‘:-’ <exp>
(‘when’ <class-id> ‘do’ <exp>)*
‘otherwise’ <exp>

An inspect-expression thus has the following form:

inspect $X :- r
when C1 do e1
when C2 do e2
...
when Cn do en
otherwise e

Here, r, which must be a reference expression, denotes an object called the inspected object. 
Like in a let-expression, the local variable $X is defined to denote this object. Depending on the 
actual class of the inspected object and the classes C1..Cn, one of the when-clauses or the other-
wise-clause will apply. Let A be the actual qualification of r. The first when-clause for which A 
⊆ Ck holds is the one which applies, and ek is the resulting value of the inspect-expression. If 
there is no when-clause for which A ⊆ Ck holds, the otherwise-clause applies, and e is the result-
ing value of the inspect-expression. Inside ek, $X has the formal qualification Ck and $X is 
guaranteed to actually denote a real object (i.e. it cannot be NONE). Inside e, $X has the same for-
mal qualification as the reference-valued expression r.

In our OOSL specifications, the most common use of the inspect-expression is to do safe access 
to attributes via references which can be NONE at run time. For example, consider a reference 
variable rA and a class A with an attribute t as follows:

rA: ref A;

A: class;
{ t: integer;
};

If the variable rA sometimes is NONE and sometimes denotes a real A object, this has to be 
checked before accessing the attribute t via the reference. This can be done by using an inspect-
expression as follows:

inspect $X :- rA
when A do $X.x
otherwise 0
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The result of the expression is rA.x if rA denotes a real object, and 0 if rA is NONE.

5.1.10  Loop expression

The loop-expression is in principle equivalent to a recursive function, but is a convenient way of 
writing such functions in line:

<exp> ::= <loop-exp> | <next-exp>

<loop-exp> ::=
‘loop’ <dollar-id> (‘:=’ | ‘:-’) <exp> ‘do’ <exp>

<next-exp> ::= ‘next’ <dollar-id> (‘:=’ | ‘:-’) <exp>

 The form of the loop-expression is thus

loop $X := start do
body

As in a let-expression, the local variable $X is assigned the value of the start expression and can 
be used inside the body expression. The result of the loop-expression is the value of its body. The 
body may contain a “next-expression” of the form

next $X := e

The value of the next-expression is the value of the enclosing loop-expression with $X=e instead 
of $X=start. I.e., the loop is “restarted” with a new value for $X.

For example, the loop construct can be used to find a particular element in a linked list as follows:

loop $X :- list.first do
if $X.data = 5
then $X
else next $X :- $X.suc;

The loop-expression is equivalent to calling a function

f(start)

which is defined as 

f: func T1 ($X: T2) := body

where a “next” expression is replaced by the recursive call

f(e)

Just as for tail-recursive functions, the loop-expression can actually be implemented as an imper-
ative loop if all next-expressions occur in tail-recursive positions. I.e., if the next-expressions are 
the resulting values of the body and not used in further computations. In our examples, we will 
only use tail-recursive loop-expressions.
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5.1.11  Generic classes

It is useful to be able to parameterize collection classes (sets, lists, etc) with the types of their 
member elements. Some object-oriented languages support this, e.g. Eiffel by means of “generic 
classes” [Mey88] and BETA by means of “virtual patterns” [MM89] . Introducing such mecha-
nisms has some consequences for static type checking as will be discussed in section §5.5.3. For 
OOSL, we take an approach similar to the “constrained generic classes” of Eiffel [Mey92].

A formal class T can be declared as a parameter of a class C. The parameter T and its least formal 
qualification is given within square brackets in the declaration of C and can be used inside C to 
define the types of attributes, function parameters and results. C is said to be a generic class.

The formal parameter part of a class declaration has the following syntax:

<formal-par-part> ::=
‘[’
( <par-class-id> ‘:’ ‘class’ <qual-id>, ‘,’ )+
‘]’

and for the <class> nonterminal used in declarations of reference variables, parameters, and 
static references, we add the following alternative productions as well (in addition to the produc-
tion in §5.1.1):

<class> ::= <par-class-id>
<class> ::= <class-id> <actual-par-part>

<actual-par-part> ::= ‘[’ ( <class>, ‘,’ )+ ‘]’

For example

A: class [T: class T2]
{ b: ref T;

f: func ref T (x: ref T);
}

Here, the formal parameter T is specified to be at least class T2, i.e., T ⊆ T2. This makes it pos-
sible to use attributes of T2 inside class A when dealing with objects of the parameter class T. In 
using class A as the type of a reference, an actual class parameter is supplied. For example

rU: ref A[U]

where the actual parameter U is the name of another class. U must be either T2 or a subclass of T2. 

5.2  Applicative classes

In addition to simple values like integers and booleans, there is a need also to express structured 
values. For these, we will use the same techniques as in functional languages, i.e. use objects and 
references to form structures which represent the values, but use these structures only in restrict-
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ed ways so that the immutability of values is not violated (referential transparency). More 
precisely:

• An object used to represent a value must not be changed

• Testing equality of object identities is not sufficient for determining value equality

The use of objects and references is essential in functional programming to save storage for val-
ues which are equal, or which share common substructure, and to allow fast construction of new 
values. Data types with these characteristics are sometimes called applicative data types 
[Mye84]. In analogy, we use the term applicative class to mean a class whose objects are used 
to represent values. It could be interesting to develop special purpose syntax for applicative 
classes to enforce correct use of them. However, since such development is outside the scope of 
this thesis, we will only add a comment (* applicative *) at the declaration of a class to indi-
cate that it is applicative. By convention, we will use these classes as follows:

• New objects of applicative classes may be created by the “new” operator.

• A reference to an object of an applicative class must not be tested for identity. Instead the 
applicative class must provide a function for testing equality.

• The contents of an object of an applicative class must never be changed.

The “new” operator used to construct a new object has the following syntax:

<exp> ::= <new-exp>

<new-exp> ::= ‘new’ <class>

For example, the expression “new A” results in a reference to a new A object. The “new” con-
struct has, in principle, a side-effect (creating a new object) and two executions of it will result 
in references denoting different objects. However, this is transparent when used for applicative 
classes, since the reference values are not tested for identity. 

Applicative classes are specified with an interface of functions which can be used to construct 
values, compare values, inspect parts of values, etc. These functions may very well be imple-
mented using imperative techniques as long as this is transparent to the usage of the values. For 
example, if a function needs to construct a new value, the state of the new value can be set using 
imperative code. The function implementations may also compare references, for example to 
quickly determine value equality for the cases where two values happen to be represented by the 
same object.
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As an example of an applicative class, consider set values. We define a general applicative class 
Set with the following interface.

Figure 5.1 Interface to class Set

A Set object models a set of references to T objects. The function empty returns true if the set 
is empty. The function contains returns true if the set contains the element e. The expression 
“s.add(e)” returns a new set object which contains the same elements as s and in addition the 
e element. I.e., the add function does not change the internal state of S. Similarly, the expression 
“s1.union(s1)” returns a new set object containing the union of the elements in s1 and s2, 
without changing the s1 or s2 objects. The expression “s1.equal(s2)” returns true if s1 and 
s2 represent the same set. The expression “new Set[T]” returns an empty set of references to 
T objects.

Note that although Set is an applicative class, the class parameter T needs not be an applicative 
class. Since references are immutable, the value of a set is not changed although the internal state 
of an object denoted by a reference in the set may change. Thus, the value of a set of references 
to non-applicative objects is not a regular value, but it is a value in the same sense as references 
are values. I.e., the set is immutable, but mutable information is accessible via the references in 
the set.

An object x of an applicative class represents a regular value only if all objects reachable via x 
are also applicative.

5.3  Imperative constructs

5.3.1  Statements

OOSL contains the usual kinds of statements: assignment, conditional statement and while state-
ment. In addition, an inspect statement is used, similar to Simula’s but using a local variable for 
the inspected object, as in the inspect-expression case.

The assignment comes in two variants (as in Simula): a value assignment for regular values, and 
a reference assignment for references:

<stmt> ::= <assign-stmt> | <cond-stmt> | <while-stmt> |

Set: class [T: class ANYCLASS] (* applicative *)
{ empty: func boolean;
contains: func boolean (e: ref T);
add: func ref Set[T] (e: ref T);
union: func ref Set[T] (s: ref Set[T]);
equal: func boolean (s: ref Set[T]);

}
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<inspect-stmt>

<stmt-list> ::= (<stmt>, ‘;’)*

<assign-stmt> ::= <val-assign-stmt> | <ref-assign-stmt>

<val-assign-stmt> ::= <exp> ‘:=’ <exp>

<ref-assign-stmt> ::= <exp> ‘:-’ <exp>

<cond-stmt> ::=
‘if’ <exp>
‘then’ <stmt-list>
[‘else’ <stmt-list>]
‘end’ ‘if’

<while-stmt> ::=
‘while’ <exp>
‘do’ <stmt-list>
‘end’ ‘while’

<inspect-stmt> ::=
‘inspect’ <dollar-id> ‘:-’ <exp>
(‘when’ <class-id> ‘do’ <stmt-list>)*
‘otherwise’ <stmt-list>
‘end’ ‘inspect’

The left-hand side of an assignment statement can be a rather complex expression involving 
“this”, “remote-access”, etc. This is the reason why we have used the non-terminal <exp> for the 
left-hand side of the assignments, rather than a more specific non-terminal. To be correct, the 
expression appearing on the left side of an assignment must be an assignable entity (e.g. a 
variable). 

5.3.2  Virtual procedures

Procedures in OOSL are similar to the functions in the way the virtual mechanism works and in 
the separation of specification from implementation. A virtual procedure specification declares 
the name, possible result type, and parameters. A virtual procedure implementation contains a 
list of statements. If the procedure returns a value, this is done by an assignment statement, with 
the procedure name on the left-hand side (as in Algol/Simula).

<decl> ::= <proc-spec> | <proc-impl>

<proc-spec> ::=
<proc-id> ‘:’ ‘proc’ [ <type> ]
[‘(’ (<form-par>, ‘,’)+ ‘)’]
[‘{’<imp-body>‘}’]

<proc-impl> ::=
‘impl’ <proc-id> ‘{’<imp-body>‘}’

<imp-body> ::=
(<decl> ’;’)* <stmt-list>
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For example,

A: class
{ p: proc ref C (x: integer)

{ ...
p :- ...;

};
};

B: class A
{ impl p

{ ...
p :- ...;

};
};

Here, the procedure p is both specified and implemented in class A. In the subclass B an imple-
mentation of p is given which overrides the implementation in A. 

A procedure call may appear either as an expression or a statement, depending on if it returns a 
value or not:

<stmt> ::= <proc-call>

<exp> ::= <proc-call>

<proc-call> ::=
<proc-id> [‘(’ (<exp>, ‘,’)+ ‘)’]

5.3.3  Iterators

Many object-oriented languages have some mechanism by which iterators can be implemented. 
For example, the INNER mechanism or the quasi-parallel sequencing of Simula and BETA can 
be used. In Smalltalk, the “block”-mechanism can be used. Since OOSL includes none of these 
constructs we have instead included an explicit iterator construct, a simplified version of the con-
struct in CLU [LSAS77].

The iterator construct in OOSL is similar to the procedure construct in that the specification may 
be separated from the implementation. The following syntax is used for defining an iterator:

<decl> ::= <iter-spec> | <iter-impl>

<iter-spec> ::=
<iter-id> ‘:’ ‘iterator’ <type>
[‘{’<proc-body>‘}’]

<iter-impl> ::=
‘impl’ <iter-id> ‘{’<imp-body>‘}’

<stmt> ::= <yield-stmt>

<yield-stmt> ::= ‘yield’ <exp>



5.4 Modularization 71

For example, an iterator each which iterates over all the elements of a List object can be defined 
as follows:

List: class
{ ...

each: iterator ref Element;
...
impl each
{ e: ref Element;

e :- first;
while e =/= none do

yield e;
e :- e.suc;

end while;
};

};

At an invocation of the iterator, the iterator is executed similar to a procedure, but at each yield 
statement, control is passed back to the caller. When control is passed back to the iterator again, 
the execution continues after the yield statement. The value of the yield expression (e) is passed 
to the caller at each iteration.

A call to an iterator has the following syntax:

<stmt> ::= <for-stmt>

<for-stmt> ::=
‘for’ <dollar-id> (‘:=’ | ‘:-’) <exp> ‘do’
<stmt-list>
‘end’ ‘for’

For example, the each iterator of List can be used to iterate over all the elements in a list and 
compute a sum as follows:

sum: integer;
sum := 0;
for $x :- aList.each do

sum := sum + $x.val;
end for;

The local variable $x is set to the value returned by the yield statement of the iterator. For each 
yield, $x receives a new value and the statements after do are executed. When the iterator runs 
through its end, the execution continues after the end of the for statement.

5.4  Modularization

OOSL allows declarations local to a class to be defined syntactically outside the body of the 
class. This is done by using a separate clause which adds local declarations to an already exist-
ing class. This allows different aspects of an OOSL specification to be described separately, 
similar to how it is done in the SSL language, the specification language for the Cornell Synthe-
sizer Generator [RT84].
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A module in OOSL is a list of declarations. An OOSL specification can be split into an arbitrary 
number of modules. The OOSL specification is simply the sum of all the declarations in all the 
modules with no regards taken to ordering, either within or between modules. OOSL modules 
are primarily intended as “separate understanding” modules rather than modules for separate 
compilation.

The mechanism of separate clauses is important because it allows different aspects of a class to 
be written in different modules. In this thesis we will primarily use separate clauses in order to 
separate the declarative parts of an OOSL specification (the grammar) from the imperative parts 
(implementation of visit procedures for attribute evaluation). The separation mechanism is also 
useful for separating interface from implementation and for describing different aspects of a 
grammar in different modules, e.g. name analysis separate from error detection.

Modules and separate clauses have the following syntax:

<module> ::= (<decl>, ‘;’)*

<decl> ::= <sep-clause>

<sep-clause> ::= ‘addto’ <id> ‘{’ <decl-body> ‘}’

For example, instead of writing

C: class 
{ f: func integer := ...;
};

this class could be split into two parts. One declaring the class and the interface to the function:

C: class
{ f: func integer;
};

and another part adding the implementation of the function in a separate clause:

addto C
{ impl f := ...;
};

These two parts can be placed in different modules.

5.5  Type-checking issues in OOSL

Most, but not all, type-checking can be done statically in OOSL. To make sure our specifications 
will not give rise to run-time type-checking errors, we will make use of some simple conventions 
as described below. These conventions are adhered to in the examples of the subsequent 
chapters.

In principle, the following run-time errors (related to type-checking) may occur in OOSL:
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• Reference is NONE in a remote access

• Missing virtual procedure/function implementation

• Violation of the relation between formal and actual qualification at assignments and calls.

5.5.1  Reference to NONE

In a specification, we want to be certain that a remote access is not done on references which are 
NONE since that would constitute a run-time error. To accomplish this we will by default assume 
that all references are intended to denote real objects rather than NONE. In some cases, it can be 
convenient to allow a reference variable to have the value NONE, or a function or procedure to 
return NONE. For these cases we will mark the declaration of the variable, function, or procedure 
with the comment (* may be NONE *) or (* may return NONE *). In using these references 
we will take special care. We will not use remote access on these references, but use the inspect 
expression or inspect statement. This allows safe handling of the reference since the “otherwise” 
clause of the inspect construct will be executed in case the reference is actually NONE.

5.5.2  Missing virtual implementation

It is sometimes useful to specify a virtual procedure or function in a class, without giving an 
implementation of it in that class. This is often the case for “abstract” classes which are not 
intended to be instantiated. If such a class would be instantiated, and the procedure or function 
called, this would result in a run-time error. We say that a class is incomplete if it has such spec-
ifications without implementations. We will prevent run-time errors of this type as follows: A 
comment (* abstract *) is added to the declaration of classes which are intended to be incom-
plete. Classes marked this way will not be instantiated. Further, classes which are not marked as 
abstract must be complete.

5.5.3  Qualification violation at assignment

The type system used in OOSL is based on the qualification relation stated in §3.2.1:

A reference with formal qualification C must have an actual qualification D such that D ⊆ C or 
D = NOCLASS (i.e. reference to NONE).

To ensure that this relation always holds, it must be checked at each reference assignment. (In 
this respect, parameters passed into functions and procedures can also be viewed as assign-
ments.) Although most such checking can be done statically, there are some situations when this 
is not possible. These issues have been a discussion topic at recent conferences on object-orient-
ed programming, initiated by a paper by Cook [Coo89]. 

The principles for qualification-based type-checking and the consequences for static/dynamic 
type checking are treated in [MMM90]. To summarize the consequences of these principles, 
applied to OOSL, consider a reference assignment “r1 :- r2”. In most cases the correctness of 
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the assignment can be checked statically. There are two cases when full information is not avail-
able statically (disregarding possible information from data-flow analysis):

I The formal qualification of r2 is less than the formal qualification of r1. In this case, the 
assignment may be correct (if the actual qualification of r2 is equal to or greater than the 
formal qualification of r1).

II r1 is declared as a reference of a formal type of a generic class. In general, the formal qual-
ification of r1 is then unknown at compile-time.

Case I: For this case, we simply regard such assignments in OOSL as illegal. We have not found 
the need for such assignments in our applications of OOSL. If such need would arise, it is always 
possible to use the “inspect” construct to write the assignment in a way which can be statically 
type-checked.

Case II: Consider the following generic class:

A: class[T: class T2]
{ r: ref T;

p: proc(s: ref T);
};

Here, the formal class T may have different actual values for different A objects. I.e., to know the 
formal qualification of the r and s references, it is necessary to know the actual qualification of 
the A object (which includes information about the actual parameter for T). This information is 
available statically for part-objects, but not for objects references via dynamic references. For 
example:

rstat: object A[U];
rstat.r := ...; (* statically checkable *)
rstat.p(...); (* statically checkable *)

rdyn: ref A[U];
rdyn.r := ...; (* requires dynamic check *)
rdyn.p(...); (* requires dynamic check *)

An assignment to rstat.r can thus be type-checked statically. Likewise, the “assignment” to 
the parameter s at a call to rstat.p can be checked statically. On the other hand, if an A object 
is accessed via a dynamic reference, the actual qualification of the A object is in general not 
known statically, and a dynamic type-check is needed for assignments to r and s.

In our applications of OOSL, we have found it sufficient to do this kind of assignments via static 
references (part-objects), and thus obtain statically checkable specifications.

5.6  Summary

OOSL is an object-oriented specification language with both declarative and imperative features. 
The declarative features include classes, generic classes, objects, variables, functions, and 
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expressions. The imperative features include statements, procedures, and iterators. Additional 
grammar-related features will be added in subsequent chapters.

A modularization mechanism, in the form of separate clauses, allows different aspects of classes 
to be declared separately. This will be utilized in subsequent chapters for specifying grammars 
and incremental attribute evaluators. The grammars will be specified using only declarative 
OOSL constructs. The attribute evaluators will extend the grammar by imperative constructs, 
resulting in executable incremental evaluators. Thus, the declarative specification is extended 
(rather than translated) into an executable program.

OOSL is a general-purpose notation for specification and programming. A few simple conven-
tions have been given to obtain specific use of certain language constructs. In particular, 
conventions for writing “applicative classes” and conventions for avoiding run-time type-check-
ing errors have been introduced. These conventions are useful for general-purpose specification/
programming as well, but are not supported by existing languages. It could be an interesting area 
of further research to construct some mechanism for supporting these conventions and allowing 
them to be checked statically.
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Chapter 6

Object-Oriented Attribute Grammars

Attribute grammars are descriptions of consistently attributed syntax trees. Taking an object-ori-
ented perspective, the nodes in the syntax tree are objects, and a language can be described by 
classes organized in a specialization hierarchy. In this chapter we extend OOSL to allow speci-
fication of object-oriented attribute grammars, supporting this view.

6.1  Introduction

For a long time, probably since the introduction of Simula, an object-oriented view on grammars 
has been used as a practical programming technique in many systems. Recently, explicit object-
oriented formalisms for context-free grammars have been proposed in several forms, e.g.  
[Nør87], [CNS87], [MN88], [TTTI88]. In this chapter we bring the attributes and equations of 
attribute grammars into such an object-oriented framework, introducing object-oriented 
attribute grammars. The presentation here is based on earlier papers by the author [Hed88], 
[Hed89], although these papers used a slightly different specification language (not OOSL).

Object-oriented AGs are equivalent to standard AGs, i.e. all attributes have regular values as in 
standard AGs. Although regular values may be implemented by objects of applicative classes (as 
described in the previous chapter), it is only the syntax nodes that are conceptually regarded as 
objects. The examples in this chapter therefore model name analysis in the traditional AG style. 
In Chapter 8, the object-oriented AGs will be extended to “Door AGs” where true objects can be 
part of the attribution, allowing name analysis to be based on explicit visibility graphs.

Although object-oriented AGs are equivalent to standard AGs there are differences in notation 
which make certain things easier to express in object-oriented AGs. Attributes and equations are 
defined in node classes and inherited along the classification hierarchy, similarly to variables and 
procedures in object-oriented programming. The classification hierarchy represents a specializa-
tion hierarchy of language concepts. Behavior (in the form of equations) can be defined at 
suitable levels of generalization and default behavior can be overridden in specialized node 
classes. This allows specifications to be written in a more compact and readable way than is pos-
sible in traditional AG formalisms.
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Attributes declared in a most general node class will appear in all nodes. Such attributes can be 
accessed by tools which have no detailed knowledge of the language. The object-oriented nota-
tion plays an important role here, since it allows the attributes to be specified very easily. In a 
traditional notation, the grammar would have to be cluttered with trivial attribute declarations 
and equations, and one would simply not think of using attributes for these purposes.

6.1.1  Conflicting terminology

In combining the ideas of object-orientation and attribute grammars, the term “inherited” may 
be a source of confusion since it is used in both areas with different meanings. Henceforth, we 
use inherited in the sense of attribute grammars. To refer to inheritance in the object-oriented 
sense, we will use the term oo-inherited. 

6.1.2  Outline of chapter

The rest of this chapter is organized as follows: §6.2 and §6.3 extend OOSL with constructs for 
defining context-free grammars, attributes and equations. §6.4 gives an example of an object-ori-
ented AG by specifying a simple desk calculator. §6.5 gives examples of how the classification 
hierarchy can be expanded and how behavior can be defined at general levels. §6.6 discusses the 
use of local attributes. §6.7 discusses criteria for well-formedness of object-oriented AGs. §6.8 
comments on possible extensions, including multiple-inheritance. §6.9 discusses some related 
approaches to object-oriented grammars, and §6.10 gives a summary of the chapter.

6.2  Context-free grammars

The object-oriented specification style lends itself to express context-free grammars. For exam-
ple, instead of defining a non-terminal statement and two productions while-statement and 
if-statement, one can define statement as a class, and while-statement and if-statement 
as subclasses, i.e. specialized statements. The nodes of a syntax tree are then class instances 
(objects) rather than “non-terminal instances labelled by productions”. We extend OOSL with 
the notion of node classes intended for description and construction of abstract syntax trees. If 
X is a non-terminal and p is a production with left-hand side X, then X and p will be formulated 
as node classes and p will be a subclass of X. A traditional CFG thus corresponds to a two-level 
class hierarchy. The object-oriented formulation in addition allows the class hierarchy to be fur-
ther expanded, both by forming more general classes and more specialized classes. Later in this 
chapter, we will show how the use of general classes allows specification of AGs to be simplified.

6.2.1  Alternation and construction classes

OOSL differs between different kinds of node classes similar to how the GRAMPS system 
[CI84] differs between production rules. The basic kinds of node classes are alternation node 
classes and construction node classes. Alternation classes are used for abstract language con-
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structs whereas the construction classes are used for concrete language constructs with a specific 
structure of son nodes. I.e., alternation classes correspond to non-terminals and construction 
classes to productions. More general node classes are also modeled by alternation classes.

The following syntax is used:

<alt-node-decl> ::= 
<alt-class-id> ‘:’ ‘alt’ [<alt-superclass-id>]
[ ‘{’ <decl-body> ‘}’]

<cons-node-decl> ::= 
<cons-class-id> ‘:’ ‘cons’ [<alt-superclass-id>]
‘(’ (<son-decl>, ‘,’)* ‘)’
[ ‘{’ <decl-body> ‘}’]

<son-decl> ::= <son-id> ‘:’ ‘ref’ <node-class-id>

For example:

Stmt: alt;
WhileStmt: cons Stmt(cond: ref Exp, doPart: ref Stmt);

The optional superclass must always be an alternation class. If no superclass is explicitly given, 
the class is considered to be a subclass of a most general node class ANYNODE. The class ANYNODE 
is in turn considered a subclass of ANYCLASS.

The declarations of references to son nodes in a construction class corresponds to the “right-
hand-side” of a production. In a legal syntax tree, these references will denote real objects (i.e., 
they will not be NONE).

The node classes may, like ordinary classes, have a body of declarations. This will be used for 
defining attributions and evaluation of attributions.

6.2.2  Lexemes

Lexemes, such as identifiers and literal values, can in principle be defined using alternation and 
construction classes, by including the lexical definitions in the context-free syntax. However, 
that would be highly impractical and we therefore introduce a special kind of node class for 
lexemes:

<lexeme-node-decl> ::= 
<lexeme-class-id> ‘:’ ‘lex’
‘(’ <attr-id> ‘:’ <type> ‘)’

A lexeme class cannot be declared as subclass to any other class, but is considered to be a sub-
class of the most general node class ANYNODE. Further, a lexeme class does not have a body. It is 
considered a purely lexical entity.

In the rest of this thesis we will use the following two predefined lexeme classes for handling 
identifiers and integer constants:
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ID: lex (ident: string);
INT: lex (val: integer);

6.2.3  Lists

Lists can, in principle, also be defined using alternation and construction class. However, in prac-
tical systems it is useful to have special list constructs, modeling a node with a variable number 
of sons of the same class. In OOSL this is done by introducing a list node class:

<list-node-decl> ::= 
<list-class-id> ‘:’ ‘list’ <alt-superclass-id>
‘(’ <son-id> ‘:’ ‘ref’ <node-class-id> ‘)’

For example:

StmtList: list (s: ref Stmt)

Here, a StmtList node has a variable number of sons of class Stmt.

In the examples in this thesis we will use lexeme and list classes whenever this is handy. How-
ever, in the algorithms and discussions we will often, for simplicity, ignore the lexeme and list 
classes, and treat only the basic node classes (alternations and constructions). Extending the 
algorithms to handle also lexeme and list classes is trivial.

6.2.4  Completing Classes

In structure-oriented programming environments it is necessary to handle incomplete syntax 
trees. Usually, this is done by extending the grammar by so called completing productions, i.e. 
one nullary production for each non-terminal. This way, syntax trees considered incomplete by 
the user can be considered complete by the system. The same technique can be used in object-
oriented CFGs, i.e., extending the set of node classes such that for an alternation class A, appear-
ing on the right-hand side of a construction class, there is a completing nullary construction class 
“NullA: cons A( )”.

It would be possible to let the class A itself act as the completing class and thus also allow 
instances of alternation classes in the syntax tree. This would be attractive from a code-sharing 
view. However, this may sometimes lead to conflicts between defining the behavior of the class 
in its role as completing class and the behavior of the class in its role as superclass of other class-
es. An example of this conflict is given in §6.5.2. Henceforth, we will therefore use explicit 
nullary construction classes as completing classes. By convention, these classes will be named 
NullA for an alternation class A. If no such class is explicitly given in the examples, we will 
assume there is such a class definition elsewhere.

The use of nullary construction classes as completing classes means that only construction class-
es (and lexeme and list classes) will be used for generating syntax node objects. All alternation 
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classes are abstract classes which are never instantiated (other than as part of a more specialized 
object).

6.3  Attributes and equations

An object-oriented AG is an object-oriented CFG where each node class is extended with 
attribute and equation declarations. Attributes are similar to variables in that they are oo-inherit-
ed to subclasses. Equations are similar to virtual procedures in that they can override other 
equations. An equation in a class C, overrides equations in superclasses of C defining the same 
attribute.

In traditional AGs, the attributes are declared in non-terminals and the equations in productions. 
In object-oriented AGs, attributes and equations can be declared in both alternation and construc-
tion classes. This gives new interesting possibilities. In particular, it allows general behavior to 
be defined in general classes and to be overridden by specialized behavior in subclasses. This is 
very useful in many cases, as discussed in more detail in §6.5.

6.3.1  Attributes

Attribute declarations are similar to variable declarations, but preceded with a keyword to indi-
cate if the attribute is inherited, synthesized, or local. A local attribute means here an attribute 
which must be defined in the node itself, just like a synthesized attribute, but which may not be 
accessed by the father node. The distinction between inherited, synthesized, and local attributes 
could, in principle, be derived from the ways the equations use the attributes, but we prefer this 
to be explicit in the declarations.

<attr-decl> ::=
( ‘inh’ | ‘syn’ | ‘loc’ ) <attr-id> ‘:’ <type>

For example:

inh a1: ref B;
syn a2: ref C;
loc a3: boolean;

Note that it is possible to define attributes with reference types. However, in a standard object-
oriented AG, all references must denote objects representing regular values, i.e. the classes used 
for reference types must be applicative classes.

6.3.2  Equations

An equation defines the value of a synthesized or local attribute in the node itself, or an inherited 
attribute of one of the son nodes. Equations have the form of assignment statements, but are pre-
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ceded by a keyword “eq” to indicate the difference. As usual for AGs, the order of the equations 
is completely irrelevant.

<eq-decl> ::= ‘eq’ <attr> (‘:=’ | ‘:-’) <exp>
<attr> ::= <attr-id> | <son-id> ‘.’ <attr-id>

For example:

eq s.a1 :- a1;
eq a3 := true;

6.3.3  Collective equations

We introduce collective equations to make better use of the possibilities in object-oriented AGs 
to define general behavior. A collective equation defines an inherited attribute for all sons of a 
given class. Collective equations are used in alternation classes where the exact number and 
types of sons are not known:

<coll-eq-decl> ::=
‘eq’ ‘son’ <node-class-id> ‘.’ <attr> (‘:=’ | ‘:-’) <exp>

For example,

eq son C.x := true;

Here, “son C” denotes any son node declared to be of the node class C (or a subclass of C). The 
equation defines the attribute x of these son nodes. Collective equations make it possible to 
define general behavior for propagating information downwards in the syntax tree. Suppose the 
above collective equation appears in an alternation class A and that A has a construction subclass:

B: cons A (t1: ref D1, t2: ref D2)

where D1 and D2 are subclasses to C. The collective equation is in this case equivalent to two ordi-
nary equations in B:

eq t1.x := true
eq t2.x := true

6.4  An example: Desk calculator

As an example of a traditional AG expressed in OOSL, we will use a slightly simplified and 
adapted variant of the desk calculator example in [RT84].

The calculator grammar describes integer expressions, using integer constants, let-expressions, 
and normal arithmetic operators such as addition and subtraction. To handle the identifiers intro-
duced by let-expressions, symbol tables are introduced to keep track of identifiers and associate 
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them to their values. The symbol table type is defined in OOSL by using an applicative class with 
the following interface:

Figure 6.1 Interface to data type for symbol tables

A call “tab.add(id, val)” returns a reference to a new Table object which includes the asso-
ciation pair (id, val) in addition to the contents of tab. The function lookup returns the value 
associated with the id (or 0 if the id is not in the table). The found function returns true if the 
id is in the table. The object emptyTab is an empty table.

The desk calculator grammar can now be defined as shown in Figure 6.1. The specification is 
very similar to the specification in Reps’ paper. One notable difference is the use of the collective 
equation in Exp. This equation defines that the env attribute of an expression is propagated to all 
of its expression son nodes. This default behavior applies to most expressions. In a traditional 
notation, each normal expression would need one equation stating this behavior for each son 
node. For example, the Sum expression would need two equations defining the env attributes of 
its two sons. In the object-oriented AG such repeated equations are not needed, the default 
behavior is specified once and for all in the Exp class. The Let expression is the only class which 
needs to override this behavior. It overrides the default behavior by the equation “eq inExp.env 
:- ...”. Note that the default behavior still applies to the other son (defExp).

Table: class (* applicative *)
{ add: func ref Table(id: string, val: integer);
lookup: func integer(id: string);
found: func boolean(id: string);

};

emptyTab: object Table;
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Figure 6.2 OOSL specification of a desk calculator

6.5  Defining general behavior

One of the main benefits of object-oriented description techniques is that the classification hier-
archy allows properties of objects to be described at suitable levels of generalization. In a 
traditional AG, all attributes are declared at the level of non-terminals, and all equations at the 
level of productions. In contrast, the object-oriented AGs allows a class hierarchy with an arbi-
trary number of levels, where attributes and equations can be declared at any level of 
generalization. In this section we will give a couple of examples of how this can be utilized.

The general behavior is often defined in general alternation classes which are motivated only 
from the static semantics and not from the context-free syntax. Thus, they never appear on the 
right-hand side of construction classes. We refer to such classes as behavior classes.

6.5.1  Propagation of environment information

Standard attribute grammars are usually cluttered with copy equations, most of which simply 
serve the role of propagating information from one place in the tree to another. A typical example 
is the propagation of declarative information throughout the tree. Object-oriented grammars give 

Calc: cons (e: ref Exp)
{ loc result: integer;
eq e.env :- emptyTab;
eq result := e.val;

};

Exp: alt
{ inh env: ref Table;
syn val: integer;
eq son Exp.env :- env;

};

NullExp: cons Exp ( )
{ eq val := 0;
};

Sum: cons Exp
(lop: ref Exp, rop: ref Exp)

{ eq val := lop.val + rop.val;
};

Diff: cons Exp
(lop: ref Exp, rop: ref Exp)

{ eq val := lop.val - rop.val;
};

Let: cons Exp
(letId: ref ID,
defExp: ref Exp,
inExp: ref Exp)

{ eq val := inExp.val;
eq inExp.env :- 
env.add(letId.ident, 

defExp.val);
};

Use: cons Exp (useId: ref ID)
{ loc error: boolean;
eq val := 

env.lookup(useId.ident);
eq error := not 

env.found(useId.ident);
};

Const: cons Exp
(constInt: ref INT)

{ eq val := constInt.val
};
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a possibility of describing such behavior on a general level, rather than specifically for each sin-
gle language construct.

For example, in the desk calculator grammar, the collective equation in the Exp class defines the 
general propagation behavior of the env attribute. In a standard AG each construction class 
would instead need one copy equation for each Exp son node. The desk calculator grammar is, 
however, very simple in that it includes only one alternation class, Exp. This made it possible to 
define the general behavior directly in Exp. In more complex grammars behavior may need to be 
described at a more general level. This can be done by introducing behavior classes which are 
superclasses of existing alternation classes. For the few language constructs which do not follow 
the general behavior, the behavior can be overridden in the corresponding subclass, just as in the 
desk calculator grammar.

Consider specification of name analysis for a block-structured language (in the traditional AG 
style). Similar to the desk calculator grammar, an inherited attribute env represents the declara-
tive environment. The env attribute is propagated throughout the syntax tree in order to reach all 
name applications. The name applications use the env attribute to look up the corresponding dec-
laration and associated type information. Some syntax nodes affect the declarative environment, 
but most nodes simply pass the env attribute to all the son nodes by copy equations. In an object-
oriented AG this general behavior can be described as shown in the example below. The behavior 
class Node models syntax nodes in general and is therefore the superclass of all other node class-
es in the grammar (excluding the lexeme classes). Node is specialized into the behavior classes 
Root and Descendant. Root models the possible root nodes and can be seen as a generalization 
of start non-terminals. Descendant models all other nodes, i.e. all nodes which have a father 
node in the syntax tree. All Descendant nodes have an inherited env attribute (1). The general 
behavior is to propagate the same env value to all son nodes. This is described by the collective 
equation (2). A root node does not have any env attribute, but propagates the value of an empty 
environment to its son nodes (3).

Node: alt;

Descendant: alt Node
{ inh env: ref Environment; (* 1 *)

eq son Descendant.env :- env; (* 2 *)
};

Root: alt Node
{ eq son Descendant.env :- emptyEnv; (* 3 *)
};

This general behavior is suitable for most language constructs, e.g. while-statements, if-state-
ments, arithmetic expressions, etc. In a standard AG each such construct would need to explicitly 
define one copy equation for each son node. In the object-oriented AG above, the collective equa-
tion (2) gives the same result.

For language constructs which do alter the declarative environment, explicit equations need to 
be given. E.g., the Algol-like block statement below defines a new declarative environment in 
terms of the enclosing environment and the declarations local to the block. The equation (4) 
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overrides the collective equation (2) for the StmtList son node. However, the collective equa-
tion still applies to the DeclList son node.

BeginBlock: cons Descendant
(dl: ref DeclList, sl: ref StmtList)

{ eq sl.env :- f(env, dl.localenv); (* 4 *)
};

Similarly, the collective equation can be overridden in other language constructs which change 
the declarative environment, e.g. procedures, classes, remote access expressions, and inspect-
statements. However, for the great majority of language constructs, the general behavior applies.

6.5.2  Left-values of actual out-parameters

As an example of general behavior of a synthesized attribute we consider the use of out-param-
eters. Out-parameters are assigned a value inside a procedure and the actual parameter in a call 
must therefore have a left-value (i.e. it must denote a location which can be assigned a value). 
This is easy to check as in equation (1) below, by letting each expression have a synthesized 
attribute hasLeftValue.

ActualParam: cons Descendant (e: ref Exp);
{ inh isOutParam: boolean;

eq leftValError: boolean;
eq leftValError := (* 1 *)

isOutParam and not e.hasLeftValue;
};

Most expressions do not have a left-value. For example, none of the many relations and arith-
metic expressions have a left-value. The general behavior of expressions can in this case be 
defined in the Expr alternation class as follows:

Exp: alt Descendant;
{ syn hasLeftValue: boolean;

eq hasLeftValue:= false; (* 2 *)
};

One of the few expressions which do have a left-value is name applications denoting variables. 
The class for name applications thus needs an equation which overrides (2), e.g. as below in (3).

Use: cons Exp (useId: ref ID);
{ ...

eq hasLeftValue:= f(env, useId.ident); (* 3 *)
};

Here f should be a function which returns true if the name application denotes a variable, anoth-
er out-parameter, or another assignable entity.

It can be noted here that syntactically incomplete expressions should be defined as having left-
values. Otherwise, an incomplete expression at the place of an actual out-parameter would result 
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in an irrelevant error message. The completing class for expressions therefore needs to override 
the equation (2):

NullExp: cons Exp ()
{ eq hasLeftValue:= true; (* 4 *)
};

We have here an example of when the behavior of a completing class is different from the behav-
ior of its superclass, thus motivating the use of explicit completing classes as discussed in §6.2.4.

6.6  Local attributes

Local attributes are like synthesized attributes in that they are defined in the node itself. They 
differ from synthesized attributes in that they are not allowed to be accessed by equations of the 
father node. The explicit distinction between synthesized and local attributes will be utilized in 
the construction of attribute evaluators as explained in §7.3.4.

It should be noted we use the term “local” in a slightly different sense than is done in SSL, the 
specification language of the Cornell Synthesizer Generator. In SSL, “local” means local to a 
production. Such local attributes were introduced in SSL to allow nodes of individual produc-
tions to have individual attributes, which is not possible in the AGs of Knuth. An SSL local 
attribute corresponds, in an object-oriented AG, to declaring a local or synthesized attribute in a 
construction class. The locality in the sense of SSL can thus be achieved with synthesized 
attributes in object-oriented AGs. Locality in object-oriented AGs means protection from access 
from other nodes, and this can apply to attributes declared at any level of generalization. Thus, 
attributes in alternation classes can also be declared local, although this is less common than in 
construction classes.

A typical use of local attributes is in the modelling of static-semantic errors, like the attribute 
error in the Use class in Figure 6.1. 

Another use of local attributes is in connection with demand attributes. In the example in §6.5.1, 
most of the env attributes are defined by the collective copy equation. Most of these attributes 
are not particularly interesting to store since they can be computed very easily when needed. One 
might therefore want to implement the env attribute as a demand attribute. For the few cases 
where the copy equation is overridden and a new environment value is computed in a non-trivial 
manner, a local attribute can be added to store the value. E.g., the definition of the BeginBlock 
could be changed to:

BeginBlock: cons Descendant
(dl: ref DeclList, sl: ref StmtList)

{ storedEnv: ref Environment;
eq storedEnv :- f(env, dl.localenv)
eq sl.env :- storedEnv;

};

A third use of local attributes is for specifying information to be accessed by external tools such 
as code generators or facilities in the user interface. This is discussed more in §7.4.1.
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6.7  Well-formed object-oriented AGs

An attribute grammar is well-formed if, for each possible syntax tree, each attribute instance has 
exactly one defining equation. In deciding if an object-oriented AG is well-formed, similar con-
ditions are used as for standard AGs. I.e., classes used for generating root nodes must not have 
any inherited attributes, and each construction class must have defining equations for all its syn-
thesized and local attributes and for all the inherited attributes of all its son nodes.

In deciding well-formedness, there is one particular difficulty which occurs for object-oriented 
AGs which does not occur for standard AGs. The problem lies in deciding what inherited 
attributes a son node has. Because of oo-inheritance, it is possible to construct grammars where 
this cannot be determined statically. We will rule out such grammars by adding a special rule.

Consider a construction class C with son nodes

t1 : ref X1
... 
tn : ref Xn

The actual qualifications of the son nodes t1 . . tn are not known statically. An actual son node tk 
may be of a more specialized class Z which is a subclass to Xk. Suppose Z declares an inherited 
attribute. This would imply that the set of equations needed in C is not statically known, but 
would have to be dynamically adapted, depending on the actual qualification of tk. Although this 
would be possible in principle, it would be highly impractical. We therefore put the following 
additional requirement on object-oriented AGs:

 6-1 Condition Additional condition for well-formedness of object-oriented attribute 
grammars.

Let A be a node class. If there exists a superclass S ⊃ A which is used in declaring a son node 
reference “t: ref S” for some construction class, then A must not declare any inherited 
attributes.

 end 6-1

This condition guarantees that the set of equations necessary in each construction class is stati-
cally known. In standard AGs this condition is automatically fulfilled since productions 
(corresponding to subclasses) cannot declare inherited attributes.

The condition does not cause any practical problems when designing a grammar. If one finds that 
an inherited attribute a is needed for a class Z which is subclass of a class X occurring on the 
right hand side of a construction class, one simply has to declare a in X instead of in Z. This will 
have the effect that all other subclasses of X will also have this attribute although they will not 
use it.
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6.8  Possible extensions

There are many ways to define object-oriented grammars. We will now discuss a couple of pos-
sible extensions to the object-oriented AGs defined in this thesis. 

6.8.1  Subclasses of construction classes

In our definition of object-oriented AGs, construction classes cannot have subclasses. However, 
such specialization could be useful in some situations. Consider binary arithmetic operators. The 
general properties of such expressions could be described in a construction class as follows:

BinaryArithExpr: cons Expr
(leftOp: ref Expr, rightOp:ref Expr)

{ typesOK: boolean;
eq tp :=

if leftOp.tp = RealType or rightOp.tp = RealType
then RealType
else IntegerType;

eq typesOK :=
isArithmetic(leftOp.tp) and isArithmetic(rightOp.tp);

}

It would be useful to specialize this class into subclasses Add, Sub, Mul, and Div. This way, the 
type checking could be described at the general level in BinaryArithExpr and would not have 
to be repeated in each of the specialized classes. It would be straight-forward to extend our for-
malism to allow such specialization of construction classes, but for simplicity we have not 
included this possibility.

6.8.2  Multiple inheritance

Our object-oriented AG definition is based on single inheritance. We have not found any need 
for multiple inheritance grammars in practice. Nevertheless, the question naturally arises of what 
the consequences would be of extending the formalism to allow multiple inheritance. As in all 
other object-oriented systems, multiple inheritance leads to name clash problems and the need 
for more complex implementation techniques. For object-oriented grammars, there is an addi-
tional difficulty which arises.

Consider the following fragment of a well-formed grammar.

A: alt;

B: alt {inh x: integer;};

C: cons (s: ref A);

Suppose we would like to introduce a new class D which is a subclass of both A and B. This class 
would naturally have access to the x attribute which is oo-inherited from B and could use this 
attribute to define a local attribute as follows:
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D: cons A, B ()
{ loc y: integer;

eq y := f(x);
};

However, adding this class has the consequence that the s son of a C node can actually be a D 
node (since D is a subclass of A). In such a tree, there would be no defining equation for the inher-
ited attribute x of the son node since C does not contain such an equation. The grammar is thus 
no longer well-formed.

This problem is similar in nature to the problem mentioned in §6.7. The class D could actually 
be viewed as violating the condition 6-1: Suppose D is initially a subclass only of A. Declaring D 
as a subclass also of B implicitly adds the inherited attribute x to D. This violates the condition 
6-1 since A (which is a superclass of D) is used for declaring a son node (the son “s: ref A” in 
class C).

Although the problem is similar to the one mentioned earlier for single-inheritance, there is in 
this case no way of moving the declaration of the problematic x attribute in order to make the 
grammar well-formed. The problem has to be solved by changing the class hierarchy, for exam-
ple by adding a mutual superclass E to classes A and B and moving the declaration of x to E. This 
would imply that C must declare an equation defining the x attribute, since A nodes now also have 
this attribute.

6.9  Related approaches

The traditional nonterminal/production formalism for context-free grammars, and the BNF and 
extended BNF variants, are primarily parsing-oriented. Their main purpose is to describe the set 
of strings belonging to a language, in order to allow the strings to be recognized (parsed). In an 
interactive environment parsing is of secondary interest. It is only one of several possible tools 
in the editor of the environment. Most work in grammar-based programming environments 
instead use grammar formalisms which describe abstract syntax trees, emphasizing that each 
node in the syntax tree is a typed data object.

The Metal formalism [KLMM83] used in the Mentor project [DHKL84] is based on tree alge-
bras, describing the grammar by sorts (also called phyla) and operators. The Synthesizer 
Generator [RT84] also uses the phylum/operator terminology and the systems developed within 
the Gandalf project [Not85] uses a similar class/operator terminology. A sort is equivalent to a 
nonterminal and an operator to a production. The main difference is that the operators are named, 
whereas productions are usually anonymous. Because the operators are named, it is natural to 
view them as node types. In the algebraic terminology, a sort is a set of operators and corre-
sponds to a type union. In relation to object-oriented programming, subsets can be interpreted as 
subclassing. Further, if two sorts have a non-empty intersection and one is not a subset of the 
other, this corresponds to multiple inheritance. Metal allows such grammars, but since it handles 
only context-free syntax and not attributions, this does not cause the problems described in 
§6.8.2. The Synthesizer Generator, on the other hand, restricts all sorts to be disjoint, thus mak-
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ing the formalism equivalent to the nonterminal/production formalism, or a two-level single-
inheritance scheme.

Other type-based approaches to context-free grammars include the GRAMPS system (GRAm-
mar-based MetaProgramming Scheme) [CI84]. This system makes use of four kinds of 
production rules: construction rules, alternation rules, repetition rules, and lexical rules. These 
rules are similar to usual BNF rules, but structured in such a way that each production rule 
defines a syntactic type. The GRAMPS formalism has inspired the similar use of classes in 
OOSL. GRAMPS is, however, not object-oriented and deals only with the context-free grammar 
and not attributions.

Explicitly object-oriented approaches to context-free grammars include the hierarchical gram-
mars of Nørmark [Nør87] (inspired by the phylum/operator approach), the ASDL system 
[CNS87], [KS89], based on subtype specialization and variant record generalization, the struc-
tured CFGs by Madsen and Nørgaard [MN88](inspired by the GRAMPS approach), and the 
nodeclass approach of Tenma et al. [TTTI88] (inspired by the AND/OR rules of BNF). Koski-
mies also gives an object-oriented interpretation of BNF-style grammars in [Kos88], and defines 
SI-structured (Single Inheritance) and MI-structured (Multiple Inheritance) CFGs in [Kos91] 
which are object-oriented interpretations of traditional BNF-style grammars. Although some of 
these object-oriented approaches to context-free grammars make use of node attributes, they are 
all based on operational computation rather than AG-based definition of the attribute values.

The object-oriented approach to attribute grammars described in this thesis is based on earlier 
work by the author presented in [Hed88] and in more detail in [Hed89]. A similar approach was 
suggested later by Grosch [Gro90]. One difference is that Grosch does not distinguish between 
construction classes and alternation classes. Attributes, equations, and son references are all oo-
inherited to subclasses. The motivation of Grosch for introducing object-oriented techniques is 
compactness of specification and compactness of the resulting syntax trees. OO-inheritance of 
attributes is mentioned, but not emphasized, and there is no mechanism for collective equations 
allowing general behavior to be described. The formalism is used in a compiler generator system 
for exhaustive evaluation.

6.10  Summary

This chapter has extended OOSL with constructs for specifying attribute grammars in an object-
oriented manner. Four new kinds of classes were added: alternations, constructions, lists, and 
lexemes, together referred to as node classes. Notation for declaring attributes and equations was 
also added.

The object-oriented approach allows attributes and equations to be declared at any level in the 
class hierarchy, thereby allowing behavior to be defined at suitable levels of generalization. 
Some examples were given on how this can be utilized.
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A discussion was also given on the problems of augmenting an object-oriented AG with multiple 
inheritance. It turns out that such a grammar is, in general, not well-formed.



Chapter 7

Attribute Evaluation Techniques

Object-oriented AGs are equivalent to standard AGs and evaluation of object-oriented AGs can 
therefore be done using standard algorithms. But by formulating the algorithms using object-ori-
ented techniques, the implementation can in many cases be simplified. In this chapter, we will 
look at some evaluation techniques and show how they can be implemented in an object-oriented 
language. These techniques will be used as a basis for the algorithms introduced in Chapter 10, 
treating incremental evaluation of Door Attribute Grammars. 

The evaluation algorithms we will treat in this chapter are the following:

• A demand-driven algorithm for general non-circular AGs

• An exhaustive data-driven algorithm for 1-visit AGs

• An incremental data-driven algorithm, also for 1-visit AGs.

We show how these algorithms can be programmed using object-oriented techniques. We also 
give a very simple technique for computing the visit sequences for 1-visit AGs. This can be done 
in a much simpler way than for the more general Ordered AGs. The incremental data-driven 
algorithm employs a new technique of static skipping of visit sequence instructions, rather than 
the usual dynamic skipping techniques. This makes it possible to avoid expensive attribute value 
comparisons needed for the dynamic skipping algorithms. Although this technique may give 
non-optimal evaluation for a standard AG, this non-optimality is normally irrelevant for Door 
AG evaluation. 

We base the algorithms for incremental evaluation on the usual subtree replacement editing mod-
el where a subtree OLD is replaced by an unattributed subtree NEW. To restore consistency all 
three evaluation algorithms described are used: Exhaustive evaluation is performed on the new 
subtree, incremental evaluation is performed to propagate changes and re-evaluate affected 
attributes, and demand-driven evaluation is used for those attributes which are implemented as 
demand attributes rather than data attributes. In §7.4 the effects of combining data and demand 
evaluation are discussed in more detail.
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7.1  Demand-driven evaluation

The principle of demand-driven evaluation is very simple; each attribute is represented by its 
semantic function. This principle can be applied to all non-circular attribute grammars, although 
it results in non-optimal evaluation. In Engelfriet’s survey of evaluation methods [Eng84], the 
demand-driven algorithm is referred to as “P4”. Engelfriet also gave an optimal version of this 
algorithm, employing “lazy” evaluation, referred to as “P5”. The lazy demand-driven algorithm 
was first described by Jalili in [Jal85] and Jourdan gave a Lisp implementation of this algorithm 
in [Jou84].

In this section we present object-oriented versions of these algorithms. The resulting programs 
are remarkably simple because of the use of virtual functions. Synthesized attributes can be 
mapped directly to virtual functions. Inherited attributes can be implemented by virtual func-
tions in the father node, but since the father node may have many sons of the same class, an extra 
parameter is needed in this function to let the father node decide which of the equations to apply.

 7-1 Construction Demand-driven evaluator

Given an object-oriented AG in OOSL, a demand-driven evaluator, equivalent to Engelfriet’s 
“P4” evaluator, can be implemented in OOSL as follows.

• Reference to father. Each node is equipped with a reference to its father node by adding a 
reference variable to the most general node class ANYNODE:

addto ANYNODE
{ father: ref ANYNODE; (* NONE for the root node *)
};

The father reference denotes the father node in the syntax tree. The father of the root 
node is NONE.

• Synthesized attributes. A declaration of a synthesized attribute aSyn of type T in a class C 
is replaced by a virtual function specification in class C:

addto C
{ aSyn: func T;
};

• Equations for synthesized attributes. An equation defining a synthesized attribute aSyn as 
the expression e in a class C is replaced by an implementation of the virtual function aSyn:

addto C
{ impl aSyn := e;
};

• Local attributes. Declarations and equations for local attributes are implemented in the 
same way as synthesized attributes.

• Inherited attributes. A declaration of an inherited attribute aInh of type T in a class C is 
replaced by a function specification and implementation in class C:

addto C
{ aInh: func T := father.C_aInh(this ANYNODE);
};
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Note that the remote access “father.C_aInh...” can be safely done since father will 
only be NONE for the root node, and the root node has no inherited attributes.

The function C_aInh is declared as a virtual function specification in class ANYNODE:
addto ANYNODE
{ C_aInh: func T(s: ref ANYNODE);
};

• Collective equations. A collective equation “son C.aInh := e” in an alternation class D 
is replaced by an implementation in class D of the virtual function C_aInh:

addto D
{ impl C_aInh := e;
};

• Equations for inherited attributes. Consider a construction class D which declares equa-
tions defining the attribute aInh of son nodes of class C. These equations are replaced by 
an implementation of the virtual function C_aInh. The parameter s in the specification of 
this function is used to do case analysis on which equation to apply. If no equation 
declared in D applies, the defining equation must be in the superclass, and in this case 
super is called. 

For example, suppose D has four sons of class C: t1, t2, t3, and t4, and two equations:
eq t1.aInh := e1;
eq t2.aInh := e2;

In this case, these equations are replaced by the following function implementation:
addto D
{ impl C_aInh :=

if s == t1
then e1
else if s == t2

then e2
else super.C_aInh(s);

};

 end 7-1
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7.1.1  An example

The example below shows the resulting demand-evaluator for the desk calculator example of 
§6.4. Note how similar the implementation is to the original grammar.

Figure 7.1 Demand-driven evaluator for desk calculator

7.1.2  Lazy evaluation

A lazy evaluator works like a demand evaluator, but stores the attribute value the first time the 
attribute is accessed. At subsequent accesses, the stored value is returned directly, instead of 
applying the semantic function. This makes the algorithm optimal. A mark bit for each attribute 
is used to check if the attribute has been evaluated previously. In addition, another mark bit can 
be used to check for circularity at evaluation time. This functionality is easily incorporated into 
the object-oriented evaluator as shown below. However, in the rest of this thesis, we will not 
make use of lazy evaluation.

addto ANYNODE
{ father: ref ANYNODE;
(* NONE for the root node *)

Exp_env: func ref Table
(s: ref ANYNODE);

};

addto Calc
{ result: func integer;
impl Exp_env :- emptyTab;
impl result := e.val;

};

addto Exp
{ env: func ref Table:-

father.Exp_env
(this ANYNODE);

val: func integer;
impl Exp_env :- env;

};

addto NullExp
{ impl val := 0;
};

addto Sum
{ impl val :=

lop.val + rop.val;
};

addto Diff
{ impl val :=

lop.val - rop.val;;
};

addto Let
{ impl val := inExp.val;
impl Exp_Env :-
if s == inExp
then
env.add(letId.ident, 

defExp.val)
else
super.Exp_env(s);

};

addto Use
{ error: func boolean;
impl val := 
env.lookup(useId.ident);

impl error := not
env.found(useId.ident)

};

addto Const
{ impl val := constInt.val;
};
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 7-2 Construction Lazy evaluator

A lazy evaluator, equivalent to Engelfriet’s “P5” evaluator, and including the circularity check 
of Jalilis evaluator [Jal85] can be constructed by modifying the demand-driven evaluator 7-1 
as follows:

• Additional instance variables. For each attribute declaration a in a class C, add a declara-
tion of a variable a_value which will be used to store the attribute value. Also introduce 
a boolean variable computed_a which is true if a is stored in a_value, and a boolean vari-
able computing_a which is true if the value of a is under computation. Initially (before 
evaluation), all the boolean variables are false:

addto C
{ a_value: T;

computed_a: boolean;
computing_a: boolean;

};

• Attribute procedures. In 7-1 each attribute a: T declared in a class C was implemented by 
a function in C

a: func T := e;

where e was the right hand side of the equation defining a (in case of a synthesized or 
local attribute) or a call to a function in the father node (in case of an inherited attribute). 
In the lazy evaluator, this function is replaced by a procedure implemented as follows.

addto C
{ a: proc T;

{ if computing_a then
error(“Circularity in grammar”);

if computed_a then
a := a_value

else
computing_a := true;
a_value := e;
computing_a := false;
a := a_value;

end if;
};

};

 end 7-2

7.2  Exhaustive 1-visit evaluation

We now turn to data-driven evaluation techniques. A simplified form of Kastens’ algorithms for 
Ordered AGs (OAGs) [Kas80] can be used for 1-visit grammars. For these grammars, the visit 
sequences will have only one segment. In addition, the computation of visit sequences can be 
substantially simplified, compared to the more general OAG case. In this section we show how 
an exhaustive 1-visit evaluator based on these techniques can be implemented in OOSL. 
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7.2.1  Total attribute and equation sets

Whereas implementation of demand-driven evaluators could be done more or less directly by 
replacing attribute and equation declarations, the implementation of data-driven evalutors 
requires that we consider the total set of attributes and equations of a node, taking oo-inheritance 
and overriding into account. We therefore define A(C) as the total set of attributes that a C node 
has, and E(C) as the total set of equations applying to a C node. We say a class C declares an 
attribute or an equation if the attribute declaration or equation appears in the declaration of class 
C rather than in the declaration of any of the superclasses {S | S ⊃ C}. Further, we say that a class 
C has an attribute or equation, if it is a member of A(C) or E(C) respectively. These sets are defined 
as follows:

 7-3 Definition Total set of attributes

The total set of attributes A(C) of a node class C is the union of all attributes declared in any 
of the classes {X | X ⊇ C}.

 end 7-3

 7-4 Definition Total set of equations

The total set of equations E(C) of a node class C is the union of all equations declared in any 
of the classes {X | X ⊇ C}, subject to overriding and replacement of collective equations as 
follows:

• Let e be an ordinary equation “eq a := ...” declared in a class D ⊇ C. The equation e is 
a member of E(C) if it is not overridden in C, i.e., if there is no other equation e′ defining 
a and which is declared in a class D’ such that D ⊃ D’ ⊇ C. 

• Let e be a collective equation “eq son S.a :=...” declared in a class D ⊇ C. If C is an 
alternation class, e does not give rise to any equations in E(C). If C is a construction class 
with son nodes

t1 : ref X1
... 
tn : ref Xn

then for each son node tk such that S ⊇ Xk, we construct a corresponding ordinary 
equation e′ “eq tk.a := ...”. The equation e′ is a member of E(C) if it is not 
overridden, i.e., if there is no equation e′′ which also defines tk.a and which is declared 
in a class  D’ such that D ⊃ D’ ⊇ C.

 end 7-4

7.2.2  Dependency graphs

Visit sequences are computed by approximating the dependency graphs of all possible syntax 
trees by dependency graphs for the productions (construction classes) in the grammar and then 
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doing a topological sort on these graphs. The construction of the production dependency graphs 
is rather complicated for OAGs. For 1-visit grammars considerable simplifications are possible.

1-visit grammars have the property that an inherited attribute in a node is never dependent on a 
synthesized attribute in the same node. Otherwise, the node would have to be visited twice: one 
visit to calculate the synthesized attribute, then an intermediate visit to the father node to calcu-
late the inherited attribute, then a second visit to use the inherited attribute. When constructing 
the dependency graph for a construction class C with son nodes

t1 : ref X1
... 
tn : ref Xn

we can assume that for each of the son nodes tk, all synthesized attributes of tk depend on all the 
inherited attributes of tk. Because of the above mentioned property, this cannot result in cyclic 
dependency graphs. Therefore, to construct the dependency graph for a construction class, no 
transitive dependency analysis is necessary. It is sufficient to analyze the equations in the con-
struction class itself.

 7-5 Construction Dependency graph of construction class.

Given a construction class C with son nodes

t1 : ref X1
... 
tn : ref Xn

we construct its dependency graph DG(C).

Vertices.
DG(C) has vertices {v(inh), v(syn), v(t1) .. v(tn), v(a1) .. v(am)} where

• v(inh) represents the inherited attributes of C

• v(syn) represents the synthesized attributes of C

• v(tj) represents the attributes of the son node tj

• v(ak) represents the attribute ak defined by the k’th equation in E(C).

Edges.
An equation “eq a :=. . b . .” in E(C), gives rise to the following edges:

• If b is defined by another equation in E(C), an edge (v(b), v(a)).

• If b is a synthesized attribute of son tj, an edge (v(tj), v(a)).

• If a is an inherited attribute of son tj, an edge (v(a), v(tj)).

• If a is a synthesized attribute in A(C), an edge (v(a), v(syn)).
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• If b is an inherited attribute in A(C), an edge (v(inh), v(a)).

 end 7-5

If all resulting dependency graphs are acyclic, the grammar is 1-visit.

The figure below shows the dependency graphs for the construction classes of the desk calculator 
grammar.

Figure 7.2 Dependency graphs for desk calculator example

7.2.3  Exhaustive Visit Sequences

For an Ordered AG, a visit sequence is a sequence of EVAL, VISIT, and RETURN instructions 
(§4.3). We will refer to the visit sequences used in exhaustive evaluation as exhaustive visit 
sequences. As will be explained later, we will use slightly different visit sequences for the incre-
mental evaluation. The exhaustive visit sequences contain instructions only of the following 
kinds:

EVAL a meaning: evaluate attribute a

VISIT t meaning: visit son node t

We do not use explicit RETURN instructions. For OAGs, RETURN instructions are used to 
mark the end of a segment in a sequence, but since visit sequences for 1-visit AGs consist of only 
one segment, this instruction is not needed. We can view all sequences as ending in an implicit 
RETURN instruction which returns control to the father node.

A visit sequence is obtained by sorting the vertices of a dependency graph into a vertex sequence 
and then translating the vertex sequence to a visit sequence as follows:

Calc:

e.env result

e

inh syn

val

inh syn

lop.env rop.env

lop

inh syn

val

rop

NullExp: Sum, Diff:

defExp.env inExp.env

letId

inh syn

val

defExp inExp

error val

useId

inh syn

val

inh syn

constInt

Let: Use: Const:



7.2 Exhaustive 1-visit evaluation 101

 7-6 Construction Exhaustive visit sequences

Let Sort(G) be a function which sorts all the vertices of the graph G into a topologically 
ordered sequence. The exhaustive visit sequence of a construction class C is denoted by 
EVS(C) and is constructed as follows

EVS(C) := Translate(Sort(DG(C))

 end 7-6

The function Translate is defined as follows:

 7-7 Function Translate(S)

Given a vertex sequence S, the function Translate(S) produces a visit sequence as follows:

• A vertex v(a) for an attribute a is replaced by a corresponding instruction EVAL a.

• A vertex v(t) for a son node t, where t is a lexeme, is removed from the sequence.

• A vertex v(t) for a son node t, where t is not a lexeme, is replaced by an instruction VISIT 
t.

• The v(inh) and v(syn) vertices are removed from the sequence.

 end 7-7

Note that lexeme nodes do not need to be visited since they do not contain any equations. A ver-
tex for a lexeme son node need therefore not result in any visit instruction.

Figure 7.3 shows the exhaustive visit sequences for the desk calculator example.

Figure 7.3 Exhaustive visit sequences for desk calculator example

EVS(Calc)=
( EVAL e.env,
VISIT e,
EVAL result )

EVS(NullExp)=
( EVAL val )

EVS(Sum)= EVS(Diff)=
( EVAL lop.env,
VISIT lop,
EVAL rop.env,
VISIT rop,
EVAL val )

EVS(Let)=
( EVAL defExp.env,
VISIT defExp,
EVAL inExp.env,
VISIT inExp,
EVAL val )

EVS(Use)=
( EVAL error,
EVAL val )

EVS(Const)=
( EVAL val )
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7.2.4  Construction of Exhaustive Evaluator

Given the exhaustive visit sequences it is very simple to program an exhaustive evaluator in 
OOSL:

 7-8 Construction Exhaustive data-driven evaluator

Given an object oriented AG and the exhaustive visit sequences for its construction classes, 
an exhaustive data-driven evaluator can be implemented in OOSL as follows:

• Evaluation procedure. A virtual procedure exhVisit is declared in the general class 
ANYNODE:

addto ANYNODE
{ exhVisit: proc;
};

• Attribute declarations. An attribute declaration (synthesized, inherited, or local) is inter-
preted as variable declaration.

• Visit sequences. For each construction class, an implementation of the virtual procedure 
exhVisit is given. This implementation is a straight-forward translation from the exhaus-
tive visit sequence for the construction class. Each EVAL instruction is implemented as 
an assignment statement (interpreting the equation as an assignment statement). Each 
VISIT instruction of a son s is implemented as a call

 s.exhVisit

 end 7-8
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7.2.5  An example

The example below shows the resulting exhaustive data-driven evaluator for the desk calculator 
example. Given a syntax tree with root node r, the tree is evaluated by calling r.exhVisit.

Figure 7.4 Exhaustive data-driven evaluator for desk calculator 

7.3  Incremental 1-visit evaluation

We base incremental evaluation on the usual subtree replacement editing model. Let T be a con-
sistently attributed syntax tree, OLD a subtree in T, and NEW an un-attributed syntax tree which 
may syntactically replace OLD in T. The incremental evaluation problem is to obtain a new con-
sistent attribution after OLD has been replaced by NEW.

addto Let
{ impl exhVisit
{ defExp.env :- env;
defExp.exhVisit;
inExp.env :- 
env.add(letId.ident, 

defExp.val);
inExp.exhVisit;
val := inExp.val;

};
};

addto Use
{ impl exhVisit
{ error := not 

env.found(useId.ident);
val := 
env.lookup(useId.ident);

};
};

addto Const
{ impl exhVisit
{ val := constInt.val;
};

};

addto ANYNODE
{ exhVisit: proc;
};

addto Calc
{ impl exhVisit
{ e.env :- emptyTab;
e.exhVisit;
result := e.val;

};
};

addto NullExp
{ impl exhVisit
{ val := 0;
};

};

addto Sum
{ impl exhVisit
{ lop.env :- env;
lop.exhVisit;
rop.env :- env;
rop.exhVisit;
val := lop.val + rop.val;

};
};

addto Diff
{ impl exhVisit
{ lop.env :- env;
lop.exhVisit;
rop.env :- env;
rop.exhVisit;
val := lop.val - rop.val;

};
};
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7.3.1  Standard Incremental OAG Evaluators

Yeh published an incremental algorithm for OAGs in [Yeh83]. The evaluator is very similar to 
the stack automaton exhaustive evaluator by Kastens [Kas80]. To make the technique incremen-
tal, three modifications were made:

• Before the incremental evaluation is started, a stack configuration is computed which corre-
sponds to the first visit (in an exhaustive evaluation) of the root of the new subtree. Thus, after 
each subtree replacement, such a stack configuration has to be computed.

• Attributes to be evaluated are kept track of by a marking mechanism. At an EVAL instruction 
the attribute is evaluated only if it is marked. After evaluating an attribute its new value is 
compared with the old value, and if they differ, all successor attributes are marked. Thus, it 
is necessary to have dependency information available at evaluation time. This information 
can be computed statically, however.

• Techniques are employed for determining if certain visits can be skipped, or if the evaluation 
can be stopped altogether. These checks are done dynamically (at evaluation time) using 
information about which attributes have changed values.

Reps published a similar incremental algorithm for OAGs in his thesis [Rep84]. Another version 
of this algorithm, which uses less bookkeeping information, was published in [RT88]. In contrast 
to Yeh, Reps uses a finite automaton rather than a stack automaton. The finite automaton imple-
mentation uses explicit instructions to visit the father node instead of popping a stack. An 
advantage of this in the incremental setting is that no initial stack configuration needs to be 
computed.

The algorithm in [RT88] does dynamic visit-skipping in an elegant way. A boolean flag in each 
syntax node is used to determine if a visit to that node can be skipped or not. After evaluating a 
synthesized or inherited attribute, the new value is compared to the old one. If the values differ, 
the flag of the father node or the appropriate son node is set. In this way, an asymptotically opti-
mal algorithm is achieved without having the extra overhead of marking individual attributes. 
However, markings of individual attributes is suggested as an optimization.

7.3.2  An evaluator based on incremental sequences

The standard incremental evaluation algorithms discussed in the previous section rely on com-
paring old and new attribute values in order to limit the evaluation propagation. Clearly, such 
value comparison is irrelevant for demand attributes since their values are not saved anywhere. 
In Door Attribute Grammars, which will be introduced in the next chapter, very many attributes 
are demand attributes. The standard algorithms are therefore unnecessarily complex in the con-
text of Door AGs.

In this section we describe a new incremental evaluation algorithm for 1-visit AGs which is not 
based on attribute value comparisons. The algorithm instead limits evaluation propagation by 
using information determined statically from the grammar. The advantage of this approach is 
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that it simplifies the evaluation substantially. If applied to a grammar with many data attributes, 
the algorithm will be non-optimal in general. It will not recognize when attribute values have 
converged, but may continue to evaluate arbitrarily many attributes which already have correct 
values. However, if the grammar is such that convergence is unlikely, this algorithm may per-
form well, even for a standard AG with only data attributes. For example, it will perform nearly 
optimal for the desk-calculator grammar. Actually, in this case it may well run faster than the 
standard algorithms since it does not spend any time on comparing attribute values. However, 
the main motivation for introducing this algorithm is not for running it on standard AGs, but to 
make use of it in the algorithms introduced in Chapter 10, for evaluation of Door AGs.

The idea is to do static dependency analysis to avoid unnecessary visits and re-evaluation of 
attributes. This is done by using a set of visit sequences for each construction class, one for each 
adjacent node. We refer to these visit sequences as incremental visit sequences since they are 
used in the incremental evaluator. An incremental visit sequence gives the sequence of instruc-
tions to perform when an adjacent node executes an instruction to visit the node in question. The 
sequence to execute when the control comes from the father node is called the incremental father 
sequence. The sequence to execute when the control comes from a son node is called an incre-
mental son sequence. In addition to the EVAL and VISIT instructions the following instruction 
is also used:

VISITFATHER meaning: visit the father node

This instruction is different from the implicit RETURN instruction ending all sequences. In 
incremental evaluation the control starts at the point of subtree replacement, rather than at the 
root as in exhaustive evaluation. To visit ancestor nodes of the replaced subtree, the explicit VIS-
ITFATHER instruction is needed. The implicit RETURN instruction at the end of the 
incremental father sequence means (as for the exhaustive sequence) return to the father node. For 
a son sequence executed at a visit from a son t, on the other hand, the implicit RETURN instruc-
tion means return to the son t. 

In constructing an incremental son sequence, we assume that all the synthesized attributes of that 
son node have changed. In constructing an incremental father sequence, we assume that all the 
inherited attributes of the node have changed. This corresponds to approximating all the defini-
tions in an adjacent node by one vertex in the dependency graph (a son vertex v(t) or the v(inh) 
vertex) as was done in §7.2.2. The incremental visit sequences are constructed as follows:
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 7-9 Construction Incremental visit sequences

Let v belong to a dependency graph DG and let SortReachable(v) be a function which returns 
a topologically ordered sequence S of all vertices in DG which are reachable from v (exclud-
ing v itself). 

For a construction class C with son nodes 

t1 : ref X1
... 
tn : ref Xn

n incremental son sequences, denoted IVS(C, t1) . . IVS(C, tn), and one incremental father 
sequence, denoted IVF(C), are constructed as follows:

IVF(C) := Translate(SortReachable(v(inh)))

IVS(C, tk) := let S = SortReachable(tk) in
let VS = Translate(S) in

if v(syn) ∈ S then
Append(VS, VISITFATHER)

else
VS

where Append(VS, instr) is a function which appends the instruction instr at the end of the 
visit sequence VS.

 end 7-9

Note that VISITFATHER instructions occur only at the end of incremental son sequences. The 
VISITFATHER instruction can, without loss of generality, be placed last rather than at the place 
of v(syn) since v(syn) has no outgoing edges.

Figure 7.5 Incremental visit sequences for the desk calculator

IVF(Calc)=
( )

IVS(Calc, e)=
( EVAL result )

IVF(NullExp)=
( )

IVF(Sum)=
IVF(Diff)=
( EVAL lop.env,
VISIT lop,
EVAL rop.env,
VISIT rop,
EVAL val )

IVS(Sum, lopp)=
IVS(Sum, rop)=
IVS(Diff, lop)=
IVS(Diff, rop)=
( EVAL val,
VISITFATHER )

IVF(Let)=
( EVAL defExp.env,
VISIT defExp,
EVAL inExp.env,
VISIT inExp,
EVAL val )

IVS(Let, letId)=
IVS(Let, defExp)=
( EVAL inExp.env,
VISIT inExp,
EVAL val,
VISITFATHER )

IVS(Let, inExp)=
( EVAL val,
VISITFATHER )

IVF(Use)=
( EVAL error,
EVAL val )

IVS(Use, useId)=
( EVAL error,
EVAL val,
VISITFATHER )

IVF(Const)=
( )

IVS(Const, constInt)=
( EVAL val,
VISITFATHER )
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Figure 7.5 shows the incremental visit sequences for the desk calculator example.

7.3.3  Construction of Incremental Evaluator

An incremental evaluator can be constructed in OOSL as follows.

 7-10 Construction Incremental data-driven evaluator

Given an object-oriented AG and the incremental visit sequences for its construction classes, 
an incremental data-driven evaluator can be implemented in OOSL by extending the exhaus-
tive evaluator of 7-8 as follows:

• Evaluation procedures. Two virtual procedures incFatherVisit and incSonVisit are 
specified in the general class ANYNODE. A reference to the father node is also declared (as 
for the demand-driven evaluator):

addto ANYNODE
{ father: ref ANYNODE; (* NONE for the root node *)

incFatherVisit: proc;
incSonVisit: proc(s: ref ANYNODE);

};

The procedure incFatherVisit models a visit from the father node. The procedure 
incSonVisit models a visit from the son node s.

• The father sequence. For each construction class, an implementation of the virtual proce-
dure incFatherVisit is given. This implementation is a straight-forward translation 
from the incremental father sequence for the construction class. Each EVAL instruction 
is implemented as a corresponding assignment statement. Each VISIT instruction to a son 
node s is implemented as a call

s.incFatherVisit;

• The incremental sequences. For each construction class, an implementation of the virtual 
procedure incSonVisit is given. The parameter s is used to do case analysis on which 
incremental son sequence to apply. The EVAL and VISIT instructions are implemented 
in OOSL as in the father sequence case. Each VISITFATHER instruction is implemented 
as a call

father.incSonVisit(this ANYNODE);

 end 7-10

After a replacement of a subtree with root OLD by an un-attributed subtree with root NEW in a 
tree, attribute consistency is restored by the following procedure:

 7-11 Procedure RestoreConsistency(OLD, NEW)

RestoreConsistency: proc
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(OLD: ref ANYNODE, NEW: ref ANYNODE);
{ Copy the values of inherited attributes in OLD

to the inherited attributes in NEW.
NEW.exhVisit;
NEW.father.incSonVisit(NEW);

}

 end 7-11

The example below shows the implementation of incremental data-driven evaluation for the con-
struction class Let in the desk calculator example.

Figure 7.6 Incremental data-driven evaluation for the construction class Let.

7.3.4  Static vs. dynamic skipping of instructions

The incremental algorithms of Yeh and Reps discussed in §7.3.1 use the exhaustive visit 
sequences also for incremental evaluation. At the first visit to a C node from its father node, the 
complete exhaustive sequence of C is executed. At the first visit from a son node t the execution 
is started after the first VISIT t instruction. For 1-visit grammars, the Yeh and Reps algorithms 
correspond to an incremental sequence algorithm using the following tail sequences:

TVF(C) := EVS(C)

TVS(C, t) := Append(MatchTail(EVS(C), VISIT t), VISITFATHER)

where the function MatchTail(VS, instr) returns the subsequence of VS starting with the instruc-
tion following instr. The incremental visit sequences are subsets of the corresponding tail 
sequences. If an instruction in a tail sequence does not appear in the corresponding incremental 

addto Let
{ impl incFatherVisit
{ defExp.env :- env;
defExp.incFatherVisit;
inExp.env :- env.add(letId.ident, defExp.val);
inExp.incFatherVisit;
val := inExp.val;

};

impl incSonVisit
{
if S == letId or S == defExp then
inExp.env :- env.add(letId.ident, defExp.val);
inExp.incFatherVisit;
val := inExp.val;
father.incSonVisit(this ANYNODE);

else if S == inExp then
val := inExp.val;
father.incSonVisit(this ANYNODE);

end if;
};

}
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sequence we say the instruction has been statically skipped. The algorithms of Yeh and Reps 
instead rely on dynamic skipping, using markers on attributes and nodes.

If an EVAL instruction is skipped this saves the work of one attribute evaluation. Skipping a VIS-
IT instruction will save re-evaluation in a whole subtree. Skipping a VISITFATHER instruction 
terminates the evaluation all together since the
VISITFATHER instruction is always the last instruction in a son sequence.

There are two effects which may cause our algorithm based on static skipping to evaluate more 
attributes than an algorithm based on dynamic skipping:

• Value convergence. If re-evaluation of an attribute results in the same value as before, the stat-
ic skipping algorithm does not recognize this, but will re-evaluate all successor attributes, 
both direct and transitive ones.

• Parallel attributes. Two attributes a and b of a node are said to be parallel if they are both 
synthesized or both inherited. In the dependency graph for a node class C, parallel attributes 
which are defined by a given neighbor node are approximated by the same vertex. I.e., all 
synthesized attributes of a son node t are represented by the vertex v(t). Likewise, all the 
inherited attributes of C are represented by the vertex v(inh). Due to this approximation, the 
re-evaluation of an attribute a will cause all successors of an attribute b, where b is parallel 
to a, to be re-evaluated.

Our algorithm is primarily intended to be used as a part of an evaluator for Door Attribute Gram-
mars, rather than as an evaluator for standard AGs. In Door AGs the above sources of sub-
optimality have a very limited effect, as will be discussed in §10.8.4. 

In comparing the incremental visit sequences to the tail sequences for the desk calculator gram-
mar we can note that most of the father sequences are the same as the corresponding tail 
sequences (i.e. no instructions have been skipped) and that most of the son sequences have not 
skipped the VISITFATHER instruction. As will be discussed in §10.8.3, there will be a higher 
degree of skipping in Door AGs. The distinction between local and synthesized attributes is 
important for allowing skipping of VISITFATHER instructions. If the local attributes were treat-
ed as synthesized attributes this would lead to many cases of parallel attributes which could 
cause unnecessary evaluations.

7.4  Combining data and demand attributes

Incremental systems store data to allow fast updates. However, storage consumption can be a 
bottleneck in these systems so it is important to store only the most important information. One 
way to reduce the storage consumption in an AG system is to implement some of the attributes 
as demand attributes (i.e. functions) rather than as data attributes (i.e. stored values). To use 
demand attributes instead of data attributes is not always a time/space tradeoff. On one extreme, 
demand attributes may degrade performance if they are accessed often, thus using less space but 
more time. On the other extreme, demand attributes may save both time and space. For attributes 
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which are seldom used, the cost of incrementally maintaining their values may be more than the 
cost of accessing them as demand attributes. Some attribute instances may even be in a syntactic 
context where they are not accessed at all. The grammar in §6.5.2 is an example of this: The 
hasLeftValue attribute is present in all Exp nodes, but only a few of these nodes will have a 
father node actually using this attribute. 

The data and demand-driven evaluation approaches can be combined freely. Demand attributes 
are implemented as described in §7.1. In implementing the incremental data-driven evaluator, 
the demand attributes must be considered during dependency analysis, but when constructing the 
visit sequences, the evaluation instructions for these attributes are simply removed.

7.4.1  Externally accessed demand attributes

Given an incrementally maintained attribution, it can be useful to make this information avail-
able to programming environment tools like editors and debuggers. This can be done by letting 
the tools call virtual functions of individual nodes. For example, a context-sensitive editor might 
have use for asking if an expression can be replaced by an expression of type t without causing 
a type-checking error. This could be implemented by a boolean function typeAcceptable(t) 
defined for expressions. The function can be defined in terms of attributes, either existing ones 
or additional ones added specifically for this purpose, as follows:

Exp: alt
{ inh allowedTp: ref Type; (* external *)

typeAcceptable: func boolean (t: ref Type)
:= t == allowedTp;

};

Add: cons Exp(lop: ref Exp, rop: ref Exp)
{ eq lop.allowedTp :- intType;

eq rop.allowedTp :- intType;
};

The attribute allowedTp is an external attribute. With this we mean a demand attribute which 
implements a service needed by an external tool, but which is not used in the definition of any 
data attribute. An external attribute can be accessed only by other external attributes, by func-
tions, and by external tools. The reason for distinguishing between external and ordinary 
attributes is that the external attributes need not be considered in dependency analysis since they 
have no dependent data attributes.

7.5  Summary

This chapter has described how some attribute evaluation algorithms can be implemented using 
object-oriented techniques. Three basic algorithms have been treated: demand-driven evalua-
tion, exhaustive data-driven evaluation for 1-visit grammars, and incremental data-driven 
evaluation for 1-visit grammars. All of these are very simple to implement in an object-oriented 
language by making use of virtual functions and procedures. In the incremental algorithm a new 
technique for static skipping of instructions was introduced. This was accomplished by using 
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several visit sequences for each node class instead of only one. Static skipping avoids value com-
parisons at evaluation time, but results, in general, in sub-optimal evaluation. This sub-
optimality has little or no effect for grammars where value convergence is unlikely, and for gram-
mars with many demand attributes. The primary motivation for the static skipping technique is 
that it is useful in the evaluation of Door Attribute Grammars as will be described in subsequent 
chapters.
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Chapter 8

Door Attribute Grammars

In this chapter we introduce Door Attribute Grammars, an extension to standard AGs allowing 
declarative specification of attributions containing objects and references. This enables attribu-
tions which are suitable for incremental update to be specified. In particular, visibility graphs for 
object-oriented languages, such as those described in §3.3, can be defined explicitly in Door 
AGs. We show how Door AG specifications are written and give an example of specifying name 
analysis for a simple block structured language. More advanced examples for object-oriented 
languages are given in Chapter 11.

8.1  Introduction

The notion of Attribute Grammars can be generalized by viewing an attribute grammar as a spec-
ification (A, I) where A defines which attributes the attribution consists of, and where I is a set of 
invariants, stating truths about the attribution. A syntax tree is consistently attributed if the syn-
tax tree has all the attributes declared in A and if all the invariants in I are fulfilled. For a standard 
AG, A is the set of declarations of inherited, synthesized, and local attributes, and I is the set of 
equations defining the values of these attributes.

A Door AG extends a standard AG both in what kind of attributes can be defined and in what 
kind of invariants can be given. For a Door AG, A includes not only the attribute declarations of 
standard AGs, but also declarations of semantic objects and door objects which may have their 
own attributes. The semantic objects may be used for context-dependent object structures such 
as visibility graphs. Door objects serve as connections between syntax nodes and semantic 
objects. The set of invariants I for a Door AG includes equations defining attribute values, exactly 
as in standard AGs, but also another kind of invariants called conditions, which can be used for 
defining the members of collection-valued attributes. 

An important difference between Door AGs and standard AGs is that Door AGs allow reference 
attributes to denote any object, i.e. any node, door, or semantic object. These objects are, in gen-
eral, mutable since their attributes may change values as a consequence of changes to the syntax 
tree. Door AGs thus allow references to denote mutable objects. In standard AGs, all attributes 
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must have regular values, and references are therefore allowed only if they denote immutable 
objects (with the goal of space-efficient representation of regular values). The introduction of 
references to mutable objects is essential in order to model explicit visibility graphs and to 
implement the best incremental name analysis methods. The price for allowing such references 
is that non-local attribute dependencies are introduced. In general, this prevents evaluators to be 
completely automatically generated from the grammar. The reasons for this will be discussed in 
more detail in §10.10.

If evaluators cannot be generated automatically from a grammar, one of the most important ben-
efits of the attribute grammar approach is lost. One of the major design goals of Door AGs has 
therefore been to be able to separate those parts which can be treated automatically from those 
which require manual treatment. This is done by splitting a Door AG specification into two parts: 
a door package and a main grammar. The door package contains the classes defining door 
objects and semantic objects and must be implemented manually. The main grammar contains 
the node classes and is very similar to a standard AG. It can be implemented automatically using 
techniques based on those for standard AGs. Although the implementation of door packages is 
manual, it can be done in a highly systematic fashion as will be shown in detail in chapters 9 and 
10. A door package can be designed to handle some important aspects of a family of program-
ming languages, e.g., name analysis and type systems. To specify a language it suffices to write 
a main grammar, using the door package as a tool box. The main grammar can then be processed 
and an incremental evaluator can be constructed automatically.

8.2  Nodes, doors, and semantic objects

A Door AG defines attributed syntax trees built out of three kinds of objects: syntax nodes, mak-
ing up the syntax tree; semantic objects, which may be used to model context-dependent 
structures; and door objects which serve as interfaces between the syntax nodes and the semantic 
objects. The Door AG consists of class definitions for these objects. Syntax nodes may own door 
objects which in turn may own semantic objects. Thus, via static references, the doors and 
semantic objects can be seen as an extension of the syntax tree (Figure 8.1). The objects may 
have dynamic reference attributes, thus turning the tree into a graph (Figure 8.2).
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Figure 8.1 Syntax tree extended with doors and semantic objects

Figure 8.2 Attributed syntax tree

Semantic objects are instances of ordinary OOSL classes, which we will henceforth refer to as 
semantic classes. Nodes are instances of node classes, as introduced in Chapter 6, and doors are 
instances of special door classes. A semantic class may declare local attributes, virtual functions, 
and part-objects (of semantic classes). 

Door classes have similarities to both semantic classes and node classes. The graphical depiction 
of the door objects is intended to indicate this. A door is similar to a node in that it may have 
inherited and synthesized attributes. This allows a door to be treated exactly like a son node by 
its owning syntax node. I.e., a syntax node must define the inherited attributes of its door objects, 
and it may use the synthesized attributes of its door objects to define other attributes. Similarly, 
a door must define its synthesized attributes, and it may use its inherited attributes to define its 
synthesized and other attributes.

A door is similar to a semantic object in that it may declare local attributes, virtual functions, and 
part-objects (of semantic classes). It is the responsibility of the door to declare equations defin-
ing the values of the local attributes in both the door itself and all its part-objects (including 
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transitive part-objects). Some part-objects may, however, be so called collection objects. The 
contents of these objects are defined by conditions rather than equations, as will be described in 
§8.3. 

A Door AG may also contain constant semantic object definitions. Such semantic objects are 
declared globally and are not owned by other objects. 

Formally, a Door Attribute Grammar G is the combination of a main grammar GM and a door 
package GD. The main grammar is a tuple GM = (N, CM) where N is a set of node classes and 
CM a set of constant semantic objects. The door package is a triple GD = (D, S, CD), where D is 
a set of door classes, S a set of semantic classes, and CD a set of constant semantic objects. The 
Door AG is the quadruple G = (N, D, S, C) where C = CM ∪ CD.

8.2.1  OOSL extensions

Node classes for Door AGs are specified in OOSL in the same basic way as for the object-ori-
ented AGs of Chapter 6. Semantic classes are specified as the normal classes of OOSL in Chapter 
5, using the keyword “class”. Door classes are specified using the keyword “door” as follows:

<door-class-decl> ::= 
<door-class-id> ‘:’ ‘door’ [<door-superclass-id>]
[ ‘{’ <decl-body> ‘}’]

The optional superclass of a door class must be another door class. If no superclass is explicitly 
given, the class is considered to be a subclass of a most general door class ANYDOOR. The class 
ANYDOOR is in turn considered a subclass of ANYCLASS. The top level of the OOSL class hierarchy 
is shown in Figure 8.3.

Figure 8.3 Top of OOSL class hierarchy

Semantic objects, constant or not, are specified using static references as explained in Chapter 
5. Door objects are specified using the keyword “doorobject” as follows:

<stat-door-ref-decl> ::=
<stat-door-ref-id> ‘:’ ‘doorobject’ <door-class-id>

ANYCLASS

ANYDOOR

ANYNODE

semantic classes

door classes

node classes 
(constructions, 

alternations, lists, 
lexemes)
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For example:

D: door
{ inh x: integer;
};

N: cons
{ rD: doorobject D;

eq rD.x := 3;
};

Here, rD is a static reference to a D door object. I.e., each object of the node class N has a part-
object of door class D. The node defines the inherited attribute x of its door object. Figure 8.4 
shows a syntax tree attributed according to the above definition.

Figure 8.4 Attributed syntax tree

8.3  Collections and conditions

A semantic object may be declared as a collection. The content of a collection object is defined 
by conditions which appear in other door objects, distributed over the syntax tree. This is in con-
trast to other semantic objects whose contents are defined by equations in the owning door.

A condition declared in a door class D contributes to the total definition of a collection object by 
stating that an object x is a member of the collection. The object x must be either the D object 
itself or one of its part-objects (direct or indirect). Formally, a condition is simply a boolean 
expression which may be true or false. This allows a condition to state memberships condition-
ally. By using recursive functions, it is also possible to let a condition state an arbitrary number 
of memberships. In a consistently attributed syntax tree, all conditions must be true. The defini-
tion of collections follow a “closed world assumption” in that if the membership of an object y 
does not follow as a logical consequence from any condition, then y is defined to not be a mem-
ber of the collection.

The following syntax is used.

<collection-decl> ::= ‘collection’ <stat-ref-decl>
<condition-decl> ::= <cond-id> ‘:’ ‘cond’ <exp>

As an example, consider the specification of symbol tables. Suppose there is a general class List 
which has a boolean function contains(x) which returns true if x is a member of the list:

x=3 

N

rD

D
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List: class[T: class ANYCLASS]
{ contains: func boolean(x: ref T);
};

A class Entry is specified to model symbol table entry objects and a class SymbolTable to mod-
el the symbol table. The class SymbolTable declares a List object as a collection in order to 
collect suitable Entry objects:

Entry: class
{ ...
};

SymbolTable: class
{ collection entries: object List[Entry];
};

To use these semantic classes in a Door AG, we define one door class D1 introducing a SymbolT-
able object, and another door class D2 introducing an Entry object. The class D2 registers the 
Entry object as a member of the list of a SymbolTable by using a condition:

D1: door
{ myTable: object SymbolTable;

syn tbl: ref SymbolTable;
eq tbl :- myTable;

};

D2: door
{ inh tbl: ref SymbolTable;

myEntry: object Entry;
reg: cond tbl.entries.contains(myEntry);

};

The condition reg defines that myEntry is a member of the list tbl.entries. The reason for 
giving conditions a name (e.g. reg) is merely that it makes it easier to refer to a given condition 
when analyzing specifications. The condition names are not used in the Door AG specification 
itself.

By inherited and synthesized reference attributes, information about a SymbolTable object can 
be transmitted from a D1 object to one or several D2 objects. Figure 8.5 shows an example syntax 
tree attributed according to the above definitions. In this example, a reference to the D1 object 
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has been transmitted via the syntax tree to two D2 objects which each register an Entry object 
in the SymbolTable list.

Figure 8.5 Members of a collection defined using conditions

8.4  Aggregates

The depiction of an attributed syntax tree can become quite complex if all details are included. 
We will use the term aggregate for a set of objects connected by static references. Depictions of 
attributed syntax trees can be simplified by collapsing aggregates to a single graphic symbol. 

As an example, Figure 8.5 can be simplified as below. Here, the SymbolTable and List objects 
are collapsed to an aggregate, and each D2 and its corresponding Entry object are also collapsed 
to aggregates. An additional simplification has been made by not showing the tbl attributes.
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Figure 8.6 Simplifying depictions by using aggregate symbols

8.5  Fix attributes and functions

8.5.1  Fix attributes

Attributes may be declared as fix. This means that the definition of the attribute must be such that 
the value of the attribute never needs to be updated. I.e., once a fix attribute has obtained a value, 
it will need no future re-evaluation. The reason for introducing fix attributes is to simplify the 
construction of evaluators for door packages. Fix attributes also allow a higher degree of instruc-
tion skipping, as will be discussed in §10.9.1.

We assume the usual editing model based on subtree replacements. In this model, the lifetime of 
a node always spans the lifetime of its son nodes. Suppose a node n defines a fix inherited 
attribute a of a son node. Because of the subtree replacement editing model, the lifetime of the 
attributes in n will span the lifetime of a and the equation defining a may therefore use fix 
attributes in n. The equation may also use synthesized attributes of door nodes owned by n, since 
a part-object has the same lifetime as its owning object. The equation may, however, not use syn-
thesized attributes of a son node of n, since replacement of the son node may result in a new value 
for the synthesized attribute. This could lead to a new value for a which would violate its fix 
property.

To declare an attribute as fix, the keyword “fix” is added at the end of the declaration:

<fix-attr-decl> ::=
( ‘inh’ | ‘syn’ | ‘loc’ ) <attr-id> ‘:’ <type> ‘fix’

D1

SymbolTable

D2

Aggregate symbols

D2

reg reg 
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Typically, fix attributes are used to propagate information from one door in the syntax tree to 
another door further down in the syntax tree. For example, consider the example on SymbolT-
able objects of §8.3. The synthesized and inherited tbl attributes can be declared fix as follows:

D1: door
{ myTable: object SymbolTable;

syn tbl: ref SymbolTable fix; (* 1 *)
eq tbl :- myTable; (* 2 *)

};

D2: door
{ inh tbl: ref SymbolTable fix; (* 3 *)

myEntry: object Entry;
reg: cond tbl.entries.contains(myEntry);

};

The synthesized attribute tbl at (* 1 *) is declared as fix. Clearly, the equation defining this 
attribute (* 2 *) fulfills this since myTable is a static reference and thus never changes. A syntax 
node n owning a D1 door may use the synthesized tbl reference to define fix inherited attributes 
of son nodes. The reference may be propagated throughout the subtree of n while retaining the 
fix property. However, the reference cannot be propagated up to the father node of n without los-
ing the fix property. Since the D2 requires its inherited tbl attribute to be fix (* 3 *), the 
reference can only be propagated to D2 doors within the subtree rooted at n. Thus, the use of fix 
attributes restricts the way the door package can be used by a main grammar.

8.5.2  Fix functions

A function may also be declared as fix. This means that the function must return the same value 
for a given set of parameters, regardless of changes to the syntax tree and consequent changes to 
the attribution. An implementation of a fix function may only make use of constant information 
and of other fix attributes and functions. If a function is declared as fix, all implementations of 
it must fulfill this requirement. To declare a function as fix, the keyword “fix” is added after the 
function specification:

<fix-func-spec> ::=
<func-id> ‘:’ ‘func’ <type>
[‘(’ (<form-par>, ‘,’)+ ‘)’]
‘fix’

For example:

f: func boolean fix;

8.6  Non-local dependencies

The introduction of reference attributes in Door AGs leads to non-local dependencies. This sec-
tion will define what is meant by such dependencies and give an example of how they can occur. 
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Henceforth, we will use the term access dependency for the dependencies usually considered in 
standard AGs. Chapter 9 will consider slightly different kinds of dependencies.

 8-1 Definition Access dependency

Let a be an attribute defined by an equation e. For each attribute b accessed by the right hand 
side of e, there is an access dependency from b to a, and a is said to be access-dependent on b.

 end 8-1

In a standard AG, all access dependencies are local. I.e., they occur between attributes of the 
same or neighbor syntax nodes. With neighbor syntax nodes we mean nodes related as father and 
son. The concept of local access dependencies is extended to Door AGs by considering the 
extended syntax tree, i.e. the syntax tree extended by door objects and semantic objects. In the 
extended syntax tree, a door object and all its semantic part-objects are considered to be neigh-
bors to each other and to the syntax node owning the door object. Local and non-local access 
dependencies in a Door AG are defined as follows:

 8-2 Definition Local/non-local access dependency

Let a be an attribute which is access-dependent on another attribute b. Let xa be the object 
declaring a and xb the object declaring b. The dependency is said to be a local access depen-
dency iff xa and xb are the same object or xa and xb are neighbors in the extended syntax tree. 
Otherwise, the dependency is said to be a non-local access dependency.

 end 8-2

As an example of a non-local access dependency, consider the following classes.

A: class
{ loc x: integer;
};

D1: door
{ inh ix: integer;

syn rA1: ref A;
myA: object A;
eq myA.x := ix; (* 1 *)
eq rA1 :- myA; (* 2 *)

};

D2: door
{ inh rA2: ref A;

syn sx: integer;
eq sx := rA2.x; (* 3 *)

};

A D1 door uses the inherited attribute ix to define the x attribute of its A part-object (* 1 *). A 
main grammar declaring a D1 door gets access to the A object by the synthesized reference 
attribute rA1 (* 2 *). This reference may be propagated (using normal copy equations) to 
another part of the syntax tree into the rA2 attribute of a D2 door. The D2 door accesses the x 
attribute of the A object and copies this value to the synthesized attribute sx (* 3 *).
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Figure 8.7 illustrates this example. References to the A object are propagated from rA1 along the 
syntax tree to rA2. In contrast, the information from x to sx flows directly from the A object to 
the D2 door although these two objects may be located far from each other in the syntax tree. The 
attribute sx is also dependent on rA2. I.e., changing either x or rA2 will affect sx. 

Figure 8.7 Access dependencies

From the definition above, it is clear that the dependency from ix to x (by equation (* 1 *)) is 
a local access dependency, whereas the dependency from x to sx (by equation (* 3 *)) is a non-
local access dependency. The copy equations which must be present in the syntax tree in order 
to propagate the A reference from the D1 door to the D2 door give rise to a chain of local access 
dependencies.
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Note also that a change to the attribute x does not affect any of the references denoting the A 
object (e.g. myA, rA1, and rA2). The values of these attributes is the object identity of the A object, 
which is immutable and unaffected by any changes to the contents of the object.

The non-local dependencies between attributes can be mapped to non-local dependencies 
between objects. We are here only interested in syntax nodes and door objects and see the seman-
tic part-objects more as passive entities. I.e., an attribute of a semantic part-object is mapped to 

y x 

x 

rA2

sx 

ix

rA1 

D1

A

D2
access dependency

myA

(the definition of y accesses x)



124 Chapter 8 Door Attribute Grammars

the owning door object rather than to the semantic object in which it is declared. This implies 
that the dependency from x to sx is mapped to a dependency from the D1 object to the D2 object.

In principle, it would make sense to put the equation (* 3 *) directly in a syntax node instead 
of in the door D2. There is an important reason why this is not done. The reason is that we want 
no non-local access dependencies involving syntax nodes. Putting the equation (* 3 *) in a syn-
tax node would give a non-local access dependency from the A object to that syntax node. We 
want all non-local access dependencies to be mapped on “door-to-door” dependencies. This is 
necessary in order to be able to automatically generate evaluators for the main grammars. This 
restriction is accomplished by the following rule:

 8-3 Rule Access via reference attributes in syntax nodes

Syntax nodes may not access mutable information via reference attributes. The only informa-
tion which a syntax node may access via a reference attribute is the immutable information, 
i.e., the object identity itself, and fix functions in the denoted object.

 end 8-3

Although access to mutable information via reference attributes is not allowed directly in the 
syntax nodes, such accesses can always be performed indirectly by introducing a door object 
performing the access.

8.7  Data and demand attributes

In Door AGs, most of the important information is maintained in doors and semantic objects. 
The attributes of syntax nodes are used mainly for propagating information between doors and 
for simple computations which take little time to recompute when needed. For this reason, we 
consider all attributes in the syntax nodes as demand attributes by default. In addition, both the 
synthesized and the inherited attributes of doors are considered as demand attributes. It is thus 
only the local attributes of semantic objects and doors which are stored as data attributes.

For syntax nodes, attributes can be explicitly specified as data attributes by adding the keyword 
“data” after the attribute declaration. For semantic objects and doors there is no need for a cor-
responding possibility to explicitly specify attributes as “demand” attributes, since parameter-
less virtual functions are equivalent to local demand attributes. 

The following items summarize the default scheme for data/demand attributes:

• All attributes (synthesized, inherited, and local) of syntax nodes are by default implemented 
as demand attributes.

• All synthesized and inherited attributes of door objects are implemented as demand 
attributes.

• All local attributes of door objects and semantic objects are implemented as data attributes.
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The difference between data and demand attributes does not affect the meaning of a Door AG. 
It is only a question of time and space consumption. However, when the goal is to develop prac-
tical incremental attribute evaluators, we find it very important that the grammar designer has 
full control over what part of the attribution is stored. In particular, it is important to not be forced 
to store large numbers of attributes simply to be able to propagate information from one part of 
the syntax tree to another.

8.8  Summary of graphical symbols

The previous sections have introduced a number of graphical symbols used for depicting attrib-
uted syntax trees. Figure 8.8 summarizes this graphical notation.

Note that an attribute dependency often points in the opposite direction of a dynamic reference. 
This is because a dynamic reference attribute of an object a which denotes another object b 
makes it possible to define attributes in a using attributes in b.

Figure 8.8 Graphical notation for attributed syntax trees
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8.9  An example Door AG

As an example of a Door AG we will show the construction of a door package supporting name 
analysis for nested blocks. The static semantics of a small Algol like language will be specified 
using this door package. The language includes nested blocks, integer and boolean variables, 
assignment statements, and integer constants. An example program in this language may be:

begin
integer x;
x := 1;

end;

Figure 8.9 shows an attributed syntax tree for this program. The main goal of the attribution is 
to bind name applications to name declarations. Name applications are represented by UseDoor 
objects and name declarations by DeclDoor objects. Bindings are represented by the reference 
attribute binding in a UseDoor which denotes the appropriate DeclDoor (see the lower part of 
the figure).

Blocks are represented by BlockDoor objects. Each BlockDoor has a SymbolTable object 
which collects the declarations of the block. SymbolTable objects are connected by objects 
modelling the vertices of visibility graphs as described in §3.3. The class TwoPath models a path 
vertex with two outgoing edges (first and second). Each BlockDoor has a TwoPath object to 
model the combination of local and enclosing scope. In this example, the block is the topmost 
block in the program. The attribute second therefore denotes the constant object emptyPath 
which models the null vertex.
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In addition to the UseDoor, DeclDoor, and BlockDoor, the example shows a RootDoor. The 
RootDoor is used at the root of the syntax tree to provide a suitable definition for the enclosing 
scope for the first block. There will thus only be one RootDoor object in a syntax tree.

Figure 8.9 Attributed syntax tree

To define and incrementally maintain an attribution such as the one above, several additional 
attributes are needed. There are two main groups of attributes not shown in the figure. One group 
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For example, information about the SymbolTable object needs to be propagated down to the 
DeclDoor so it can register itself properly. Similarly, information about the TwoPath object 
needs to be propagated down to the UseDoor object so it can use this information to set its bind-
ing attribute properly. This propagation can be done by synthesized and inherited attributes in 
the nodes and doors. Since these attributes are by default demand attributes, they take up no 
storage.

As an example of information needed during incremental evaluation, consider changing the 
ident attribute of the VarDecl ID node from “x” to “y”. Such a change implies that the binding 
attribute of the UseDoor needs to be updated to denote some other object. There is thus a need 
of additional attributes which make it possible to locate the affected UseDoor objects efficiently 
after such a change.

In this section, we consider only the attributes needed for defining the above attribution. The 
additional attributes needed for efficient incremental evaluation will be discussed in Chapter 9.

The Door AG is divided into a main grammar and a door package as described in §8.2. The door 
package consists of definitions of the four door classes RootDoor, BlockDoor, DeclDoor, and 
UseDoor, and of definitions of associated semantic classes and constant objects. The main gram-
mar consists of node classes for a specific language. 

Figure 8.10 Specialization hierarchy of semantic classes and objects

8.9.1  Semantic classes and constant objects

The semantic classes and constant objects of interest and their specialization relationships are 
shown in Figure 8.10.
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• The class SearchPath models a vertex in a visibility graph. Its specialization TwoPath mod-
els a path vertex with two outgoing edges. The SymbolTablePath models a table vertex and 
connects to a SymbolTable object. The emptyPath object models the null vertex.

• The class Type models the general concept of a type in a programming language. One con-
stant specialization is given: unknownType, which is used for modelling the types of 
undeclared identifiers. Other constant objects which are specializations of Type can be 
defined in the main grammar, in order to suit the needs of the specified programming 
language.

8.9.1.1  Linked lists

The door package makes use of a separate package for linked lists to implement the collection 
of Entry objects in a SymbolTable object. The linked list package has the following interface:

The class List models a list head and the class Element a list element. The function contains 
returns true if e is in the list. The function first returns the first element in the list, or NONE if 
the list is empty. The sucOf and predOf functions return the successor and predecessor of an 
element e in the list, or NONE if e is the last or first element, respectively.

8.9.1.2  AbstractEntry, Entry, nullEntry

The class AbstractEntry and its specializations are defined as below. A reference qualified by 
AbstractEntry may be used to represent the binding of an identifier. It will denote an Entry 
object if the identifier is declared or the nullEntry object otherwise. The virtual function getTp 

List: class[T: class Element]
{ contains: func boolean(e: ref T);
first: func ref T; (* may return NONE *)
sucOf: func ref T(e: ref T); (* may return NONE *)
predOf: func ref T(e: ref T);(* may return NONE *)

};

Element: class;
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can be used to retrieve the type of the identifier. AbstractEntry is defined as a subclass of Ele-
ment in order to be able to put Entry objects into linked lists. 

8.9.1.3  SymbolTable

The class SymbolTable collects Entry objects using a collection part-object of class 
List[Entry]. A function lookup traverses the collection to find an Entry object for a given 
identifier. 

8.9.1.4  SearchPath

The class SearchPath specifies a virtual function lookup which traverses the visibility graph 
reachable from that point to find the declaration of a given identifier. The function is implement-
ed in different ways in the specializations of SearchPath.

AbstractEntry: class Element (* abstract *)
{ getTp: func ref Type;
};

Entry: class AbstractEntry
{ loc ident: string;
loc tp: ref Type;
impl getTp :- tp;

};

nullEntry: object AbstractEntry
{ impl getTp :- unknownType;
};

SymbolTable: class 
{ collection entries: object List[Entry];
lookup: func ref Entry(ident: string)

(* may return NONE *)
:- loop $L :- entries.first do

inspect $E :- $L
when Entry do
if $E.ident = ident
then $E
else next $L :- entries.sucOf($L)

otherwise NONE;
};
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8.9.1.5  Type

The definition of the semantic class Type and its specialization unknownType is as follows.

8.9.2  Door classes

8.9.2.1  RootDoor

The door class RootDoor simply defines a synthesized attribute which denotes the constant 
semantic object emptyPath. This attribute is intended to be used as the enclosing environment 
for the topmost block:

SearchPath: class (* abstract *)
{ lookup: func ref Entry(ident: string);

(* may return NONE *)
};

TwoPath: class SearchPath
{ loc first: ref SearchPath;
loc second: ref SearchPath;
impl lookup :-
inspect $E :- first.lookup(ident)
when Entry do $E
otherwise second.lookup(ident);

};

SymbolTablePath: class SearchPath
{ loc table: ref SymbolTable;
impl lookup :- table.lookup(ident);

};

emptyPath: object SearchPath
{ impl lookup :- NONE;
};

Type: class;
unknownType: object Type;

RootDoor: door
{ syn rootPath: ref SearchPath fix;
eq rootPath :- emptyPath;

};
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8.9.2.2  BlockDoor

The door class BlockDoor defines three part-objects: a SymbolTable, a SymbolTablePath, and 
a TwoPath object. The TwoPath object models the static path vertex according to the construc-
tion of visibility graphs for block structure given in §3.3.1. The part objects of BlockDoor are 
connected to each other and to a SearchPath object representing the enclosing environment. 
Information about the latter object is obtained via an inherited reference attribute of the door.

The door also defines two synthesized reference attributes. One denoting the SymbolTable 
object and one denoting the TwoPath object. The SymbolTable reference can be propagated to 
other parts of the syntax tree allowing DeclDoor objects to register Entry objects as members 
of the SymbolTable collection. The TwoPath reference can be propagated to other parts of the 
syntax tree allowing other blocks to be constructed using this one as enclosing environment, and 
allowing UseDoor objects to look up declarations of identifiers.

The definition of the BlockDoor class is as follows:

The following figure shows a BlockDoor attributed according to the above definition. Its synthe-
sized and inherited attributes are shown as well, although they are demand attributes and not 
actually stored. The incoming and outgoing dependency edges show the information flow for 
these attributes. The SearchPath object will actually be a specialization of class SearchPath. 
It will either be the constant emptyPath or a TwoPath object of another BlockDoor.

BlockDoor: door
{ inh encPath: ref SearchPath fix;
syn locPath: ref SearchPath fix;
syn table: ref SymbolTable fix;
theTable: object SymbolTable;
staticPath: object TwoPath;
theTablePath: object SymbolTablePath;
eq staticPath.first :- theTablePath;
eq staticPath.second :- encPath;
eq theTablePath.table :- theTable;
eq table :- theTable;
eq locPath :- staticPath;

};
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8.9.2.3  DeclDoor

The DeclDoor class declares an Entry part-object which it registers in a SymbolTable by 
declaring a condition. Information about the SymbolTable object is obtained via an inherited 
reference attribute. The door also has two additional inherited attributes containing the name and 
the type of the declaration. These attributes are used for defining the corresponding attributes in 
the Entry object:
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DeclDoor: door
{ inh table: ref SymbolTable fix;
inh ident: string;
inh tp: ref Type;
theEntry: object Entry;
registered: cond table.entries.contains(theEntry);
eq theEntry.ident := ident;
eq theEntry.tp :- tp;

};
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The following figure shows a DeclDoor attributed according to the above definition. The depen-
dency edges show the information flow from the inherited ident and tp attributes to the 
corresponding attributes in the Entry object.

8.9.2.4  UseDoor

The UseDoor looks up the appropriate Entry object for an identifier by calling the lookup func-
tion of a SearchPath object. Both the identifier and the reference to the SearchPath are 
inherited attributes of the door. The result of the lookup function is used for defining a local 
attribute binding in the door. In case there is no matching Entry object, the binding attribute 
is defined to denote the nullEntry object. The binding attribute is also defined to denote the 
nullEntry object if the identifier is the empty string. This reason for this is that the ident 
attribute of un-expanded ID nodes in the syntax tree is assumed to have the value of the empty 
string. If a normal binding would be attempted for the empty string this could lead to binding an 
applied un-expanded identifier to a declared un-expanded identifier, which is probably not a 
desirable behavior of the door package. 

The binding attribute is used for retrieving the type of the identifier. A reference denoting the 
appropriate Type object is made available to the syntax tree through a synthesized attribute of 
the door. In addition, a synthesized attribute declared is defined which is true if the identifier 
has a proper declaration.
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The following figure shows an example of a UseDoor attributed according to the above defini-
tion. The inherited SearchPath attribute denotes a TwoPath object which is in turn connected to 
another TwoPath object of an enclosing block. The function lookup finds the appropriate Entry 
object by first searching the lower SymbolTable collection and, when not found there, continues 
searching in the upper SymbolTable collection. The figure also shows the dependency edge from 
the tp attribute of the bound Entry object to the corresponding synthesized attribute of the door.

The inherited attribute path is not declared as fix. It may thus change during incremental evalu-
ation to denote other SearchPath objects. This allows the UseDoor to be used not only in simple 
Algol-like languages, but also in languages with remote access. This will be discussed in 
§11.3.2.2.

UseDoor: door
{ inh path: ref SearchPath;
inh ident: string;
syn tp: ref Type;
syn declared: boolean;
loc binding: ref AbstractEntry;
eq binding :-

if ident = “”
then nullEntry
else
inspect $E :- path.lookup(ident)
when Entry do $E
otherwise nullEntry;

eq tp :- binding.getTp;
eq declared := binding =/= nullEntry;

};
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Figure 8.11 A UseDoor bound to an Entry object in an enclosing block

8.9.3  The door package interface

The definitions of the previous two sections constitute the door package. However, only a small 
part of this information is actually used directly by a main grammar. An interface can be extract-
ed from the door package, containing only those definitions which are needed to write a main 
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Figure 8.12 Door package interface

The essence of the door package interface is the inherited and synthesized attributes of the door 
classes. In addition, the interface includes the types (semantic classes) of these attributes. The 
interface also includes constant objects which are of interest when defining the main grammar.

Note that the interface includes only the abstract semantic class SearchPath and not its special-
izations. Note also that the AbstractEntry and its specializations are completely hidden. In 
principle, an equivalent door package could be constructed which has the same interface as 
above, and the same black box behavior, but a different internal specification, involving other 
semantic classes.

Both SearchPath and SymbolTable are marked as (* non-instantiable *) in the interface. 
This means that the main grammar may not declare constant semantic objects of these classes. 
Because of this restriction, the main grammar cannot construct its own constant semantic objects 
of these types and feed them into the door package. It can only get access to objects of these 
classes through synthesized reference attributes of the door package itself.

SearchPath: class; (* non-instantiable *)

SymbolTable: class; (* non-instantiable *)

Type: class;
unknownType: object Type;

RootDoor: door
{ syn rootPath: ref SearchPath fix;
};

BlockDoor: door
{ inh encPath: ref SearchPath fix;
syn locPath: ref SearchPath fix;
syn table: ref SymbolTable fix;

};

DeclDoor: door
{ inh table: ref SymbolTable fix;
inh tp: ref Type;
inh ident: string;

};

UseDoor: door
{ inh path: ref SearchPath;
inh ident: string;
syn tp: ref Type;
syn declared: boolean;

};
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The Type class, on the other hand, can freely be used by the main grammar for declaring seman-
tic constants to suit the needs of a particular language. For example, constant Type objects may 
be declared in order to represent integers and booleans.

Figure 8.13 An example main grammar

intType: object Type;
boolType: object Type;

Program: cons (s: ref Stmt)
{ r: doorobject RootDoor;
eq s.path :- r.rootPath;

};

Stmt: alt
{ inh path: ref SearchPath fix;
};

NullStmt: cons Stmt();

BlockStmt: cons Stmt
(d: ref Decl, s: ref Stmt)

{ b: doorobject BlockDoor;
eq b.encPath :- path;
eq d.table :- b.table;
eq s.path :- b.locPath;

};

Decl: alt 
{ inh table:

ref SymbolTable fix;
};

NullDecl: cons Decl();

VarDecl: cons Decl
(dt: ref DeclType,
declId: ref ID)

{ d: doorobject DeclDoor;
eq d.table :- table;
eq d.ident := declId.ident;
eq d.tp :- dt.tp;

};

DeclType: alt
{ syn tp: ref Type;
};

NullDeclType: cons DeclType()
{ eq tp :- unknownType;
};

IntDeclType: cons DeclType()
{ eq tp :- intType;
};

BoolDeclType: cons  DeclType()
{ eq tp :- boolType;
};

AssignStmt: cons Stmt
(to: ref Use, from: ref Exp)

{ loc error: boolean;
eq to.path :- path;
eq from.path :- path;
eq error := not
(to.tp == unknownType or
from.tp == unknownType or
to.tp == from.tp);

};

Exp: alt
{ inh path: ref SearchPath;
syn tp: ref Type;

};

NullExp: cons Exp()
{ eq tp :- unknownType;
};

Use: cons Exp (useId: ref ID)
{ u: doorobject UseDoor;
loc error: boolean;
eq u.path :- path;
eq u.ident := useId.ident;
eq tp :- u.tp;
eq error :=

useId.ident <> “”
and not u.declared;

};

IntConst: cons Exp
(n: ref INT)

{ eq tp :- intType;
};
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8.9.4  The main grammar

A main grammar for a small Algol-like language is given in Figure 8.13. It uses the door package 
to define the attribution of Figure 8.9. Two constant Type objects are declared: intType and 
boolType, to represent the types used in this small language.

The grammar also does static semantic error checking, by defining boolean error attributes.

• The Use node checks if the applied identifier is declared. However, if the identifier is the emp-
ty string, this is not considered an error since empty strings represent un-expanded ID nodes.

• The AssignStmt node checks if the left and right hand sides are type compatible. If either 
one of these types is the unknownType, this indicates an undeclared identifier or an un-
expanded ID or expression, and is not considered an error.

Figure 8.14 shows the attributed syntax tree of Figure 8.9 again, but now with all the attributes 
of the main grammar and the synthesized and inherited attributes of the door objects, and with 
all of the semantic part-objects collapsed into aggregates. The dependency edges between 
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attributes show the information flow through the syntax tree. It can be noted that all of these 
attributes are demand attributes, and thus take up no storage.

Figure 8.14 Information flow in an example attributed syntax tree

VarDecl

AssignStmt

UseDoor

Use

BlockStmt

Int-

Program

RootDoor

DeclDoor

Constident 

val ident 

BlockDoor

path

ident

tp

declared 

table

ident

tp 

rootPath 

encPath

locPath

table 

path 

table 

path

tp 

path

error tp 

path

tp

error 

begin
integer x;
x := 1;

end;
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8.10  Underdetermined grammars

A standard AG solution of a syntax tree is an attribution for which all equations of the grammar 
hold (§4.2). In analogy, for a Door AG, a solution of a syntax tree is an attribution for which all 
equations hold and for which all conditions are true.

Non-circular standard AGs are always uniquely-defined, i.e. there is exactly one solution for each 
possible syntax tree. In constrast, it is both possible and useful to construct Door AGs which are 
underdetermined, i.e., some syntax trees may have multiple solutions. One reason to use an 
underdetermined grammar is to make it possible to implement history-dependent error reporting, 
as discussed in §3.6. Circular standard AGs can, in principle, also be underdetermined (see §4.3). 
However, to the author’s knowledge, this has not been utilized in practical applications. 

It is the use of collections in Door AGs which makes it possible to construct interesting under-
determined grammars. A direct way of constructing an underdetermined grammar is simply to 
use an ordered collection, e.g. a list. The conditions define which elements should be members 
of the list, but not in which order the elements should appear in the list. There are thus as many 
solutions as there are permutations of the elements. The values of other attributes may depend 
on the actual order, so quite different solutions can result from this underdeterminedness.

As an example, the Door AG of §8.9 is underdetermined in exactly this way. In this grammar, 
the list of Entry objects in a SymbolTable is ordered, but the order is not defined in the grammar. 
The order is of importance at lookup, where the first Entry for a given identifier is returned. If 
a block contains more than one declaration for the same identifier, the lookup function can return 
different Entry objects depending on the order in the list and the binding of a name application 
can thus differ in different solutions. Consider the following program:

begin
integer x;
boolean x;
x := 1;

end;

The syntax tree for this program (according to the Door AG of §8.9) has two solutions, as illus-
trated in Figure 8.15.
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Figure 8.15 Two solutions of an underdetermined syntax tree

The two Entry objects a and b appear in different order in the two solutions. This leads to that 
both the binding and the tp attribute of the UseDoor denote different objects in the two solu-
tions. Thus, in the first solution, the name application x is considered to be an integer and in the 
second it is considered to be a boolean.

In any given solution, preference is thus given to one of the Entry objects for a given identifier, 
and name applications cannot be bound to the other ones. I.e., it is only one of the Entry objects 
for a given identifier which is actually visible, although all of them are present in the symbol 
table. A natural extension of the door package would be to add a synthesized boolean attribute 
visible to DeclDoor which is defined to be true if the Entry object is not preceeded by any 
other Entry object for the same identifier. This attribute could then be used in a main grammar 
to define an error message for declarations that are not visible. Such an extension will be dis-
cussed in more detail in Chapter 11.
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The above method of using ordered collections is not the only way to construct an underdeter-
mined Door AG. Underdeterminism can be achieved also if only unordered collections are used, 
by defining reference attributes of the collected objects in a certain way. An example of this will 
be given in Chapter 11 to show how cyclic subclassing can be handled by a Door AG.

Note that it is perfectly possible to specify uniquely-determined Door AGs rather than underde-
termined ones. For example, other door packages can be constructed which handle multiple 
declarations in the traditional uniquely-determined manner. I.e., by either defining all declara-
tions that have namesakes in the same block as “invisible”, or by defining the syntactically 
foremost declaration as the visible one.

8.11  Comparison to standard AGs

In §4.4, we discussed a number of limitations of standard AGs. These limitations are all relaxed 
by the extensions introduced in Door AGs. Below, we again list these limitations and comment 
briefly on how they are relaxed.

I Regular values. While attributes of nodes in standard AGs must have regular values, the at-
tributes of nodes, doors, and semantic objects in Door AGs may be references.

II Whole attributes. An equation in a standard AG always defines a whole attribute value. In a 
Door AG, large attribute values are replaced by semantic objects. These objects have their 
own attributes which are defined individually by equations or conditions. This allows a finer 
granularity of definition than what is possible in standard AGs.

III Simple assertions. Standard AGs have only one kind of assertions, namely equations. Door 
AGs have, in addition, conditions which allow the membership of elements in collection 
objects to be expressed.

IV Local dependencies. In a standard AG, non-local dependencies have to be expressed by a 
chain of local dependencies. There is no way to express a direct non-local dependency. In 
contrast, the use of references in Door AGs allows direct non-local dependencies to be 
expressed, simply by accessing the contents of an object denoted by a reference.

V Rigid dependencies. In a standard AG, all attribute dependencies are completely governed 
by the form of the syntax tree. The attribute dependencies of a Door AG are more flexible 
in that they may be governed also by attribute values. This will be discussed in greater detail 
in Chapter 9. The dependencies in Door AGs are also less rigid than those of standard AGs 
because they allow an attribute to depend on a small part of a structure, rather than on the 
structure as a whole. This is possible since structures can be built out of objects, and an 
attribute can depend on an attribute of another object. In a standard AG, all structures must 
be regular values, and an attribute must depend on the whole value.

VI Uniquely-defined. Whereas standard non-circular AGs are always uniquely-defined, a Door 
AG can be underdetermined in useful ways, allowing history-dependent error reporting to 
be implemented.
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One of the most important advantages of Door AGs compared to standard AGs is the fine gran-
ularity of definition which can be obtained. It is possible to let the equations and conditions 
define a very small amount of information each. This is in contrast to standard AGs where one 
is forced to let some equations define very large information structures. The finer granularity in 
Door AGs allows the size of AFFECTED (the set of affected attributes after a syntactic change) 
to be dramatically decreased for some important problems and therefore makes it possible to 
implement much more efficient incremental evaluators.

In comparing the example of §8.9 with a usual standard AG for the same language, there are 
some important similarities and differences to be noted. First, the use of the search path objects 
resembles the use of “environment” attributes often used in standard AGs. New path/environ-
ment attributes are computed at each block level and, using inherited attributes, propagated down 
throughout the statement part to reach name applications. The important difference here is that 
the path attributes are references whereas the environment attributes of standard AGs have large 
complex regular values, including all possibly interesting information about all visible declara-
tions. This leads to dramatic differences for the size of AFFECTED after a change. Consider 
changing the name of a declaration. The path attributes in the Door AG example are unaffected 
by this change since they still denote the same search path objects. In a corresponding standard 
AG, on the other hand, all environment attributes containing information about the changed dec-
laration are affected. The size of AFFECTED is here proportional to the size of the syntax 
subtree which is within the scope of the changed declaration, and may thus be very large.

Another difference between Door AGs and standard AGs is in how environments can be con-
structed. In the Door AG example a reference to the symbol table object is propagated by 
inherited attributes from the block to the declarations. Each declaration can then individually 
define, by using a condition, that its entry is a member of the symbol table list. This makes the 
declarations independent of each other, and syntactic changes to one declaration does not affect 
other declarations. In a standard AG an environment is typically built by arranging the declara-
tions in a list and using partial environment attributes for accumulating the total environment 
information. This makes the declarations dependent on each other and increases the size of 
AFFECTED.

If name declarations and applications may occur in any order, a standard AG needs several par-
tial attributes to build up the total information in “passes”. The resulting standard AG is 
complicated, low-level, and the use of “passes” increases the grammar complexity, for example 
from 1-visit to OAG. The Door AG, on the other hand, is completely insensitive to the order of 
declarations. Dependencies between name declarations and name applications are handled in the 
same way regardless of where in the syntax tree the name applications occur.

To sum up, solving incremental name analysis in Door AGs instead of in standard AGs leads to:

• Dramatic decrease of the size of AFFECTED after changes to declarations. For example, 
from a number proportional to the size of the syntax tree to a very small number, close to 
zero. (This is the case for adding a global declaration of a name not previously used in the 
program.)
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• Simpler local attribute dependencies, for example a reduction from OAG to 1-visit.

• Simpler specification without intermediate “pass” attributes whose values are uninteresting 
in the final attribution.

8.12  Summary

We have introduced Door Attribute Grammars and given a simple example to show how they can 
be used for specifying visibility-graph based name analysis. Although this example showed only 
how to define visibility graphs for simple block structure, it is straight-forward to extend the 
example to define more complex visibility graphs such as those needed for object-oriented lan-
guages. This will be discussed in greater detail in Chapter 11. In this chapter it will also be shown 
how doors can be used as an interface mechanism towards an external environment such as a 
window system or other tools in a programming environment.

A Door AG is an extension of a standard AG. These extensions can be summarized as follows:

• A syntax node can be extended with part-objects. A part-object owned directly by a syntax 
node is called a door, and transitively owned objects are called semantic objects.

• A semantic object can be specified as a collection, meaning that it is a collection of member 
objects, and the members are defined non-locally by conditions. 

• Attributes may be references. I.e. they may have object identity values, denoting other nodes, 
doors, or semantic objects.

These extensions allow attributions containing objects and references to be specified in a 
straight-forward way. The use of objects and references allows visibility graphs to be modelled 
explicitly and allows the best incremental name analysis methods to be implemented. The price 
for using references is that non-local attribute dependencies are introduced which prevent eval-
uators to be generated completely automatically from the grammar. The solution to this problem 
has been to separate those parts of a Door AG which can be treated automatically (the main 
grammar) from those which require manual treatment (the door package). The following two 
chapters explain how evaluators for Door AGs can be implemented.
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Chapter 9

Door AG Implementation, part I

This chapter and the next one  describe how an evaluator for Door AGs can be implemented, 
based on an incremental visit-oriented technique. This chapter describes dependency analysis 
while the next one describes the evaluation algorithm and the construction of visit procedures.

9.1  Evaluation principle

The attribute evaluator is implemented as a global object with operations to be called by the edi-
tor. Basic operations are: replace a subtree, insert/delete a subtree in a list, and evaluate a whole 
new syntax tree. We will only discuss the replace subtree operation in detail since the other oper-
ations can be seen as special cases of this operation.

It is the task of the evaluator to update the attribution after each change to the syntax tree. The 
evaluator performs this update by calling visit procedures in the syntax nodes and door objects. 
A visit procedure may propagate the evaluation by calling visit procedures of other syntax nodes 
and door objects. For the syntax nodes, this propagation is always local, from node to node along 
the syntax tree. The door objects, on the other hand, may propagate the evaluation by calling visit 
procedures of other door objects, located anywhere in the syntax tree.

Figure 9.1 illustrates this. The user replaces the type of a variable declaration. The editor handles 
this change by calling the replace operation of the evaluator with the old and the new type sub-
trees as arguments. The evaluator in turn calls a visit procedure of the syntax node at the 
replacement point. From this point, the evaluation is propagated along the syntax tree into the 
DeclDoor object connected to the variable declaration. From the DeclDoor the evaluation prop-
agates directly to the UseDoor objects for the name applications using the variable. From these 
objects, the evaluation propagates into the syntax tree where the type attributes of the expres-
sions using the variable are updated.
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Figure 9.1 Propagation of evaluation by visit procedures

This is a slightly simplified description: the evaluator actually does a little more than calling just 
one visit procedure. There are also several types of visit procedures which are called under dif-
ferent circumstances. Nevertheless, this description contains the essence of the evaluation 
process. Implementation of an incremental evaluator for a Door AG consists of implementing a 
number of visit procedures for each node class and door class in the grammar.

9.2  Implementation steps

The separation of a Door AG into a main grammar and a door package is very important from 
an implementation point of view: Those parts of a grammar which can be treated automatically 
are isolated from those which require manual implementation. This allows door packages to be 
viewed as tool sets which extend standard AGs. Advanced facilities for common problems in 
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static-semantics such as name analysis, type checking, and error detection, can be implemented 
in a door package which is used by many main grammars describing different languages.

Main grammars can be implemented by adapting existing techniques for standard AGs. We will 
base the implementation on the 1-visit technique for standard AGs described in Chapter 7, but it 
is also possible to use other algorithms. The implementation of main grammars is described in 
§10.8.

The implementation of door packages is substantially more complicated. We have developed a 
manual, but systematic, method for implementation. It involves analysis of the non-local depen-
dencies which occur between door objects, and the design of information structures allowing the 
dependent doors to be located efficiently at evaluation time. After the dependency analysis, the 
construction of visit procedures for the door classes is comparatively straight-forward.

The door dependency analysis is treated in this chapter. As part of this analysis, additional so 
called dependency attributes are added to the door classes. These attributes define the additional 
information structures which allow dependent doors to be located efficiently. This explicit addi-
tion of dependency attributes is one of the keys to the generality and efficiency of Door AGs. The 
door package implementor is free to choose which dependency attributes to use and it is there-
fore possible to achieve performance close to hand coded and to tune the space and time 
consumption as desired. The dependency attributes are defined in the same way as the normal 
attributes, i.e. by equations or conditions. The addition of such attributes may add new non-local 
dependencies, and the construction of dependency graphs is thus an iterative process.

Chapter 10 describes the details of the evaluator and how the door visit procedures are construct-
ed. The global evaluator object is general in that it contains no specific information about the 
door package. It only assumes the existence of a few virtual visit procedures in the node and door 
classes.

Figure 9.1 illustrates the steps involved in specifying and implementing a Door AG. Here we 
have split the door package into an interface and a body. The interface contains only the door 
class declarations with their inherited and synthesized attributes, as in the example of §8.9.3. 
This is the only information needed in order to write and implement a main grammar using the 
door package. During the dependency analysis, the door classes are extended with dependency 
attributes, dependency functions, and procedures which implement evaluation and de-evaluation 
of the conditions. The dependency functions and condition procedures are called by the visit pro-
cedures which are added later.
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Figure 9.2 Specification and implementation of Door AGs

9.3  Dependencies

9.3.1  Invariants and evaluation

We will use the term invariant to mean either an equation or a condition. An invariant is in one 
of the two states unevaluated or evaluated. All invariants of a new syntax node or door object 
are initially in the unevaluated state. An invariant which is in the evaluated state is either con-
sistent or inconsistent:

 9-1 Definition Consistent invariants

• An equation which is in the evaluated state is said to be consistent if its defined attribute 
has the same value as the right hand side of the equation. 

• A condition which is in the evaluated state is said to be consistent if the condition 
expression has the value true. 
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An invariant which is in the evaluated state, but is not consistent, is said to be inconsistent.

 end 9-1

This definition is a straight-forward extension of the notions of “available” and “consistent” for 
attributes of standard AGs (see §4.2). Let e be an equation defining the value of an attribute a. If 
e is consistent, this corresponds the attribute a being consistent in the standard AG terminology. 
If e is in the evaluated state, this corresponds to a being available in the standard AG 
terminology.

Invariants are subject to evaluation, de-evaluation, and re-evaluation. With evaluation of an 
invariant we mean executing actions to make the invariant consistent. For an equation this means 
evaluating the right-hand side and assigning it to the defined attribute. For a condition, a special 
evaluation procedure has to be implemented which (possibly conditionally) inserts an element 
into a collection.

Invariants can be evaluated, de-evaluated, and re-evaluated. With evaluation of an invariant we 
mean executing actions to make the invariant consistent. For an equation this means evaluating 
the right-hand side and assigning it to the defined attribute. For a condition, a special evaluation 
procedure has to be implemented which (possibly conditionally) inserts an element into a 
collection.

With de-evaluation of an invariant we mean executing actions to remove possible earlier side-
effects from the previous evaluation. For conditions, a special de-evaluation procedure has to be 
implemented which (possibly conditionally) removes an element from a collection. For equa-
tions, the evaluation has no side-effects other than setting the value of the defined attribute. No 
explicit de-evaluation operation is therefore needed for equations. Nevertheless, it is sometimes 
useful to consider the de-evaluation of an equation as an implicit action which makes the value 
of the defined attribute inaccessible.

With re-evaluation of an invariant we simply mean a de-evaluation followed by an evaluation.

Evaluation may only be applied to invariants in the unevaluated state and brings the invariant 
into the evaluated state. Conversely, de-evaluation may only be applied to invariants in the 
evaluated state, and brings the invariant into the unevaluated state. The figure below depicts 
these legal state transitions:
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Figure 9.3 State transition diagram for invariants

9.3.2  Dependencies and events

 9-2 Definition Dependency

A dependency is a directed relation (a, b) from an invariant a to another invariant b, meaning 
that the evaluation or de-evaluation of a may cause b to become inconsistent. The invariant b 
is said to be dependent on a.

 end 9-2

A dependency will also be written (x.a, y.b) meaning that a and b are invariants of the objects x 
and y respectively. The notation (x.a, Y.b) refers to the set of dependencies outgoing from x.a 
which end in an invariant y.b such that y is an object of the class Y.

The evaluation or de-evaluation of an invariant will be referred to as an event. An event is written 
(action, e), where action is an evaluation action, either eval for evaluation or deeval for de-
evaluation, and e is an invariant. The dependency set of an event (action, e) is the set of invariants 
which may become inconsistent if action is applied to the invariant e. If the dependency sets of 
(eval, e) and (deeval, e) differ, the invariants in the (eval, e) set are said to be eval-dependent 
on e, and the invariants in the (deeval, e) set are said to be deeval-dependent on e.

In analogy to definition 8-2 in §8.6, a dependency (a, b) is said to be local if a and b are declared 
in the same or neighbor objects in the extended syntax tree. Otherwise the dependency is said to 
be non-local. Likewise, an event (action, x.a) is said to be non-local to an object y if x is an object 
non-neighbor to y.

From §8.6 we recall that non-local dependencies can occur only between door objects. For non-
local dependencies we distinguish between static dependencies and evaluation-time dependen-
cies. A static dependency is a dependency (X.a, Y.b) where X and Y are door classes. For an object 
x of class X, the static dependency corresponds to a set of k evaluation-time dependencies {(x.a, 
y1.b) . . (x.a, yn.b)}, n ≥ 0, where y1 . . yn are objects of class Y. 

Note that we consider dependencies as occurring between invariants. This is in contrast to most 
techniques for standard AGs which consider dependencies as occurring between attributes. 
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However, this difference is purely technical since there is a one-to-one correspondence between 
attributes and equations. For convenience, we will use the terms “attribute” and “equation” inter-
changeably in connection to evaluation and dependencies. E.g., “evaluation of an attribute a” is 
equivalent to “evaluation of the equation defining a”. Likewise, “the attribute a is dependent on 
the attribute b” is equivalent to “the equation defining a is dependent on the equation defining b”.

9.3.3  Actual dependencies

The usual way to decide if an event can cause another invariant to become inconsistent is to ana-
lyze accesses. In §8.6 we defined access-dependencies for attributes. However, access-
dependencies are sometimes unnecessarily pessimistic. In particular, this can be the case for cer-
tain non-local dependencies. Suppose an attribute a is access-dependent on another attribute b. 
By taking attribute values into account, it is in some cases possible to deduce from the attribute 
definitions that a given event (action, b) will only cause a subset of the access-dependent invari-
ants to actually become inconsistent. If this is the case, the invariants in the subset are said to be 
actually dependent on b:

 9-3 Definition Actual dependency set

Let (action, b) be an event with the access-dependency set P. If it can be deduced from the 
Door AG that this event will cause only a certain subset Q of P to become inconsistent, then 
Q is referred to as the actual dependency set. Each invariant in Q is said to be actually depen-
dent on b.

 end 9-3

Thus, an access-dependency does not always imply an actual dependency. This can be utilized 
in order to avoid unnecessary re-evaluation of access-dependent invariants.

For example, the lookup function used in defining the binding attribute of a UseDoor (in the 
example of §8.9) may search through many symbol tables and access the ident attributes of 
many Entry objects. The binding attribute in a UseDoor can thus be access-dependent on very 
many ident attributes. However, changing any of these ident attributes will only cause the 
binding to become inconsistent if it is changed to the same identifier as the one of the UseDoor. 
Thus, for a given change to an ident attribute, the set of actually dependent binding attributes 
is only a subset of the set of access-dependent binding attributes. By considering actual depen-
dencies instead of access-dependencies, many unnecessary re-evaluations of binding attributes 
can be avoided.

9.3.4  Non-local dependencies

An invariant in a door class which accesses mutable information in non-neighbor objects has 
incoming non-local dependencies. Such invariants are called receiving invariants. Invariants 
defining information which is accessed non-locally have outgoing non-local dependencies. Such 
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invariants are called sending invariants. During incremental evaluation, changes are propagated 
from sending invariants to receiving invariants.

To perform this non-local change propagation it is necessary to have some mechanism for find-
ing the set of receiving invariants for each static dependency. I.e., given a static dependency (X.a, 
Y.b) and an object x of class X, there is a need for a way of obtaining the set {y1, . . yn} of objects 
of class Y for which there are evaluation-time dependencies (x.a, yk.b).

This problem is solved by adding dependency functions to the door class X. Each dependency 
function returns a set of door objects for a given receiving invariant. The dependency functions 
make use of ordinary attributes to compute the set of dependent doors. In order to perform this 
computation efficiently, additional attributes usually need to be added to the grammar.

9.3.5  Conditions

In the implementation of a door package, each condition of a door class D is associated with an 
evaluation procedure and a de-evaluation procedure. These procedures are located in the class 
D and may access attributes of D and its part-objects. However, the de-evaluation procedure will 
be called by the evaluator at times when non-fix inherited attributes have inconsistent values. 
Therefore, the de-evaluation procedure must not access such attributes. For simplicity, we 
restrict both the evaluation procedure and the de-evaluation procedure to only use local attributes 
and fix inherited attributes. 

The access of attributes in the evaluation and de-evaluation procedures cause access-dependen-
cies to conditions:

 9-4 Definition Access-dependencies to conditions

Let c be a condition. For each attribute b accessed by the evaluation or de-evaluation proce-
dures for c, there is an access dependency from b to c, and c is said to be access-dependent 
on b.

 end 9-4

A condition may also have dependent invariants. Let t be a collection object and c a condition 
which defines (possibly conditionally) a member in t. Invariants accessing information in the 
collection t may be dependent on the condition c. An invariant accessing information in a collec-
tion usually accesses many of the member elements, but only in order to find one of them with 
certain properties. For these dependencies it is therefore usually useful to consider actual depen-
dencies rather than access-dependencies.

9.3.6  Local copy attributes

In some cases, the values of non-fix inherited attributes need to be stored in the door to be avail-
able at a later time. One example of this was in order to de-evaluate conditions, as was discussed 
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in §9.3.5. Such de-evaluation must be done using the same information as the previous evalua-
tion, and the values of non-fix inherited attributes used at the previous evaluation must therefore 
be stored in the door. We do this simply by adding a local copy attribute, i.e. a local attribute 
which is defined to have the same value as the non-fix inherited attribute. 

If a local copy attribute is added, we require all invariants in the door which depend on the copied 
attribute to be revised to use the local attribute instead of the inherited one. This insures that all 
the invariants in the door have been computed using the same inherited information at any given 
time during evaluation. This simplifies the dependency analysis.

9.4  Door dependency graphs

In dependency analysis of a door package, we build one dependency graph per door class. This 
dependency graph shows the local dependencies between invariants of the door, as well as non-
local dependencies to and from invariants in other doors.

A door dependency graph contains one inherit vertex v(a) for each inherited attribute a, one syn-
thesize vertex v(b) for each synthesized attribute b, and one local vertex v(c) for each local 
attribute c or condition c defined by the door. In addition, the graph contains send and receive 
vertices modelling the non-local dependencies. A receive vertex v(L) has a label L. The receive 
vertex is connected to a number of vertices for receiving invariants (often only one). A send ver-
tex is denoted v(L, D, f) where L is the label of a receive vertex for the door class D and f is a 
dependency function returning a set of D objects. A send vertex represents a set of non-local 
dependents, namely the set of invariants reachable from v(L) in the door objects of class D 
returned by the function f.

The following graphical symbols will be used in door dependency graphs:

Figure 9.4 Symbols used in dependency graphs

Dependencies are represented in the graphs by edges. An evaluation edge (a, b), labelled by e, 
represents an eval dependency. This means that there is a dependency from a to b if the invariant 
a is evaluated. A de-evaluation edge (a, b), labelled by d, correspondingly represents a de-eval 
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dependency and means that there is a dependency from a to b if the invariant a is de-evaluated. 
A normal un-labelled edge is equivalent to both an evaluation edge and a de-evaluation edge. 

9.4.1  Unordered collections

In order to implement efficient dependency functions, additional attributes can be added to the 
grammar. Often, it is useful to add a collection object which keeps track of dependent doors as 
an unordered collection. We will make use of the following collection class for this purpose:

UnorderedCollection: class[T: class ANYCLASS]
{ contains: func boolean(e: ref T);

contents: func ref Set[T];
add: proc(e: ref T);
remove: proc(e: ref T);

};

The class UnorderedCollection models a collection of references to T objects. It is very similar 
to the class Set, but in contrast to Set it is not an applicative class. I.e., its set of references may 
change as a consequence of changes to the syntax tree. However, the function contents returns 
a corresponding set value (a reference to a Set object). The set value obtained by a call at one 
point in time cannot change even if elements are later added to or removed from the collection. 
This is important since the result of the dependency function must be a set value which must not 
be affected by subsequent evaluation in the syntax tree.

The add and remove procedures can be used to implement evaluation and de-evaluation proce-
dures for conditions defining elements in the collections.

9.4.2  A simple example of dependency graphs

As a simple example, we will show how dependency graphs can be constructed for the following 
door package:

A: class
{ loc x: integer;
};

D1: door
{ inh ix: integer;

syn rA1: ref A;
myA: object A;
eq myA.x := ix;
eq rA1 :- myA;

};

D2: door
{ inh rA2: ref A;

syn sx: integer;
eq sx := rA2.x;

};

This is the same example door package as of §8.6.
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The first step in the construction is to add vertices for invariants and inherited attributes and to 
add edges for local dependencies. In addition, for each receiving invariant, a receive vertex is 
inserted. This yields the following graphs:

The class D2 has one receiving invariant, namely the equation defining sx. This equation uses 
non-local information: it uses the x attribute in the A object denoted by the inherited reference 
rA2. This dependency is represented by a receive vertex labelled A_x_changed.

The next step is to add send vertices matching the receive vertices. In this case, the receive vertex 
represents a static dependency (D1.myA.x, D2.sx). The D1 door should therefore have a send 
vertex v(A_x_changed, D2, fUses) where fUses is a function which computes the set of affected 
D2 doors. The resulting graph for D1 is the following:

The next step is to define the function fUses of class D1. This function should return a set of ref-
erences to all D2 doors for which the rA2 attribute denotes the myA object of the D1 door. One 
possibility would be to search the whole syntax tree for finding D2 objects fulfilling these criteria. 
A more efficient solution is to add dependency attributes which keep track of the D2 objects. This 
can be done by adding a collection object to D1 and let each D2 object register in the proper col-
lection object by using a condition. The function fUses can then be defined simply as the set 
contents of the collection object:

addto D1
{ collection uses: object UnorderedCollection[D2];

fUses: func ref Set[D2] :- uses.contents;
};

addto D2
{ loc localrA2: ref A2; (* local copy attribute *)

ix rA1

myA.x

D1:

rA2 sx

D2:

A_x_changed

ix rA1

myA.x

D1:

A_x_changed
D2
fUses



158 Chapter 9 Door AG Implementation, part I

eq localrA2 :- rA2;
eq sx := localrA2.x;(* revised to use local copy *)
cUses: cond localrA2.uses.contains(this D2);
evalCUses: proc
{ localrA2.uses.add(this D2);
};
deEvalCUses: proc
{ localrA2.uses.remove(this D2);
};

};

The two procedures evalCUses and deEvalCUses are the evaluation and de-evaluation proce-
dures for the condition cUses. Since these procedures may not use the non-fix inherited attribute 
rA2 directly, a local copy attribute has been added according to §9.3.6. The equation defining sx 
is also revised to use this local copy. Since the new invariant cUses has been added to D2, the 
dependency graph for D2 must be revised accordingly. This implies adding a new vertex v(cUs-
es) and a dependency from v(rA2) to v(cUses).

The resulting dependency graphs for the door package are as follows:

9.4.3  Restricted use of attributes in dependency functions

There are certain restrictions on which attributes may be used in the implementation of a depen-
dency function. The dependency functions of a door object are always called prior to the 
evaluation or de-evaluation of invariants in the object. Depending on the current evaluation state, 
the attributes of the door object will be un-evaluated or evaluated, consistent or inconsistent. 
Which attributes are allowed to be used can be deduced from the door dependency graph by ana-
lyzing the incoming dependencies to the send vertices using the dependency function.
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Consider a send vertex v(L, D2, f) of a door class D1. The function f is then a function in D1. The 
implementation of f can access any collection part-objects in D1, but access to attributes of D1 
and its part-objects is subject to certain restrictions. The restrictions depend on the kind of 
dependency edges ending in v(L, D2, f). Recall that an edge can be an evaluation edge, a de-eval-
uation edge, or a normal edge (equivalent to both an evaluation and a de-evaluation edge). The 
following cases apply:

I There is an evaluation edge (v(a), v(L, D2, f)) where a is an inherited attribute or a local in-
variant. In this case, f will be called by the evaluator when no local attributes in the door or 
its semantic part-objects have yet been evaluated. In this case, f must not access these at-
tributes. It may, however, access inherited attributes if no other restrictions apply.

II There is a de-evaluation edge (v(a), v(L, D2, f)) where a is an inherited attribute or local 
invariant, or there is an edge (v(L), v(L, D2, f)) where v(L) is a receive vertex. In this case, f 
will be called by the evaluator when the door is fully evaluated and when all invariants are 
consistent, except for those depending on non-fix inherited attributes. In this case, f must 
not access any non-fix inherited attribute. It may, however, access all local attributes of the 
door and its semantic part-objects and all fix inherited attributes, if no other restrictions 
apply.

For example, the function fUses in the example of §9.4.2 is used in a send vertex 
v(A_x_changed, D2, fUses). Since this vertex has an incoming normal edge (v(myA.x), 
v(A_x_changed, D2, fUses)), both the above restrictions apply. The implementation of fUses is 
therefore not allowed to access inherited attributes or local attributes of D1 and its part objects. 
It may, however, access the part-objects themselves. The implementation of fUses accesses only 
the collection object uses. Thus, the restrictions above are adhered to.

9.4.4  Construction of dependency graphs

The construction of the door dependency graphs involves design decisions such as which send 
and receive vertices to add and how to implement the dependency functions. The construction is 
in principle an iterative process since the addition of new attributes to implement the dependency 
functions efficiently may lead to additional non-local dependencies. Although we provide no 
complete formal algorithm for constructing the door dependency graphs, it is possible to con-
struct them in a systematic manner as follows:

 9-5 Construction Door dependency graphs

I Implement conditions. For each condition, implement evaluation and de-evaluation pro-
cedures. Possibly add new local attributes to perform these operations without using non-
fix inherited attributes.

II Local analysis. For each door class D, construct a dependency graph DG(D) with one 
inherit vertex for each inherited attribute, one synthesize vertex for each synthesized 
attribute, one local vertex for each local attribute defined by an equation in D, and one 
local vertex for each condition in D. Do local dependency analysis on the invariants of D 
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and add edges corresponding to local access-dependencies. If an invariant r accesses non-
fix non-local information, add a receive vertex with a new label L and add an edge from 
v(L) to v(r). The invariant r is said to be a receiving invariant.

III Add send vertices. Consider each added receive vertex v(L) and its corresponding receiv-
ing invariant r of a door class Dr. Analyze the door package to find the set of invariants S 
whose evaluation or de-evaluation can cause a non-local instance of r to become incon-
sistent. Consider each invariant s in S. Let Ds be the door class of s. Construct a send 
vertex v(L, Dr, f) where f is a dependency function returning the appropriate set of Dr 
doors. Declare f in Ds if it is a new function (implementation can wait until step V). Add 
the vertex v(L, Dr, f) to the dependency graph of Ds, unless such a vertex already exists in 
the graph. If evaluation (de-evaluation) of s can cause r to become inconsistent, add an 
evaluation (de-evaluation) edge from v(s) to v(L, Dr, f). (If both evaluation and de-evalu-
ation can cause inconsistency, add a normal edge instead.)

IV Simplify send/receive vertices. Consider two receive vertices v(L1) and v(L2) of a door 
class Dr. Suppose there is a door class Ds with two send vertices v(L1, Dr, f) and v(L2, Dr, 
f). Two edges (x1, y1), (x2, y2) are said to be equivalent if x1=x2 and if the edges have the 
same label. If the sets of incoming edges to the two send vertices are equivalent, then sim-
plification of the dependency graphs is possible as follows: A new receive vertex v(L3) is 
added to Dr and an edge (v(L3), x) is added for each edge (v(L1), x) or (v(L2), x). The two 
send vertices are then collapsed and replaced by a send vertex v(L3, Dr, f). Each of the 
receive vertices v(L1) and v(L2) is removed unless it is referred to by another send vertex.

V Implement dependency functions. Implement the dependency functions used by the send 
vertices. If this involves addition of attributes and invariants, go back to step I and repeat 
the construction for the added attributes and invariants.

 end 9-5

9.5  Analysis of example door package

We will now construct the dependency graphs for the door package of §8.9 according to con-
struction 9-5.

9.5.1  Implement conditions (step I)

Step I is to implement evaluation and de-evaluation procedures for the conditions in the door 
classes. In the example door package there is one condition: registered in DeclDoor (§8.9.2.3) 
which states the membership of an Entry object in a List object:

DeclDoor: door
{ ...

registered: cond table.entries.contains(theEntry);
...

};
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To implement this condition, we assume that the class of table.entries, i.e. List, has two pro-
cedures add and remove. The procedure add adds an element to the end of the list and the 
procedure remove removes an element from the list:

addto List
{ add: proc(e: ref T);

remove: proc(e: ref T);
};

The condition can then be implemented by extending the DeclDoor class by the following two 
procedures:

addto DeclDoor
{ evalRegistered: proc

{ table.entries.add(theEntry);
};
deEvalRegistered: proc
{ table.entries.remove(theEntry);
};

};

Since the inherited attribute table is fix, this is in agreement with the rules for attribute access 
in evaluation/de-evaluation procedures as stated in §9.3.5. If table had been non-fix, an addi-
tional local attribute would have had to be added to DeclDoor, and the evaluation procedures be 
revised to use this attribute instead of table.

9.5.2  Local analysis (step II)

Step II is to analyze the local access-dependencies for the door classes and to identify the invari-
ants depending on non-local information. This analysis for the four doors RootDoor, BlockDoor, 
DeclDoor, and UseDoor of §8.9.2 results in the dependency graphs shown in Figure 9.5.

For example, consider the invariants of UseDoor (§8.9.2.4):

UseDoor: door
{ ...

eq binding :- (* 1 *)
if ident = “”
then nullEntry
else

inspect $E :- path.lookup(ident)
when Entry do $E
otherwise nullEntry;

eq tp :- binding.getTp; (* 2 *)
eq declared := binding =/= nullEntry; (* 3 *)

};

The equation defining binding (* 1 *) depends locally on the attributes ident and path. In 
addition, the binding depends on what is returned by the function lookup. This is a non-fix 
function using non-local information and a receive vertex v(lookupChanged) is added to reflect 
this non-local dependency.
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The equation defining tp (* 2 *) depends locally on binding and non-locally on what is 
returned by the non-fix function getTp. A receive vertex v(getTpChanged) is added to reflect this 
non-local dependency.

For equation (* 3 *) there is only a local dependency from binding to declared.

Figure 9.5 Dependency graphs after step II

9.5.3  Add send vertices (step III)

In this step, send vertices are added to match the receive vertices v(getTpChanged) and 
v(lookupChanged).

9.5.3.1  Send vertices for getTpChanged

The receive vertex v(getTpChanged) for UseDoor represents non-local events which may affect 
the result of the function call binding.getTp and thereby cause the tp attribute of UseDoor to 
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become inconsistent. The function getTp has two implementations: one in nullEntry and one 
in Entry. The implementation in nullEntry returns a constant value and can therefore not lead 
to any non-local dependencies. The implementation of getTp in Entry (see §8.9.1.2) depends 
on the tp attribute of class Entry. This attribute is defined in DeclDoor by the equation

eq theEntry.tp :- tp;

There is therefore a static dependency

(DeclDoor.theEntry.tp, UseDoor.tp)

For a given DeclDoor object d, the dependent objects are those UseDoor objects whose binding 
attribute denotes d.theEntry. To find these objects at evaluation time, we add a dependency 
function fUses to DeclDoor:

addto DeclDoor
{ fUses: func ref Set[UseDoor];
}

We defer the implementation of this function until §9.5.5.

A new send vertex v(getTpChanged, UseDoor, fUses) and an edge from v(theEntry.tp) to this 
send vertex are then added to the dependency graph of DeclDoor (see the edge marked by (1) 
in Figure 9.6).

9.5.3.2  Send vertices for lookupChanged

The receive vertex v(lookupChanged) for UseDoor represents non-local events which may affect 
the result of the function call path.lookup and thereby cause the binding attribute of UseDoor 
to become inconsistent. 

According to the definitions of classes SymbolTable and SearchPath (§8.9.1.3, §8.9.1.4), the 
result of a call to lookup of a SearchPath object p depends on the following non-local 
information:

1. which SymbolTable objects are found via p

2. which Entry objects are found in the lists of these SymbolTable objects

3. the values of the ident attributes in these Entry objects

4. the order of the Entry objects in the lists

We will now consider each of these sources of non-local dependencies in turn.
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Symbol table objects

The SymbolTable objects found via a given SearchPath object can in fact not change in this 
door package since all connections between SearchPath objects are defined using fix informa-
tion. This is seen from the definition of BlockDoor (§8.9.2.2).

Entry objects

The Entry objects found in the list of a SymbolTable object may change due to evaluations and 
de-evaluations of the condition registered in DeclDoor. There is thus a static dependency

(DeclDoor.registered, UseDoor.binding).

The dependency sets of evaluating and de-evaluating this condition are different. Let d be a 
DeclDoor object. If the condition registered for d is de-evaluated, the d.theEntry object is 
removed from the symbol table. This invalidates the binding in UseDoor objects whose bind-
ing attribute denotes d.theEntry. This is exactly the set of objects returned by the fUses 
function of DeclDoor which was defined to handle the getTpChanged dependency. We use the 
same function to construct a send vertex v(lookupChanged, UseDoor, fUses) which is added to 
the dependency graph of DeclDoor. A de-evaluation edge is added from v(registered) to this 
send vertex (edge (2) in Figure 9.6).

In evaluating the condition registered of d, the d.theEntry object is added to the symbol 
table. This affects the binding attribute of another set of UseDoor objects. Consider computing 
the binding attribute of a UseDoor object u. The u.path.lookup function looks for Entry 
objects in a series of symbol tables until either a matching entry is found in a symbol table sn, or 
there are no more symbol tables on the path. Let s1 . . sn−1 be the symbol tables where no match-
ing entry was found. We say the UseDoor object has attempted to bind to these symbol tables. If 
an entry object e is added to any of these symbol tables, and e.ident = u.ident, then this will 
make u.binding inconsistent. Evaluating the condition registered of d will thus affect all 
UseDoor objects u which have attempted to bind to d.table and for which u.ident = 
d.theEntry.ident. To find these objects at evaluation time, we add a dependency function 
fAttempted to DeclDoor:

addto DeclDoor
{ fAttempted: func ref Set[UseDoor];
}

Again, the implementation of this function is deferred to §9.5.5.

A new send vertex v(lookupChanged, UseDoor, fAttempted) and an evaluation edge from 
v(registered) to this send vertex are then added to the dependency graph of DeclDoor (edge 
(3) in Figure 9.6).
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Ident values

The value of the ident attribute of an Entry object is defined by the equation

eq theEntry.ident := ident

in DeclDoor. Evaluation or de-evaluation of this equation has the same effect as the evaluation 
or de-evaluation of the registered condition. De-evaluating the equation means making the old 
value of ident inaccessible, and will affect the binding attribute of the UseDoor objects 
returned by the fUses function. Evaluating the equation means making a new value accessible 
and this will affect the binding attribute of the UseDoor objects returned by the fAttempted 
function. Thus, the dependency graph of DeclDoor is updated by adding a de-evaluation edge 
from v(theEntry.ident) to v(lookupChanged, UseDoor, fUses) and an evaluation edge from 
v(theEntry.ident) to v(lookupChanged, UseDoor, fAttempted) (edges (4) and (5) in Figure 
9.6).

Entry order

The order of the entry objects in a symbol table list matters only if there are namesake declara-
tions in the block, i.e. if two or more entries have the same ident value. In this case, the lookup 
function will return the first of these entries. For the present discussion, we assume that this does 
not occur. We will return to the issue of namesake declarations in Chapter 11.

Step III in the dependency graph construction has thus resulted in three new send vertices in the 
graph for DeclDoor as shown below:

Figure 9.6 Send vertices added to DeclDoor graph
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9.5.4  Simplify send / receive vertices (step IV)

No simplification of send/receive vertices is possible in our example: The two send vertices 
v(getTpChanged, UseDoor, fUses) and v(lookupChanged, UseDoor, fUses) fulfill the first cri-
terion of two matching vertices v(L1, Dr, f) and v(L2, Dr, f), but the second criterion of equivalent 
incoming edges for these vertices is not fulfilled.

9.5.5  Implement dependency functions (step V)

In this step, the two dependency functions fUses and fAttempted declared in DeclDoor are 
implemented.

9.5.5.1  The function fUses

The function fUses of class DeclDoor should return the set of UseDoor objects whose binding 
attribute denotes the Entry object of the DeclDoor. To implement this function we add a collec-
tion object uses to class Entry which keeps track of these UseDoor objects. The collection 
object is declared as an UnorderedCollection (see §9.4.1). A condition cUses is added to Use-
Door to define which UseDoor objects are members of which collections. The fUses function 
can then be defined simply as the set contents of the uses object:

addto Entry
{ collection uses: UnorderedCollection[UseDoor];
};

addto DeclDoor
{ impl fUses :- theEntry.uses.contents;
};

addto UseDoor
{ cUses: cond

inspect $B :- binding
when Entry do $B.uses.contains(this UseDoor)
otherwise true;

};

The condition defines the membership conditionally: the UseDoor is declared as a member of a 
uses collection only if binding actually denotes an Entry object. The binding attribute might 
denote the nullEntry object (which is not of class Entry) in which case the UseDoor will not 
be member of any uses collection. The “inspect”-expression used in the condition does case 
analysis on binding to separate these two cases.

The function fUses occurs in the send vertex v(getTpChanged, UseDoor, fUses) which has an 
incoming normal dependency edge, corresponding to both an evaluation and a de-evaluation 
edge. Therefore, the implementation of fUses may not make use of local or inherited attributes, 
but only of collection objects (as stated in §9.4.3). This requirement is met by the above 
implementation.
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The evaluation and de-evaluation procedures for the cUses condition can be implemented by 
using the add and remove procedures of class UnorderedCollection:

addto UseDoor
{ evalCUses: proc

{ inspect $B :- binding
when Entry do $B.uses.add(this UseDoor)
end inspect;

};
deEvalCUses: proc
{ inspect $B :- binding

when Entry do $B.uses.remove(this UseDoor)
end inspect;

};
};

These procedures use the “inspect”-statement to conditionally add and remove the UseDoor 
from the collection. The procedures use no inherited attributes at all, so this is in agreement with 
the rules for attribute access in evaluation/de-evaluation procedures as stated in §9.3.5.

9.5.5.2  The function fAttempted

Consider a DeclDoor object d. The function fAttempted of d should return the set of UseDoor 
objects which have attempted to bind to d.table, and for which the ident attribute is equal to 
a certain value v. Recall that fAttempted is called in connection to the evaluation of the condi-
tion registered and the evaluation of the attribute theEntry.ident. The value v is the new 
value of the attribute theEntry.ident. However, the function fAttempted is called before any 
evaluation starts in the DeclDoor. At this point in time, the inherited attributes are available, but 
the attribute theEntry.ident is not (or contains an old value). The new value v can instead be 
found in the inherited attribute d.ident.

To implement the function fAttempted we will make use of a class Dictionary with the fol-
lowing interface:

Dictionary: class [T: class ANYCLASS]
{

associationAt: func ref T(key: string);
(* may return NONE *)

};

A dictionary associates objects with strings. The function associationAt returns the object 
associated with a given string. If there is no object associated with the string, the function returns 
NONE. The objects we will associate with strings will be of class 
UnorderedCollection[UseDoor].

A collection object attempted of class Dictionary will be added to class SymbolTable. The 
function associationAt(ident) will return an unordered collection of UseDoor objects which 
have attempted to bind to the SymbolTable using the identifier ident. It is then straight-forward 
to implement the function fAttempted:
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addto SymbolTable
{ collection attempted: object 

Dictionary[UnorderedCollection[UseDoor]];
};

emptyUseDoorSet: object Set[UseDoor];

addto DeclDoor
{ impl fAttempted :-

inspect $C :- table.attempted.associationAt(ident) do
when UnorderedCollection[UseDoor] do $C.contents
otherwise emptyUseDoorSet;

};

Since the function associationAt may return NONE, an inspect-expression is used to take care 
of this case. If the function returns an UnorderedCollection object, the “when” clause applies, 
and the set contents of that object is returned. If the function returns NONE, the “otherwise” clause 
applies and the constant semantic object emptyUseDoorSet is returned.

The function fAttempted occurs only in the send vertex v(lookupChanged, UseDoor, fAt-
tempted) which has only an incoming evaluation edge. According to the rules of §9.4.3 the 
implementation of fAttempted may therefore use inherited but not local attributes. As seen 
above, the implementation uses the table and the ident attributes which are both inherited.

The contents of the collection attempted is defined by a condition cAttempted in UseDoor. The 
evaluation procedure of cAttempted should add the UseDoor to the attempted collection of 
each symbol table occurring on its path, up to but not including the symbol table containing the 
entry which the UseDoor is bound to. To implement the evaluation and de-evaluation procedures 
some additional attributes are needed. We add a local attribute table to class Entry, making it 
possible to find the symbol table of an entry object in an efficient way: 

addto Entry
{ loc table: ref SymbolTable;
};

addto DeclDoor
{ eq theEntry.table :- table;
};

Further, we add two local copy attributes localPath and localIdent to UseDoor to be able to 
implement the cAttempted condition without using the non-fix inherited attributes path and 
ident (in order to adhere to the rule in §9.3.5):

addto UseDoor
{ loc localPath: ref SearchPath;

loc localIdent: string;
eq localPath :- path;
eq localIdent := string;

};

The definition of the condition cAttempted and the implementation of the evaluation and de-
evaluation procedures is straight-forward, but results in rather lengthy definition. For brevity, we 
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have therefore hidden the details in the functions f, g, and h whose implementation has been left 
out.

addto UseDoor
{ cAttempted: cond

if localIdent <> “”
then f(localPath, localIdent, binding)
else true;

evalCAttempted: proc
{ if localIdent <> “”

then g(localPath, localIdent, binding);
};

deEvalCAttempted: proc
{ if localIdent <> “”

then h(localPath, localIdent, binding);
};

};

9.5.5.3  Comment

The implementation of the dependency functions fUses and fAttempted corresponds exactly 
to solving the incremental name analysis problems I, II and III treated in §3.4.

The problems II and III (remove and change declaration) correspond to the v(lookupChanged, 
UseDoor, fUses) and v(getTpChanged, UseDoor, fUses) send vertices respectively. The fUses 
function solves these problems by the uses collection in each Entry object. This is an imple-
mentation of method 4 (maintain cross-references).

The problem I (add a declaration) corresponds to the v(lookupChanged, UseDoor, fAttempted) 
send vertex. The fAttempted function solves this problem by the attempted collection in each 
SymbolTable object. This is an implementation of method 6 (maintain traces).

The last problem IV (change the visibility graph) does not occur for this simple door package 
since all edges in the visibility graph (the first and second attributes of TwoPath objects) are 
defined using fix attributes and can thus not change.

An alternative implementation of fUses and fAttempted could have used the same “maintain 
traces” method for all three problems. This could have been done by defining the attempted col-
lection of a symbol table to include also collections of the UseDoor objects bound to entries in 
the table.

It was argued in §3.4.1 that it can be motivated to trade space for time in implementing incre-
mental name analysis. Some examples were given of how the space overhead could be reduced 
by not maintaining full trace information, and instead combine with some searching to find the 
affected name applications. This would correspond to another implementation of the fAttempt-
ed function and the attempted collection. An alternative implementation could let the 
attempted collection store only information about what blocks contain name applications 
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attempting to bind to certain identifiers. The fAttempted function would then have to search the 
syntax trees of these blocks to find the affected name applications. 

9.5.6  Repeat construction for added invariants

During step V, invariants were added to the door classes. The construction of the dependency 
graph therefore has to be repeated for these additions.

The following conditions were added: 

• cUses of class UseDoor

• cAttempted of class UseDoor

and the following equations:

• theEntry.table of class DeclDoor

• localPath of class UseDoor (a local copy attribute)

• localIdent of class UseDoor (a local copy attribute)

The invariants in UseDoor are revised to use the local copy attributes instead of the inherited 
attributes directly, as discussed in §9.3.6. 

Both of the conditions depend on non-local information. Following the steps of construction 9-
5, we would add a receive vertex for each of the conditions and send vertices which match these 
receive vertices. However, it is easily seen that the conditions depend on exactly the same non-
local information as the binding attribute. Therefore, simplification of send and receive vertices 
according to step IV lead to graphs with no new send and receive vertices. Instead, edges 
(v(lookupChanged), v(cUses)) and (v(lookupChanged), v(cAttempted) are added.

The vertices for the equations are straight-forward to add since they depend only on local 
information. 
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The final resulting dependency graphs are depicted below:

Figure 9.7 Final dependency graphs
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9.6  Summary

We have described a technique for constructing dependency graphs for door packages. One 
graph is constructed for each door class. A graph shows the local dependencies between inher-
ited attributes and local invariants of a door. It also shows the non-local dependencies to other 
doors. Send vertices represent outgoing non-local dependencies and receive vertices incoming 
non-local dependencies. At evaluation time, a send vertex corresponds to a set of receiving door 
objects of a given class. Dependency functions are added to the sending door classes and have 
the responsibility to return the set of receiving door objects. To implement the dependency func-
tions efficiently, additional attributes must usually be added.

The technique for constructing dependency graphs is systematic but not automatic. The non-
local dependencies are analyzed manually, and the implementation of the dependency functions 
is manual. The manual implementation of dependency functions makes it possible to trade space 
for time, in order to achieve desired performance. The local analysis is straight-forward to auto-
mate, and automatic or semi-automatic techniques also for the non-local analysis would be 
desirable. This is an area for future research.

As an example of dependency graph construction, the door package of §8.9 was analyzed. 
Dependency functions were constructed for this package to achieve incremental name analysis 
according to the best methods treated in §3.4.
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Door AG Implementation, part II

This chapter describes the incremental evaluation algorithm and the construction of visit proce-
dures. A door package is implemented by extending each door class with a set of visit 
procedures, according to the door dependency graphs constructed in Chapter 9. A main grammar 
is implemented by extending the node classes with visit procedures, using the same technique as 
was used for standard AGs in Chapter 7. It is also shown how circular dependencies are handled.

10.1  Outline of evaluator algorithm

The Door AG evaluator is an extension to the evaluator for 1-visit standard AGs presented in 
§7.3. The basic editing operation is the same: a subtree replacement where an old subtree is 
replaced by a new completely unevaluated subtree.

The standard AG evaluator performs three steps to restore consistency. The first step is the actual 
syntactic subtree replacement and copying of attribute values for the inherited attributes at the 
replacement point. The second step is an exhaustive evaluation of the new subtree. The third step 
is an incremental evaluation, starting at the point of subtree replacement.

For a Door AG, this operation needs to be extended. First, the old subtree may contain conditions 
stating memberships in collection objects located in the rest of the tree. These conditions must 
be de-evaluated to remove the corresponding elements. Second, evaluation which propagates 
into doors may need to be propagated to other non-local doors, according to the send vertices. 
Third, evaluation which propagates non-locally to a door may propagate into the syntax tree 
again, via the synthesized attributes of the door.

To handle these additional issues, the Door AG evaluator works in five steps as follows:

 10-1 Outline Door AG evaluator algorithm

I Exhaustive de-evaluation phase. The conditions in the doors of the old subtree are de-
evaluated.
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II Subtree Replacement. The old subtree is replaced by the new subtree. Each inherited data 
attribute of the root of the new subtree is assigned a value by copying the corresponding 
value from the root of the old subtree.

III Exhaustive evaluation phase. The new subtree is evaluated exhaustively.

IV Local incremental phase. Incremental evaluation proceeds in the syntax tree, starting at 
the successors of the synthesized attributes of the root of the new subtree.

V Non-local incremental phase. Incremental evaluation is started in the syntax tree at the 
successors of the synthesized attributes of each non-locally affected door.

 end 10-1

Step I handles the de-evaluation of conditions in the doors of the old subtree. This step is done 
before the actual subtree replacement so the de-evaluation procedures of the conditions can 
access the inherited attributes of its doors. Recall that the inherited attributes of doors and all 
attributes in the syntax tree are implemented as demand attributes (by default). Thus, to access 
the inherited attributes of the doors, access to the remaining syntax tree may be necessary.

Step II performs the subtree replacement and is exactly the same as the corresponding step in the 
standard AG evaluator. However, the copying of inherited attributes is usually an empty opera-
tion since all attributes in the syntax tree are (by default) demand attributes.

Steps III and IV also correspond exactly to the exhaustive and incremental phases of the standard 
AG evaluator. During these steps, the evaluation may propagate from the syntax tree out to door 
objects. In this case, evaluation is propagated over to the receiving doors of non-local dependen-
cies, but not back into the syntax tree at these receiving doors. Instead, references to the receiving 
doors are saved in a global work list so that evaluation can be propagated into the syntax tree at 
these doors at a later point in time.

Step V deals with the doors on the work list. For each of these doors, evaluation is propagated 
into the syntax tree to successor attributes of the synthesized attributes of the door. During this 
phase, the evaluation may again propagate out to door objects, and additional receiving door 
objects can be added to the work list. If a door object is already on the work list, it is not added 
again. Step V goes on as long as there are any doors left on the work list.

10.1.1  Scattered evaluations

We will refer to the evaluation starting at a specific point in the syntax tree as the execution of 
an evaluation thread. In step V of the evaluator outline, evaluation threads are started at door 
objects on the work list, i.e. at points which may be scattered all over the syntax tree. In our algo-
rithm, these evaluation threads are executed in sequence. If a given attribute a depends on two 
door objects on the work list, this will lead to a being evaluated twice. In principle, the threads 
could be coordinated in order to avoid such duplicate evaluation. 
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This problem is analogous to the problem of multiple subtree replacement. Several methods have 
been proposed for dealing with this problem for standard AGs, e.g. [RMT86], [YK88], [Pec90b], 
[Vor90b], [FKT90] and the same methods could be applied to step V of our Door AG evaluator. 
However, the situation is slightly different in Door AGs than in standard AGs:

First, an evaluation thread in a Door AG is usually very short. Attributes are propagated from a 
door through the syntax tree to another door, but more seldom long distances in the syntax tree. 
This is in contrast to standard AGs where at least some evaluation threads are very long, passing 
through the entire syntax tree. Second, if evaluation is propagated via a non-local dependency to 
a door, the evaluation thread starting at that door is queued up on the work list. Thus, even if eval-
uation is propagated twice to a door via non-local dependencies, this will result only in one 
evaluation thread starting at that door. For these reasons, coordination is not as critical in Door 
AGs as in standard AGs. We have not found it motivated to improve the algorithm in this respect.

Consider the example in Figure 10.1. 

Figure 10.1 Multiple evaluation of the same attribute

The door d3 is locally dependent on both d1 and d2. The door d4 is non-locally dependent on 
d3. Suppose the work list contains the two doors d1 and d2. When executing the evaluation 
thread starting at d1, evaluation is propagated through the syntax tree to d3. The change may then 
propagate non-locally to d4 which is added to the work list. When the evaluation thread of d1 is 
finished, a new evaluation thread is started at d2. This evaluation also propagates to d3, and the 
change may again propagate to the non-locally dependent door d4. Since d4 is already on the 
work list, it is not added again. Thus, the uncoordinated evaluation of the threads starting at d1 
and d2 leads to multiple evaluation of the attributes in d3, but not to multiple evaluation of the 
thread starting at d4. At this point, the evaluation is again coordinated. 

d1 d2

a 

d3 d4
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10.2  Types of visit procedures

A visit procedure schedules evaluation of local invariants with calls to visit procedures of other 
objects. For syntax nodes, the same types of visit procedures are used as described in §7.3: exh-
Visit, incFatherVisit, and incSonVisit. In addition, a syntax node can be visited from its 
door part-objects. This is implemented by an additional visit procedure incDoorVisit which is 
implemented analogously to incSonVisit. I.e., the procedure incDoorVisit(d) schedules 
evaluation of invariants dependent on the synthesized attributes of the door part-object d.

10.2.1  Visits to doors from syntax nodes

A door node can be visited from its owning syntax node during the exhaustive de-evaluation 
phase (step I), during the exhaustive evaluation phase (step III), or during one of the incremental 
phases (steps IV and V). These three types of visits are implemented by three visit procedures 
exhDeEvalVisit, exhEvalVisit, and incOwnerVisit:

• The procedure exhDeEvalVisit models a visit from the owning node during the exhaustive 
de-evaluation phase. The procedure de-evaluates all conditions in the door.

• The procedure exhEvalVisit models a visit from the owning node during the exhaustive 
evaluation phase. The procedure schedules evaluation of all invariants in the door.

• The procedure incOwnerVisit models a visit from the owning node during one of the incre-
mental evaluation phases. The non-fix inherited attributes of the door may have new values, 
and the procedure schedules re-evaluation of their dependent invariants.

10.2.2  Visits to doors from other doors

A door may also be visited from other doors via non-local dependencies, according to the receive 
vertices of the dependency graph of the door. For each receive vertex v(L) a pair of visit proce-
dures deEvalL and evalL are implemented:

• The procedure deEvalL schedules de-evaluation of all conditions in the door which depend 
on the receive vertex v(L).

• The procedure evalL schedules evaluation of all invariants in the door which depend on the 
receive vertex v(L).

10.2.3  Summary of visit procedures

To summarize, the visit procedures needed by all nodes and doors are the following:

addto ANYNODE
{ exhVisit: proc;

incFatherVisit: proc;
incSonVisit: proc (s: ref ANYNODE);
incDoorVisit: proc (d: ref ANYDOOR);
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};

addto ANYDOOR
{ exhEvalVisit: proc;

exhDeEvalVisit: proc;
incOwnerVisit: proc;

};

In addition, a receiving door class D with n receive vertices will have a pair of visit procedures 
for each of these vertices:.

addto D
{ deEvalL1: proc;

evalL1: proc;
...
deEvalLn: proc;
evalLn: proc;

};

The construction of the visit procedures of door classes will be treated in detail in §10.4.

10.2.4  Extension to OOSL

The door visit procedures have a more complex structure than the visit procedures for standard 
AGs. In order to make it clearer which statements correspond to evaluations and which state-
ments have other purposes, we introduce two new OOSL statements: eval and deeval for the 
evaluation and de-evaluation of invariants, respectively. The syntax is as follows:

<eval-stmt> ::= ‘eval’ (<attr-id> | <cond-id>)
<deeval-stmt> ::= ‘deeval’ <cond-id>

The eval statement is shorthand for the assignment statement evaluating an attribute, or a call 
to the evaluation procedure of a condition.

The deeval statement is shorthand for the de-evaluation procedure of a condition.

For example, consider the following equation and condition:

eq a := f(s,t)
c: cond q.contains(r)

A de-evaluation of c, followed by an evaluation of a and c can be written using deeval and eval 
statements as follows:

deeval c
eval a
eval c

This is equivalent to the following statements (given that the evaluation and de-evaluation pro-
cedures for c are named evalC and deEvalC respectively):

deEvalC;
a := f(s,t);
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evalC;

10.3  The evaluator object

Our Door AG evaluator is implemented as a global object called evaluator. The evaluator 
contains a procedure replaceSubtree to be called by the editor when a given subtree is to be 
replaced. The procedure replaceSubtree both actually replaces the subtree and restores con-
sistency in the attribution of the whole syntax tree. The evaluator object also contains the work 
list of door objects to be evaluated during the non-local incremental phase. Between calls to 
replaceSubtree, the work list is empty.

10.3.1  Work list implementation

The work list is implemented as an OrderedCollection object with the following interface:

OrderedCollection: class[T: class ANYCLASS]
{ empty: func boolean;

add: proc(e: ref T);
addSet: proc(s: ref Set[T]);
removeIfFound: proc(e: ref T);
removeFirst: proc ref T;

};

This class models an ordered collection of T objects. The function empty returns true if the col-
lection is empty. The procedure add adds an object e at the end of the collection (unless the 
object is already in the collection). The procedure addSet adds each of the objects in a set at the 
end of the collection (except those already in the collection). The procedure removeIfFound 
removes a given object from the collection if it is found there. The procedure removeFirst 
removes the first object and returns a reference to it.

The evaluator also makes use of Set objects. The interface to class Set (whose interface was giv-
en in Figure 5.1) is extended with an iterator each which iterates over all the elements in the set:

addto Set
{ each: iterator ref T;
};

10.3.2  Functionality in nodes and doors

The evaluator assumes some additional functionality in syntax nodes and doors:

addto ANYNODE
{ father: ref ANYNODE; (* NONE for the root node *)

replaceBy: proc(n: ref ANYNODE);
copyInheritedAttributesFrom: proc(n: ref ANYNODE);
allDoors: func ref Set[ANYDOOR];

};

addto ANYDOOR
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{ owner: ref ANYNODE;
};

The reference father of a syntax node denotes the father node, or NONE in case of the root node. 
The procedure replaceBy replaces the subtree rooted at the node by another subtree rooted at 
node n. The procedure copyInheritedAttributesFrom assigns a value to each of the inherited 
data attributes in the node, using the values of the corresponding attributes in n. This procedure 
will be empty for most node classes since attributes in the syntax nodes are usually demand 
attributes. The function allDoors returns a set of references to all doors owned by any of the 
nodes in the subtree rooted at the node.

The reference owner of a door object denotes the owning syntax node.

10.3.3  Evaluation algorithm

The evaluator object contains a procedure replaceSubtree which can be called by the editor. 
We assume that the editor calls this procedure only for syntactically legal replacements and nev-
er for the root syntax node. It is also assumed that the attribution is already in a consistent state 
when replaceSubtree is called. The procedure replaces the subtree and updates the attribution 
incrementally to a new consistent state.

This definition of the replaceSubtree procedure is a straight-forward implementation of the 
algorithm outlined in 10-1. The only detail which was not mentioned earlier is the statement dur-
ing step I which removes a door from the work list. The reason for this statement will be 
explained later in §10.5.3.
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Figure 10.2 Subtree replacement algorithm

10.4  Construction of door visit procedures

10.4.1  Basic outline for door visit procedures

The visit procedures for the door classes are constructed from the dependency graphs and they 
all use the same basic algorithm outline. The visit procedures schedule de-evaluation and/or 
evaluation of local invariants. In addition, they call visit procedures of dependent doors and add 
these doors to the work list of the evaluator. Let D be a door class. The basic outline for the visit 
procedures of D is as follows:

evaluator: object
{ worklist: object OrderedCollection[ANYDOOR];

replaceSubtree: proc
(oldNode: ref ANYNODE, newNode: ref ANYNODE)

{ d: ref ANYDOOR;

(* I: Exhaustive de-evaluation phase *)
for $d :- oldNode.allDoors.each do
worklist.removeIfFound($d);
$d.exhDeEvalVisit;

end for;

(* II: Subtree Replacement *)
oldNode.replaceBy(newNode);
newNode.copyInheritedAttributesFrom(oldNode);

(* III: Exhaustive evaluation phase *)
newNode.exhVisit;

(* IV: Local incremental phase *)
newNode.father.incSonVisit(newNode);

(* V: Non-local incremental phase *)
while not worklist.empty do
d :- worklist.removeFirst;
d.owner.incDoorVisit(d);

end while;
};

};
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 10-2 Algorithm outline Basic door visit procedure

1. Compute the set of dependent doors.

2. Call deEvalL for each dependent door.

3. Local de-evaluation of conditions in D.

4. Local evaluation of invariants in D.

5. Call evalL for each dependent door.

6. Add the dependent doors to the work list of the evaluator.

 end 10-2

The above outline applies directly to the three visit procedures present in all door classes: exhE-
valVisit, exhDeEvalVisit, and incOwnerVisit. The deEvalL and evalL visit procedures 
can be seen as two halves of the same visit. These procedures are implemented by dividing the 
above pattern, so the deEvalL procedure implements steps 1 to 3 and the evalL procedure the 
steps 4 to 6.

The deEvalL procedures are called before local evaluation, to allow the non-locally dependent 
doors to de-evaluate conditions using the old attribute values in D. The evalL procedures are 
called after local evaluation to allow the non-local dependents to use the new attribute values. 
Notice that a (deEvalL, evalL) procedure pair may have its own non-local dependents, and these 
may have additional non-local dependents, and so on. As can be seen from the algorithm outline, 
all non-locally dependent conditions, including transitive ones, will be de-evaluated before any 
evaluation of invariants starts.

The example door package of §8.9 for Algol-like block structure does not contain any transitive 
non-local dependencies. However, one example of such dependencies will be given in §11.2, 
which treats subclassing.

10.4.2  Visit procedure characteristics

Each visit procedure for a door D can be characterized by three sets of vertices from the depen-
dency graph for D. In this context we consider each procedure pair (deEvalL, evalL) for a 
receive vertex v(L) as one unit. The three characteristic sets are the following: 

• a set of condition vertices Scond. (With “condition” vertex we mean a local vertex v(c) for a 
condition c.)

• a set of local vertices Sloc

• a set of send vertices Ssend

In step 3 of the basic outline above, the visit procedure should de-evaluate the conditions corre-
sponding to Scond. The order of de-evaluation is arbitrary since the conditions are independent 
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of one another. In step 4 the visit procedure should evaluate the invariants corresponding to Sloc. 
These evaluations should be done in topological order according to the dependency graph. In 
step 1 the visit procedure should compute the set of dependent doors according to the dependen-
cy functions of the send vertices in Ssend. In steps 2 and 5 the deEval and eval procedures for 
the appropriate receive vertices should be called for these non-local doors, and in step 6 the doors 
should be added to the evaluator work list. The characteristic sets for the different kinds of visit 
procedures are summarized in the table below.

 

Figure 10.3 Visit procedure characteristics

The basic algorithm for a visit procedure outlined in 10-2 can now be formulated more precisely 
in terms of the characteristic sets:

Scond Sloc Ssend

exhDeEval-
Visit

all condition
vertices

∅ all send vertices with 
incoming de-eval edge 

reachable from a
condition vertex

exhEval-
Visit

∅ all local
vertices

all send vertices with 
incoming eval edge

incOwner-
Visit

all condition vertices 
reachable from vertices 

for inherited non-fix 
attributes

all local vertices 
reachable from 

vertices for inherited 
non-fix attributes

all send vertices reachable 
from vertices for inherited 

non-fix attributes

deEval/
eval L

all condition vertices 
reachable from the 
receive vertex v(L)

all local vertices 
reachable from the 
receive vertex v(L)

all send vertices reachable 
from the receive

vertex v(L)
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 10-3 Algorithm Basic door visit procedure

Given the characteristic sets Scond, Sloc, and Ssend for a door visit procedure p of a door class 
D, the algorithm of p is as follows:

1. Let v(L1, D1, f1) . . v(Ln, Dn, fn) be the vertices in Ssend. Compute n dependency sets DPk, 
1 ≤ k ≤ n, of non-locally dependent doors by calling the corresponding dependency func-
tion:

DPk :- fk;

where DPk is a local variable in p (or in D for deEval/eval pairs)
declared as

DPk: ref Set[Dk];

2. For each dependency set DPk, 1 ≤ k ≤ n, call the appropriate deEval procedure for each of 
its doors:

for $d :- DPk.each do $d.deEvalLk; end for

3. For each condition c in Scond, de-evaluate c:
deeval c;

4. For each invariant e in Sloc, evaluate e:
eval e;

The invariants should be evaluated in topological order according to
the dependency graph. 

5. For each dependency set DPk, 1 ≤ k ≤ n, call the appropriate eval procedure for each of 
its doors:

for $d :- DPk.each do $d.evalLk; end for

6. Add each dependency set DPk, 1 ≤ k ≤ n, to the work list of the evaluator:
evaluator.worklist.addSet(DPk);

 end 10-3

Note that in step 1, the local variables for the dependency sets are normally declared in the visit 
procedure. This works for the exhDeEvalVisit, exhEvalVisit, and incOwnerVisit proce-
dures. However, it does not work for a deEval/eval pair since the variables are computed in the 
deEval procedure and used in the eval procedure. For this case, the dependency set variables 
are instead stored in the door itself. An example of this is given in §11.2.7 (§Figure 11.19).

The characteristic sets for a given door class D and the basic algorithm for a given visit procedure 
p can be computed automatically from the dependency graph of D. However, there are some 
additional issues which need to be taken into account and which may call for modifications to 
the basic algorithm above. In particular:

• The dependency sets DPk, 1 ≤ k ≤ n, may overlap.

• Attributes can be tested for convergence to avoid unnecessary change propagation.

• Additional code can be added to affect which of several consistent solutions is chosen, in the 
case of underdetermined grammars.
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To deal with these issues, the basic algorithm of 10-3 has to be modified. This will be treated in 
§10.6.

10.5  Door evaluation states

During evaluation, a door can be in one of the following states: InNewTree, Evaluated, 
DeEvaluated(L), InOldTree, and Busy. In each of these states, the following holds for the states 
of the invariants in the door (we recall from §9.3.1 that an invariant can be either in the uneval-
uated or evaluated state):

• When a door is in the InNewTree state, no invariants of the door have yet been evaluated. I.e., 
all the invariants are in the unevaluated state.

• When a door is in the Evaluated state, all its invariants are also in the evaluated state.

• When a door is in the DeEvaluated(L) state, where v(L) is a receive vertex of the door depen-
dency graph, the conditions depending on v(L) of the door are in the unevaluated state, 
whereas the rest of the invariants in the door remain in the evaluated state.

• When a door is in the InOldTree state all its conditions are in the unevaluated state.

The evaluation states for the doors serve as pre- and post-conditions for the visit procedures 
according to the following state transition graph. The door is in the Busy state during each of 
these transitions:

Figure 10.4 Evaluation states for doors

We will now discuss under what circumstances these preconditions are fulfilled.

10.5.1  Calls from the evaluator algorithm

In a consistently attributed syntax tree, all door objects are in the Evaluated state. At a subtree 
replacement, the doors in the new subtree are initially in the InNewTree state. The evaluator 
algorithm of 10-1 should terminate by leaving all the doors in the old subtree in the InOldTree 
state and all doors in the modified syntax tree in the Evaluated state.

exhEvalVisit

exhDeEvalVisit

evalL

deEvalL

incOwnerVisit

InNewTree

InOldTree

DeEvaluated(L) Evaluated
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We observe that the net effect of executing one of the procedures exhDeEvalVisit, exhE-
valVisit, and incOwnerVisit of a door does not change the state of other doors. This is clear 
from the basic visit procedure algorithm 10-2 since a deEvalL call is always matched by an 
evalL call. 

It is now easy to verify that the evaluator algorithm of 10-1 fulfills the preconditions of the called 
visit procedures and that the algorithm terminates with all doors in the Evaluated state:

Step I brings all doors in the old subtree from the Evaluated state to the InOldTree state by 
calling the exhDeEvalVisit procedure of these doors. Step III brings all doors in the new sub-
tree from the InNewTree state to the Evaluated state by calling the exhEvalVisit procedure 
of these doors. After this step, all doors in the syntax tree are in the Evaluated state. During the 
subsequent incremental evaluation steps IV and V, the visit procedures of the syntax nodes will 
call the incOwnerVisit procedure of dependent doors. Calling this procedure for a door does 
not change its door state (other than temporarily to Busy during the call), and all doors in the 
syntax tree are therefore in the Evaluated state when the evaluation algorithm terminates.

10.5.2  Calls from inside visit procedures

Each door visit procedure must fulfill the preconditions of the deEvalL and evalL procedures it 
calls. We will now investigate the requirements this puts on the implementation of the visit pro-
cedures. We do this by considering the incremental and exhaustive evaluation phases separately.

Incremental phases

First, consider evaluation during one of the incremental phases IV or V in the evaluation algo-
rithm 10-1. During these phases, all door objects are in the Evaluated state except for during 
the call of the incOwnerVisit procedure of a door.

Let d be a door object visited via the incOwnerVisit procedure during one of these phases. Let 
DP1(d) . . DPn(d) be the sets of non-locally dependent doors, according to step 1 of the basic algo-
rithm 10-3. Clearly, these sets must be disjoint. Otherwise, a deEvalL procedure would be called 
for a door already in the DeEvaluated state which would violate the precondition of the deEvalL 
procedure. Similarly, if there are transitive non-local dependencies, the sets DP1(d) . . DPn(d) must 
be disjoint to all the dependency sets DP1(d′) . . DPn(d′) where d′ is a door non-locally dependent 
on d (directly or transitively). Furthermore, the door object itself, d, must not be a member of 
any of these dependency sets. Otherwise, a deEvalL procedure would be called for d while in its 
Busy state.

For any dependent door d′ ≠ d which occurs in only one of the direct and transitive dependency 
sets, the algorithm 10-3 fulfills the preconditions: Step 2 calls deEvalL when d′ is in the Eval-
uated state, bringing it into the DeEvaluated state. Step 2 later calls the corresponding evalL 
procedure, bringing d′ back to the Evaluated state.
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Thus, if all the direct and transitive dependency sets are disjoint and d is not a member of any of 
them, then the preconditions of the called visit procedures are fulfilled.

Exhaustive phases

Now, consider the exhaustive phases I and III. During these phases some doors will be in the 
InOldTree or InNewTree states respectively. The dependency functions must not return objects 
in these states, since this would lead to violation of the preconditions when calling the deEvalL 
procedures of those doors. In addition, the non-local dependency sets must be disjoint, just as 
for the incremental phases.

Consider first the exhaustive evaluation in phase III. A door d is in the InNewTree state if it has 
not yet been evaluated. In this case, d cannot yet be a member of any collection object of another 
door, since it is only conditions in d which can add d to collection objects of other doors. Thus, 
dependency functions which consult the information in collection objects, as described in §9.5.5, 
cannot return sets containing objects in the InNewTree state. However, if the dependency func-
tion performs a search in the syntax tree to find affected doors, it must explicitly test the state of 
the encountered door objects in order to avoid returning door objects in the InNewTree state.

The situation is analogous in phase I. Here, doors in the InOldTree state have been de-evaluated 
so they can no longer be members of collections in other doors. Thus, dependency functions con-
sulting information in collections cannot return doors which are in the InOldTree state.

10.5.3  Visit order during exhaustive de-evaluation

During the exhaustive de-evaluation (phase I), changes may be propagated via non-local depen-
dencies from one door in the old subtree to other doors also in the old subtree. This can happen 
if the receiving doors have not yet been visited by the exhDeEvalVisit procedure, i.e. they are 
still in the Evaluated state. The normal action for a visit procedure which propagates to non-
local dependents is to add the receiving doors to the work list (step 6 of algorithm 10-3). How-
ever, receiving door objects in the old subtree should not remain on the work list after phase I 
since this would result in meaningless evaluation in the old subtree during phase V. Such eval-
uation would also break the precondition of the incOwnerVisit procedures of these doors, since 
they are in the InOldTree state after the de-evaluation phase.

We have chosen to solve this problem as follows: The visit procedures add receiving doors as 
usual, according to step 6, regardless of if the doors are in the old subtree or not. If a door of the 
old subtree is added to the work list, it will be removed just before it is de-evaluated. This is the 
reason for the statement

worklist.removeIfFound($d);

in phase I of the evaluator algorithm.
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10.5.4  Meeting visit procedure preconditions. Summary.

The preconditions of the procedures exhEvalVisit, exhDeEvalVisit, and incOwnerVisit are 
met as was shown in §10.5.1.

To ensure that the preconditions of the procedures deEvalL and evalL are met, the following 
must be observed in the implementation of door visit procedures:

Given a door object d and a door visit procedure p, the preconditions of the deEvalL and evalL 
procedures called by p are met if:

1. all direct and transitive sets of dependent doors are disjoint, and d itself is not a member of 
any of these sets, and

2. all dependency functions consult collection object information rather than search the syntax 
tree

If (1) does not hold, the algorithm of p has to be adapted. This will be discussed in §10.6.1.

If (2) does not hold, i.e. if the dependency functions search the syntax tree, an explicit state flag 
can be stored in each door object and the dependency function can test this flag to return only 
objects in the appropriate state.

10.6  Modifications to the basic visit procedure algorithm

10.6.1  Overlapping dependency sets

As mentioned in the previous sections, the non-local dependency sets computed by a door visit 
procedure may overlap. In this case, the basic algorithm of 10-3 has to be modified in order to 
avoid violation of the legal state transitions of doors.

Consider the non-local dependency sets DP1 . . DPn computed according to the send vertices v(L1, 
D1, f1) . . v(Ln, Dn, fn) in step 1 of the basic algorithm 10-3. Clearly, if D1 . . Dn are all different 
door classes, the dependency sets will all be disjoint. If this is not the case, the door package has 
to be more closely examined to determine if the dependency sets can overlap, and if so, how this 
can be amended. If any of the receive vertices v(Lk) in turn has dependent send vertices, this 
implies transitive non-local dependency sets which have to be examined as well.

One situation which may occur is the following: Consider two vertices v(Lj, Dj, fj) and v(Lk, Dk, 
fk) where Lj ≠ Lk, Dj = Dk, and fj = fk. We say that a receive vertex v(L1) is covered by another 
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receive vertex v(L2) if all vertices reachable from v(L1) are reachable also from v(L2). If Lj is cov-
ered by Lk, then the dependency set DPj can simply be dropped since all evaluation according to 
DPj is covered by the set DPk. This particular example occurs in DeclDoor where the send vertices 
v(getTpChanged, UseDoor, fUses) and v(lookupChanged, UseDoor, fUses) are related exactly 
like this.

Another example, also occurring in DeclDoor, is the vertices v(lookupChanged, UseDoor, fUs-
es) and v(lookupChanged, UseDoor, fAttempted). Although both these dependency sets 
contain UseDoor objects, they will not overlap because the sets returned by fUses and fAt-
tempted will always be disjoint. In this case, there is thus no problem of overlapping 
dependency sets.

10.6.2  Testing attribute values for convergence

The re-evaluation of a local attribute defined in a door may result in the same value as before. In 
this case, it is not necessary to re-evaluate dependent invariants. In principle, general techniques 
can be used to automatically generate code for detecting such value convergence and the visit 
procedure algorithm can be modified accordingly. However, in our examples we will only 
employ such tests in a few special cases.

The incOwnerVisit procedure re-evaluates the invariants which depend on non-fix inherited 
attributes. In the case where all directly dependent invariants are copy equations defining local 
attributes, an additional step 0 will be added to the visit procedure. This step tests the values of 
the non-fix inherited attributes against the local attributes defined by the copy equations. If all of 
these attributes converge, the rest of the visit procedure is skipped. If only a subset of the non-
fix inherited attributes have new values, the visit procedure will perform only a corresponding 
subset of its normal actions. These convergence tests improve performance by avoiding unnec-
essary re-evaluation. In addition, such tests are necessary to handle circular dependencies, as 
treated in §10.9.

Another case of value convergence may occur when calling the deEvalL and evalL visit proce-
dures of non-locally dependent doors. If the synthesized attributes are unchanged, although they 
depend on the re-evaluated invariants, the evaluation does not need to be propagated out into the 
syntax tree. I.e., it is unnecessary to add the non-local door to the evaluator work list.

10.6.3  Affecting the solution for underdetermined grammars

As discussed in §8.10, a Door AG can be made underdetermined. For example, the order of a list 
collection can be left undefined by the grammar. For such grammars, any permutation of the 
member elements is consistent with the Door AG definition and the actual permutation will 
depend on the order of evaluation. It is possible to add additional code to the visit procedures to 
explicitly control the permutation. This may be necessary in order to obtain a particular history-
dependent behavior. An example of this is given in §11.1 where additional code is added to the 
visit procedures of DeclDoor to handle multiple declarations of the same identifier.



10.7 Visit procedures for the example door package 191

10.7  Visit procedures for the example door package

In this section we will implement visit procedures for the four door classes RootDoor, Block-
Door, DeclDoor, and UseDoor in the example door package of §8.9. The characteristic sets for 
each visit procedure are computed from the dependency graphs in Figure 9.7. The visit proce-
dures are then implemented according to algorithm 10-3, with possible modifications as 
described in §10.6.

10.7.1  RootDoor

The dependency graph for class RootDoor contains only a synthesize vertex, and all the charac-
teristic sets of its visit procedures are therefore empty. The visit procedure implementations are 
consequently empty as well.

10.7.2  BlockDoor

The dependency graph for class BlockDoor gives the following characteristic sets: 

The characteristic sets for the procedures exhDeEvalVisit and incOwnerVisit are all empty, 
and these procedures are consequently empty as well. For the procedure exhEvalVisit, only 
the Sloc set is non-empty. The resulting implementation therefore only contains step 4 of the 
basic algorithm:

10.7.3  DeclDoor

The class DeclDoor is the most complex of the door classes since it has non-locally dependent 
doors. All three visit procedures exhDeEvalVisit, exhEvalVisit, and incOwnerVisit have 
non-empty implementations.

Scond Sloc Ssend

exhDeEvalVisit ∅ ∅ ∅

exhEvalVisit ∅ { v(theTablePath.table),
v(staticPath.first),
v(staticPath.second) }

∅

incOwnerVisit ∅ ∅ ∅

addto BlockDoor
{ impl exhEvalVisit
{ (* Step 4. Evaluate local invariants *)
eval theTablePath.table;
eval staticPath.first;
eval staticPath.second;

};
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10.7.3.1  Procedure exhDeEvalVisit

The procedure exhDeEvalVisit for class DeclDoor has the following characteristic sets: 

The basic algorithm gives the following implementation of procedure
exhDeEvalVisit:

10.7.3.2  Procedure exhEvalVisit

The procedure exhEvalVisit for class DeclDoor has the following characteristic sets: 

The functions fUses and fAttempted will always return disjoint sets. This follows from the 
grammar since a UseDoor object which is bound to an entry object cannot at the same time be a 
member of the attempted collection in the symbol table containing the entry. Thus, the two send 

Scond Sloc Ssend

exhDeEval-
Visit

{ v(registered) } ∅ { v(lookupChanged, UseDoor, fUses) }

Scond Sloc Ssend

exhEval-
Visit

∅ { v(theEntry.table),
v(registered),
v(theEntry.tp),
v(theEntry.ident) }

{ v(getTpChanged, 
UseDoor,fUses),

v(lookupChanged, 
UseDoor, fAttempted) }

addto DeclDoor
{ impl exhDeEvalVisit
{ boundUses: ref Set[UseDoor]; (* dependency set *)

(* Step 1. Compute dependent doors *)
boundUses :- fUses;

(* Step 2. De-evaluate dependent doors *)
for $d :- boundUses.each do $d.deEvalLookupChanged; end for;

(* Step 3. De-evaluate local conditions *)
deeval registered;

(* Step 5. Evaluate dependent doors *)
for $d :- boundUses.each do $d.evalLookupChanged; end for;

(* Step 6. Add dependent doors to work list*)
evaluator.worklist.addSet(boundUses);

};
};
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vertices in Ssend represent disjoint dependency sets. The implementation of the exhEvalVisit 
procedure is therefore a direct application of the basic algorithm:

It can be deduced from the grammar that the tpUses dependency set will always be empty. This 
is because there can only be UseDoor objects bound to the entry if the entry is in the symbol table 
list, which is not the case at the beginning of procedure exhEvalVisit. The visit procedure 
above can thus be simplified by removing the code associated with tpUses.

addto DeclDoor
{ impl exhEvalVisit
{ tpUses: ref Set[UseDoor]; (* dependency set *)
attemptedUses: ref Set[UseDoor]; (* dependency set *)

(* Step 1. Compute dependent doors *)
tpUses :- fUses;
attemptedUses :- fAttempted;

(* Step 2. De-evaluate dependent doors *)
for $d :- tpUses.each do $d.deEvalGetTpChanged; end for;
for $d :- attemptedUses.each do
$d.deEvalLookupChanged;

end for;

(* Step 4. Evaluate local invariants *)
eval theEntry.table;
eval registered;
eval theEntry.tp;
eval theEntry.ident;

(* Step 5. Evaluate dependent doors *)
for $d :- tpUses.each do $d.evalGetTpChanged; end for;
for $d :- attemptedUses.each do
$d.evalLookupChanged;

end for;

(* Step 6. Add dependent doors to work list*)
evaluator.worklist.addSet(tpUses);
evaluator.worklist.addSet(attemptedUses);

};
};
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10.7.3.3  Procedure incOwnerVisit

The procedure incOwnerVisit for class DeclDoor has the following characteristic sets: 

In this procedure, the step 0 discussed in §10.6.2 is added to test for convergence of the two non-
fix inherited attributes tp and ident by comparing them to theEntry.tp and theEntry.ident. 
For each possible outcome of these comparisons, refined characteristic sets  Sloc and  Ssend can 
be computed by treating the unchanged attributes as fix inherited attributes. This results in the 
following characteristic sets: 

The visit procedure is modified to handle these four cases.

In case (a), where both tp and ident are unchanged, the rest of the visit procedure is skipped.

In case (d), where both attributes are changed, there is a dependency set overlap between 
v(getTpChanged, UseDoor, fUses) and v(lookupChanged, UseDoor, fUses), since the same 
dependency function is used for these vertices. However, since the receive vertex 
v(getTpChanged) is covered by the receive vertex v(lookupChanged) in the dependency graph 
for UseDoor, the dependency set corresponding to the send vertex v(getTpChanged, UseDoor, 
fUses) can simply be dropped in the implementation of exhDeEvalVisit, as discussed in 
§10.6.1.

Scond Sloc Ssend

incOwner-
Visit

∅ { v(theEntry.tp),
v(theEntry.ident) }

{ v(getTpChanged, 
UseDoor, fUses),

v(lookupChanged, 
UseDoor, fUses),

v(lookupChanged, 
UseDoor, fAttempted) }

Sloc Ssend

a) tp unchanged
ident unchanged

∅ ∅

b) tp changed
ident unchanged

{ v(theEntry.tp) } { v(getTpChanged, 
UseDoor, fUses) }

c) tp unchanged
ident changed

{ v(theEntry.ident) } { v(lookupChanged, 
UseDoor, fUses),

v(lookupChanged, 
UseDoor, fAttempted) 

}

d) tp changed
ident changed

{ v(theEntry.tp),
v(theEntry.ident) }

{ v(getTpChanged, 
UseDoor, fUses),

v(lookupChanged, 
UseDoor, fUses),

v(lookupChanged, 
UseDoor, fAttempted) 

}
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In steps 2, 5, and 6, we will make use of the following constant object, modelling an empty set 
of UseDoor objects.

emptyUseDoorSet: object Set[UseDoor];

The procedure incOwnerVisit can now be implemented as follows:
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addto DeclDoor
{ impl incOwnerVisit
{ tpUses: ref Set[UseDoor]; (* dependency set *)
boundUses: ref Set[UseDoor]; (* dependency set *)
attemptedUses: ref Set[UseDoor]; (* dependency set *)
tpUnchanged: boolean;
identUnchanged: boolean;

(* Step 0. Check for value convergence *)
tpUnchanged := tp == theEntry.tp;
identUnchanged := ident = theEntry.ident;

if tpUnchanged and identUnchanged then
(* case (a) - skip the rest *)

else
(* Step 1. Compute dependent doors *)
tpUses :- fUses;
boundUses :- fUses;
attemptedUses :- fAttempted;

(* Adjust dependency sets according to cases (b,c,d) *)
if identUnchanged then (* case (b) *)
boundUses :- emptyUseDoorSet;
attemptedUses :- emptyUseDoorSet;

else if tpUnchanged then (* case (c) *)
tpUses :- emptyUseDoorSet;

else (* case (d) *)
tpUses :- emptyUseDoorSet;

end if;

(* Step 2. De-evaluate dependent doors *)
for $d :- tpUses.each do $d.deEvalGetTpChanged; end for;
for $d :- boundUses.each do $d.deEvalLookupChanged; end for;
for $d :- attemptedUses.each do
$d.deEvalLookupChanged;

end for;

(* Step 4. Evaluate local non-fix invariants *)
if not tpUnchanged then eval theEntry.tp; end if;
if not identUnchanged then eval theEntry.ident; end if;

(* Step 5. Evaluate dependent doors *)
for $d :- tpUses.each do $d.evalGetTpChanged; end for;
for $d :- boundUses.each do $d.evalLookupChanged; end for;
for $d :- attemptedUses.each do
$d.evalLookupChanged;

end for;

(* Step 6. Add dependent doors to work list *)
evaluator.worklist.addSet(tpUses);
evaluator.worklist.addSet(boundUses);
evaluator.worklist.addSet(attemptedUses);

end if;
};

};
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10.7.4  UseDoor

The dependency graph for class UseDoor has two receive vertices v(getTpChanged) and 
v(lookupChanged). Thus, in addition to the procedures exhDeEvalVisit, exhEvalVisit, and 
incOwnerVisit, the two visit procedure pairs (deEvalGetTpChanged, evalGetTpChanged) and 
(deEvalLookupChanged, evalLookupChanged) need to be implemented. The dependency 
graph for class UseDoor gives the following characteristic sets:

 

The procedures are all straight-forward implementations of the basic algorithm:

Scond Sloc Ssend

exhDeEval-
Visit

{ v(cUses),
v(cAttempted) }

∅ ∅

exhEval-Visit ∅ { v(localPath),
v(localIdent),
v(binding),
v(cUses),
v(cAttempted) }

∅

incOwner-
Visit

{ v(cUses),
v(cAttempted) }

{ v(localPath),
v(localIdent),
v(binding),
v(cUses),
v(cAttempted) }

∅

deEval/Eval
getTpChanged

∅ ∅ ∅

deEval/Eval
lookupChanged

{ v(cUses),
v(cAttempted) }

{ v(localPath),
v(localIdent),
v(binding),
v(cUses),
v(cAttempted) }

∅
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addto UseDoor
{ impl exhDeEvalVisit
{ (* Step 3. De-evaluate local conditions *)
deeval cUses;
deeval cAttempted;

};

impl exhEvalVisit
{ (* Step 4. Evaluate local invariants *)
eval localPath;
eval localIdent;
eval binding;
eval cUses;
eval cAttempted;

};

impl incOwnerVisit
{ (* Step 3. De-evaluate local conditions *)
deeval cUses;
deeval cAttempted;

(* Step 4. Evaluate local invariants *)
eval localPath;
eval localIdent;
eval binding;
eval cUses;
eval cAttempted;

};

deEvalGetTpChanged: proc
{ (* empty *)
};

evalGetTpChanged: proc
{ (* empty *)
};

deEvalLookupChanged: proc
{ (* Step 3. De-evaluate local conditions *)
deeval cUses;
deeval cAttempted;

};

evalLookupChanged: proc
{ (* Step 4. Evaluate local invariants *)
eval binding;
eval cUses;
eval cAttempted;

};
};
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10.8  Evaluation of main grammar

10.8.1  Main grammar classification

The main grammar of a Door AG can be classified according to standard AG classes such as 1-
visit, OAG, non-circular, and circular. This is done by considering each door class as an ordinary 
node class and by ignoring all send and receive vertices of the door class dependency graphs. 
While 1-visit standard AGs are applicable only to very simple 1-pass languages, the class of 1-
visit main grammars is sufficient for a much larger range of practical languages. The reason for 
this is that problems like name analysis which give rise to complex dependencies in standard 
AGs are handled by doors and semantic objects in Door AGs. The remaining dependencies in 
the main grammar are very simple. For example, languages like Algol and Simula, where order 
of declaration is irrelevant, can be described by Door AGs with 1-visit main grammars. Describ-
ing these languages in standard AGs requires an OAG.

Our evaluation technique for Door AGs handles 1-visit main grammars, and the evaluation tech-
nique used is the very simple one based on static skipping which was introduced in Chapter 7. 
We find it interesting that it is possible to use such simple implementation techniques and yet 
achieve an efficient incremental system for a complex language like Simula.

Nevertheless, it is straight-forward to adapt our evaluation technique to other existing standard 
AG algorithms in order to handle more complex main grammars. In §10.8.6 we will show how 
this can be done.

Another interesting thing to note is that a door package may have non-local dependencies which 
lead to circular chains of attribute dependencies when combined with a main grammar. However, 
since the non-local dependencies are irrelevant for attribute evaluation in the main grammar, this 
does not affect the main grammar complexity. Thus, simple 1-visit evaluation techniques can be 
used for the main grammar even if the Door AG as a whole is circular. Examples of circular 
dependencies are given in §10.9.

10.8.2  Extensions to standard AG method

In order to evaluate the main grammar, the visit procedures exhVisit, incFatherVisit, 
incSonVisit, and incDoorVisit need to be implemented for the node classes. This can be 
done automatically. The exhVisit, incFatherVisit, and incSonVisit procedures are imple-
mented as described in Chapter 7, with certain extensions as described below. The 
incDoorVisit procedure is implemented analogously to the incSonVisit procedure, simply 
by considering the door objects declared in a node class as another kind of son nodes.
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10.8.2.1  Dependency graphs

The dependency graph construction of 7-5 is extended to handle door part-objects. The doors are 
treated exactly like son nodes, i.e., a vertex v(d) is added to the graph of a node class for each 
door object d declared in the node class. Edges to and from door vertices are added in exactly 
the same way as for son nodes, according to the use of synthesized attributes and definitions of 
inherited attributes of the doors.

10.8.2.2  Exhaustive evaluation

The implementation of the procedure exhVisit described in 7-8 is extended to handle door part-
objects. Each VISIT instruction corresponding to a door vertex v(d) is implemented as a call

d.exhEvalVisit

10.8.2.3  Incremental evaluation

The implementation of the procedures incFatherVisit and incSonVisit is modified to handle 
fix attributes and door part-objects. 

We recall from §8.5.1 that a fix attribute receives a value during exhaustive evaluation, but can-
not change during incremental evaluation. I.e., during incremental evaluation, the fix attributes 
are equivalent to constants. This implies that these attributes need not be considered in the depen-
dency analysis for incremental evaluation.

A subset of the edges in the dependency graphs constructed according to algorithm 7-5, corre-
spond to use or definition of fix attributes. In the construction of the incremental visit sequences, 
according to 7-9, these edges are removed from the graph before performing the topological sort.

The implementation of the procedures incFatherVisit and incSonVisit as described in 7-10 
is extended to handle door part-objects. Each VISIT instruction corresponding to a door vertex 
v(d) is implemented as a call

d.incOwnerVisit

The procedure incDoorVisit is implemented exactly analogous to the procedure incSonVisit, 
but dispatches on door part objects instead of on son nodes.

10.8.2.4  Demand attributes

The synthesized and inherited attributes of a door class are demand attributes and can be imple-
mented in the same way as demand attributes of standard AGs as treated in §7.1. 
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10.8.3  Visit procedures for the main grammar example

As an example, consider the main grammar example in Chapter 8 (defined in §8.9.4). The depen-
dency graphs for the construction classes are shown in Figure 10.5. 

Figure 10.5 Dependency graphs for main grammar. Dependency edges corre-
sponding to use or definition of fix attributes are drawn with thicker 
lines.

The visit procedures are straight-forward to construct from these dependency graphs, using the 
algorithms in 7-8 and 7-10, modified as described in the previous section. Note that all the 
attributes in the main grammar are demand attributes, and therefore dropped in the visit 
procedures:
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s.path

s

inh syn

inh syn d.table s.path
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b.encPath
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d.table d.ident

dt
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declIdd

u.path u.ident

useId

inh syn

VarDecl: Use:

r d sb

NullDecl:

tp error

u

to.path from.path

from

inh syn

Assignment:

error

to

inh syn

tp

NullDeclType,
IntDeclType,
BoolDeclType,
NullExp,
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Figure 10.6 Visit procedures for main grammar

As shown in the above figure, the visit procedures for the main grammar are extremely simple 
and short. Empty procedures need not be implemented since they can rely on empty default 
implementations in class ANYNODE.

The incremental procedures (incFatherVisit, incSonVisit, and incDoorVisit) are often 
empty or very simple due to the heavy use of fix attributes. This leads to a large amount of 
instruction skipping compared to the exhVisit procedure. For example, consider the dependen-
cy graph for BlockStmt. All edges in this graph represent uses or definitions of fix attributes, and 
all incremental visit procedures are consequently empty for the BlockStmt class.

10.8.4  Effects of static skipping

The evaluation algorithm used for main grammars is based on the static skipping algorithm 
described in Chapter 7. As discussed in §7.3.4, this algorithm is sub-optimal and may evaluate 
more attributes than an algorithm based on dynamic skipping. On the other hand, it may in some 
cases be faster than a dynamic skipping algorithm since it avoids comparisons of attribute values. 
The primary advantage of the static skipping algorithm is its simplicity and the ease with which 
it can be implemented. 

addto Program
{ impl exhVisit
{ r.exhEvalVisit;
s.exhVisit;

};
};

addto BlockStmt
{ impl exhVisit
{ b.exhEvalVisit;
d.exhVisit;
s.exhVisit;

};
};

addto VarDecl
{ impl exhVisit
{ dt.exhVisit;
d.exhEvalVisit;

};

impl incSonVisit
{ d.incOwnerVisit;
};

};

addto Use
{ impl exhVisit
{ u.exhEvalVisit;
};

impl incSonVisit
{ u.incOwnerVisit;
father.incSonVisit
(this ANYNODE);

};

impl incDoorVisit
{ father.incSonVisit

(this ANYNODE);
};

};

addto Assignment
{ impl exhVisit
{ to.exhVisit;
from.exhVisit;

};
};
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The static skipping algorithm does not compare old and new attribute values and can therefore 
not stop change propagation if attribute values converge. For a standard AG, this can be a serious 
limitation and lead to poor incremental performance. However, a main grammar of a Door AG 
is radically different in character from a standard AG. Because non-local information is propa-
gated via doors, the dependency paths in the syntax tree can be much shorter than in a standard 
AG. Convergence tests are performed in the door visit procedures and can thus prevent unnec-
essary non-local propagation. 

For example, consider the dependency graphs of the main grammar in Figure 10.5. Changes to 
the identifier or type of a VarDecl node will only propagate into d (the DeclDoor). A correspond-
ing node class in a standard AG would have a synthesized attribute which would be dependent 
on such changes, and the changes would be propagated to the father node and further on through 
the syntax tree. A change to the identifier of a Use node will propagate into u (the UseDoor) and 
also via the tp attribute up to the father node. If the grammar had contained some more advanced 
expressions, such a change could propagate further up in the syntax tree, but not further up than 
to the enclosing statement, since the statements have no synthesized attributes. Although this 
main grammar is extremely simple, it is representative for the way the standard static-semantic 
problems of name analysis, type checking, and error checking can be specified in a Door AG. 

For static-semantic checking using Door AGs, the sub-optimal effects of the static skipping algo-
rithm are thus very limited.

10.8.5  Effects of using demand attributes

The use of demand attributes in the main grammar saves storage. However, there is also a poten-
tial danger of using such attributes since evaluation time can grow very quickly for certain kinds 
of uses.

Consider evaluation of a UseDoor. This involves an access to the demand attribute path. Such 
access leads to a series of function calls, typically one for each syntax node on the way up to the 
nearest node with a BlockDoor. This is usually not a long distance - perhaps 10 nodes at the 
most. This gives an overhead of 10 function calls per evaluation of a UseDoor. If only few Use-
Door objects are evaluated, which should be the common case in an incremental system, this 
overhead should be no problem. However, one should take care in defining the equations and 
code inside the UseDoor so the path attribute is accessed only once during the evaluation. This 
is the case for our implementation of UseDoor since a local copy of path is stored in the door. 
In evaluating the door, the demand attribute is accessed only once to assign a value to the local 
copy. Thereafter the local copy is accessed.

A potentially more dangerous use of demand attributes is when using them for synthesized 
attributes. Consider a type attribute of an expression which is defined in terms of the type 
attributes of its son nodes, and the type attributes of these son nodes are defined in terms of their 
son nodes and so on. Thus, access to one type attribute could result in a number of function calls 
proportional to the size of the whole subtree. It could even be much worse, if each such function 
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accesses the types of its son nodes more than once, in which case there would be an exponential 
growth of the number of function calls.

To be useful in practice, it is necessary that demand attributes are not used in situations where 
the subtrees can grow large, and where the same attribute is accessed more than once. Type-
checking is usually not problematic from this point of view. First of all, the size of subtrees is 
bound by the size of the largest statement since statements do not have synthesized type 
attributes. Usually, at least in object-oriented programming, the number of syntax nodes within 
a statement subtree (not counting sub-statements) is rather small. In addition, it is usually possi-
ble to avoid accessing the same attribute more than once by using let-expressions in the 
definition of the equations.

Nevertheless, there is a potential time-sink in using demand attributes, and one must be careful 
when writing the grammar in order to avoid situations where the same attribute function is called 
over and over again. It could be useful to develop a scheme for caching demand attributes during 
a thread of evaluation.

10.8.6  Using standard evaluation algorithms

We have chosen to use the statically skipping 1-visit algorithm for implementation of main 
grammars because it is very simple and yet sufficient for practical problems. However, any incre-
mental evaluation algorithm for standard AGs could, in fact, be adapted and used for the main 
grammar, by a simple adaptation of the Door AG evaluator. The only restriction is that the main 
grammar must treat the door objects as 1-visit nodes. I.e., a synthesized attribute of a door object 
must not be used (directly or transitively) to define an inherited attribute of the same door object.

Consider any incremental evaluation algorithm for standard AGs. For most such algorithms it is 
straight-forward to construct the two following procedures: StandardNew(old, new) and 
StandardChanged(n) with the following semantics:

• StandardNew(old: ref ANYNODE, new: ref ANYNODE) is called when a subtree of a con-
sistently attributed syntax tree has been replaced by a new completely un-attributed subtree. 
The reference old denotes the root of the replaced subtree and new denotes the root of the 
new subtree. The procedure restores consistency in the syntax tree.

• StandardChanged(n: ref ANYNODE) is called when all attributes in the whole syntax tree 
are consistent except for the immediate successors of the synthesized attributes of a node n. 
The procedure restores consistency in the syntax tree.

These procedures must then be adapted to handle evaluation which propagates into door objects. 
For dependency analysis, only the door package interface needs to be considered. The door 
classes are considered as a special kind of node classes where all the synthesized attributes 
depend on all the inherited attributes of the door. I.e., all door classes are inherently 1-visit. The 
procedures above are adapted as follows:
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• AdaptedStandardNew(old: ref ANYNODE, new: ref ANYNODE) is an adaptation of Stan-
dardNew: When evaluation is propagated into a door object, the procedure incOwnerVisit 
is called, unless the door is in the subtree rooted at new and it is the first time the door is vis-
ited. In this case the procedure exhEvalVisit is called instead.

• AdaptedStandardChanged(n: ref ANYDOOR) is an adaptation of StandardNew: The 
parameter is here a door object. When evaluation is propagated into another door object, the 
procedure incOwnerVisit is called.

Figure 10.7 Door AG evaluation based on standard algorithm

Figure 10.7 shows how the Door AG evaluator of Figure 10.2 can be adapted to standard algo-
rithm, by collapsing phases III and IV into one “standard” phase, where AdaptedStandardNew 
is called, and by calling the AdaptedStandardChanged procedure in phase V. Thus, the algo-
rithm in Figure 10.7 can evaluate Door AGs with main grammars of any standard AG class, given 
that the door objects are treated as 1-visit nodes. To handle several visits to door objects, each of 
the door visit procedures exhEvalVisit and incOwnerVisit would have to be refined into a set 
of visit procedures.

evaluator: object
{ worklist: object OrderedCollection[ANYDOOR];

replaceSubtree: proc
(oldNode: ref ANYNODE, newNode: ref ANYNODE)

{ d: ref ANYDOOR;

(* I: Exhaustive de-evaluation phase *)
for $d :- oldNode.allDoors.each do
if worklist.contains($d) then
worklist.remove($d);

end if;
$d.exhDeEvalVisit;

end for;

(* II: Subtree Replacement *)
oldNode.replaceBy(newNode);

(* III, IV: “Standard” evaluation phase *)
AdaptedStandardNew(oldNode, newNode);

(* V: Non-local incremental phase *)
while not worklist.empty do
d :- worklist.removeFirst;
AdaptedStandardChanged(d);

end while;
};

};
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10.9  Circular dependencies

There are several situations in static semantic checking which lead to circular chains of informa-
tion dependencies, at least intuitively. This was discussed in §3.3.6. When specifying these static 
semantic problems in Door AGs, some of these intuitively circular dependencies also lead to 
actual circular dependencies between attributes in the attributed syntax tree. Fortunately, these 
circular dependencies are very simple to handle in Door AGs.

The collections and conditions used in Door AGs are inherently cyclic in the following way: 
Information about a collection (e.g. a reference to it) is propagated to a number of door objects 
distributed in the syntax tree. By defining members in the collection, using conditions, informa-
tion is propagated back from these door objects to the collection. While this does not directly 
introduce circular dependencies in the dependency graphs, it defines a circular path along which 
other information can be propagated giving true circular attribute dependencies.

In comparison to the intuitive circular dependencies discussed in §3.3.6, the first issue, arbitrary 
declaration / application order, can be solved in Door AGs simply by using conditions and col-
lections, as described in the example of §8.9. In the case of cyclic subclassing, the circularity is 
explicitly broken in order to avoid constructing cyclic visibility graphs. This will be shown in 
§11.2. The case of reference variables leads to true circular chains of attribute dependencies, but 
this circularity converges immediately and is straight-forward to handle as will be shown in 
§11.3.3.

Potential circular dependencies can easily be recognized from the door dependency graphs by 
matching send and receive vertices. Let D1 be a door class with a send vertex v(L, D2, f) and D2 
a door class with a receive vertex v(L). If there is a dependency path from an inherited attribute 
a of D1 to the send vertex, and a path from the receive vertex to a synthesized attribute b of D2, 
then this is a potential cyclic dependency. Figure 10.8 illustrates this.

Figure 10.8 Dependency graphs with potential cycle
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A cycle is obtained if the main grammar defines the attribute a by using the value of the b 
attribute as illustrated in Figure 10.9.

Figure 10.9 Circular chain of dependencies

A circular chain of dependencies which passes through a non-local dependency like this can be 
handled in a very simple way. The chain passes via the inherited attribute a of a door object of 
class D1. Provided that the evaluation converges, the evaluation loop is stopped simply by insert-
ing a convergence test on a in the incOwnerVisit procedure of D1, exactly as described in 
§10.6.2.

A circular dependency as the one above can appear as the result of using collections and condi-
tions. Consider Figure 10.10. The door d3 has a collection part-object and a reference to this 
object is passed through the syntax tree to both d1 and d2. Hence, the dependencies from 
collRef3 to collRef1 and collRef2. The condition c in d1 defines the object d1 as a member 
of the collection. This makes the information in d1 available to d2 and results in the non-local 
dependency from a to b. When evaluating this tree exhaustively, the doors are evaluated accord-
ing to the local dependencies in the syntax tree: d3, d2, d1. When d2 is first evaluated, d1 is not 
yet a member of the collection. When d1 is evaluated later, it adds itself to the collection and 

a 
d1

b 
d2
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discovers that there is a non-local dependency from d1 to d2. The door d2 is then re-evaluated 
and the change will propagate around the dependency cycle until the attribute a of d1 converges.

Figure 10.10 Circular dependency appearing as a result of using a collection.

Of the intuitive cyclic dependencies discussed in §3.3.6, it is only the one concerning reference 
variables which actually leads to circular attribute dependencies. For this problem, the attributes 
on the cycle converge immediately (after a single cycle). This will be discussed in §11.3.3.

10.9.1  Example: adding like-types

As a simple example of circular dependencies, we will extend our example language of §8.9.4 
with “like-types” as in Eiffel [Mey88]. An example program in this extended language may be 
the following:

begin
x: integer;
y: like x;

end;

This means that y has the same type as x, i.e. it is also an integer. Like-types can be introduced 
by adding the following specialization of the DeclType node class:

LikeDeclType: cons DeclType(u: ref Use);
{ eq u.path :- path;

eq tp :- u.tp;
};

This allows the type of a VarDecl to be declared as a like-type. In addition, the grammar must 
be extended to propagate a path attribute from BlockStmt down to the declaration part, so it can 
reach the Use node son of the LikeDeclType node.
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The introduction of like-types leads to potential cyclic dependencies. For example, it is syntac-
tically correct (although static-semantically erroneous) to write:

begin
x: like x;

end;

Here, the type of x is declared to be the same as the type of x, an obviously cyclic definition. 
Figure 10.11 shows the circular chain of dependencies for this declaration.

Figure 10.11 Circular definition of like-type

The incOwnerVisit procedure of DeclDoor contains a convergence test on the inherited 
attribute tp (see §10.7.3.3). Thus, since all the equations defining the tp attributes are copy equa-
tions, the evaluation will terminate. However, there are many attribute solutions to this syntax 
tree. All the tp attributes on the cycle must be equal, but the grammar is underdetermined in that 
it does not define which value to use in case of a cycle. Any Type value will in this case be con-
sistent with the equations, e.g. intType, boolType, or unknownType. The actual solution will 
depend on the order of evaluation.

For example, exhaustive evaluation of the whole declaration will yield the value unknownType 
for all the tp attributes. On the other hand, if a declaration “x: integer” is changed to “x: like 
x” by replacing the DeclType subtree of the declaration, this will result in the value intType for 
all the tp attributes.

Although the incremental evaluation will work and terminate with a correct attribution (accord-
ing to the grammar), this history-sensitive behavior is probably not desirable for this particular 
type-checking problem. A better behavior would be if the introduction of a cycle lead to an error 
message, and if all the tp attributes on the cycle got the value unknownType. This is possible to 
accomplish, but requires extensions to the door package. A similar problem is the detection of 
cyclic subclassing which must be handled in order to define name analysis for subclassing. This 
will be discussed in §11.2. A similar solution can be used to detect cyclic like-types.
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10.10  Possibilities for automatizing the implementation

Our proposed method for implementing door packages is systematic, but manual. Some parts of 
this construction could be performed automatically while other parts are inherently manual:

• The analysis of local access-dependencies is analogous to normal attribute dependency anal-
ysis and could be performed automatically.

• The non-local dependency analysis, on the other hand, is probably very difficult to automa-
tize in general since it involves finding actual dependencies rather than only access 
dependencies and this requires reasoning about the semantics of the specification. One could, 
however, imagine automatic support for detecting the existence non-local access-dependen-
cies and allow manual refinement of these dependencies.

• The manual implementation of dependency functions allows arbitrary time/space tradeoffs 
to be done. Nevertheless, it may be possible to develop automatic support for default imple-
mentations, at least in simple cases.

• The implementation of evaluation and de-evaluation procedures for conditions is inherently 
manual. However, it might be possible to find some suitable “standard” conditions and col-
lections and express them in a way suitable for automatization.

• The generation of the basic visit procedures could be done completely automatically. How-
ever, as we have seen in some examples, modifications to these basic algorithms are 
sometimes needed.

• The addition of extra code to the visit procedures in order to control underdeterminedness of 
the grammar is inherently manual.

• The detection of overlapping dependency sets is probably very difficult in general, but a pes-
simistic automatic detection of possible cases of overlap would be straight-forward.

• A pessimistic automatic detection of possible circularities via non-local dependencies is 
straight forward. Also, in the simple case where all the invariants on the circularity are copy 
equations, convergence is guaranteed. 

It would be an interesting area of future research to build a semi-automatic system which gives 
automatic support for certain parts of the implementation, as indicated in the list above. Such a 
system should keep track of both automatic and manual implementation steps in order to handle 
changes to the door package without having to redo the manual steps. For example, suppose an 
attribute was added to a door class, and the dependency analysis and all other implementation 
steps could be done automatically for this attribute. The system should then update the visit pro-
cedures without destroying earlier manual additions or changes to these procedures.

10.11  Summary

We have described a visit-oriented evaluator for Door-AGs. A number of visit procedures are 
constructed for each door class. Each of these procedures is characterized by three “characteris-
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tic sets” computed from the dependency graph of the door. Given these characteristic sets, the 
basic algorithm for the procedure is straight-forward to generate. However, modifications of the 
basic algorithm may be needed for some visit procedures. In particular, overlapping non-local 
dependency sets must be detected and the algorithm modified accordingly. In addition, conver-
gence tests on inherited attributes can be added to increase efficiency and to allow circular 
dependencies to be handled.

Evaluators for the main grammars can be constructed automatically by using simple adaptions 
of standard AG algorithms. We have shown how the simple 1-visit static-skipping algorithm of 
§7.3 can be adapted to evaluation of main grammars. This algorithm has the advantage of being 
very simple to implement, yet sufficiently powerful for practical problems.

The collections and conditions of Door AGs introduce implicit circular dependencies. Along 
these circular paths, explicit circular attribute dependencies can occur. Such circular dependen-
cies are straight-forward to handle, simply by relying on convergence tests in the door visit 
procedures. The circular dependencies are useful for a variety of static semantic checking prob-
lems, including handling reference variables and cyclic subclassing.
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Chapter 11

Advanced Attributions

In this chapter we will give some more advanced examples of how Door AGs can be used in 
order to specify full-blown object-oriented languages. The simple door package of the previous 
chapters is extended to handle the major static-semantic problems treated in Chapter 3. All these 
extensions have been implemented and tested. In particular, the following problems are treated:

1. Multiple declarations of the same identifier in the same block

2. Name analysis in the presence of subclassing

3. References and remote access

4. Type-checking reference assignments

5. Error presentation

The solutions to problems 1 and 2 both utilize an underdetermined grammar in order to achieve 
history-dependent error handling. Problem 2 leads to transitive non-local dependencies. Problem 
3 leads to cyclic dependencies. Problem 5 shows how a door class can be used as an interface to 
external components in the interactive environment.

In §11.6 we sketch how procedures and parameters can be added, and comment on the possibil-
ities for supporting the advanced virtual class concept of BETA. 

11.1  Multiple declarations

In the implementation of the door package of §8.9 we assumed that all the entry objects in a sym-
bol table have different names (see §9.5.3.2 - “Entry order”). In this section, the door package 
will be extended to detect multiple declarations of the same identifier.

We will adopt the history-dependent error-detection policy outlined in §3.6. I.e., if there are mul-
tiple declarations of the same identifier in the same block, one of these will be considered to be 
correct, and the others faulty. Which one is considered correct depends on the editing history.
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More precisely, one of the multiple declarations is considered to be visible, whereas the other 
declarations of the same name are considered to be hidden by the visible declaration. Uses of the 
name can only be bound to the visible declaration and not to the hidden ones. Additional actions 
will be inserted in the visit procedures to give older declarations precedence over newer decla-
rations. I.e., adding a new declaration with the same name as an existing one will cause the new 
declaration to be considered the erroneous one. Similarly, changing the name of a declaration to 
take on an already existing name, will cause the changed declaration to be considered the erro-
neous one.

11.1.1  The attribute visible

From the definition of the door package, it is clear that if there are multiple declarations of the 
same name, it is the one occurring first in the symbol table list which will be considered the vis-
ible one, since the lookup function of the symbol table will return this declaration entry. We 
model the visible/hidden status of a declaration by adding a synthesized attribute visible to 
DeclDoor:

addto DeclDoor
{ syn visible: boolean;

eq visible := table.lookup(theEntry.ident) == theEntry;
};

I.e., the declaration is visible if the lookup function of the symbol table returns the Entry object 
owned by DeclDoor, and not another Entry object with the same name. The synthesized 
attribute visible can be used by the main grammar to report the non-visible declarations as 
erroneous.

To implement the history-dependent error-detection policy, the procedure incOwnerVisit of 
DeclDoor (§10.7.3.3) is modified to affect the permutation order of the Entry objects in the 
symbol table list: Each time the ident attribute of the DeclDoor is updated (in step 4 of the visit 
procedure), the Entry object is moved to the end of the list as follows:

(* Step 4. Evaluate local non-fix invariants *)
if not tpUnchanged then

eval theEntry.tp;
end if;
if not identUnchanged then

eval theEntry.ident;
table.entries.remove(theEntry);
table.entries.add(theEntry);

end if;

The procedure add of class List adds the element to the end of the list (§9.5.2). By removing 
and adding the Entry object it is thus moved to the end of the list. This is an example of a visit 
procedure modification to affect the solution for underdetermined grammars as discussed in 
§10.6.3. 
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The result of this modification is that each time the name of a declaration is edited, the declara-
tion will be moved to the end of the symbol table list and will thus become hidden by other 
declarations of the same (new) name.

11.1.2  Dependency analysis

We now redo the dependency analysis of DeclDoor, with respect to the new attribute visible, 
and take into consideration that there may be several declaration entries with the same identifier 
in a symbol table.

The new attribute visible depends locally on the attribute theEntry.ident. In addition, it 
depends non-locally on the existence of other Entry objects with the same identifier which pre-
cedes it in the symbol table list. This is modelled by a receive vertex v(VisStatus) (see Figure 
11.2).

Let d1 and d2 be two DeclDoor objects with Entry objects e1 and e2 respectively. Suppose that 
e2 is a direct or indirect successor of e1 in the symbol table list, and that e1.ident = e2.ident 
= id, as shown in Figure 11.1. Suppose furthermore that there is no other Entry object with this 
identifier located between e1 and e2, or before e1. Thus, e1 is visible and e2 is hidden by e1.

The de-evaluation of the attribute e1.ident will cause e2 to become visible, since e2 then 
becomes the first entry with ident = id in the list. This is modelled by adding a send vertex 
v(VisStatus, DeclDoor, fNext) to the dependency graph of DeclDoor and adding a de-evalua-
tion edge from v(theEntry.ident) to this vertex. For the situation in Figure 11.1, the function 
fNext should return a singleton set containing d2. In other situations, i.e. if e1 is not the first 
entry with ident = id, or if there is no entry e2, then fNext should return the empty set. A similar 
argument for the condition registered leads to a de-evaluation edge from v(registered) to 
v(VisStatus, DeclDoor, fNext). 

Now consider evaluating the attribute theEntry.ident of d1 again. If the order between the ele-
ments is not changed, this would make e2 invisible again. However, because of the additional 
code added to incOwnerVisit, an Entry object for which the ident attribute is evaluated is 
always placed at the end of the symbol table list. Thus, the evaluation of theEntry.ident does 

Figure 11.1 Declaration hides other declaration with the same name
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not have any DeclDoor dependents. Similarly, evaluation of the condition registered will add 
the Entry at the end of the symbol table list, and no DeclDoor objects are affected.

Figure 11.2 shows the resulting dependency graph for DeclDoor.

The dependency function fNext is straight-forward to implement, but it requires adding an addi-
tional reference attribute to class Entry, which denotes the DeclDoor object owning the Entry:

addto Entry
{ loc owner: ref DeclDoor;
};

addto DeclDoor
{ eq theEntry.owner :- this DeclDoor;
};

The additions needed to the door visit procedures of DeclDoor follow exactly the basic door visit 
procedure algorithm of 10-3. For brevity, these details (and the exact implementation of fNext) 
are left out.

Figure 11.2 Dependency graph for DeclDoor
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11.2  Name analysis in presence of subclassing

The simple door package of §8.9 supports Algol style scope rules by means of the BlockDoor. 
We will now extend this package to support also classes and subclassing by adding a new door 
ClassDoor. We recall from §3.3.2 that name analysis in the presence of subclassing can be done 
by attaching two path vertices to each class: a prefix path and a static path. This is in contrast to 
the simple (Algol) blocks which have only a static path. The ClassDoor will thus have part 
objects for both a prefix path and a static path whereas the BlockDoor has only a static path. 

11.2.1  The ClassDoor and its part objects

Classes can be modelled by a door ClassDoor which is similar to BlockDoor but has two 
SearchPath part-objects instead of only one, as illustrated in Figure 11.3. The prefix path vertex 
has two outgoing edges: the first edge ends in the symbol table of the class, and the second edge 
ends in the prefix path of the superclass (a). Thus, the symbol tables of a class and all its super-
classes are reachable via the prefix path. The static path also has two outgoing edges: the first 
edge ends in the prefix path of the class and the second edge ends in the static path of the enclos-
ing block (b). Thus, the static path gives access to the symbol tables of the class and all its 
superclasses, to the enclosing block, to the superclasses of the enclosing block (if it is also a 
class), to the enclosing block of the enclosing block, and so on. The specification of ClassDoor 
is shown in §11.2.5.

This visibility graph model handles not only ordinary class hierarchies, but also arbitrary com-
binations of classes and block structure. In §3.3.2 an example was given of nested classes (Figure 
3.3). Figure 11.4 shows a corresponding attributed syntax tree which embeds the visibility graph 
in the attribution using objects and references. Similar to Figure 3.3, a diagonal line represents 
a reference attribute denoting the emptyPath object.
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Figure 11.3 A ClassDoor and its part objects
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Figure 11.4 Attributed syntax tree for program with nested classes.
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11.2.2  Class types

In addition to the two paths and the symbol table, the ClassDoor also has a ClassType part 
object. ClassType objects are used for type checking of classes. In the attributed syntax tree of 
a given user program there will be one ClassType object for each class in the user program. A 
ClassType object has a reference attribute prefixClass, denoting the ClassType object of the 
superclass. In this way, the ClassType objects form a forest of trees modelling the class hierar-
chy in the user program. As discussed in §3.5, it is useful to extend this forest to a single tree by 
adding a most general class “ObjectClass” which is considered to be a superclass of all the user 
program classes. It is also useful to introduce a class “NoClass” modelling the class of the value 
“NONE”. Although “NoClass” is not related to the other classes, it is for some purposes useful 
to regard it as a subclass of all other classes, thus extending the tree to a lattice. We model the 
types of “ObjectClass” and “NoClass” by two constant semantic objects objectClassType and 
noClassType. The generalization of these constant objects and the class ClassType is modelled 
by an abstract class AbstractClassType. These classes and objects are all specializations of the 
class Type introduced in the basic door package (§8.9.1), and the resulting specialization hierar-
chy for Type is shown in Figure 11.5.

The specification of AbstractClassType and its specializations is shown in Figure 11.6. The 
function call x.subclassOrEqual(y) returns true if x is a subclass of y, or if x and y are the 
same class. The function also returns true if x is the constant object noClassType, to indicate 
that “NoClass” is regarded as a subclass of all other classes. The function call x.getPrefixPath 
returns the prefix path of the class x. The prefix path is defined as emptyPath for the object-
ClassType and the noClassType.

ClassType objects are linked together to a class hierarchy by the local attribute prefixClass. 
The ClassType also has a local attribute owner used for defining the getPrefixPath function.

Figure 11.5 Extensions to Type class hierarchy
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11.2.3  ClassDoor interface

The objects a and b of Figure 11.3 have to be communicated to the ClassDoor by inherited 
attributes. For b (the static path of the enclosing block), we use an inherited attribute encPath, 
exactly as for the BlockDoor. To obtain a reference to a (the prefix path of the superclass), we 
add an inherited attribute

syn syntPrefixClass: ref AbstractClassType

which is the superclass according to the user program syntax tree. The prefix path is obtained by 
calling the function getPrefixClass of this attribute.

Similar to BlockDoor, the ClassDoor has synthesized attributes locPath and table, to be used 
in an analogous way. The ClassDoor also has a synthesized attribute classTp which denotes the 
ClassType part object. Finally, as discussed in §3.3.2, cyclic subclassing must be detected. For 
this type of static semantic error we will use a history-dependent error-detection policy, similar 
to the handling of multiple declarations: The class declaration whose prefix was last changed is 
considered as causing the cycle. A synthesized attribute causesCycle will be true for this class 
declaration. The resulting interface of ClassDoor is shown in Figure 11.7.

Figure 11.6 Specification of class types

AbstractClassType: class Type (* abstract *)
{ subclassOrEqual: func boolean (ct: ref AbstractClassType);
getPrefixPath: func ref SearchPath fix;

};

ClassType: class AbstractClassType
{ loc prefixClass: ref AbstractClassType;
loc owner: ref ClassDoor;
impl getPrefixPath :- owner.prefixPath;
impl subclassOrEqual := 
if ct == this ClassType
then true
else
if ct == noClassType
then false
else prefixClass.subclassOrEqual(ct);

}

objectClassType: object AbstractClassType
{ impl getPrefixPath :- emptyPath;
impl subclassOrEqual := ct == objectClassType;

};

noClassType: object AbstractClassType;
{ impl getPrefixPath :- emptyPath;
impl subclassOrEqual := true;

};
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11.2.4  Main grammar extension

The main grammar of §8.9.4 can be extended to include class declarations by adding a node class 
ClassDecl which makes use of a ClassDoor as shown in Figure 11.8. 

A ClassDecl node has three son nodes: prefix (a Use node for the name application of the pre-
fix class), declID (the name of the declared class), and b (the body of the class). The ClassDecl 
further declares two door objects: cDoor (a ClassDoor) and dDoor (a DeclDoor). The bulk of 
the equations are similar to those of the node classes BlockStmt and VarDecl. However, some 
of the equations in ClassDecl deserve some comments:

Figure 11.7 Interface to ClassDoor

ClassDoor: door
{ inh encPath: ref SearchPath fix;
inh syntPrefixClass: ref AbstractClassType;
syn locPath: ref SearchPath fix;
syn table: ref SymbolTable fix;
syn classTp: ref ClassType fix;
syn causesCycle: boolean;

}

Figure 11.8 Specifying class declarations in a main grammar

ClassDecl: cons Decl
(prefix: ref Use, declID: ref ID, b: ref Block)

{ cDoor: doorobject ClassDoor;
dDoor: doorobject DeclDoor;
loc prefixTypeError: boolean;
loc cyclicClassError: boolean;
eq cDoor.encPath :- path;
eq b.path :- cDoor.locPath;
eq b.table :- cDoor.table;
eq cDoor.syntPrefixClass :- (* 1 *)

if prefix.tp in AbstractClassType
then prefix.tp
else objectClassType;

eq dDoor.tp :- cDoor.classTp;
eq dDoor.ident :- declId.ident;
eq dDoor.table :- table;
eq prefixTypeError := (* 2 *)

not prefix.tp in AbstractClassType;
eq cyclicClassError := cDoor.causesCycle; (* 3 *)

};
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One type of static semantic error which can occur in ClassDecl is that the prefix may be a 
name application denoting some other entity than a class, e.g. an integer as in the following erro-
neous Simula program:

This error is detected by equation (* 2 *) which checks if the tp attribute of the son prefix is 
at least an AbstractClassType object. The equation (* 1 *) also takes this situation into 
account by defining the inherited attribute syntPrefixClass of the ClassDoor as object-
ClassType in case the tp attribute of prefix is not at least an AbstractClassType.

A second type of static semantic error which can occur in ClassDoor is cyclic subclassing as in 
the following erroneous Simula program:

In equation (* 3 *), the attribute causesCycle is defined as true for only one of the classes in 
a cycle. Which one depends on the editing history.

begin
integer x;

x class A; (* Error: Prefix is not a class *)
begin
end;

end;

A class B; (* B is a subclass of A *)
begin
end;

B class A; (* A is a subclass of B *)
begin
end;
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11.2.5  Specification of ClassDoor

A first version of the ClassDoor specification is shown in Figure 11.9. This definition will be 

slightly refined during the dependency analysis. Most of the equations are straight-forward, 
defining the SearchPath connections in a similar way as for the BlockDoor. However, equations 
(* 1 *), (* 2 *), and (* 3 *) deserve some comments.

Equation (* 1 *) defines the attribute theClassType.prefixClass. Normally, this attribute 
will get the value of the inherited attribute syntPrefixClass. However, in case this would intro-
duce a cyclic class hierarchy, the prefixClass attribute is instead assigned a reference to the 
constant object objectClassType. Thus, this equation guarantees that ClassType objects 
chained together by the reference attribute prefixClass cannot form a cyclic chain. This is nec-
essary since the function subclassOrEqual would loop otherwise.

Figure 11.9 First version of ClassDoor specification

ClassDoor: door
{ inh encPath: ref SearchPath fix;
inh syntPrefixClass: ref AbstractClassType;
syn locPath: ref SearchPath fix;
syn table: ref SymbolTable fix;
syn classTp: ref ClassType fix;
syn causesCycle: boolean;

theClassType: object ClassType;
eq classTp :- theClassType;
eq theClassType.owner :- this ClassDoor;
eq theClassType.prefixClass :- (* 1 *)
if syntPrefixClass.subclassOrEqual(theClassType)
then objectClassType
else syntPrefixClass;

theTable: object SymbolTable;
theTablePath: object SymbolTablePath;
eq table :- theTable;
eq theTablePath.table :- theTable;

prefixPath: object TwoPath;
eq prefixPath.first :- theTablePath;
eq prefixPath.second :- (* 2 *)

theClassType.prefixClass.getPrefixPath;

staticPath: object TwoPath;
eq locPath :- staticPath;
eq staticPath.first :- prefixPath;
eq staticPath.second :- encPath;

eq causesCycle := (* 3 *)
syntPrefixClass =/= theClassType.prefixClass;

};
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Equation (* 2 *) defines the attribute second of prefixPath in terms of the prefixClass 
attribute. Since the prefixClass attributes cannot form a cycle, this prevents also the prefix-
Path objects to be connected in a cycle. This is necessary since a cyclic visibility graph would 
cause the function lookup to loop.

Equation (* 3 *) defines the attribute causesCycle as true if the syntPrefixClass attribute 
differs from theClassType.prefixClass. This indicates a syntactic cycle in the subclass hier-
archy which is broken at this particular ClassDoor. For other ClassDoor objects on the same 
syntactic subclass cycle the causesCycle attribute will have the value false. For ClassDoor 
objects which are not on any cycle, the causesCycle attribute will also have the value false.

11.2.6  Dependency analysis

The dependency analysis of ClassDoor involves two kinds of non-local dependencies. One con-
cerning cyclic subclassing and one concerning changes to edges of the visibility graph.

11.2.6.1  Cyclic subclasses

The attribute ClassType.prefixClass depends on non-local information. The equation defin-
ing this attribute ((* 1 *) in Figure 11.9) accesses the subclassOrEqual function which in turn 
accesses the prefixClass attribute of other ClassType objects. There is thus a static 
dependency

 (ClassType.prefixClass, ClassType.prefixClass). 

This non-local dependency is modelled by a receive vertex v(cycStatus) and a send vertex 
v(cycStatus, ClassDoor, fCyclic) in the dependency graph for ClassDoor as shown in Figure 
11.10.

A local copy attribute localSyntPrefixClass has been added. This will allow the dependency 
function fCyclic to determine if other ClassDoor objects are considered to cause a cycle with-
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theClassType.prefixClass

cycStatus
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Figure 11.10 Partial dependency graph for ClassDoor
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out consulting non-fix inherited attributes whose values may have changed after the latest 
evaluation of the ClassDoor objects. The equations defining theClassType.prefixClass and 
causesCycle are updated accordingly as shown in Figure 11.11.

It is possible for a change to the inherited attribute syntPrefixClass of a ClassDoor x to break 
or introduce a syntactic subclass cycle. If a cycle is introduced, the cause of the cycle will be 
associated with x. If a cycle is broken, the cause can be either in x or in any of the other Class-
Door objects involved in the cycle. In the latter case, there is a non-local dependency to another 
ClassDoor object y (the one on the cycle whose causesCycle attribute is true). Since it is only 
the breaking of a cycle which can affect non-local doors, the edge from v(theClassType.pre-
fixClass) to the send vertex is a de-evaluation edge rather than a normal edge.

The de-evaluation of theClassType.prefixClass will break a cycle caused by another Class-
Door object y iff:

• y is a superclass of x, and

• y’s attribute causesCycle is true, and

• the syntactic superclass of y is a subclass or equal to x

The dependency function fCyclic should in this case return a singleton set containing y. Other-
wise, fCyclic should return an empty set. To find a superclass causing a cycle, we use a 
recursive function findCycleCauser in class AbstractClassType as shown in Figure 11.12. 
The implementation of the function fCyclic is given in Figure 11.13.

The implementation of findCycleCauser in ClassType accesses the synthesized attribute 
causesCycle, which in turn (since it is a demand attribute) accesses the local copy of the inher-
ited attribute syntPrefixClass. By accessing the local copy instead of the inherited attribute 
directly, the causesCycle attribute is insured to return the value used in the latest evaluation of 

Figure 11.11 Extension and refinement of ClassDoor by the local 
copy attribute localSyntPrefixClass

addto ClassDoor
{ loc localSyntPrefixClass: ref AbstractClassType;
eq localSyntPrefixClass :- syntPrefixClass;
eq theClassType.prefixClass :- (* 1’ *)
if localSyntPrefixClass.subclassOrEqual(theClassType)
then objectClassType
else localSyntPrefixClass;

eq causesCycle := (* 3’ *)
localSyntPrefixClass =/= theClassType.prefixClass;

}
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the ClassDoor, and not be dependent on possible changes or re-evaluations in the enclosing syn-
tax tree. 

11.2.6.2  Changes to visibility graph edges

The attribute prefixPath.second in ClassDoor depends on the non-fix inherited attribute syn-
tPrefixClass and may thus change during incremental evaluation. This attribute models an 
edge in the visibility graph and a change to it may affect the bindings of UseDoor objects. This 
outgoing non-local dependency in ClassDoor is modelled by a send vertex v(lookupChanged, 
UseDoor, fAttemptedEdge), where fAttemptedEdge is a dependency function returning the set 
of UseDoor objects which have attempted to bind via the prefixPath.second edge.

We will keep track of the affected UseDoor objects by maintaining a collection of UseDoor 
objects for this visibility graph edge. To program this in a simple way, we introduce a new class 
WatchPath which is a specialization of SearchPath as shown in Figure 11.14. A WatchPath 
object models a path vertex with one outgoing edge. The collection attemptedEdge in Watch-
Path collects all UseDoor objects which have attempted to bind via the WatchPath object. Thus, 

Figure 11.12 The function findCycleCauser

addto AbstractClassType
{ findCycleCauser: func ref ClassType (* may return NONE *)

:- NONE;
};

addto ClassType
{ impl findCycleCauser :-

if owner.causesCycle
then this ClassType
else prefixClass.findCycleCauser;

};

Figure 11.13 Extension of ClassDoor by the dependency function 
fCyclic

emptyClassDoorSet: object Set[ClassDoor];

addto ClassDoor
{ fCyclic: func ref Set[ClassDoor] :-

inspect $ct :- 
theClassType.prefixClass.findCycleCauser

when ClassType do
if $ct.owner.localSyntPrefixClass.

subclassOrEqual(theClassType)
then emptyClassDoorSet.add($ct.owner)
else emptyClassDoorSet

otherwise emptyClassDoorSet;
};
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UseDoor objects attempting to bind via a given edge can be collected simply by redefining that 
edge to go via a WatchPath object.

A condition cAttemptedEdge is added to UseDoor to maintain the attemptedEdge collections 
of WatchPath objects. The condition simply states that the UseDoor object is a member of the 
attemptedEdge collection of all WatchPath objects encountered during lookup. This condition 
has dependencies similar to the cUses and cAttempted conditions, and is straight-forward to 
add to UseDoor.

Figure 11.15 shows how the edge outgoing from prefixPath.second in ClassDoor is rede-
fined to go via a WatchPath object, and how the dependency function fAttemptedEdge is 
implemented. This function corresponds to solving the incremental name analysis problem IV 
(change the visibility graph) treated in §3.4. The solution, using WatchPath objects, is an imple-
mentation of method 6 (maintain traces).

The final dependency graph for ClassDoor is shown in Figure 11.16.

Figure 11.14 The class WatchPath

WatchPath: class SearchPath
{ loc path: ref SearchPath;
collection: attemptedEdge:

object UnorderedCollection[UseDoor];
impl lookup :- path.lookup(ident);

};

addto UseDoor
{ cAttemptedEdge: cond ...;
};

Figure 11.15 Extension and refinement of ClassDoor by 
theWatchPath and the dependency function 
fAttemptedEdge

addto ClassDoor
{ theWatchPath: object WatchPath;
eq prefixPath.second :- theWatchPath; (* 2’ *)
eq theWatchPath.path :-

theClassType.prefixClass.getPrefixPath;

fAttemptedEdge: func ref Set[UseDoor] :-
theWatchPath.attemptedEdge.contents;

};
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11.2.7  Visit procedures

The visit procedures exhDeEvalVisit and exhEvalVisit for ClassDoor are implemented 
according to the basic visit procedure algorithm. The visit procedure incOwnerVisit has tran-
sitive non-local dependents (via the visit procedures for cycStatus) which overlap the direct 
non-local dependents. The incOwnerVisit must thus be modified in order to not violate the pre-
conditions of the visit procedures of its dependent doors. In all other respects, the 
incOwnerVisit and the eval/deEval pair for cycStatus are implemented according to the 
basic algorithm.

Figure 11.16 Dependency graph for ClassDoor

tablelocPathencPath classTp causesCycle

theClassType.owner

theClassType.prefixClass

theTablePath.table

prefixPath.first

prefixPath.second

staticPath.first

staticPath.second

cycStatus

cycStatus
ClassDoor
fCyclic

localSyntPrefixClass

lookupChanged
UseDoor
fAttemptedEdge

d

theWatchPath.path

syntPrefixClass



11.2 Name analysis in presence of subclassing 229

The characteristic sets for incOwnerVisit and cycStatus are as follows:

The dependency set computed by fCyclic will actually always be empty when called from the 
deEvalCycStatus procedure. This is because fCyclic will only be called for a ClassDoor 
object y which causes a cycle. The attribute theClassType.prefixClass of y will in this case 
denote objectClassType, and the function fCyclic of y will return the empty set. We therefore 
remove the send vertex v(cycStatus, ClassDoor, fCyclic) from Ssend of cycStatus and obtain 
the following simplified characteristic sets:

Overlapping dependency sets can occur for an incOwnerVisit procedure. Consider a Class-
Door object X with two dependency sets X.fCyclic and X.fAttemptedEdge. If X.fCyclic 
contains another ClassDoor object Y, the dependency sets X.fAttemptedEdge and Y.fAt-
temptedEdge may overlap. The basic algorithm for incOwnerVisit must be modified to ensure 
that the deEval procedure is called only once for each of these dependent doors.

As an actual example of overlapping dependency sets, consider the (erroneous) Simula program 
of Figure 11.17. This program contains a cyclic subclassing hierarchy (Y is declared as a subclass 
of X and X is declared as a subclass of Y). Class Y (the uppermost class) is considered to cause 
the cycle.

Scond Sloc Ssend

incOwner-
Visit

∅ { v(localSyntPrefixClass),
v(theClassType.

prefixClass),
v(theWatchPath.path) }

{ v(cycStatus,
ClassDoor, 
fCyclic),

v(lookupChanged, 
UseDoor, 
fAttemptedEdge) }

deEval/Eval
cycStatus

∅ { v(theClassType.
prefixClass),

v(theWatchPath.path) }

{ v(cycStatus,
ClassDoor, 
fCyclic),

v(lookupChanged, 
UseDoor, 
fAttemptedEdge) }

Scond Sloc Ssend

incOwner-
Visit

∅ { v(localSyntPrefixClass),
v(theClassType.

prefixClass),
v(theWatchPath.path) }

{ v(cycStatus,
ClassDoor, 
fCyclic),

v(lookupChanged, 
UseDoor, 
fAttemptedEdge) }

deEval/Eval
cycStatus

∅ { v(theClassType.
prefixClass),

v(theWatchPath.path) }

{ v(lookupChanged, 
UseDoor, 
fAttemptedEdge) }
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Consider changing the program by replacing the prefix of class X (the middle class) from Y to Z. 
This change would break the syntactic subclassing cycle and result in a correct Simula program 
where all of the name applications p, q, r, and s become bound to the corresponding declarations 
in Z. Such an edit results in a call to the incOwnerVisit procedure of ClassDoor X, giving

X.fCyclic = {Y}

Since the name applications p, q, r, and s are all undeclared, the dependency sets of UseDoor 
objects for X and Y are

Y.fAttemptedEdge = {p, q, r, s}
X.fAttemptedEdge = {r, s}

and these dependency sets are thus overlapping.

The incOwnerVisit procedure can be modified in a simple way in order to handle this overlap. 
The idea is to delay the computation of Y.fAttemptedEdge until all the UseDoor objects of 
X.fAttemptedEdge have been de-evaluated. At this point, the overlapping UseDoor objects will 
no longer be part of the set computed by Y.fAttemptedEdge, since the de-evaluation of these 
UseDoor objects have removed them from all attemptedEdge collections. Figure 11.18 shows 
the resulting implementation of incOwnerVisit.

The incOwnerVisit procedure is constructed according to the basic algorithm, but special care 
has been taken to order the two de-evaluation iterations of step 2 so that the deEvalLook-
upChanged procedure of the UseDoor objects in attemptedSet is called before the 
deEvalCycStatus procedure of the ClassDoor objects in cycStatusSet (i.e. Y) is called. Thus, 
the dependency set of UseDoor objects computed by Y will not contain any of the UseDoor 

Figure 11.17 Breaking a syntactic subclass cycle by changing Y to Z.

begin
X class Y; (* Error: Class Y causes cycle *)
begin

p := q;(* Error: p and q are undeclared *)
end;

Y class X;
begin

r := s;(* Error: r and s are undeclared *)
end;

class Z;
begin

integer p, q, r, s;
end;

end;

edit point



11.2 Name analysis in presence of subclassing 231

objects de-evaluated so far. The reverse ordering of Step 2 would lead to overlapping dependen-
cy sets and violate the legal evaluation state transitions for the overlapping UseDoor objects.

The visit procedures deEvalCycStatus and evalCycStatus are implemented according to the 
basic algorithm. The dependency sets of these procedures must be stored outside the procedures 
as mentioned in the discussion of algorithm 10-3. This is accomplished simply by storing them 
in the ClassDoor itself as shown in Figure 11.19.

Figure 11.18 Procedure incOwnerVisit for ClassDoor

addto ClassDoor
{ impl incOwnerVisit
{ cycStatusSet: ref Set[ClassDoor]; (* dependency set *)
attemptedSet: ref Set[ClassDoor]; (* dependency set *)

(* Step 1. Compute dependent doors *)
cycStatusSet :- fCyclic;
attemptedSet :- fAttemptedEdge;

(* Step 2. De-evaluate dependent doors *)
for $d :- attemptedSet.each do $d.deEvalLookupChanged; end for;
for $d :- cycStatusSet.each do $d.deEvalCycStatus; end for;

(* Step 4. Evaluate local invariants *)
eval localSyntPrefixClass;
eval theClassType.prefixClass;
eval theWatchPath.path;

(* Step 5. Evaluate dependent doors *)
for $d :- cycStatusSet.each do $d.evalCycStatus; end for;
for $d :- attemptedSet.each do $d.evalLookupChanged; end for;

(* Step 6. Add dependent doors to work list *)
evaluator.worklist.addSet(cycStatusSet);
evaluator.worklist.addSet(attemptedSet);

};
};
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11.2.8  Circular dependencies

En erroneous program with a cyclic class hierarchy corresponds to an intuitive cyclic chain of 
dependencies, as discussed in §3.3.6. However, although the ClassDoor handles and breaks 
such cycles, the attributes in a ClassDoor are themselves not involved in any cyclic attribute 
dependencies. I.e., introducing and/or breaking cycles in the class hierarchy of the user program 
does not lead to cyclic attribute evaluation.

Section §10.9 discussed how potential cyclic dependencies could be identified by matching send 
and receive vertices in the door dependency graphs. Doing this for the ClassDoor indicates a 
potential cycle between two or more ClassDoor objects via the cycStatus send and receive ver-
tices. However, from the definition of the dependency function fCyclic it is clear that such a 
cycle cannot actually occur. This was discussed in §11.2.7 where we noted that the fCyclic 
dependency set for a receiving ClassDoor is always empty.

Figure 11.19 Procedures deEvalCycStatus and evalCycStatus

addto ClassDoor
{ (* dependency set for cycStatus deEval/eval procedures *)
attemptedSet: ref Set[ClassDoor];

deEvalCycStatus: proc
{ (* Step 1. Compute dependent doors *)
attemptedSet :- fAttemptedEdge;

(* Step 2. De-evaluate dependent doors *)
for $d :- attemptedSet.each do $d.deEvalLookupChanged; end for;

};

evalCycStatus: proc
{ (* Step 4. Evaluate local invariants *)
eval theClassType.prefixClass;
eval theWatchPath.path;

(* Step 5. Evaluate dependent doors *)
for $d :- attemptedSet.each do $d.evalLookupChanged; end for;

(* Step 6. Add dependent doors to work list *)
evaluator.worklist.addSet(attemptedSet);

};
};
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11.3  References and remote access

References and remote access are simple to handle based on the facilities for classes of the pre-
vious section. Only some small extensions are needed to the door package.

11.3.1  Extensions to door package

To handle reference types, we extend the Type class hierarchy by new specializations which par-
allel those for class types as shown in Figure 11.20. There is a one-to-one correspondence 
between class types and references types. Given a class type, the corresponding reference type 
can be accessed and vice versa. This is implemented by a function getRefType in Abstract-
ClassType and a function getClassType in AbstractRefType. The reference types are 
specified in Figure 11.21 and the additions to the class types in Figure 11.22.

Figure 11.20 Extensions to Type class hierarchy

Type

unknownType
ClassType

AbstractClassType objectClassType

noClassType

RefType

AbstractRefType objectRefType

noRefType

Figure 11.21 Specifications of reference types

AbstractRefType: class Type (* abstract *)
{ getClassType: func ref AbstractClassType fix;
};

RefType: class AbstractRefType
{ loc classTp: ref ClassType;
impl getClassType :- classTp;

};

objectRefType: object AbstractRefType
{ impl getClassType :- objectClassType;
};

noRefType: object AbstractRefType;
{ impl getClassType :- noClassType;
};
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Note that ClassType declares a RefType part object and that RefType has a local attribute 
classTp. This implies that the ClassDoor must be extended to define the local attribute of 
RefType objects as shown in Figure 11.23. A corresponding evaluation statement must be added 
to step 4 of the procedure exhEvalVisit of ClassDoor. This completes the extension to the 
basic door package to handle classes and subclasses.

11.3.2  Extensions to the main grammar

11.3.2.1  Declaration of reference variables

The main grammar can be extended to allow declarations of reference variables simply by add-
ing a new specialization of the node class DeclType. This new node class, RefDeclType, is 
shown in Figure 11.24. The Use son node should be an identifier bound to a class declaration, 
i.e. the tp attribute of the Use node should be at least an AbstractClassType. A local attribute 
error detects if this is the case or not (* 1 *). The resulting type of the RefDeclType node is 
defined as the reference type corresponding to the class type of the Use node (or objectRefType 

Figure 11.22 Additions to class types

addto AbstractClassType
{ getRefType: func ref AbstractRefType fix;
};

addto ClassType
{ refTp: object RefType;
impl getRefType :- refTp;

};

addto objectClassType
{ impl getRefType :- objectRefType;
};

addto noClassType
{ impl getRefType :- noRefType;
};

Figure 11.23 Addition to ClassDoor

addto ClassDoor
{ eq theClassType.refTp.classTp :- theClassType;
};



11.3 References and remote access 235

in case of an error) (* 2 *). Note that the call to getRefType is legal since this is a fix function. 
(Recall that calls to non-fix functions via reference attributes are legal only in the door package.)

11.3.2.2  Remote access

The principles for remote access were described in §3.3.3. For a remote access

a.b

the binding of b depends on the type of a. In Simula, a must be a reference variable, or a proce-
dure returning a reference. The left-hand side of the remote access (to the left of the dot) can also 
be a more complex expression, e.g. another remote access, a “qua”, or a “this” expression.

We extend the main grammar by a node class RemoteAccess which has an expression on the left-
hand side and a Use node on the right hand side (Figure 11.25). A static semantic error occurs if 
the type of the left hand side is not a reference type. The local attribute error detects if this is 
the case or not (* 1 *).

To bind the right-hand side in a suitable environment, the path attribute of the right-hand side is 
defined as the prefix path of the class of the left hand side reference (* 2 *). By this equation, 
the right-hand-side path attribute is dependent on the tp attribute of the left hand side, and will 
receive a new value if the tp attribute changes. The right-hand-side path is thus a non-fix 
attribute. The Use node will use this non-fix attribute to define the path attribute of its UseDoor. 
It was for this reason we did not require the inherited attribute path of UseDoor to be a fix 
attribute in §8.9.2.4. This allows the UseDoor to be used also for remote accesses.

The resulting type of the remote access expression is the same as the type of the right hand side 
(* 3 *).

Figure 11.24 Node class RefDeclType

RefDeclType: cons DeclType(cls: ref Use)
{ loc error: boolean;
eq error := not cls.tp in AbstractClassType; (* 1 *)
eq tp :- (* 2 *)

inspect $c :- cls.tp
when AbstractClassType do $c.getRefType
otherwise objectRefType;

};
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11.3.3  Circular dependencies

It was noted in §3.3.6 that an erroneous (but syntactically correct) declaration of a reference 
variable:

ref (a) a;

leads to an intuitively cyclic dependency. An attributed syntax tree for this declaration, according 
to the main grammar extended by RefDeclType in §11.3.2.1, results in a corresponding circular 
chain of attribute dependencies as shown in Figure 11.26. The evaluation converges and results 
in a suitable attribution and error-detection.

Figure 11.25 Node class RemoteAccess

RemoteAccess: cons Exp(lhs: ref Exp, rhs: ref Use)
{ loc error: boolean;
eq error := not lhs.tp in AbstractRefType; (* 1 *)
eq rhs.path :- (* 2 *)

inspect $r :- lhs.tp
when AbstractRefType do $r.getClassType.getPrefixPath
otherwise objectClassType.getPrefixPath;

eq tp :- rhs.tp; (* 3 *)
};

Figure 11.26 Circular dependency chain for erroneous declaration of reference

tp 

UseDoor

binding
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tp 

VarDecl

DeclDoor
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dependency

tp :-
inspect $c :- cls.tp
when AbstractClassType do
$c.getRefType

otherwise objectRefType;
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This circularity is similar to the one for “like-types” discussed in §10.9.1, but in contrast to the 
“liketype” example, this circularity has exactly one solution, i.e. the grammar is determined for 
this problem: If one or more declarations of reference variables are involved in a cycle, the type 
of all these declarations will be objectRefType. This is insured by the equation defining tp in 
RefDeclType as shown in the figure. The rest of the equations on the dependency chain are copy 
equations. Furthermore, the error attribute of the RefDeclType will be true for all the declara-
tions on the cycle since the UseDoor should be bound to a declaration of a class and not a 
declaration of a reference variable.

The evaluation converges after only one cycle in the evaluation. Figure 11.27 shows the visit pro-
cedure calls resulting from adding the erroneous declaration.

11.4  Type-checking reference assignments

In §3.5 we discussed type checking for object-oriented languages, and noted that this involves 
comparison of formal qualifications.

To type-check a reference assignment, rA :- rB, the formal qualifications of rA and rB can be 
compared by using the function subclassOrEqual in AbstractClassType. However, since this 
function is non-fix it must not be called directly from the main grammar, but only from inside a 
door object. A new door class CompareClassDoor is therefore added to the door package. A 
straight-forward way of designing this door would be to give it two inherited attributes for the 
two class types to be compared, and one synthesized attribute for the result of the subclas-

evaluator.replaceSubtree
(* Exhaustive phase *)
VarDecl.exhVisit
RefDeclType.exhVisit
Use.exhVisit
UseDoor.exhEvalVisit
eval binding (-> UseDoor.binding == nullEntry,

UseDoor.tp == unknownType)
DeclDoor.exhEvalVisit
UseDoor.deEvalLookupChanged
eval theEntry.ident
eval theEntry.tp (-> theEntry.tp == objectRefType)
UseDoor.evalLookupChanged
eval binding (-> UseDoor.binding == DeclDoor.theEntry,

UseDoor.tp == objectRefType)

(* Non-local incremental phase *)
Use.incDoorVisit
RefDeclType.incSonVisit
VarDecl.incSonVisit
DeclDoor.incOwnerVisit
(* converged value for tp *)

Figure 11.27 Visit procedure calls during evaluation of cyclic dependency
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sOrEqual function called on one of the inherited attributes. However, this would require the 
node class for the reference assignment to use two door objects since comparisons are needed in 
both directions. Instead, we will use another design where the CompareClassDoor does both 
comparisons.

Figure 11.28 shows the specification of CompareClassDoor. The two inherited attributes shoul-
dBeGenClass and shouldBeSpecClass stand for “should be the general class” and “should be 
the specialized class”. The idea is that when doing a class comparison in type-checking, the nor-
mal (and statically checkable) case is that one of the classes is more general than the other. As 
an example, in the Simula reference assignment, the left-hand side should be more general than 
the right-hand side. The synthesized attribute reverseOrder is defined as true, if shouldBeGen-
Class is, in fact, a specialization of shouldBeSpecClass. The synthesized attribute 
incomparable is defined as true if the two classes are incomparable, i.e. if neither class is more 
general or special than the other one.

11.4.1  Extension to main grammar

The reference assignment in Simula can be modelled as shown in Figure 11.29. The node class 
RefAssignStmt uses the CompareClassDoor to compare the formal qualifications of the left-
hand side and the right-hand side according to the cases listed in §3.5. The local attributes 
errorLhs, errorRhs, errorInc detect static semantic errors in the assignment. The local 

Figure 11.28 CompareClassDoor

CompareClassDoor: door
{ inh shouldBeGenClass: ref AbstractClassType;
inh shouldBeSpecClass: ref AbstractClassType;
syn reverseOrder: boolean;
syn incomparable: boolean;
orderOK: func boolean :=

shouldBeSpecClass.subclassOrEqual(shouldBeGenClass);
eq reverseOrder :=

if orderOK
then false
else
shouldBeGenClass.subclassOrEqual(shouldBeSpecClass);

eq incomparable :=
if orderOK
then false
else not
shouldBeGenClass.subclassOrEqual(shouldBeSpecClass);

};
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attribute rtCheckNeeded detects if a run-time check is needed to test the actual qualification of 
the right-hand side before assignment.

11.4.2  Dependency analysis

We now do a dependency analysis for the CompareClassDoor (Figure 11.28).

Both the synthesized attributes reverseOrder and incomparable of the CompareClassDoor 
depend on the prefixClass attributes of ClassType objects. We model this non-local depen-
dency by a receive vertex v(compare) in CompareClassDoor and a send vertex v(compare, 
CompareClassDoor, fComps) in ClassDoor. The CompareClassDoor objects which depend on 
the prefixClass attribute of a given ClassType object can be kept track of in a collection object 
comps in the ClassType object, and a condition cComps can be added to CompareClassDoor to 
maintain these collections.

In deducing which prefixClass attributes a given CompareClassDoor object x depends on, it 
is useful to consider actual dependencies rather than access dependencies. We first note that the 
values of the synthesized attributes of x cannot change unless any of the prefixClass attributes 
corresponding to a lattice edge between x.shouldBeGenClass and x.shouldBeSpecClass 
changes. We also note that if any of these inherited attributes denotes either of the constant 
objects objectClassType or noClassType, changes to the prefixClass attributes cannot 
affect the values of the synthesized attributes.

Local copy attributes for the inherited attributes shouldBeGenClass and shouldBeSpecClass 
are added to allow de-evaluation of the cComps condition. The additions are shown in Figure 

Figure 11.29 Extension to main grammar: RefAssignStmt

RefAssignStmt: cons Stmt(lhs: ref Exp, rhs: ref Exp)
{ loc errorLhs: boolean; (* True if lhs not a reference *)
loc errorRhs: boolean; (* True if rhs not a reference *)
loc errorInc: boolean; (* True if lhs incomparable to rhs *)
loc rtCheckNeeded: boolean; (* True if runtime check needed *)
cDoor: doorobject CompareClassDoor;
eq cDoor.shouldBeGenClass :-
inspect $r :- lhs.tp
when AbstractRefType do $r.getClassType
otherwise objectClassType;

eq cDoor.shouldBeSpecClass :-
inspect $r :- rhs.tp
when AbstractRefType do $r.getClassType
otherwise noClassType;

eq errorLhs := not lhs.tp in AbstractRefType;
eq errorRhs := not rhs.tp in AbstractRefType;
eq errorInc := cDoor.incomparable;
eq rtCheckNeeded := cDoor.reverseOrder;

};
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11.30 and the resulting dependency graphs in Figure 11.31 and Figure 11.32. For brevity, the 
definition of cComps is only sketched.

Figure 11.30 Additions due to dependency analysis of CompareClassDoor

addto ClassType
{ comps: object UnorderedCollection[CompareClassDoor];
}

addto CompareClassDoor
{ loc localShouldBeGenClass: ref AbstractClassType;
loc localShouldBeSpecClass: ref AbstractClassType;
eq localShouldBeGenClass :- shouldBeGenClass;
eq localShouldBeSpecClass :- shouldBeSpecClass;
cComps: cond
if localShouldBeGenClass == objectClassType or

localShouldBeGenClass == noClassType or
localShouldBeSpecClass == objectClassType or
localShouldBeSpecClass == noClassType

then true
else ...; (* member of ClassType.comps for lattice edges

between localShouldBeGenClass and 
localShouldBeSpecClass *)

};

addto ClassDoor
{ fComps: func ref Set[CompareClassDoor]

:- theClassDoor.comps.contents;
};

Figure 11.31 Dependency graph for CompareClassDoor

incomparablereverseOrdershouldBeGenClass shouldBeSpecClass

localShouldBeGenClass localShouldBeSpecClass

cComps compare
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The visit procedures for CompareClassDoor are straight-forward implementations according to 
the basic visit procedure algorithm. The extensions to the visit procedure for ClassDoor are also 
straight-forward.

The send vertex v(compare, CompareClassDoor, fComps) leads to a dependency set overlap for 
incOwnerVisit which is analogous to the dependency set overlap caused by the send vertex 
v(lookupChanged, UseDoor, fAttemptedEdge). This overlap can be handled in the same man-
ner as described in §11.2.7.

11.5  Error detection

In our examples so far, detection of static-semantic errors has been specified by local boolean 
attributes in the main grammar. In an interactive environment, it should be possible to monitor 
the errors during program editing, e.g. by marking the erroneous constructs in the unparsed pre-
sentation of the program, or by maintaining a list of errors in a separate window. In either case, 
the presentation needs to be updated according to the incremental updates of the attribution. This 
can be accomplished by using doors as an interface mechanism to the incremental evaluation. 

Figure 11.32 Updated dependency graph for ClassDoor
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The visit procedures of these doors are implemented in order to achieve controlled side-effects 
in external components such as the editor and window system.

A door class ErrorDoor can be specified which has two inherited attributes: a boolean attribute 
error and a string attribute message. The informal semantics is the following: if error has the 
value true, there will be a presentation of the error in the appropriate window, associating the 
owner node of the ErrorDoor with the string message (an error message). The visit procedures 
can be written to add and remove the error presentation as appropriate, e.g. as shown in Figure 
11.33. The errorPresenter used in this implementation could be a global object connected to 
the structure-oriented editor.

Figure 11.33 Class ErrorDoor

ErrorDoor: door
{ inh error: boolean;
inh message: string fix;

loc mark: ref ErrorMarking; (* May be NONE *)

impl exhEvalVisit
{ if error then

mark :- errorPresenter.AddMarker(owner, message);
else
mark :- NONE;

end if;
};

impl exhDeEvalVisit
{ if mark =/= NONE then

errorPresenter.RemoveMarker(mark);
mark :- NONE;

end if;
};

impl incOwnerVisit
{ if error and mark == NONE then

mark :- errorPresenter.AddMarker(owner, message)
else if not error and mark =/= NONE then
mark :- errorPresenter.RemoveMarker(mark)
mark :- NONE;

end if;
};

};
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11.6  Discussion

The door package resulting from the extensions introduced in this chapter handles the major stat-
ic-semantic problems occurring in object-oriented languages such as nested block structure, 
classes, reference variables, and remote access. In order to cover a full object-oriented language 
it is also necessary to support procedures and parameters. In §11.6.1 we sketch how this can be 
done. In §11.6.2 we discuss the possibility of supporting virtual classes in BETA.

11.6.1  Procedures and parameters

The most important functionality missing in our door package is the possibility for specifying 
procedures and parameters. This functionality is, however, straight-forward to add. The follow-
ing sketch corresponds approximately to the facilities of the door package used in the Orm 
system:

• A door class ProcDoor, similar to BlockDoor and ClassDoor

• A class ProcType, similar to ClassType. The ProcType contains information about the 
parameter types and the return type.

• A door class ParamDeclDoor, for specifying the formal type for a parameter at a given index

• A door class ParamUseDoor, for retrieving the formal type of a parameter at a given index

• A class Kind which can be specialized to a number of constant objects, e.g. ConstantKind, 
VariableKind, ReferenceParamKind, ValueParamKind, etc.

• Extend the DeclDoor and UseDoor with a Kind attribute. 

The use of virtual procedures in addition to ordinary non-virtual procedures has only a small 
effect on the needed functionality. Although virtual and non-virtual procedures have different 
dynamic semantics, the static-semantic analysis is done in practically the same manner for both 
these kinds of procedures. The main difference from a static-semantic point of view is that a vir-
tual procedure may have implementations in subclasses which match the virtual specification. A 
virtual procedure implementation plays the role of both a name application and a name declara-
tion. It is a name application in that it matches a name declared in a superclass. It is a name 
declaration in that there must be no other declarations with the same name in the same block. In 
many object-oriented languages, including Simula, a virtual procedure specification has to be 
explicitly specified in the syntax, whereas an ordinary procedure declaration will be either a non-
virtual procedure or a virtual procedure implementation, depending on if there is a matching vir-
tual specification in a superclass or not. This behavior can be built into the ProcDoor.

11.6.2   Supporting virtual classes in BETA

The Door Attribute Grammars as introduced in this thesis have the property that each semantic 
object is either constant or a part-object owned (transitively) by a syntax node. All semantic 
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objects are thus static in the sense that their existence is goverened by the syntax tree alone. One 
could also imagine dynamic objects, whose existence depends on attribute values. Some form of 
dynamic objects is needed in order to handle the virtual superclasses of BETA. The declaration 
of an extended virtual class which is used as a superclass, leads to the implicit construction of 
new path vertices for subclasses to the virtual superclass, as discussed in §3.3.5. Since the num-
ber of such subclasses is not limited by the grammar, these new path vertices cannot be declared 
as transitive part objects of the syntax node. The existence of such an implicit path vertex 
depends both on the existence of the subclass in question, and on the existence of the extended 
superclass. If any of these declarations is removed, the implicit path vertex should be removed 
as well. Clearly, there is a need here for some mechanism for adding and removing semantic 
objects dynamically, as a consequence of other attribute values. We have not investigated this 
issue, but our guess is that it should be possible to add such a mechanism. However, this is an 
area for future research.

The ordinary use of virtual classes in BETA (corresponding to parametrized types), does not 
require dynamic objects to be introduced. This use of virtual classes can be based on the same 
visibility graphs as those used in our door package (combined block-structure and subclassing). 
This was also discussed in §3.3.5. The main difficulty when implementing ordinary virtual class-
es is that a kind of double lookup is needed when binding an identifier: one ordinary lookup to 
find the formal declaration of the name application, and an additional to find the actual declara-
tion. To handle this, the definition of binding in UseDoor would need to be modified. Although 
we have not tried to specify this, we see no reason why it should not be possible. It is also an 
area of future study to actually verify this. 

11.7  Summary

In this chapter, the basic example door package of §8.9 has been extended to handle the major 
problems in static-semantics appearing for object-oriented languages. The resulting door pack-
age handles name analysis according to the visibility graph based method of §3.3. Arbitrary 
combination of block structure and subclassing is supported. Cyclic class hierarchies in the user 
program are detected and resolved by breaking the cycle at one of the classes. Reference vari-
ables, remote access, and type checking of reference assignment is supported. The door package 
makes use of history-dependent error detection for errors like multiple declaration of identifiers 
and cyclic subclassing. A door class was introduced for communicating error information to 
external components. All the examples have been implemented and tested in practice.
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Evaluation

This chapter reports on practical experience from using Door AGs in the Orm environment. We 
discuss actual time consumption and estimates of space consumption.

12.1  Introduction

The incremental static-semantic analyzer in the Orm programming environment is based on a 
precursory form of Door AGs. The kernel of semantic primitives used in Orm corresponds to a 
door package, and the grammar used for specifying static-semantics corresponds to a main 
grammar. The example door package developed in Chapters 8 to 11 is essentially a reformulation 
of the most important parts of the Orm kernel as a formal door package. In addition, the example 
door package has been implemented exactly according to the techniques presented in this thesis. 
This implementation was done in a separate testbed, and is not yet integrated into the Orm 
system.

12.2  Main grammar for Simula

The main grammar for Simula used in Orm contains around 100 node classes of which around 
half are related to declarations, half to expressions, and a few to statements. Examples of sup-
ported declarations include classes, procedures, parameters to classes and procedures, arrays, 
simple types like boolean, integer, real, and character. Examples of supported statements include 
value assignment, reference assignment, if-statement, while-statement, for-statement, procedure 
call. Examples of supported expressions include remote access, arithmetic expressions (+, -, ...), 
boolean expressions (and, or, ...), relations (=, <, >, ...), and reference expressions (in, is, qua, 
this, new...), in all around 40 expressions. The major part of Simula is covered, but a few con-
structs have been left out such as goto, labels, and switches, block statements, name parameters, 
and explicit attribute protection (hidden/protected). The resulting main grammar for Simula has 
1-visit attribute dependencies although there are no restrictions on the order in which the decla-
rations may occur.
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12.3  Modules in Orm

Orm Simula differs from standard Simula by supporting a module concept which is slightly 
more general than the “external” construct in standard Simula. The module concept in Orm 
makes it possible to define fragments of programs as separately stored (and compiled) units. A 
module is in many ways similar to a statically allocated object. It may contain classes, proce-
dures, local variables, and code. Importing a module is semantically similar to inspecting an 
object: all the declarations in the module become visible in the block which contains the import.

Modules can be understood in terms of Door AGs by considering connecting the syntax trees of 
two modules via two doors as shown in Figure 12.1. However, the module concept used in Orm 
is currently hand-coded, and a formalization of this use of doors remains an area of future 
research. Bindings across module boundaries are not handled in the same way as bindings within 
a module. For example, bindings which occur via an import-export door do not leave traces in 
the exporting module. Instead, the import door maintains information about the bindings in order 
to facilitate updates when the imported module is changed. The exporting module does not con-
tain any information about its importing modules.

Figure 12.1 Connecting modules by doors

Interactive and incremental support for changes across module boundaries is currently rather 
limited in Orm. An edited module is always linked to stored versions of its imported modules. 
I.e., there is no support for editing two connected modules where changes in one module affects 
the other module directly. Suppose a module M1 imports another module M2. If a new version 
of M2 is stored, this does not affect M1 which will continue to use the old version of M2. To 
switch to the new version, the user has to give an explicit command to the M1 module to update 
itself to import the newest version of M2. In the current implementation of Orm, this is imple-
mented internally by removing the import of the old version followed by inserting an import to 
the new version. 

ExportDoorImportDoor

Importing module M1 Exporting module M2
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There are several ways in which the support for modules could be improved. One important issue 
is to allow connected editing of two or more modules. I.e., changes to one of these modules 
should immediately cause corresponding updates in the other modules. In particular, this would 
be useful when the same person works simultaneously with a number of related modules. One 
could also consider connecting modules edited by different users as it is done in the Mercury 
system [KKM87].

Another interesting issue is to limit the re-evaluation at module updates. The current technique 
of removing and inserting an import in order to switch to the newest version of an imported mod-
ule could be considerably improved. An improved strategy would be to identify which entities 
in M2 were actually changed, and re-evaluate only dependents on these entities. This would be 
similar in nature to the idea of “smart recompilation” suggested by Tichy [Tic86].

12.4  Time consumption

For most edit operations, the incremental static-semantic analysis in Orm does not cause notice-
able delays. This is in spite of several factors in the current implementation of Orm which could 
be substantially speeded up in a system intended for production use. In particular, the attribute 
expressions in the main grammar are interpreted rather than compiled.

For changes to statements, there are no non-local dependents, and the time for incremental re-
evaluation is directly proportional to the size of the change. Adding or deleting a statement does 
not cause any noticeable delay.

For changes to declarations, the time for re-evaluation depends on the number of affected use 
sites. Changes to declarations thus have the potential of causing arbitrary long delay times since 
there may be an arbitrary number of use sites affected by the change. Nevertheless, most changes 
to declarations affect only a small number of use sites, and in these cases, the time for re-evalu-
ation is not noticeable. In particular, a very common operation is to add a new declaration which 
is not yet used anywhere. Although the declaration may be visible throughout the program, there 
are no actual non-local dependents, and the time for re-evaluation is practically zero.

12.5  Space consumption

Space consumption in Orm is currently unnecessarily high because the implementation efforts 
have been directed towards adding interesting functionality rather than optimizing the system. 
Simple changes could give space savings of several factors. For this reason, we have not made 
any measurements on the space consumption of Orm. Instead, we have calculated estimated 
space costs for the example door package of Chapters 8 to 11. These costs are based on some 
assumptions on the structure and static-semantic characteristics of average programs for which 
we only have preliminary estimates. The resulting figures should therefore be taken only as a 
rough indication. Nevertheless, we have tried to make realistic assumptions which are more on 
the pessimistic than the optimistic side.
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12.5.1  Static-semantic characteristics

The space cost for the semantic attribution of a given program depends on the syntactic structure 
of the program, on a few static-semantic characteristics, and on the basic costs for objects and 
references etc.

The dominant factor is the number of name applications and their distance from the correspond-
ing declaration. When binding a name application, a number of blocks are passed during lookup 
(passed without finding a match). We split this number into two quantities: SBLK and PBLK, 
where SBLK is the number of blocks passed in the “static direction”, i.e. upwards along the nest-
ing hierarchy, and PBLK is the number of blocks passed in the “prefix direction”, i.e. upwards 
along the class hierarchy. The total number of blocks passed during lookup (without finding a 
match) is PBLK+SBLK. For reference assignments and other constructs which require comparison 
of formal qualifications, we use the quantity PDIST for the number of prefix class edges between 
the two compared qualifications.

Measurements on a large body of actual programs should be made in order to give accurate esti-
mates of the average values of these quantities. In the lack of such measurements we instead 
make the following assumptions about the name applications:

• 50% are accesses to local variables and parameters (SBLK=0, PBLK=0).

• 20% are accesses to instance variables from inside a procedure (SBLK=1). We estimate 
PBLK=1.

• 20% are remote accesses to variables and procedures (SBLK=0). We estimate PBLK=1.

• 10% are references to other entities. (Typically class names occurring in declarations of ref-
erence variables.) We estimate SBLK=3, PBLK=6, corresponding to an estimated average depth 
of 4 in the nesting hierarchy and 7 in the class hierarchy.

Furthermore, we estimate the average of PDIST to be 1. We do not think any of these estimates 
is optimistic. These estimates give averages according to the table below.

12.5.2  Cost for objects and references

The space cost also depends on the implementation of objects and dynamic and static references 
attributes. We assume the door package is implemented in an object-oriented language with gar-
bage collection. A reasonable implementation of such a language could use 12 bytes in object 
overhead (OBJ): one pointer to the class template, one pointer for the static link, and one word 

estimated average

SBLK # of blocks passed in “static” direction 0.5

PBLK # of blocks passed in “prefix” direction 1

PDIST # of prefix class edges between compared classes 1
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for garbage collection information. The static link is needed if the object or its inner blocks (e.g. 
virtual procedure implementations) access global information outside the object. If no such 
information is accessed (or if some other access method is used), the object overhead could be 
reduced by removing the static link. Depending on the garbage collection algorithm, it might be 
possible to also remove the word used for garbage collection information.

Dynamic (DYN) and static (STAT) reference attributes are typically implemented by pointers (4 
bytes). It would be possible to reduce also this cost by inlining part-objects (giving STAT=0). The 
table below shows the costs assumed in the following discussion.

12.5.3  Cost for doors

To calculate the space costs for the doors we must also estimate the space for collection mem-
berships as stated by the conditions in the Door AG. There are two kinds of collection objects 
used: UnorderedCollection (used for most collections) and Dictionary (used for collecting 
the UseDoor objects which have attempted to bind to a SymbolTable). We will use the quantities 
TRACE and KEYTRACE to model memberships in these collections.

A reasonably space-efficient implementation of the UnorderedCollection would be to use a 
linked list of small arrays of, say, 4 elements in each. The cost for a TRACE membership would 
then be (OBJ+DYN+4DYN)/4, i.e. object overhead + link reference + the 4 membership referenc-
es, and splitting the total on 4 memberships. The same technique could be used for KEYTRACE, 
but storing also a string reference for each member, giving a cost of (OBJ+DYN+4DYN+4DYN)/4.

The UnorderedCollection object would have an overhead of OBJ+DYN+2TRACE (the latter is the 
cost for an average half empty array), and, similarly, the Dictionary object an overhead of 
OBJ+DYN+2KEYTRACE. The table below summarizes these costs.

Given these quantities, it is simple to calculate the space costs for the doors as follows:

assumed cost in bytes

OBJ overhead per object 12

DYN dynamic reference attribute 4

STAT static reference (to part-object) 4

bytes

TRACE membership in UnorderedCollection (OBJ+5DYN)/4 8

KEYTRACE membership in Dictionary (OBJ+9DYN)/4 12

UNCOLL overhead for UnorderedCollection OBJ+DYN+2TRACE 32

DICT overhead for Dictionary OBJ+DYN+2KEYTRACE 40
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overhead for door object 1 OBJ
static reference from owner node to door 1 STAT
dynamic reference from door to owner 1 DYN
local attributes in door x DYN
conditions in door y TRACE + z KEYTRACE
for each part object:

static reference to part object 1 STAT
object overhead for part object 1 OBJ
local attrs of part object ...
part objects of part object ...

The following table shows the resulting costs and the estimates in bytes.

12.5.4  Cost for syntax trees

To estimate the space cost for the syntax tree of an average program, we have made some mea-
surements on Simula programs. The measurements were made on a total of approximately 
15000 lines of Simula code. In order to compare the textual representation with a reasonable syn-
tax tree representation, the following quantities were measured: textfile size (in lines and bytes), 
number of tokens, number of identifiers, average length of identifiers, and average number of 
occurrences of the same identifier. The table below summarizes these measurements.

It is reasonable to assume that the number of syntax nodes in an abstract syntax tree is the same, 
or slightly larger than the number of tokens in the text representation. We have made some pre-
liminary measurements which confirm this. We have estimated this factor to 1.35 to take into 

Space cost bytes

RootDoor OBJ + STAT + DYN 20

BlockDoor 5OBJ + 6STAT + 6DYN + DICT 148

ClassDoor 8OBJ + 11STAT + 12DYN + DICT + 2UNCOLL 292

DeclDoor 2OBJ + 3STAT + 7DYN + UNCOLL 96

UseDoor OBJ + STAT + 4DYN + (SBLK+PBLK)*KEYTRACE +
PBLK*TRACE + TRACE

66

CompareClassDoor OBJ + STAT + 3DYN + PDIST*TRACE 40

Average over 15000 lines of Simula code

Size of textfile in bytes per line 30 bytes / line

Number of tokens per line 4 tokens / line

% of tokens which were identifiers 35%

Average length of identifier 10 characters

Average number of occurrences of the 
same identifier

10
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account that name applications are represented by two nodes: a Use and an ID node, according 
to the main grammar of §8.9.4, whereas they correspond to only a single token.

The cost for the average token is then

OBJ+2DYN+0.35(OBJ+2DYN+DYN+(OBJ+10)/10) = 29 bytes

This corresponds to a syntax node object + father and son references + an average 35% of an ID 
son node which has a reference to a text string object of 10 characters, shared by 10 other ID 
nodes.

The space cost for an abstract syntax tree is thus about 4 times as high as the space cost for the 
corresponding textual representation. This is in approximate agreement with other reported fig-
ures. For example, the Rational environment for Ada is reported to have a corresponding factor 
of 4.5 and a cost of 20 bytes per syntax node [WL86].

12.5.5  Cost for semantic attribution

To compute the actual space cost for the semantic attribution, we have measured the number of 
tokens corresponding to the different door classes. The weights in the table below are the mea-
sured proportions of these tokens. These measurements were made on the 15000 lines of Simula 
code used in the measurements of the previous section. The average space cost per door for one 
token is computed by multiplying this weight with the cost for one door: 

The total average cost for the semantic attribution amounts to 29 bytes per token. This is, inci-
dentally, the same figure as for the syntactic representation. I.e., the semantic attribution takes 
up the same amount of space as the syntax tree. For comparison, the Rational environment is 
reported to use around 25% less space for the semantic attributes than for the syntax tree, which 
would correspond to 15 bytes per syntax node for their system.

Door Corresponding token Weight
bytes per 

door
bytes per 

token

UseDoor Name application 30% 66 19.8

DeclDoor Name declaration 5% 96 4.8

ClassDoor Class 0,3% 292 0.88

BlockDoor Procedure 1,5% 148 2.22

CompareClassDoor Reference assignment 3% 40 1.20

SUM=29
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12.6  Comparison to other work

We have reviewed other techniques for incremental semantic analysis in §3.7 and §4.6. To our 
knowledge, none of these methods has been applied successfully to object-oriented languages. 
The most advanced languages which have been specified and implemented using other methods 
are modular languages like Modula-2 [Vor90a], [BGV92]. The subclassing feature of object-ori-
ented languages introduces a recursive element in name analysis which does not follow the 
syntax tree. Many approaches have specific support for nested scopes which follow the syntax 
tree, e.g. [JF82], [BC85], [Hoo87], but fail to handle more complex combinations. The naming 
specification language NSL of Vorthmann [Vor90a] appears to be able to describe scopes for 
object-oriented languages, but has not been applied to such languages. Furthermore, NSL lacks 
facilities for handling erroneous cyclic subclassing and type checking of reference assignments.

The ability to specify objects and references declaratively seems to be unique for Door AGs. 
Most other systems adopt a value-oriented specification language, although objects and refer-
ences are often used internally for implementing higher-level constructs and for speeding up 
evaluation. The constructs in Door AGs bear similarities to constructs of other attribute-grammar 
based methods. E.g. the collections and conditions in Door AGs are similar to the set-valued 
attributes and membership constructs of [Kai85]. The door classes have similarities to the main-
tained and constructor attributes of [BC85]. However, the explicit use of objects and references 
in Door AGs make the technique more general and allows description of more advanced 
attributions.

The use of history-dependent error checking also seems to be unique for Door AGs. Other sys-
tems intended for static-semantic checking require the grammar to specify exactly one 
attribution for each possible syntax tree and cannot handle such history-dependencies. 

Circular dependencies via non-local dependencies are easily handled in Door AGs, simply by 
inserting a convergence test in one of the door visit procedures. We find it important and even 
essential to be able to handle such dependencies. If circular dependencies are not allowed some 
problems will be very difficult to define, leading to more complex attributions, less suited for 
incremental update. However, few other methods allow circular dependencies. Those which do, 
e.g. [Far86] and [Jon90], are not directed towards solving advanced scope handling.

Space consumption seems to be a neglected area in the field of attribute grammars and few 
papers report actual figures on this. Attribute grammars have a reputation of being very space-
intensive. For example, Kiong and Welsh [KW92] developed a hand-coded incremental seman-
tic analyzer for Pascal which is reported to use 8 times less storage for the semantic attribution 
than does the Pascal editor supplied with the Cornell Synthesizer Generator version 1.0.1. When 
developing the Door AG technique it was an important goal to allow space-efficient attributions 
to be defined. In the previous section we gave estimates on space consumption which indicate 
that the space consumption is in fact low, approaching that of hand-coded systems.
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12.7  Summary

Our experience from implementing Door AGs shows that the technique is useful in practice for 
constructing highly interactive program development environments. The resulting response time 
after program modifications is very low in Orm, and usually not noticeable by the user. This is 
in spite of the fact that the system interprets the attribute expressions in the main grammar. This 
confirms the view we took in §2.4, where we stated that by using appropriate incremental tech-
niques, the amount of data which needs to be recomputed is small after each change, and one 
does not have to use the fastest most optimized methods to recompute this data.

Space consumption, on the other hand, is important to try to keep low. Our estimate of the space 
consumption for a Door AG based system gives a rough indication of about the same amount of 
space for the semantic attributes as for the syntax tree, i.e. a total of 30+30=60 bytes per average 
attributed syntax node, corresponding to a factor 8 larger than a text representation. These esti-
mates were based on reasonable, probably pessimistic assumptions about syntactic and static-
semantic properties of average programs and costs in the underlying implementation language. 
These figures are on a par with the space consumption of hand-coded commercial incremental 
systems.
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Chapter 13

Conclusions and Future Work

13.1  Contributions

The main contribution of this thesis is a new technique for implementing incremental static-
semantic analyzers: Door Attribute Grammars. The motivation for developing this technique 
was to be able to handle object-oriented languages. Requirements on the technique included that 
it should allow fine-grained incremental updating in order to keep the static-semantic informa-
tion up to date after each single edit operation performed by the user, it should allow space 
efficient representation of the static-semantic information, and the technique should scale up in 
order to handle large programs.

Door Attribute Grammars extend standard attribute grammars by allowing objects and referenc-
es to be specified as part of the attribution of a syntax tree. This allows the comparatively 
complex static-semantics of object-oriented languages to be described in a straight-forward 
manner, including problems like name analysis in the presence of subclassing, remote access, 
and type checking of reference assignments. The resulting attributions are space efficient and 
suited for incremental updates. In particular, the best methods for incremental name analysis can 
be used, resulting in response times proportional to the number of affected use sites after a 
change to a declaration. In practice, the number of affected use sites is small and the response 
time is un-noticeable by the user even when changing a global declaration in a large program.

We have built a complete incrementally compiling environment: Mjølner/Orm, which currently 
supports the major part of Simula. This system is based on a precursory form of Door AGs. The 
Door AGs as presented in this thesis have also been tested in practice for a number of key prob-
lems. This practical experience shows that the technique fulfills the requirements and can be 
used in practice for constructing highly interactive program development environments.

Although the motivation for developing Door AGs was to handle object-oriented languages, the 
technique is general and can be applied to any language based on a context-free grammar.
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The introduction of objects and references in the attribution is a radical step away from standard 
AGs which are based solely on value semantics. Nevertheless, the Door AG formalism preserves 
the principle idea of standard AGs, namely a declarative description which states the invariant 
properties of a correct attribution.

The rest of this section summarizes the most interesting aspects on Door AGs.

Elements in Door AGs

A Door AG is an extension of a standard AG. The extensions can be summarized as follows:

• A syntax node can be extended with part-objects. A part-object owned directly by a syntax 
node is called a door, and transitively owned objects are called semantic objects.

• A semantic object can be specified as a collection, meaning that it is a collection of member 
objects, and the members are defined non-locally by conditions. 

• Attributes may be references. I.e. they may have object identity values, denoting other nodes, 
doors, or semantic objects.

The attributes of doors and semantic objects are defined in the same way as the attributes of syn-
tax nodes in standard AGs: by means of equations. One of the most important advantages of 
Door AGs compared to standard AGs is the fine granularity of definition which can be obtained. 
It is possible to let the equations and conditions define a very small amount of information each. 
This is in contrast to standard AGs where one is forced to let some equations define very large 
information structures. The finer granularity in Door AGs allows the size of AFFECTED (the set 
of affected attributes after a syntactic change) to be dramatically decreased for some important 
problems and therefore makes it possible to implement much more efficient incremental 
evaluators.

Applications of Door AGs

The use of objects and references for attributing syntax trees makes it is possible to implement 
name analysis in a straight-forward way, using explicit visibility graphs, symbol tables, and ref-
erences between identifier declaration and application sites. This gives compact and simple 
attributions which are suitable for incremental updates and for access from external tools.

To exemplify the applicability of Door AGs and to show that the suggested implementation tech-
nique works, an advanced example door package was described in Chapter 11. The door package 
handles the major static-semantic problems occurring in object-oriented languages: It supports 
arbitrary combination of block structure and subclassing, including nested classes. Cyclic class 
hierarchies in the user program are detected and resolved. The door package also supports ref-
erence variables, remote access, and type checking of reference assignments.
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Main grammars and door packages

The price for allowing objects and references in the attribution is that non-local dependencies 
are introduced. In general, this prevents attribute evaluators to be automatically generated from 
the grammar. This problem is addressed in Door AGs by splitting the grammar into a main gram-
mar and a door package. The main grammar is essentially equivalent to a standard attribute 
grammar and can be evaluated exhaustively and incrementally using standard methods. The door 
package isolates the non-local dependencies and must be implemented by hand. However, a sys-
tematic technique has been developed for constructing evaluators for door packages. This 
technique involves doing a static dependency analysis of the door package and constructing a 
dependency graph for each door class. Additional dependency attributes and functions are added 
to the door classes to allow efficient propagation of non-local dependencies at evaluation time. 
The technique allows systematic construction of visit procedures from the dependency graphs 
and the resulting attribute evaluator is very efficient since it is based on a static visit-oriented 
technique.

Door packages as tool box extensions to standard AGs

The specification and implementation of door packages constitutes a systematic way of con-
structing tool box extensions to standard AGs. Door packages which implement some general 
aspects of a family of programming languages can be used as a tool box by many different main 
grammars, in order to implement different languages. This approach is used in the Orm system 
where the static-semantic grammars for different languages are specified by using a kernel of 
semantic primitives corresponding to a door package. The current semantic kernel in Orm is 
designed to cover the basic language constructs in object-oriented languages: classes, proce-
dures, subclassing, reference variables, and remote access. An interesting future challenge is to 
design door packages which cover general aspects of a broader range of programming 
languages.

Door classes can also be used as a general interface mechanism, in order to connect an attributed 
syntax tree to external components and trigger events in these components as a result of changes 
in the attribution. This was illustrated in §11.5 where a door class ErrorDoor was implemented 
to monitor static semantic errors. The visit procedures of the door class were implemented to 
achieve suitable side-effects in the window system (displaying and removing error messages) as 
a result of changes in the attribution.

Simplicity of main grammars

Problems like name analysis which give rise to complex attribute dependencies in standard AGs 
are handled by objects and references in Door AGs. This has the effect that the remaining 
attribute dependencies in the main grammar are very simple. For example, languages like Algol 
and Simula, which allow an arbitrary order of declaration, can be described by Door AGs with 
1-visit main grammars. Describing these languages in standard AGs would require an Ordered 
AG.
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The simple 1-visit dependencies in main grammars makes it possible to use very simple and effi-
cient evaluation techniques. We have developed a visit-oriented evaluation technique for 1-visit 
grammars based on static skipping. This technique does not compare attribute values, but skips 
evaluation instructions and visits on the basis of a static approximation of the dependencies. 
While such an algorithm is in principle sub-optimal, it works well in practice for the main gram-
mar of a Door AG. We find it interesting that it is possible to use such simple implementation 
techniques and yet achieve an efficient incremental system for a complex language like Simula.

Interpretation of grammars

The Orm system interprets visit sequences for main grammars rather than running compiled visit 
procedures. This allows the grammar to be changed easily and tried out on programs without 
having to recompile and link the Orm system. In this way, Orm supports interactive development 
of language-based environments. Although the visit sequences are interpreted, the incremental 
evaluation is sufficiently efficient for practical use because the “inner loops” of the incremental 
processing are performed in the door package which is a compiled part of Orm.

Circular dependencies

There are several situations in static semantic checking which intuitively lead to circular chains 
of dependencies. In particular: arbitrary declaration order, cyclic subclassing, and declaration of 
reference variables. All these problems are straight-forward to specify in Door AGs, and one of 
them (reference variables) actually leads to a circular chain of attribute dependencies via a non-
local dependency. Such circularities are easily handled in Door AGs simply by inserting a con-
vergence test. In the case of reference variables, the circular evaluation converges immediately, 
after a single evaluation cycle.

Circularities via non-local dependencies do not affect the complexity of the main grammars. 
Thus, simple 1-visit evaluation techniques can be used for the main grammar even if the Door 
AG as a whole is circular.

History-dependent error checking

We have advocated the use of history-dependent error checking. I.e., if a static-semantic error 
has several possible causes, the latest edited part of the syntax tree is regarded as causing the 
error. Typical examples when this kind of error handling is useful is cyclic subclassing and mul-
tiple declarations of the same name. The use of history-dependent error checking for these 
problems has the consequence that mistakes made at one point in the program will not cause pre-
viously correct parts of the program to suddenly be considered erroneous. For example, adding 
a new declaration of an already existing name causes the new declaration to be considered erro-
neous, whereas the old one remains in effect. We find this a highly desirable behavior of an 
interactive system. In addition to associating the errors with the latest edited parts of the pro-
gram, this technique leads to less re-evaluation than if all possible causes of the error should be 
considered as actually erroneous.
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Although the error may be associated with one part of the program, it may very well be corrected 
by editing another part of the program. One could even implement interactive support for finding 
other potential causes of an error, given a current erroneous site.

History-dependent error checking is accomplished in Door AGs by using underdetermined 
grammars. I.e. grammars for which some aspect of the attribution is not uniquely defined. This 
means that there are syntax trees for which there is more than one valid attribution. Which solu-
tion is actually chosen will depend on the order of evaluation and can, if desired, be controlled 
by inserting additional actions in the visit procedures of the door classes. 

Object-oriented attribute grammars

The main grammars of Door AGs are based on an object-oriented variant of standard AGs pre-
sented in Chapter 6. In this object-oriented formulation of standard AGs, the syntax nodes are 
viewed as objects of classes organized in a specialization hierarchy. Behavior (in the form of 
attributes and equations) can be defined at suitable levels of generalization and default equations 
can be overridden in specialized node classes. This allows the grammar to be written in a more 
compact and readable way than is possible in traditional AG formalisms.

Another advantage of object-oriented AGs is that demand attributes can be easily implemented 
since they are essentially equivalent to virtual functions. We have found demand attributes to be 
very useful in interactive environments since they do not occupy any space. In fact, all attributes 
of the main grammar of a Door AG are by default implemented as demand attributes since most 
of these attributes are defined by copy equations and very simple to compute when needed.

13.2  Future work

Our experience so far with Door AGs shows that important problems in incremental static-
semantic analysis can be solved in a satisfactory manner by this technique. Nevertheless, more 
practical work should be done on developing door packages and testing them in practice.

Another interesting possibility is to work further in the direction of interactive support for lan-
guage development and do incremental static-semantic checking also during editing of the 
grammars themselves. The grammar formalisms used in Orm are based on object-oriented con-
cepts, similar to OOSL, and the static-semantic checking should not be very different from 
checking object-oriented programming languages.

In addition to applying the Door AG technique to various problems, there are several ways in 
which the technique itself could be further developed. Below we discuss some of these 
possibilities.
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Cutting and pasting large subtrees

The incremental attribute evaluation algorithm presented in this thesis assumes that a new sub-
tree is always completely un-evaluated before insertion and the old subtree is completely de-
evaluated before removing it from the syntax tree. This may be undesirable for large subtrees 
such as whole classes and procedures since the evaluation/de-evaluation of such large subtrees 
may lead to noticeable response times. Actually, the Orm system has a block clipboard facility 
which supports moving and copying fully attributed blocks between the program and the clip-
board. This functionality has, however, not yet been formalized in the Door AG model. To do 
this, the notion of fix attributes needs to be refined. Moving a block to a new context implies that 
the fix inherited attributes may get new values. The “fix” attributes are thus fix only during incre-
mental evaluation, but may change values at a subtree replacement. The attribute evaluation 
algorithms for Door AGs need to be generalized to support this.

Dynamic objects

In Door AGs, as presented in this thesis, the semantic objects are always part objects owned tran-
sitively by a syntax node. I.e., the existence of all semantic objects is determined from the syntax 
tree alone. For some advanced language constructs, this may be insufficient. It may be necessary 
to introduce new semantic objects during evaluation, and make the existence of some semantic 
objects depend on the attribute values. For example, as discussed in §3.3.5 and §11.6.2, extend-
ing a virtual class in BETA leads to the implicit introduction of actual definitions of subclasses 
to the virtual class. In our visibility graph model for name analysis this means that the existence 
of some SearchPath objects will depend on identifier bindings. To express this in Door AGs, 
some notion of dynamic semantic objects would need to be introduced.

Another aspect on the static scheme for attaching objects in Door AGs is that it may result in 
attaching objects which are not always needed. For example, consider merging reference assign-
ment and value assignment to a single syntactic construct (as several languages do). In the 
present Door AGs, a CompareClassDoor object has to be declared for the assignment node class, 
to take care of comparisons for reference types. But this door object would be unnecessary if the 
types of the assignment subcomponents were actually value types, rather than reference types. 
It would be useful to introduce some dynamic scheme for attaching the door object only if it was 
actually needed, i.e. attaching it depending on the attribute values.

An interesting solution to this problem could be to add support for semantically controlled 
replacement of syntax nodes. E.g., one could imagine a general node class Assignment which 
was specialized into three subclasses: SyntacticAssignment, ValueAssignment, and RefAs-
signment. The structure-oriented editor (or parser) would always construct a syntactic 
assignment, but depending on attribute values, the node would be replaced in the process of 
semantic evaluation by a value assignment node or a reference assignment node. Besides saving 
storage, such a scheme has the potential of leading to simplifications of the attribute grammar in 
case the same syntactic (context-free) construct has many possible semantic interpretations.
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General door packages

An interesting area of future research is to investigate if it is possible to construct door packages 
which are applicable to a broad range of languages. Rather than having a door for a block state-
ment and a door for a class, as in our example door package, such a door package should contain 
more primitive doors which could be combined to model block statements, single-inheritance 
classes, multiple-inheritance classes, etc. The work of Vorthmann is in this direction [VL88], 
[Vor90a]. His language NSL supports specification of advanced name analysis, although it is not 
sufficiently general to handle object-oriented languages. It could be interesting to try to merge 
the ideas in NSL with Door AGs.

Using the syntax tree itself as a symbol table

In the example door package, special semantic objects are introduced for representing symbol 
tables and declaration entries. In principle, this information is available in the syntax tree as well. 
The symbol table is essentially a copy of a declaration list in the syntax tree. Space reductions 
would be possible by avoiding this copying. It would be valuable to develop general mechanisms 
which allowed the doors to utilize syntax nodes as semantic objects instead of specifying their 
own part objects. If possible, this should be done without making the door package dependent 
on the structure of the main grammar, in order to be able to use the same door package for many 
languages.
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