Incremental Semantic Analysis

Gorel Hedin

CODEN: LUTEDX/(TECS-1003)/1-276/(1992)

Lund, March 1992

Department of Computer Science

Lund University

Box118

S-221 00 Lund, Sweden

E-mail: Gorel .Hedin@dna.lth.se

Front cover: The god Tor with his hammer Mjglner

© 1992 by Gorel Hedin

Abstract

Semantic analysisis a central part of the compilation process. The main subproblems include
name analysis, type checking, and detection of static-semantic errors. In an interactive program-
ming environment it is useful to perform the semantic analysisincrementally, keeping the static-
semantic information up to date whilethe program is edited. Thisallows advanced browsing and
editing facilities to beimplemented, based on the semantic information. Furthermore, incremen-
tal semantic analysisis a prerequisite for making also the rest of the compilation process
incremental in order to reduce the turnaround time between editing and execution.

Thiswork is directed towards incremental semantic analysis for object-oriented program-
ming languages. Theselanguages have comparatively complex stati c-semanticswhich could not
be adequately handled with earlier techniques such as attribute grammars.

The main contribution of thiswork isanew technique for developing incremental semantic
analyzers: Door Attribute Grammars. This technique extends standard attribute grammars by
allowing objects and references to be specified as part of the attribution of a syntax tree. This
extension resultsin space-efficient attributions for which incremental updates can be performed
efficiently. In particular, the complex naming semantics of object-oriented |anguages can be han-
died in a straight forward way by attributing the tree with explicit visibility graphs built using
objects and references.

The price for using objects and references in an attribution is that non-local attribute depen-
dencies are introduced which prevent incremental attribute evaluators to be generated
completely automatically from the grammar. We solve this problem by splitting the grammar in
two parts: one part (the main grammar) which can be treated by automatic methods, and another
part (the door package) for which amanual, but systematic, implementation technique is devel-
oped. A door package can implement general aspects of afamily of programming languages. To
specify anew language in the supported family it suffices to write a main grammar, using the
door package as atool box.

The techniques have been devel oped and tested in practice. A complete incrementally com-
piling environment has been built: Mjglner/Orm, which currently supports the major part of
Simula.

Acknowledgments

Theresearch reported in thisthesiswas carried out within the Programming Environments group
at the Department of Computer Science at Lund University. First of all, | want to thank Boris
Magnusson, my advisor and leader of thisgroup. Heintroduced meto thefield of object-oriented
programming languages and compilers. His support and insight has been invaluable for me
throughout my thesis work, not the least during this last intense phase.

The experimental work with the Orm system was done jointly in our group, and | want to thank
all who participated in this development. It has been most stimulating and enjoyable to work
with you. Thank you Mats Bengtsson, Lars-Ove Dahlin, Goran Fries, Anders Gustavsson, Sten
Mindr, Dan Oscarsson, and Magnus Taube. In particular, | want to express my gratitudeto Lars-
Ove Dahlin who has been my partner in the semantic analysis business. He designed and imple-
mented the semantic kernel in Orm. The lookup technique based on search paths and tracesis
due to him. | would aso like to thank the newer members of our team.

The work with Orm was carried out as part of the Nordic Mjalner project. The participation in
this project has been very stimulating and | want to thank the other Mj@iner participantsfor their
encouragement and interest in my work.

| also want to thank my other colleagues at the department for their help in variousways. Special
thanksto Sten Henriksson for reading an early draft of my thesisand giving valuable comments.
Thanks to Oskar Permvall for being aliving dictionary and answering many strange questions.
Thanks to Anne-Marie Westerberg for helping me with various practical things.

Financially, this work has been supported by Nordisk Industrifond (The Nordic Fund for Tech-
nology and Industrial Development) and NUTEK (The National Swedish Board for Technical
Development).

Vi

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Introduction 1
11 THhESIS OULIINE. ...ttt 4
The Orm Environment 7
21 INEFOTUCTION ..ot 7
2.2 Programming [&VEl...........oov e 8
2.3 MELATEVEL ... e 15
24 Requirements on incremental teChNiqQUES...........cccuevirveiieienescsienenee, 17
Incremental Static-Semantic Analysis 21
31 INEFOAUCTTION ...t 21
3.2 Object-oriented pProgramimingcccoeeeereererreseereseseseseseesessseseeseens 22
33 NAME ANAIYSIS. .. veeeierieieeeieie et e e e ens 24
34 Incremental Name analySiS.........coveieieeieci e 36
35 TYPE ANAIYSIS ..ttt e e 42
3.6 Error AEtECHION ..ottt 44
37 Techniques for incremental @nalysis........ooooierierrenee e 44
3.8 SUMIMEIY .« ettt e e e e e e s e saeeneesaeeneesseeneesreeneesneensnns 45
Standard Attribute Grammars a7
4.1 [F 100 (B 1o o ISP 47
4.2 Definitions and NOELION...........ocoeeiireiiiere e 47
4.3 AG classes and evaluation teChNIQUES...........coererererienieiese e 48
44 Limitations of standard AGS..........ccvereririeieninere e 51
4.5 ON OPLIMAITLY .. 53
4.6 REBEH WOTK ...t 54
4.7 SUMIMEIY ...ttt st te et esteeneesseeneesseeneesreenaesnennsens 58

viii

Chapter 5

Chapter 6

Chapter 7

Chapter 8

A Basic Object-Oriented Specification Language 59
51 Declarative CONSLIUCES.........oiveeirieirieeriecsieese e 59
5.2 APPIICALIVE ClASSES......ccveeeeeeceeee e 67
5.3 [MPErative CONSITUCES......ccueeiieieeeieeieecte et 69
54 MOAUIBITZBEION. ...t e 72
55 Type-checking iSSUESIN OOSLccoviiriiireeeeee e 73
5.6 SUMIMEIY ..ot 75
Object-Oriented Attribute Grammars 77
6.1 INEFOTUCTION ..ottt 77
6.2 Context-free grammMarS........cccevevereereereeeee et 78
6.3 Attributes and eqUALIONS...........cccvveieriieiece e 8l
6.4 An example: Desk CalCULALOrccoeriieiinere e 83
6.5 Defining general DENAVIO...........coiveireiriece e 84
6.6 Local @ttriBULEScvecvectece e 87
6.7 Well-formed object-oriented AGS.......ccooveveeviesenene e 88
6.8 POSSIDIE EXIENSIONS ...t 89
6.9 Related approaChes..........covcieii e 91
6.10 SUMMBIY ...ttt sttt e e s se e e se e e e sae e 92
Attribute Evaluation Techniques 93
7.1 Demand-driven evaluation..............coeveeerenenenese e 94
7.2 Exhaustive 1-Visit e/aluation..........ccccceeeeererenesene e 97
7.3 Incremental 1-ViSit @ValUationc.cccoveereirieenene s 103
7.4 Combining data and demand attributes.........cccoevvevvierivseneveseesene 110
7.5 SUMIMIBIY «.e ettt st e ssee e nbe e snaeenree s 111
Door Attribute Grammars 113
8.1 INEFOTUCTION ... e e 113
8.2 Nodes, doors, and semantic ObJeCtS.........ccoeveeeierieninrercee e 114
8.3 Collections and CoNAitioNS..........cocorererereereeeieeeees e 117
84 F 00| =0 = =-S R 119
85 Fix attributes and fUNCLiONS ..o 120
8.6 Non-local dependenCies..........coveveieereieeie e 122
8.7 Data and demand attribUteSccccovereieieicc e 124
8.8 Summary of graphical Symbols..........ccoeireiiiiiceee 125
8.9 AN eXample DOON AGcooueiriiiriieeeeiesee e 126
8.10 Underdetermined gramimarsS.........ccoeveereeeereereeesesesesseseseeseesseseens 141
811 Comparison to standard AGS..........cceveeeeieieeesesese e 143
812 SUMIMAIY .eiiiiiitieiiie sttt ettt ae e s nbeesra e e beesnteenbee s 145

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Door AG Implementation, part | 147
9.1 Evaluation prinCiple........cccieiriere e s 147
9.2 IMpPleMENtation SEEPS.....cceiereeeereeeeee e 148
9.3 DEPENUENCIES. ...ttt 150
9.4 Door dependency graphs ..o verereneeieeesee e 155
9.5 Analysis of example door package..........ccoevreerecireineinieeee 161
9.6 SUMIMEIY ...ttt en e 173
Door AG Implementation, part |1 175
10.1 Outline of evaluator algorithMm.........cccceeverereeieeeeeeee e 175
10.2 Typesof ViSit ProCEAUIES.........cceceiereieeseeeeee e 178
10.3 Theevaluator ObJECL..........cceceivieiecieee e s 181
10.4 Construction of door Visit ProCedUIEScccouerererenerenesierieseeneas 183
105 DoOor evaluation StALES.......cceieiieriereseenee e e 187
10.6 Modifications to the basic visit procedure algorithmccccue.ee. 191
10.7 Visit procedures for the example door package...........ccocveevvvvrrennen. 192
10.8 Evauation of Main gramimarcccceeerereereeieeresieeesesesrese e seeeas 200
10.9 Circular dependenCies.........cccoiveeiieireeiieeiesie e s 207
10.10 Possibilities for automatizing the implementationcc.cceevuenee. 211
JOI1 SUMIMEIY ..ttt e 212
Advanced Attributions 213
111 Multiple deClarationS.ccoeieereiereee e 213
11.2 Nameanalysisin presence of subclassing.......ccccceevevervveseniereesennnns 217
11.3 Referencesand remote 8CCESScovrvriririereeriee e 233
11.4 Type-checking reference assignments.........cccecveveeveeveeseereeseeseesnens 237
115 Error deteCiONc.cceeeeieeiiciese ettt e 241
T11.6 DISCUSSION.....oecctieitrieiteeeeeeeteeereesteesreesseessreesbeeeseeebessnsesbeessreenseesanes 243
T A S U 011 0= RS 244
Evaluation 245
12,1 INErOTUCTION v 245
122 Maingrammar for SIMUl@........cccoeveveieiescceeee e 245
123 MOAUIES TN OFM.ciiiiiiiiiieieierie et e 246
124 Time CONSUMPLION ...cveeiitiitirieseetesieseesee e sre b see e seeneas 247
125 SPace CONSUMPLIONeuiiiiiiriesieeste sttt 248
126 Comparison t0 Other WOIKccoceeririnineneesee e 252
A S U 011 1 0 254
Conclusions and Future Work 255
131 CONtrBDULIONS ...eoviieeiieeeie et 255

13.2 FULUTE WOTK ...ttt e 260

Chapter 14 Bibliography 263

Chapter 1
| ntroduction

The development of high-performance low-cost graphical workstations during the last decade
has made it possible to assign considerable amounts of computing power to advanced user inter-
faces. This development has revol utionized the way people work with computers. Today we are
accustomed to interactive applications where information is presented and manipulated in an
intuitive way. In order to build such interactive applications, incremental computation is funda-
mental: the information presented to the user is modified according to the user’s actions, and
derived information is updated in the process. The specific application area of interest in thisthe-
sisisinteractive systems for program development.

The use of interactive and incremental techniques can simplify and speed up the programming
processin severa respects. By allowing the programmer to browse and manipulate programsin
terms of their inherent structure, by performing compilation and linking automatically as need-
ed, and by giving integrated support across editing and execution, alowing the programmer to
switch easily between these activities. A basic approach to building such systemsis structure-
oriented programming environments [DEFH87] where programs are represented internally as
abstract syntax trees described by a context-free grammar. A central component in such environ-
mentsis an incremental semantic analyzer which computes and incrementally updates static-
semantic information derived from the program. The static-semantic information is represented
as an attribution of the abstract syntax tree and isincrementally updated while the user editsthe
program. This allows advanced browsing and editing facilities to be implemented, based on the
semantic information. Furthermore, incremental semantic analysisis aprerequisite for making
also the rest of the compilation process incremental in order to reduce the turnaround time
between editing and execution.

Goals

The goal of the research presented in this thesis was to devel op techniques allowing efficient
incremental static-semantic analyzers to be constructed. In particular, we were interested in
enabling such analysisto be performed for object-oriented languages. The static-semantic rules
for object-oriented languages are comparatively complex, and existing techniques for devel op-
ing incremental analyzers were not adequate for these languages.

2 Chapter 1 Introduction

The research presented here has been conducted within the Mj@iner project, an experimental
research project on building programming environments for object-oriented languages
[DLMM8T7]. The project ran from 1986 through 1991 and involved universities and industrial
partnersin Denmark, Finland, Norway, and Sweden.

One of the environments built in this project is Orm[MHM+90], acomplete incrementally com-
piling environment, currently supporting the major part of Simula[DMNG68]. This system was
implemented by the author and colleagues at the Department of Computer Science at Lund Uni-
versity. The system has been used on an experimental basis in courses on introductory
programming, compiler construction, and programming environments, at Lund University and
afew other universities. The problems which needed to be addressed in order to build environ-
mentslike Orm constituted the motivation for the devel opment of the techniquesproposed inthis
thesis.

Method

The most well-studied high-level technique for developing incremental analyzersisthe one
based on attribute grammars [Knu68]. Incremental static-semantic analyzers can be generated
automatically from such grammars [Rep84]. The principle idea of attribute grammarsis very
useful and attractive for the implementation of incremental systems: the attribution of a syntax
treeisdescribed declaratively, and an incrementally updating attribute evaluator can be automat-
ically derived from the specification. This gives robust implementations which are easy to
change and maintain.

However, incremental name analysis, an important part of incremental static-semantic analysis,
cannot be done effectively using the standard approach of [Rep84]. These problems are even
more pronounced for object-oriented languages, due to their more complex naming rules.
Attribute grammars are not well suited for describing such rules and thisleadsto poor incremen-
tal behavior, even when using updating algorithms which are optimal within the context of
attribute grammars. Wefind the most serious problem with attribute grammarsto be that the attri-
butions they can define are too limited to be practical.

The approach used in this thesis has been to develop a new technique for incremental computa-
tion which preserves the declarative property of standard AGs, but extends the range of
attributions which can be described. Thisis done by extending the attribute grammar formalism
to support specification of objects and references as attributes of the syntax tree. Thisisaradical
step away from standard AGs which restrict the attributions to have value semantics only. The
proposed technique is called Door Attribute Grammars, after the special “door objects’ acting
as an interface between the syntax tree and its object attribution. The use of objects and refer-
ences allowsvery flexible structuring of the static-semantic information and makesit possible to
describe the static-semantics of object-oriented languages in a straight-forward manner. The
resulting attributions are space efficient and suited for efficient incremental updates.

Theintroduction of objects and references in the syntax tree attribution results in non-local
dependencies which, in general, prevent attribute evaluators to be generated automatically from

1.1 Thesisoutline 3

the grammar. We have addressed this problem by splitting the Door AG into a main grammar
and adoor package. Themain grammar isvery similar to astandard AG and can beimplemented
automatically by standard methods. The door package isolates the non-local dependencies and
must be implemented by hand. We have devel oped a systematic implementation technique to
support this manual construction.

Door packages are independent of the context-free grammar, and can be designed to handle gen-
eral static-semantic properties of afamily of languages. This allows a door package to be used
asatool box by many different main grammars, in order to implement different languages. Thus,
although the door package must be implemented by hand, the same door package can be used
for many programming languages, and attribute evaluators for each of these languages can be
generated automatically from the main grammars.

An object-oriented variant of standard AGs has been devel oped to be used for specifying the
main grammars of Door AGs. This allows the modelling and specialization principles of object-
oriented programming to be applied to grammars, resulting in more compact and readabl e spec-
ifications compared to the traditional formalism.

Results

The main contribution of thisthesisisthe Door Attribute Grammar formalism and the imple-
mentation techniques devel oped for constructing incremental evaluatorsfor such grammars. The
techniques have been tested in practice. A precursory form of the Door AGsis used in the Orm
system which supports the major part of Simula. The Door AGs and the implementation tech-
niques as presented in this thesis have also been implemented and tested for the key problems
appearing in static-semantic analysis for object-oriented languages. These applications of Door
AGs show that the techniqueis suitable for practical construction of highly interactive program
development environments.

1.1 Thesisoutline

Thisthesisis structured in four major parts: background, object-oriented attribute grammars,
door attribute grammars, and conclusions.

Background

e Chapter 2: The Orm Environment
Anoverview is given of the Orm programming environment with particular emphasis on the
aspects rel ated to static-semantics. The requirements on incremental techniquesfor building
such environments are discussed.

Chapter 1 Introduction

Chapter 3: Incremental Static-Semantic Analysis

Major problemsin incremental static-semantic analysis are reviewed with particular empha-
sis on the problems appearing for object-oriented languages. Existing techniques for
incremental name analysis are reviewed.

Chapter 4: Standard Attribute Grammars
Attribute grammars are reviewed and the problems of using them as atool for incremental
static-semantic analysis are identified.

Chapter 5: A Basic Object-Oriented Specification Language

A basic object-oriented specification language, OOSL, is introduced. This language will be
used for specifying object-oriented AGs and Door AGs. The language was devel oped specif-
ically for thisthesis and is useful both for specifying the declarative grammars and the
imperative incremental update algorithms.

Object-oriented Attribute Grammars

Chapter 6: Object-Oriented Attribute Grammars

An object-oriented reformulation of standard AGsisintroduced. It is shown how the advan-
tages of object-oriented description techniques can be applied to grammars, in particular how
behavior can be defined at suitable levels of generalization.

Chapter 7: Attribute Evaluation Techniques

Techniques for demand-driven and 1-visit data-driven evaluation of standard AGs are dis-
cussed. These techniques will be used as the basis for attribute evaluation in the main
grammars of Door AGs. It is shown how the implementation of evaluation algorithmsis sim-
plified by using an object-oriented implementation language. A new technique employing
static skipping of visit instructions is introduced.

Door Attribute Grammars

Chapter 8: Door Attribute Grammars

Door Attribute Grammars are introduced. An exampleis given of how Door AGs can be used
to specify the static-semantics of a simple block structured language. The technique is com-
pared to standard AGs.

Chapter 9: Door AG Implementation, part |
The principlesfor implementation of visit-oriented incremental evaluatorsfor Door AGs are
described. A systematic technique for analyzing non-local dependenciesis developed.

Chapter 10: Door AG Implementation, part 11

An incremental visit-oriented evaluation algorithm for Door AGs is given and a systematic
technique for constructing visit procedures for door packages is developed. It is shown how
incremental algorithms for standard AGs can be adapted for evaluation of main grammars.

1.1 Thesisoutline 5

Chapter 11: Advanced Attributions

It is shown how some central problems arising in object-oriented languages can be handled
by Door AGs. Problemstreated include subcl assing, remote access, and type-checking of ref-
erence assignments.

Conclusions

Chapter 12: Evaluation
This chapter reports on practical experience from using Door AGs in the Orm environment.
We discuss actual time consumption and estimates of space consumption.

Chapter 13: Conclusions and Future Work
This chapter summarizes the contributions of this work and some possibilities for future
work are suggested.

Chapter 1 Introduction

Chapter 2
The Orm Environment

This chapter gives an overview of the Orm programming environment with focus on issuesrelat-
ed to incremental static-semantic analysis. The requirements on incremental techniques for
building such environments are discussed.

2.1 Introduction

Orm is an interactive programming environment based on structure-oriented editing and incre-
mental compilation. The environment includes both a programming level and ametalevel. The
programming level supports program development, from editing to execution. The compilation
tasks such as static-semantic analysis, code generation, and loading are all done incrementally
and automatically as needed by the system. The metalevel supports structure-oriented editing of
grammars. These grammars describe the abstract syntax, concrete syntax, static semantics, and
code generation for a specific language. The Orm environment is aimed towards object-oriented
languages and the current version supportsthe major part of Simula. Thisisin contrast to earlier
structure-oriented environmentslike the Cornell Program Synthesizer [TR81], Gandalf [MF81],
DICE [Fri84], and Pecan [Rei84], which are all aimed towards procedural languageslike C and
Pascal.

The major goal of Orm isto provide advanced interactive support for program development, in
particular:

» Allow programsto be edited and browsed at a semantic level, and not only at a syntactic or
textual level.

» Allow editing and execution to be mixed freely, and also to continue execution after program
changes.

» Allow interactive observation of the object structures present during execution.

» Support the full software development cycle including design and documentation, version
and variant control.

8 Chapter 2 The Orm Environment

An additional goal of Orm isto support interactive language devel opment, by allowing the user
to edit both programs and grammars at the same timein order to interactively try out changesto
alanguage.

Interaction in Orm can be said to be “ object-oriented” rather than “tool-oriented”. The goal isto
allow the user to interact directly with programs, executions, and grammars, rather than via
explicit tools. To support this “ object-oriented” interaction style, the user interface of Ormis
based on direct manipulation. Objects of interest to the user are presented as icons/windows,
similar in flavor to the Star office automation system [SIKV82] and to its successors like the
Macintosh finder. In contrast to Star and Macintosh, the interface of Orm is based on a hierar-
chical window system [Osc89] which allows windows (objects) to be shown in their local
context. For example, a program window can contain class windows which in turn can contain
procedure windows [HM 88].

In addition to the support for programming, which we will discussin more detail below, Orm
supports version- and revision control of the programs and grammars created by the system
[Gus9Q]. Thereis also afuture goal of supporting programming of real-time systems. This has
motivated research on real-time garbage collection algorithms with low predictable response
times [Ben90].

2.1.1 Implementation status

Ormisimplemented in Simulaand runs on SUN SPARC-stations. The implementation consists
of approximately 100 000 lines of code. It is a complete environment supporting both editing
and execution of programs. The executing program runs in a separate UNIX process and com-
municates with the environment over a pipe. Currently, the execution is performed by an
interpreter, interpreting intermediate three-address instructions, but a binary run-time systemis
under development. Thelargest programswritten so far in Orm are about 1000 lines. Thelargest
grammar isthe grammar for Simula, consisting of about 100 productions.

2.2 Programming level

2.2.1 Source program

A program in Orm is presented to the user as a hierarchy of nested classes and procedures, each
shown as awindow. The window nesting reflects the block nesting structure of the program.
Local declarations and statements are presented inside the blocks as a textual unparsing of syn-
tax trees. Three editing mechanisms are available: menu-driven structure-oriented editing,
textual input which isincrementally parsed, and context-sensitive editing which will be further
explained below. Incomplete parts of the syntax trees are represented by placeholders, shown as
question marks in the unparsed text.

2.2 Programming level 9

Static-semanticinformation such as name bindings, typeinformation, and static-semantic errors,
ismaintained incrementally by astatic-semantic analyzer. Theincremental analysisis performed
after each single edit step. The most recent static-semantic information is thus always available
to be used in editing and browsing. Normally, the incremental analysisisimmediate and not
noticed by the user, even for changes to declarations. Static-semantic errors are presented by
unobtrusive markings on the unparsed text for the erroneous constructs. The markings disappear
automatically when the user corrects the error. Explanations of errors are available viaa menu
command.

Source

OCAL root : ref({Tree) warishle |The tree itself;
0cal factor : integer wariasble !Scale down factor;

CMoweTof 10 , 10) ;
factor:=2;
root:-new Treel O, 9, 2 7;
T, root , factor). into({ root);
root , factor). intof root };
B J.intof rookt 3;
i Drawi(8, 250 ., 10

Figure2.1 A source program in Orm

10 Chapter 2 The Orm Environment

2.2.1.1 Example programin Orm

Figure 2.1 shows an example program in Orm. The program draws fractal trees. Four classes
appear in the program:

» class Tr ee which models afractal tree
e classTreePart which models apart of afractal tree (an abstract class)

e classes Branch and Leaf , both subclasses of TreePart .

The program importstwo modules: si nset . nj ol which containsthe standard linked list facility
of Simula (classes Head and Li nk), and ui | . mj ol which isagraphical drawing package. The
program furthermore contains a procedure f r act al Exanpl e which constructs afractal tree out
of Branch and Leaf components and tellsit to draw itself. (The fractal tree draws itself recur-
sively, smaller for each recursion, until acertain threshold.) The classwindowsin Figure 2.1 are
all closed, but opening any of them would reveal inner structure such as procedures, local vari-
ables, and class statement body.

2.2.1.2 Satic-semantic errors

Figure 2.2 shows an exampl e of a static-semantic error. A call to aprocedure beep has been add-
ed at the bottom of the procedure f r act al Exanpl e. However, the procedure has not yet been
declared, so the error is marked on the screen by a dashed rectangle surrounding the call.

When anew procedure beep is added to the program, as shown in Figure 2.3, the mark on the
call disappearsimmediately. The new procedureis added at the global program level and isthus
visible throughout the whole program, including the four classes. Neverthel ess, the response
time for the incremental analysisis not noticeable by the user. Thisis because the work done by
the incremental analyzer is related only to the actual number of uses of the new procedure, and
isindependent of the size of the whole program. One of the major goals of the work reported in
thisthesisisto find techniques which make such immediate response possibl e, regardiess of the
size of the program.

2.2 Programming level

Source

EﬂHead class Tree

EﬂLink class TreePart

[TreePact class Leaf

[TreePact class Branch

gi# fractalExample

CMoweTad 10 , 10 3;
factor:=%;

root:-new Tree{ 0, 9, 2 7;

T, root ,
root

factor).into{ coot);
, factor). intaof foot);

B).intaf foot);

250, 10 3;

Figure2.2 A static-semantic error

Source

EﬂHead class Tree

EﬂLink class TreePart

[TreePact cl

a3 simset. mjol flaa il mjol

ass Leaf

[TreePact class Branch

CMoweTof 10 , 10) ;
factor:=2;
root:-new Tree{ 0 ., 9, 2
T, root ,
5, root
B J.intof ro
250 , 10),

i

factor).into{ coot);
, factor). intaof foot);
ot ;

Figure2.3 Correction of static-semantic error

11

12 Chapter 2 The Orm Environment

2.2.1.3 Context-sensitive editing

Context-sensitive editing in Orm is centered around a*“Names” menu which gives alist of all
declared names visible at the current edit focus [Hed92]. This editing mechanism provides a
powerful way of constructing dot-expressions, procedure calls, etc. It also works asasimple
browsing mechanism. Figure 2.4 shows an example of context-sensitive editing in Orm.

fractalExample

wothing

LOCAL root : ref(Tree) wvarishle !The tree itself;
LOCAL factor : integer wariable !Scale down factor;

[r—

Expand AE

Foa,
Transform factar

Expand after <RE
Expand beford Tree
Edit as texd TreePart

Branch first =
Cut Leaf last =
Capy fractalExample | empty

Paste W cardinal
Paste after clear

Paste before Linkage -
Head suC
Tao shelf Link pred =
From shelf prev =
Explain Window =
Scrollbars ong windowExample
Redisplay

Figure2.4 Context-sensitive editing in Orm

The edit focusislocated at the last statement in the procedure (the question-mark placeholder).
The edit menu (Expand/ Nanes/ Transforni . . .) isahierarchical menu. Pulling right at
“Nanes” gives asub menu with alist of all declared names visible at the edit focus. Selecting
any of these names (root / fact or/ . . .) replaces the edit focus by the selected name. In thefig-
ure, we have instead pulled further right at r oot , bringing up yet another sub menu (dx/ dy/
draw ...). This menu shows the accessible variables and procedures of the root object. |.e.,
sincer oot isdeclared as areference qualified by class Tr ee, this menu shows all the variables

and procedures declared in Tr ee. By selecting dr awin this sub menu, the placeholder isreplaced
by the statement

root.draw(?, ?, ?)

2.2 Programming level 13

where the question marks are new placeholdersfor the actual parameters of the procedure dr aw.

This mechanism for context-sensitive editing is an example of the kind of advanced editing sup-
port which is possible to obtain in an integrated incremental system, where static-semantic
information is kept up to date after each edit operation.

2.2.2 Program execution

The user can switch freely between editing and execution of the program. Code generation and
linking is done automatically and incrementally as needed. A program does not have to be com-
plete or free from static-semantic errors to be executed. Placeholders and erroneous constructs
simply give the effect of a breakpoint in the execution.

Objectsand activation records created during program execution are presented as windows, sim-
ilar to the class and procedure windows in the source program [THM87]. Also in the execution,
the window hierarchy reflects the block nesting structure. For example, the execution of a call
“obj . draw’ isshown asaprocedure activation window for dr awnested inside an object window
for the object denoted by obj . Local declarations and statements are presented in asimilar way
asin the source program. In the statement part, the current execution point is highlighted. In the
declaration part, the actual values of local variablesare shown. For reference variables, the value
field showsthe actual qualification of the referenced object, and works like a hypertext link but-
ton which links to the window of the referenced object.

2.2.2.1 Execution example

Figure 2.5 shows an example execution state of the program of Figure 2.1. The execution win-
dow contains an activation of thef r act al Exanpl e procedure and four objects: a Tr ee object,
two Br anch objects and a Leaf object. Insidethe Leaf object is an activation of the procedure
dr awfor thisobject. The current execution point is at the call of MoveTo, whichishighlightedin
the procedure dr aw. Each procedure activation and object haslocal variables whose current val-
ues are shown. Clicking on areference variable will either briefly highlight the corresponding
object window, or bring up a new window (if the corresponding object window was not already
on the screen).

2.2.2.2 Continued execution after changes to program

Itisagoal of Orm to alow continued execution after program changes. Such functionality can
be very useful when developing programsin an exploratory fashion. Another setting where this
can be useful, or even necessary, isthe maintenance of persistently executing programs. Changes
to code which is not active are straight-forward to handle. But, in the general case, changes to
executing programs give rise to consistency and version issues, and also to synchronization
issuesin case of on-the-fly updates to arunning program. Some environmentslike INTERLISP,
Gandalf, and DICE support continued execution after changes by transforming procedure acti-

14 Chapter 2 The Orm Environment

7, Executing

pf¥ fractalExample
L1}
10 31; Start

factor:=2; Hojd

root:-new Tree(O , 9, 2 3; Continue

T . root ., factor J.intof Step/finto
5, root , factor).inta| Stepfover

& 3.into{ ookt); Rerm all breaks

 MoweTof 10 ,

250, 103 Stop execution

il

:-this Linkage;
OCALpred:-this Linkage ref (Tree)
13
T
ref (Tree)

ref (Leaf)
ref (Branc
-13
5
ref (Tree)
ref (Tree) o
ref (Branc
-2

[xpos , ypos);
.LineTof xpos+scale*dx , ypos+scale*dy)

Figure2.5 A program execution statein Orm

2.3 Metalevel 15

vations or popping the activation stack in difficult cases [Fri83]. At present, Orm does not yet
support continued execution, but requires the execution to be restarted after any change to the
program source. However, an earlier prototype of Orm did support continued execution. The
default scheme used was to let existing instances continue to execute the old code, but let new
instances execute the new code version [HM86], [HM87]. Transformations between the old and
the new version were made on request.

2.3 Metalevd

The Orm programming environment isdriven by anumber of grammars, controlling the abstract
syntax, concrete syntax, static semantics, and code generation. These grammars are represented
in the same way as programs, i.e., as abstract syntax trees, and can be edited within the environ-
ment itself. The compilation tools: the structure-oriented editor, the static-semantic analyzer, and
the code generator all interpret grammars (or slightly preprocessed representations for the two
latter tools), which allows changesto the grammarsto betried out more or less directly on asam-
ple program. In this way, Orm supports interactive devel opment of language-based
environments.

2.3.1 Abstract and concrete syntax

The abstract syntax for alanguage is described by a BNF style grammar. The concrete syntax is
described by a parallel document, giving the unparsing specification for each production in the
abstract syntax.

The structure-oriented editor used in Orm interprets the grammars for abstract and concrete syn-
tax directly, in their abstract syntax tree form. The editor uses these grammarsto control the
syntax of atarget program also represented in the same abstract syntax tree form. By cascading
aseries of editor instancesworking on grammars and programsit is possible to change the gram-
mars and immediately see the effects in a sample program [Min90]. Thisway, Orm can be used
as ahighly interactive laboratory for language devel opment.

This technique has been used not only for the development of grammars for programming lan-
guages, like Simula, but also for the devel opment of the grammar formalismsthemselves, which
are then described by meta-grammars. All these grammars have in fact been developed within
the system itself, except for two small meta-grammars needed to bootstrap the system.

2.3.2 Static semantics

The grammar for static semanticsis based on attribute grammars, but extended with akernel of
primitives making use of objects and side-effects in a controlled manner [Hed88]. These exten-
sions allow efficient incremental processing to be implemented. This method is a precursor to
the Door Attribute Grammars treated in this thesis.

16 Chapter 2 The Orm Environment

The functionality implemented by the primitives in the kernel are, for example:
» adding a declaration to a symbol table

» changing the type of a declaration

» hinding an identifier according to a given declaration environment

* mark astatic-semantic error on the screen

To preserve the declarative nature of attribute grammars, the primitives are formulated asinvari-
ants rather than as imperative operations. The static-semantic grammar is very similar to an
ordinary attribute grammar, but makes use of these primitives instead of the usual approach of
building symbol tables and environments as attributes. The primitives themsel ves make use of
objects and side-effects, and cannot be expressed in terms of attribute grammars.

The static-semantic analyzer isimplemented as an incremental attribute evaluator running avis-
it-oriented eval uation algorithm. The visit sequences which drive the evaluation are generated
from the grammar by sorting the attributes topologically according to their local dependencies.
The visit sequences are represented as object structures which are interpreted by the attribute
evaluator. However, the kernel primitives are compiled and executed directly. This gives a suit-
able mix of flexibility and efficiency. The grammar can easily be changed and tried out on
programs without having to recompile and link the Orm system. Nevertheless, the incremental
evaluation is sufficiently efficient for practical use because the “inner loops’ of the incremental
processing are performed in the compiled kernel.

2.3.3 Code generation

Code generationin Ormisdoneincrementally with the granularity of ablock. Each block results
inatemplate (astructural description of theblock) and acode object (asequence of instructions).
Since there is no need for feedback to the user, the templates and code objects do not haveto be
kept up-to-date with the source program at all times. The blocks needing new template and/or
code are only marked by aflag during the incremental static-semantic analysis. When the user
gives the command to execute the program, information about which blocks are changed is
downloaded to the runtime system. New code for the changed blocksis generated and downl oad-
ed incrementally on demand from the runtime system as the program is executed. In principle,
this process could be speeded up by doing code generation and loading in advance in a back-
ground process, similar to what was done in the Magpie system [DMS84]. Thisis, however,
currently not implemented in Orm.

The code generation grammar isan attribute grammar defining the codefor ablock asasequence
of three-addressinstructions. The front-end of the code generator is an exhaustive attribute eval -
uator which evaluates the code attributes for a block at atime. The resulting sequence of

instructionsisthen translated to native code by a code generator back-end. The code generation
grammar makes use of attributes defined in the static-semantic grammar, e.g. identifier bindings,

2.4 Requirements on incremental techniques 17

types, and error information, and is a comparatively straight-forward mapping from syntax to
instructions.

Similarly to the static-semantic analyzer, the code generator front-end inter prets a preprocessed
form of the code generation grammar. It istherefore possible to modify the code generator gram-
mar interactively and try it out on a sample program. The code generator back-end is, on the
other hand, aprogram created using atraditional generative approach. Generating codefor anew
target machine thus requires re-generation and re-compilation of the back-end.

2.4 Requirementson incremental techniques

Theincremental static-semantic analyzer plays acentral role in an environment like Orm. It
derives static-semantic information from the source program, and maintains thisinformation as
the program is edited. The static-semantic information is essential for many other components
of the environment. For example:

e Error messages are communicated to the editor to be displayed in the unparsed presentation
of the program.

e Symboal table information is made availabl e to the context-sensitive editor to produce menus
of visible names.

» Bindingsbetween identifiersand declarations can be made avail able to facilitiesfor browsing
and “masterscope”’ [TM81] in the environment.

e Symboal tables, bindings, type, and error information is used by the code generator.

Ideally, the time for updating the static-semantic information after each edit step should be so
low that the user does not notice any delay. A simple approach to this problem would be to use
afast machine and compute all the stati c-semantic information from scratch after each edit step.
However, this exhaustive approach does not scale up. Regardless of how fast the machine s, it
will alwaysbe possibleto createalarger program for which the exhaustive strategy does not give
the proper response time. A more general solution to the problem is to use incremental tech-
nigques and recompute only affected parts of the static-semantic information. To scale up, the
response time for an incremental technique must depend only on the size of the affected parts,
and be independent on the program size (or at least grow very slowly with the program size).

For any incremental analysis technique to be successful, it is necessary that a small change to
the program gives acorrespondingly small changein the derived static-semantic information. To
obtain this property, the actual structure of theinformation is of paramount importance. It is nec-
essary to find information structures which are suitable for incremental updating. Furthermore,
the information should be structured so that the affected parts for a given change correspond in
size to what the user intuitively finds reasonable.

The hardware platform for interactive applications is personal workstations where the process-
ing power is completely at the disposal of the user. In contrast to the old mainframes, the cost

18 Chapter 2 The Orm Environment

for processing power does not depend on how much of the processing power is actually used.
Thisimpliesthat if an incremental updating technique is fast enough to give a response time
which isnot noticeable by the user, it is not meaningful to optimize the technique further. Since
an incremental computation usually operates on asmall amount of data, it is often acceptable to
use agorithms with worse performance than would be acceptable for batch tools. Flexibility,
simplicity of the algorithm, and low space consumption may be more important than low time
consumption. For example, it may be acceptable to use linear searching to do symbol table look-
up, whereas faster algorithms would be preferable for batch compilers.

Memory consumption, on the other hand, is useful to try to keep small. It liesin the nature of
interactive applicationsthat they consumelarge amounts of memory in order to keep information
readily available to the user. Thereisatendency that no matter how much memory isadded to a
workstation, the user will make good use of it, by running more applications on larger data. As
long as reasonabl e response times can be met by the system it istherefore better to consumetime
than memory. In addition, maintaining more information does not necessarily decrease response
time since it takes time to update the added information as well.

To sum up, the desired properties of incremental techniques are the following:

» Low, preferably unnoticeable, responsetimesfor common editing operations, independent of
program size.

* Theresponsetime should stand in proportion to the amount of information the user perceives
as affected.

» Space consumption should be kept [ow.

The key to obtaining a system with these propertiesisto find structuresfor static-semantic infor-
mation which are suitable for incremental updates and for which changes match the changes
perceived by auser. Thefirst issue addressed by thisthesisisthereforeto analyze what problems
occur in incremental static-semantic analysis for object-oriented languages. We then propose a
technique for describing and updating such structures. Although the main motivation for the
work reported in thisthesisis to handle the specific problems appearing for object-oriented lan-
guages, the proposed techniqueto solve these problems: Door Attribute Grammars, isnot limited
tothisapplication area. It isageneral techniquefor describing and updating information derived
from syntax trees.

Chapter 3
Incremental Static-Semantic Analysis

This chapter discusses the static-semantic analysis problems appearing for object-oriented lan-
guages, and techniques for solving these problemsincrementally. Since there are many different
views on what object-oriented programming is, we also give some remarks on the views taken
inthisthesis.

3.1 Introduction

Satic program analysisis the process of analyzing a program and deriving context-dependent
information from its syntax tree. Thisisin contrast to dynamic analysiswhich deals with analy-
sis of a program execution. In thisthesis, we are particularly concerned with static-semantic
analysis problems, and not so much with other static analysis problems such as code generation
and data flow problems. Static-semantic analysis includes the following subproblems:

* Name analysis. Each name application is bound to the corresponding name declaration
according to the scope rules of the language.

* Typeanalysis. Each expression is associated with atype.

» Error detection. Detection of violations of static-semantic rules (“compile-time errors’).

Inincremental static-semantic analysis, name bindings, type information, and error information
isincrementally kept up to date as the user edits the program.

This chapter discusses techniques for incremental static-semantic analysis with particular
emphasis on object-oriented programming languages. Static-semantic analysis for these lan-
guages is more complex than for the procedural languages treated in standard textbooks on
compiler construction. In particular, name analysisfor object-oriented languagesis substantially
more complex, due to the combination of block structure and subclassing. Incremental analysis
is correspondingly more complex for object-oriented languages.

Therest of this chapter is organized as follows.

22 Chapter 3 Incremental Static-Semantic Analysis

» 8§3.2 discusses the view on object-oriented programming taken in this thesis.

» 83.3 describes in some depth the name analysis problems occurring in object-oriented
languages

* 83.4reviews and compares methods for incremental name analysis

» 83.5and §3.6 describe type analysis and error detection problems particular to object-orient-
ed languages

» 83.7 discusses briefly different techniques for incremental updating

3.2 Object-oriented programming

Object-oriented programming began with the Simula-67 programming language[DMNG68]. This
language was the inspiration source of many newer languagesincluding Smalltalk [GR83], C++
[Str86], and Eiffel [Mey88]. Theintense current interest in everything with the label “ object-ori-
ented” has diluted the term and made it applicable to almost everything. Perhaps a better term
for the original use of object-oriented programming techniques, such as subclassing and virtual
procedures, would be “ class-oriented programming”.

Even within “class-oriented programming”, there are diverging views on what classes and the
related mechanisms of subclassing and virtual procedures are good for. These mechanisms are
interesting from many different aspects. modelling, code reuse, data protection, parallelism, etc.
By putting different aspects in the center, different object-oriented languages and schools have
emerged. In thisthesis we follow the school developed along with the Simulaand BETA
[KMMN87] languages, and which is sometimes referred to as the “ Scandiavian school” of
object-oriented programming [Coo88]. This school emphasizes modelling: Classes are used for
modelling concepts and subclassing for modelling specialized concepts. We will not go into
details of the philosophy behind this school, but ssimply point out afew views relevant for this
thesis.

e Types. Classes are types and static typing isimportant because it makes programs more
descriptive and easier to understand. Further, by performing static type-checks, many errors
in the program are caught early without having to run the program. However, in order to not
hamper power of expression, dynamic type-checks are needed in some cases, as discussed in
[MMMQQ].

e Subclassing. Subclassing is a concept specialization mechanism, rather than a mere code
sharing mechanism. Thisview is closely connected to that of regarding classes as types and
subclasses as subtypes. An object of a subtype should be possible to use wherever an object
of its supertypeis allowed. Code sharing usually comes out as a nice side-effect of special-
ization, but other code sharing mechanisms such as aggregation are often better from a
modelling point of view.

3.2 Object-oriented programming 23

» Multiple inheritance. The value of multiple inheritance is questionable. For object-oriented
languages which include multiple inheritance, the motivation has usually been code sharing
and not modelling. From amodelling and typing point of view, the full implications of mul-
tiple inheritance are unclear.

» Block structure. Block structure, or lexical nesting, is an important modularization mecha-
nism asit allows definitions to be localized. In object-oriented programming, nesting is
useful in several interesting ways [Mad87]. Few object-oriented languages, other than Sim-
ulaand BETA, have unlimited block structure allowing, for example, classes to be nested
inside classes. However, most object-oriented languages can be seen as having at least alim-
ited block structure where an outer (sometimesimplicit) level containsthe classes, and each
class contains anumber of procedures. Some languages have additional block structure, e.g.
Smalltalk hasalocal block concept used inside the procedures (methods) and C++ hasalim-
ited form of nested classes.

» Data protection. In some views on object-oriented programming, accessto avariablein an
object from another object isforbidden or considered bad programming style. Thisis not the
view in the Scandinavian school. The view here isthat the individual object is seldom the
right level for data protection. |.e., it is perfectly fine to access variablesin an object directly
from another object. Usually, several objectsare closely tied together, e.g. informing alarger
aggregate, and “protecting” them from mutual access gives no benefit. Theissue of datapro-
tection is often more relevant on alarger granularity, such asamodule. Thisview is similar
to the one presented in [Szy92].

These views have influenced the way object-oriented techniques are used in this thesis. They
have also affected which static-semantic analysis problems are treated in detail. Literature
describing the Scandinavian school of object-oriented programming include [Nyg86], [KM88],
[MM8S8], [KMMN91].

3.2.1 Object terminology

We make a sharp distinction between objects and values. A value isan immutabl e entity whereas
objects are mutable. Although objects are mutabl e, each object has a unique immutable identity.
Object identities are values, but they are different from the values normally used in mathematics
in that they denote mutable entities. To distinguish object identities from the numerical values,
sets, cartesian products, and other values normally used in mathematics, we refer to the latter as
regular values.

By having access to an object identity value, the mutable contents of the denoted object can be
accessed. An expression or attribute holding an object identity valueis called areference.

Wewill usethe class and type system introduced by Simulaand the notation used in [MMM90Q].
Each object is an instance of a class. Classes are arranged in a subclass hierarchy. We use the
symbol C for the (transitive) relation subclass of and the symbol D for the (transitive) relation
superclassof. |.e.,, wewrite BC Ato indicate that Bisadirect or indirect subclass of A. Thisnota-

24 Chapter 3 Incremental Static-Semantic Analysis

tion reflects the extension of classes. |.e., the set of all possible B objectsis a subset of the set of
all possible A objects.

Each referencer hasaformal qualification, written qual (r) (aclass). Theformal qualification
restricts the set of objectswhichr isallowed to denote. The type system guarantees that in any
object structure, the referencer will denote either an object of a class Dsuch that DC qual (r),
or it will have the specia value NONE, denoting no real object. For technical purposes, NONE is
considered to be the identity of an object of class NOCLASS which is not in the class hierarchy.
The class of the object denoted by r is called the actual qualification of r, and is written

qual (obj ect (r)) . Thistype system is used in many object-oriented languages including Sim-
ula, BETA, C++, and Eiffel. Smalltalk adheres partially to this type system: References have
actual but no formal qualifications.

We differ between dynamic and static reference attributes asin BETA. A dynamic reference
attribute has the value NONE at object creation time and can later be changed to denote other
objects. A static reference attribute of an object x denotes another object y created automatically
as part of creating x. A static reference can never be changed to denote another object. y issaid
to be a part-object of x. We also say that x isthe owner of y.

3.3 Name analysis

We now turn back to the main topic of this chapter: the static-semantic analysis problemswhich
occur for object-oriented languages.

In name analysis, each name application is associated with the corresponding name declaration,
and information about the declared name, for example its type, is made available to the name
application. The association between a name application and its name declaration is called a
binding. The process of finding the appropriate binding for aname application, according to the
scope rules of the language, is called lookup. Lookup can be performed by afunction which
takes as parameters the name and a declarative environment of the name application. The declar-
ative environment contains information about which name declarations are visible at the name
application site.

Name analysisis afundamental problem in static analysis - nearly all other static analysis prob-
lems require the name analysis to have been done. Name analysis is further one of the hardest
static analysis problems to handle incrementally because of the non-local dependencies intro-
duced by using names. In object-oriented languages, the name analysis problem is more
complex than in procedural languages, because of the combination of subclassing and block
structured visibility rules.

A general model for describing and implementing name analysisis Garrison’s I nheritance Graph
Model [Gar87]. We use asimilar but simpler model, suitable for languages based on Algol-like
block structure. This model assumes that the order of declarationswithin ablock is of no impor-
tance. It handlesthe usual shadowing principle: that adeclaration in one block will shadow other

3.3 Nameanalysis 25

declarations with the same name in outer blocks. With block we mean here a syntactic construct
which introduces anew name space. A block isalso atemplate for run-time units (block instanc-
es or objects). Examples of blocks are Algol block statements, Simula classes and procedures,
and Pascal records. Name analysisappliesto all kinds of named entities, e.g. classes, procedures,
and variables. Although the dynamic semantics for accesses may differ substantially (e.g.
between a procedure call and avariable access), the static name analysisis donein the same way
for al entities. The model makes use of avisibility graph defined as follows.

31 Definition Visibility graph

A visibility graph isadirected acyclic graph G = (V, E). The vertex set V isdivided into three
digoint sets T, P, and { null} asfollows.

e Tisaset of table vertices. A table vertex representsaloca symbol table giving accessto
the declarations of one block. It has no outgoing edges.

e Pisaset of path vertices. A path vertex represents a specific combination of tables. It has
one or more outgoing edges, e; .. &, N = 1. The edges are ordered, representing the pre-
cedence of combination with respect to shadowing. |.e., a declaration accessible via an
edge g, will shadow declarations of the same name accessible via edges (6.1 -- €,)-

¢ Null isadistinguished vertex with no outgoing edges. It is used as a sentinel.
end 3-1

The lookup sequence of avertex v, denoted by LS(v) = (t; : t5: ... : t,y), iSdefined asthe sequence
of table vertices obtained by doing “in-line substitution” in the following way. A vertex v with
outgoing edgese; .. €, n= 1, ending in vertices v, .. v,,, is substituted by the sequence vy : v :
... - V. Thedistinguished vertex null isignored if encountered. Thisresultsin asequence of only
table vertices. A table will occur several timesin the sequenceif it isreachable via several edge
paths. Since the graph is acyclic, the lookup sequences are finite.

We will sometimes use an expanded form of the lookup sequence which includes the set of
declared names for each block. The following notation isused: (t; {...} 1t {..} : ... it {..}).
Empty sets are dropped in the notation.

Let X=(X; : ... 1 Xy) bealookup sequence. The subsequence (X; : ... : %), 1 = k= n,issaid to be
the x,-prefix sequence of X. Analogously, the subsequence (X : ... : X,), 1 = k= n, issaid to be
the x,-suffix sequence of X.

To implement name analysis, avisibility graph is constructed for the program to be analyzed.
The graph contains atable vertex for each block in the program. Path vertices are added to com-
bine the tables in useful ways. Each name application is then associated with one of the path
verticesinthe graph. Thispath vertex is said to be thelookup vertex of the name application. The
lookup vertex represents the declarative environment of the name application, and gives access
to the declarations of all namesvisible at the name application site. Lookup can be implemented
asasimplerecursive procedure which looksin the tables encountered in aleft-to-right traversal

26 Chapter 3 Incremental Static-Semantic Analysis

of the graph, starting at the lookup vertex. The tables are thus visited in the order of the lookup
sequence.

3.3.1 Block Structure
The visibility graph of a block-structured program can be constructed as follows:

32 Construction Visibility graph for block structure

For each block b in the program atable vertex t, and a path vertex s, is added to the graph.
The path vertex s, is called the static path and has two outgoing edges. Thefirst edge endsin
t,. The second edge ends in the static path of the enclosing block. For the outermost block,
the second edge ends the distinguished vertex null.

end 3-2

The static path vertices serve two roles: To be used in construction of the static path vertices of
enclosed blocks, and to be used as lookup vertices. An exampleis shown in Figure 3.1. Table
verticesare shown aslarge boxes. Path vertices are shown as smaller boxeswith oneslot for each
outgoing edge. The slots are ordered; the leftmost slot corresponding to the first outgoing edge.
An outgoing edge ending in the null vertex is shown as a diagonal line through the slot.

The static path vertex s, of ablock b isused asthelookup vertex of the name applicationsinside
b. For example, the nameapplicationx (inthe*x:=1" assignment) hasthelookup vertex spwhich
has the expanded lookup sequence (tp : tc: ta {x}). The declaration of x isthusfound in t,.

For plain block structure, there is a one-to-one correspondence between table vertices and path
vertices. A simpler visibility model could have been used here. However, in the following we

3.3 Nameanalysis

27

will see plenty of examples where there is no such one-to-one correspondence, and whereit is

necessary to distinguish between tables and paths.

begin (A
i nteger x;

begi n (B)
end,

begin (O
begin (D
X =1

end;

begin (E)
end;

end;

end;

15}

te

Figure3.1 Block Structure

3.3.2 Subclassing and block structure

Object-oriented languages have more complex visibility rules because of the combination of
subclassing and block structure. Consider the following Simula program and its associated vis-

ibility graph.

begin (A

class B; (B)
begi n

integer x;
end;

Bclass G (O tB4‘E|Z/4'|'_|_|

begi n

begin (D
X :=1;
end;

begin (E)
end;

end;

end;

S8

Figure3.2 Subclassing Combined with Block Structure

28 Chapter 3 Incremental Static-Semantic Analysis

The expanded lookup sequence of syisinthiscase (tp: tc: tg {x} : ta{B, C) and the declaration
of x isfound in tg as appropriate. The graph is constructed as follows.

33 Construction Visibility graph for combined subclassing and block structure

There are two kinds of blocks: simple blocks (procedures or Algol block statements) and
classes. For simple blocks, the same construction rules are used asin the plain bl ock-structure
case (construction 3-2). For aclass ¢, one table vertex t. and two path vertices p, and s; are
added to the visibility graph. The prefix path p, has two outgoing edges. Thefirst endsin t.
and the second ends in the prefix path of the superclass. If the class has no superclass the sec-
ond edge endsin the null vertex. The static path s. also has two outgoing edges. Thefirst ends
in p; and the second in the static path of the enclosing block.

end 3-3

The prefix path vertex here serves the role of being used in the construction of other prefix and
static path vertices. In §3.3.3 we will see how it is associated with name applications in remote
acCesses.

The construction of visibility graphs for subclasses in combination with block structure works
alsoin the case of nested classes. An example Simula program with nested classesis the follow-
ing one.

begin (A

class B, (B)
begi n

tA Sa
i nteger Xx;

class BL; (BL) T
begi n tg |
end; P Ssf

end;

Bclass C (O
begi n J’f S
tBL tCL

BL class O.; (Q) PBL SBL PcL ScL
begi n

X =1,
end;

PN
~—+
@]

e

O

24
»

end;

end;

Figure3.3 Nested Classes

3.3 Nameanalysis 29

The expanded lookup sequence of g is(tq @ty @ tc{CL} @ tg{x, BL} : to {B, C}) and the dec-
laration of x isthusfound in tg.

A straight-forward construction of the visibility graph for an erroneous program with cyclic sub-
classing would lead to a cyclic visibility graph. This must be prevented since our definition of
visibility graphs (3-1) allows only acyclic graphs. One way to solve this problem isto select one
of the classeson the cycle, and treat it asif it had no superclass. Thisbreaksthe cycle. The select-
ed class can be associated with a static-semantic error to indicate that its superclassis considered
invalid. Which of the classes on the cycle to select can be an error handling policy, as will be
discussed in more detail in §3.6. In the example below, class B has been selected to break the
cycle, and the visibility graphis constructed asif B had no superclass. The dashed line showsthe
edge which would be present if the cycle was not broken. Class B is marked with a static-seman-
ticerror “i nval i d supercl ass” in the program.

begin (A

begi n
begi n : ZO K tc

Cclass B, (B)invalid superclass ta Sa

end;

Bclass C (O

end; P \ SB /<pC Sc
end;

Figure3.4 Cyclic Subclassing. Breaking the cycle in the visibility graph.

3.3.3 Remote access

Remote access is avisibility construct which gives access to entitiesin explicitly referred
objects. Simula (and also many other languages) use dot-notation for remote access. A remote
access has the following syntactic form:

<remote access> ::= <object expression> . <selector>

The object expression can itself be aremote access, thus leading to a series of remote accesses.
The selector isaname application whose decl arative environment depends on the type (class) of
the object expression. The prefix path vertex of the class describes this declarative environment.
Consider the following program:

30 Chapter 3 Incremental Static-Semantic Analysis

begin (A

class B; (B)
begi n

i nteger x;
end;

Bclass C (O
begi n

begin (D
X =1
end;

begin (E)
end;

end;
ref (O rC

rCx :=2;
end;

Figure3.5 Program Including a Remote Access

Thisisthe same program as Figure 3.2, with the addition of areference variabler Cand an
assignment statement including a remote access. These additions do not affect the visibility
graph, which isthusthe same asin Figure 3.2. The class of the object expressionr CisC, and the
lookup vertex of the selector x is consequently the prefix path vertex pc. The expanded lookup
sequence of pcis (tc: tg {x}) and the declaration of x isthusfound in tg.

3.3.4 Thelnspect Statement in SSIMULA

The inspect statement of Simula (called “connection statement” in the language definition for
Simula) “opens’ an object so the entities of the object can be accessed directly by name appli-
cations inside the inspect statement. In case the inspected object does not contain declarations
of the name applications, the declarative environment outside the inspect statement applies. The
“with” statement of Pascal worksinasimilar way. Theinspect statement isnot typical for object-
oriented languages. Nevertheless, it isauseful construct in certain situations. Since it has inter-
esting visibility rules we have included a discussion of it here.

To represent the declarative environment of name applicationsinside the inspect statement, spe-
cial inspect path vertices need to be added to the visibility graph, as follows:

3.3 Nameanalysis 31

34 Construction Inspect path vertex

For each inspect statement, inspecting an object of class C, an inspect path vertex is construct-
ed with two outgoing edges. The first edge endsin p¢, and the second in the path vertex
applicable outside the inspect statement.

end 3-4

The following program example shows an inspect path vertex v.

begin (A

class B; (B)
begi n

i nteger x;
end;

Bclass C (O
begi n
end;

ref (©Q rC
begin (D

i nteger v;

i nspect rC do
begi n

X =Y,
end;

end;

end;

Figure 3.6 An Inspect Path Vertex

The expanded lookup sequence of the inspect path vertex vis (tc: tg {x} : tp{y} : to{B,C r G}).
Thus, we see that both x and y are accessible inside the inspect statement.

A variant on the inspect statement contains “when” -clauses to allow an object to be inspected as
an object of a specific class. This allows the inspect statement to be used as a case-statement,
dispatching on the type of the object. For this variant, an inspect path vertex is needed for each
“when”-clause.

3.3.5 Virtual Classesin BETA

The virtual concept in BETA isfar more general than in most other object-oriented languages.
In particular, it applies not only to procedures, but also to classes [MM89]. If the type (class) of
areference attribute is avirtual class, the actual type of the attribute depends on where the

32 Chapter 3 Incremental Static-Semantic Analysis

attribute is used. The special type mechanism “like current” in Eiffel works similarly. An impor-
tant use of BETA's virtual classesisin general classes such as set, vector, and list, where they
can be used to achieve an effect similar to type parameters.

The example below illustrates a simple use of virtual classesin BETA. The virtual classVis
declared inside class A and is extended inside A's subclass B. The reference r V denotes a “ part-
object”, i.e. an object automatically generated at the same time as the enclosing A object. Inside
class A all we know isthat r V denotes (at least) aV object. Thus, we know that r V has an x
attribute, but we cannot know if it also has other attributes, e.g. y. Inside class B, we know that
rV actually denotes an object of (at |east) the extended V definition, which is seen as an anony-
mous subclass of V. Here, we know that r VV has both an x and ay attribute.

(#

A class

(# V. virtual class (# x: @nteger #);
rv. o,

do
1->rV.x;
I NNER,

#);

B. class A
(# V. extended class (# y: @nteger #);
do
rv.x ->rV.y;
#);
#)

Figure3.7 Reference to object of virtual classin BETA

The type of an r V application depends on where the application occurs. Inside A, the typeis V.
Inside B, the type is the extended V. We differ between the declared type of r v, whichisV, and
the actual type of an r V application, which depends on where the application occurs. The decla-
ration of r V can be found using ordinary lookup. The actual type can then befound by afunction
ACTUAL (ApplBIk, Decl), where ApplBlk isthe block containing the application, and Decl isthe
declaration of r V. This function traverses the block, class, and declaration structure in order to
find the actua type. We do not include the details of this function asit is rather complex. The
important thing to note hereis that the addition of virtual classes and the use of them as virtual
types does not affect the way the visibility graph is constructed. It only affects the way actual
types of name applications are located.

The situation becomes more complicated if virtual classes are used as superclasses. Consider the
examplebelow. Inthiscase, thevirtual classVhasasubclassW Inside class A, Wis known to have
asuperclasswhichisat least V. The object denoted by r Wis thus known to have at |east the x and
they attributes. In class B, the virtual class Vis extended. Thus, inside B, Wis known to have a
superclasswhich is at least the extended V, and r Wis known to have at least the x, y, and z
attributes. The class Wis virtual in the sense that its superclass is not fixed. Whenever an exten-
sionto Visintroduced, thismeansanimplicit introduction of an actual definition of W Thisactual
definition, W, isanew anonymous classwith its own prefix vertex pyy , with edgesending in (tyy

3.3 Nameanalysis 33

py) ; asshown in Figure 3.9. The selectorsin the r Wremote accesses in B are associated with
the pyy vertex. Since W isnot an explicit classit has no enclosed entities. There istherefore no
need for any table vertex or static path vertex for W.

(# (M

A class

(# V. virtual class (#x: @nteger; do 1 -> x; #);
W class V (#y: @nteger #);
rw ay

do rWx ->rWy;
I NNER,

#);

B: class A
(# V. extended class (#z: @nteger #); (V)
do rWx ->rWy ->rWz;
#);
#)

Figure3.8 Virtual superclassin BETA

ty <-|—_Is\7/l

tyy

1

Figure3.9 Visibility graph for virtual superclass

To summarize, the presence of avirtual classaffectsthevisibility graphif thevirtual classisused
as asuperclass. If the virtual classisonly used as atype on references, the visibility graph con-
struction of 3-3 is sufficient.

34 Chapter 3 Incremental Static-Semantic Analysis

3.3.6 Cyclic Dependencies

Types, bindings, symbol tables, and visibility graphs depend on each other. In several situations
the dependencies are inherently cyclic. We will here mention some of these situationsin an intu-
itive way.

» Arbitrary declaration/application order. This means that within ablock, the declarations
contribute to the symbol table of the block, but they can also utilize the information in the
symbol table, e.g. if their type makes use of a name application which could be declared in
the block. Thisleads to a cyclic dependency between the symbol table and the declaration,
asin the figure below.

symbol table

v
ref (A B declaration

Figure3.10 Cyclic dependencies between symbol table and declaration.

e Referencevariables. In areference variable declaration“ref (x) y”, x must bethe name of
aclass. Clearly, the meaning of y dependson what “ref (x)” means, and the name applica-
tion x in this construct depends on the declaration of x. The following example is correct
according to the context-free syntax, but constitutes a static-semantic error sincea isarefer-
ence variable and not aclass. In this case, the dependencieslead to acycle:

v |

ref (a) a

)

Figure3.11 Cyclic dependencies within areference variable.

3.3 Nameanalysis 35

Cyclic subclassing. Asmentioned earlier, cyclic subclassing must be especially taken care of
to avoid cyclesin the visibility graph. However, even if the visibility graph is constructed to
not contain any cycle, thereis still a cyclic dependency between the classes since changing
the superclass of either of them will affect which identifiers are visible in the other one:

A class B

—

B class A

Figure3.12 Cyclic dependencies between classes.

3.3.7 Other featuresand variations

As noted by Garrison [Gar87], there are about as many subtle variations on visibility rules as
there are languages. Our goal here has not been to describe them all, but to describe some basic
typical rulesfor block structured and object-oriented visibility mechanisms. Examples of other
mechanisms which influence visibility are overloading, multiple inheritance, visibility restric-
tions, and significance of declaration-application order.

Overloading. Inoverloading, it isnot only the name which influences declaration |ookup, but
also the operand types. The lookup function would need to be modified to take thisinto
account. However, the same visibility graphs as described above can be used.

Multiple inheritance. The visibility graphs above can be extended in a straight-forward way
to handle multiple inheritance. Instead of having only one edge ending in the prefix path ver-
tex of the superclass, a path vertex of a class needs a set of outgoing edges, one for each
superclass. The ordering of edgeswould resolve name clashesin an ad-hoc | eft-to-right man-
ner. The workings of the lookup function would have to be changed if other name clash
resolution schemes were desired.

Visibility restrictions. Many languages have visibility restriction mechanisms. These restric-
tions can either be defined by the language, or can be possible to express explicitly in the
program. E.g., in Simula, attributes can be explicitly declared as “hidden” or “protected”
which restricts access from subclasses or from outside the class, respectively. Visibility
restrictions can be seen as “filters” which apply during lookup.

Declaration-application order. In some languages, the order of declarationsis significant,
and a declaration must precede all its applications in the program text. Such restrictions are
mainly motivated by implementation reasons, with the goal of being able to write one-pass
batch compilers. From alanguage design point of view, such restrictions make little sense.
As noted by Garrison [Gar87], restricting declaration order leads to very complex visibility
graphs. Inincremental compilers, restricting the declaration order does not simplify the

36 Chapter 3 Incremental Static-Semantic Analysis

implementation. On the contrary, the restrictions add new dependencies which have a nega-
tive effect on the possible performance of the incremental compiler. Thus, we see only
negative effects of restricting declaration order, and do not treat such languagesfurther inthis
thesis.

3.4 Incremental name analysis

In incremental name analysis, the bindings between applied and declared names, and the infor-
mation transmitted via bindings, are kept up to date as the program is changed. Adding or
removing a name application affects only the binding for that particular name application.
Changesto declarations, on the other hand, can have widespread conseguences, affecting many
name applications. We distinguish between the following kinds of changes to declarations:

| Add adeclaration.
Il Remove a declaration.

11 Change a declaration. With this we mean simple changes which do not affect the bindings
or the visibility graph. A typical example is changing the type of avariable declaration.

IV Changethe visibility graph. Some changes to declarations can affect the visibility graph. A
typical exampleis replacing the superclass of a class declaration.

For each of these changesthereisaset A of directly affected name applicationswhich either have
to berebound, or for which the transmitted declaration information has changed. Changes|1 and
I11 are comparatively easy to handle, as they affect only the name applications bound to the
changed declaration. If there is some suitable data structure for following bindings from name
declarations to name applications, the affected sites are easily located. Adding a declaration (1),
is considerably more complicated. Here, the affected sites can either be name applications for
which there was earlier no declaration, or name applications bound to declarations which
become shadowed by the new declaration.

Changes which affect the visihility graph (1V), are also more difficult to handle. Suppose an out-
going edge of apath vertex v hasbeen replaced. L et R be the set of name applicationswhich have
alookup vertex from which visreachable. The affected name applications A is asubset of R. For
example, consider changing the superclass of a class declaration c in alanguage with block
structure, subclassing, and remote access. The change affects the visibility graph by replacing
the second edge in the prefix path p.. Here, R consists of the following name applications:

e Name applications lexically inside class ¢ or its subclasses.
» Selectorsin remote accesses where the type of the object-expression is ¢ or asubclassto c.
We will now review a number of methods which are used in different systems for handling the

above changes and comment on their time complexity and applicability. The methods will be
characterized in terms of the cardinals of the following sets:

3.4 Incremental name analysis 37

A The set of directly affected name applicationswhich either have to be rebound, or for
which the information transmitted across its binding has changed.

R The set of name applications which have alookup vertex from which changed dec-
larations or changed edges in the visibility graph are reachable.

T The set of nodes in the whole syntax tree.

These sets arerelated asA € RC T. The lower bound for any method is O(|Af). Some methods
take as much time as O(| T|). Clearly, such methods do not scale up. Most notably, the methods
resulting from standard attribute grammars are O(| T|). M ethods which are better than O(| T|) usu-
ally require extra bookkeeping data and operations. Typically, such bookkeeping is performed
for each name application and the extratime is thus spread out during the incremental analysis.
However, spaceisusually ascarceresourcein incremental systems, and since name applications
are very common in programs - perhaps up to half of the nodesin a syntax tree are name appli-
cations - the extra bookkeeping space should be minimized. What is acceptable in practice
depends on many factors: the frequency of different changes, the usual structure and size of pro-
grams, the actual implementation and hardware, how large space consumption is acceptable,
how long maximum delay for any change is acceptable, etc. One should a so note that applying
one method for one kind of program change will often affect the performance at other program
changes. Compromises are thus necessary.

1. Give Up. This method does incremental analysis only for changesin statements and expres-
sions, but recompiles the whole program if one of the changes I-1V occurs. Clearly, the
method is O(|T|) and it does not scale up. The Cornell Program Synthesizer [TR81] used
this approach.

2. Search Smallest Subtree. Theideahereisto find the smallest subtree outside which there can
be no affected name applications. Each name application within this areais then checked,
typically by redoing thelookup and comparing the result with the previous binding. Inaplain
block structured language this means that the search can be restricted to the block subtree
containing the changed declaration, and the time complexity isin this case O(|R]). However,
in the more general case, e.g. for object-oriented languages, the visibility graph may have
edges which do not follow the structure of the syntax tree. In such cases, the method may
degenerateto be O(| T|) for most changes of typel-1V. For example, since adeclarationinside
aclass can be accessed by name applications syntactically outside the class (by remote access
or subclassing), thisin effect leads to that the smallest subtree containing possible name
applications coincides with the whol e syntax tree. Thus, in general, the method is O(| T|) and
does not scale up. Optimal incremental evaluation for standard attribute grammars [Rep82],
[Yeh83] behavesthisway in practice, although the attribute eval uation method isimplicit and
not formulated as an explicit search.

3. Follow reverse edges. Theideawith this method isto follow the visibility graph edgesin the
reverse direction to find syntax subtrees which may contain affected name applications. This
method is similar to the previous one, but achieves O(|R]) complexity without requiring the
visibility graph edgesto follow the syntax tree structure.

38 Chapter 3 Incremental Static-Semantic Analysis

4. Maintain Cross-References. By maintaining a set of references at each declaration to al its
name applications, changes |1 and 111 can be handled in O(]A]). The bookkeeping space
amounts to one cross-reference for each name application.

5. Search Environment. Some simplelanguages have the property that adeclaration d in ablock
b can only shadow declarations visible via the static path of b. We call this the shadows-vis-
ible property. Languages with block structure, subclassing and non-nested classes have this
property. For such languages, the following ad-hoc method can be used to handle addition of
declarations (1).

Consider anew declaration d in ablock b. Search the declarationsin LY(s,). For
example, in the case of pure block structure, search the declarations in the enclosing
blocks. If adeclaration d’ with the same name as d isfound, |ocate the name applications
boundto d’, e.g. using cross-reference information. Of these name applications, the ones
which have t, in their lookup sequence are affected.

This method, although formulated only in the special case of pure block structure, was used
by Johnson and Fischer in [JF82]. However, this method does not work for languages with
more complex visibility constructs, e.g. languages with nested classes and inspect state-
ments. To see this, consider the following lookup sequences of the program with nested
classesin Figure 3.3.

LS(sgL) = (teL : t : ta)

LS(scL) = (teL st 2 e te < ta)

We see that the table t- occurs after tg_ in the latter sequence, but not in the former. Thus, a
declaration in the block BL may shadow adeclaration in C although the declarationsin C are
not visible from the declarative environment sg, . The program is thus not shadows-visible.
If the Search Environment method isapplied it will not find affected name applications bound
viathe sq| vertex. By asimilar example, comparing the lookup sequences of sp and vin Fig-

ure 3.6, it is seen that inspect statements may also result in programs which are not shadows-
visible and where the method thus fails.

Another drawback with the Search Environment method is that it may |ocate more name
applications than necessary. In many practical situations, the method is, however, close to
O(JA)). The same bookkeeping information can be used as in the Cross-References method.

6. Maintain Traces. A general method for handling additions of declarations (I11) isto make use
of “traces’. Theideaisto let each name application leave tracesin the symbol tables tra-
versed during lookup. A trace includes information both about the name of the searched
identifier and about the location of the name application which has tried to bind to that sym-
bol table. When adding anew declaration to asymbol table, thetraceinformationisinspected
to find name applications which have previously tried to bind to that namein that symbol
table, but failed to find a matching declaration.

The cost of adding anew declaration using this method is O(|A)) if the trace information con-
tains direct information about the location of the affected name applications. Thereisalso a
bookkeeping cost when binding aname application a. Thiscost is proportional to the number

3.4 Incremental name analysis 39

of symbol tables| traversed during lookup before finding a matching declaration. The book-
keeping cost in timeisthus proportional to thetimefor |ookup and should not be any problem
in an incremental system.

However, the overhead in space may be more serious. If half of the number of syntax nodes
in the tree are name applications this |eads to a space overhead of O(l,,(|T|/ 2)) where | 4e
is the average value for |. Depending on the value of 1, and the actual space cost for each
trace, thiscould be aproblemin practice. Intheworst casel isequal to thelength of the look-
up sequence for a. This happens if the matching declaration isaglobal declaration or if ais
undeclared. For practical purposes, the maximum length of alookup sequence could be esti-
mated to around 10, corresponding to 3 static block levels and 7 subclass levels.

If trace information is added also to the symbol tables where matching declarations are
found, these traces are equival ent to cross-references and the method can thus be extended to
handle also removals and changes to declarations (11, 111).

The method can also handle changesto the visibility graph (1V) if traces are maintained also
in connection to the visibility graph edges. Suppose the endpoint of an edge is changed from
avertex v to another vertex w. The affected name applications can then be found by inspect-
ing all the trace information associated with the changed edge. In principle, the set of name
applications B found this way may be a superset of A since some of the name applications

bound viathe changed edge may end up being bound to the same name declaration also after
the change. For example, if the superclass of a class declaration is replaced, name applica-

tions within the class which are bound to global declarationswill leave traces at the class-

superclass edge, but are not necessarily affected by areplacement of thisedge. In practice, it
isreasonableto assume that local accesses are much more common than global accesses and
that |JA N B|is much smaller than |A. This method isthen O(|A]) also for changes of type V.

The Mjglner/Orm system performs incremental name analysis based on this method. A
slightly simpler variant was used in a precursory system for simpler block-structured lan-
guages [MM85], [Min85]. Several other systems also use variants of this method. Hoover
describes a technique for handling aggregate values [Hoo87], suitable for incremental name
analysis for block-structured languages, where key trees serve the role of traces. Vorthmann
developed a system for incremental name analysis for general graph based visibility rules
[VL88], [Vor90a]. This system uses a technique very similar to the one used in Orm, repre-
senting graph edge endpoints by views, which maintain the trace information. Vorthmann
uses the term bread crumbs for the trace technique.

40 Chapter 3 Incremental Static-Semantic Analysis

The following table summarizes the worst-case time complexity and applicability of the above
methods.

| —Add Il — Remove | Ill— Change | IV— Change
declaration declaration declaration vis. graph

1. Giveup o(IT) o(IT o(IT) o(IT
2. Subtree’ o(IT) o(T) o(IT) o(T)
3. Rev. edges O(IRD O(IR) O(IRD O(IR)
4. Cross-refs, — O(|Al) O(|Al) —

5. Search env.”” O(|A)) — — —

6. Traces O(IAD O(A) O(1AD O(A

*Effect of using standard AGs for incremental name analysis
**Only applicable to languages with the “ shadows-visibile” property
***Method used in Mjginer/Orm.

Figure 3.13 Complexity of incremental name analysis methods

3.4.1 Compromises between time and space

Asmentioned above, the Maintain traces” method has aspace overhead of O(l,,(|T|/ 2)) where
[ve iS the average number of symbol tables traversed during lookup. In practice, it can be moti-
vated to reduce this overhead and store less information at the expense of a somewhat longer
time for finding the affected name applications.

Compromiseused in Orm

In the Orm system, the traces include information only for quickly identifying which blocks
actually contain affected name applications. These blocks are then searched linearly. Thisreduc-
es the space needed for trace information but still gives a reasonable response time since most
blocks are rather small. Thisapproach isthus a compromise between searching and maintaining
information.

A hybrid method

If space costs must be kept very low, another aternative could beto use cross-references (method
4) for deletions and changes of declarations (11, 111), reverse edges (method 3) for changesto the
visibility graph (1V), and avariant of maintain traces (method 6) for additions of declarations (1).
The latter method would keep only areference count in the symbol tables as trace information,
counting the number of name applications which tried but failed to bind to agiven namein a
given symbol table. This combination of methods would have the advantage of reducing the
space overhead for trace information substantially. For addition of declarations, it would still be

3.4 Incremental name analysis 41

able to handle the very common case of |A|= 0 in constant time (O(|Al)). The disadvantages
would be that in the | A|> 0 case and for changes to the visibility graph, method 3 would have to
be used. However, since these changes occur comparatively infrequently, the disadvantages of
the O(|R]) response of method 3 might be outweighed by the advantages of alower space
consumption.

Special handling of accessesto global standard names

An interesting possibility isto consider handling global accesses differently from non-global
accesses. If the program is dominated by local accesses, |, is approximately 1 and the space
overhead O(|T|/ 2). On the other hand, if the program is dominated by global accesses and the
maximum length of lookup sequencesis, say, 10, the space overhead could be as much as
O(5|T)). If the space for one trace is the same as the space for a syntax node, this would mean
that the traces would take up 5 times the space of the syntax tree. Although programs are not
likely to be dominated by global accesses, thisindicatesthat thereisalot of spaceto saveif glo-
bal accesses are comparatively frequent.

It is reasonable to expect most programs to be dominated by local accesses, but there may also
beafair amount of global accesses. For example, standard functions and types can be considered
to be declared at the global level. Suppose e.g. that the name “integer” isnot areserved word in
the language, but can in principle be declared in the program and thereby hide the standard use
of thisname. There may then be arather large proportion of name applications which are bound
to such standard global names. It could be worthwhile to treat these name applications different-
ly: First, the trace information needed is large since traces for these name applications have to
be added along the whol e lookup sequence. Second, the user is not likely to add declarations of
these names, although it is allowed by the language. One possibility to handle thisin a more
space efficient way would be to keep a hash table of all such standard names and check it when
adeclaration is added. If such a name was re-declared by the user, it would take time to find the
affected name applications. On the other hand, this allows the trace information to be avoided
for all applications of these standard names.

3.4.2 Incremental name analysis, summary

Thissection hasreviewed anumber of methodsfor performing incremental nameanalysis. It can
be noted that evaluators for standard attribute grammars correspond to the “ Search smallest sub-
tree” method, amethod with poor performance, O(| T|) in the worst case, where | T| isthe number
of nodes in the syntax tree. The best method reviewed is the “Maintain Traces” method which
achieves the lowest bound, O(|A)), for al four types of changes. (|A| is the number of affected
name applications.) The Mjginer/Orm environment uses a variant of this method.

In implementing incremental name analysisin practice, it can be motivated to make tradeoffs
between time and space. A couple of examples have been given to illustrate this.

42 Chapter 3 Incremental Static-Semantic Analysis

3.5 Typeanalysis

In type analysis, each name application and expression in a program is associated with a type.
We use the term type in arather broad sense, covering also termslike “kind”, “mode”, and “for-
mal qualification”. The type information is used for certain kinds of name analysis (e.g. remote
access asin 8§3.3.3), for code generation, and for type checking. The type system of Simulais
rather heterogeneous as it includes both simple built-in types such as Integer and Boolean, com-
plex built-in types such as Text, and user-defined types such as the classes appearing in a
program. We can regard also other entities, such as procedures and Algol block statements, as
types. For error handling, it isuseful to extend the type system with atype Unknown, which can
be used for incompl ete and erroneous expressions, e.g. name applications for which thereis no

declaration.

The classes defined in a Simula program form aforest of trees, according to the class (type) hier-
archy. In type checking, it is useful to extend this forest to a complete lattice with atop and a
bottom. In the lattice, a subclass appears below its superclass. The top, bj ect A ass, isan
implicit classwhich correspondsto a Smalltalk-like“ class Object”. Although thereisno explicit
class oj ect in Simula, classes which have no explicit superclass can be considered to be sub-
classes of theimplicit Qoj ect A ass. The bottom of the lattice, Nod ass, models the fictitious
class of the reference value NONE. Although Nod ass is not related to any other class, it can, for
type checking purposes, be seen as a subclass of al other classes, and thus be placed as the bot-
tom of the lattice. The example below shows the class | attice for a Simula program.

begi n]
9 class A (bj ect d ass

begi n ‘
end;

A
A cl ass B;
begi n / \
end,; B C
A class C \ /
begi n

end; Nod ass
end;

Figure3.14 A Class Lattice

Each class type introduces a unique reference type. Type-checking reference expressions
involves comparing classesin terms of the classlattice. The reference assignment statement r X
- rYillustrates this. Both r X and r Y should have reference types. Let qual (r) bethe formal
qualification of areferencer . For Simula, theformal qualification of areferenceisalwaysknown
at compile-time. There are then the following cases:

1. qual (rX) isaboveor equal to qual (rY). Inthiscase, the assignment is always legal at run
time (its legality is statically checkable).

3.6 Error detection 43

2. qual (rX) isbelow (and not equal to) qual (rY). Inthiscase, it depends on the actual quali-
fication of r Y if the assignment islegal. A run-time test is needed to check the actual
qualification of rY, and if it fails, the assignment will result in arun-time error.

3. qual (rX) andqual (rY) areincomparable, i.e. neither one of them is below the other and
they are not equal. In this case, the assignment can never be legal at run time (it is a static-
semantic error).

Class comparisons are needed to check also other Simulaconstructs, e.g. is, in, qua, and inspect.
Other languages, like BETA, Eiffel, and C++, make use of class comparisonsin similar ways.

In the previous section it was discussed how a change of superclassled to the replacement of an
edge in the visibility graph. Similarly, this change leads to replacement of an edge in the class
lattice. Class comparisons depending on this change must then be recomputed.

3.6 Error detection

Anincremental static-semantic analyzer can detect and report static-semantic errors continuous-
ly asthe program is edited. Examples of such errors are:

e Missing declaration of name application.
e Multiple declarations of the same name in the same block.
 lllegal type of an expression with respect to its context.

e Cyclic subclassing.

In an interactive system, error detection can be history-dependent, i.e. it is possible to let the
order of program changesinfluence the error detection behavior. Consider ablock with multiple
declarations of the name a. By taking the editing history into account, the oldest declaration of
a can be considered the “real” one, whereas the other ones are considered as faulty. Thus, new
errors are associated with the latest changes, rather than with previously existing code. Thisis
advantageous both because the error can be reported in terms of the current editing context, and
because it minimizes the necessary incremental re-analysis (adding a new declaration with the
same hame as an existing one does not lead to any rebinding of name applications). Naturally, if
the “real” declaration is removed, the next oldest comes into effect, and rebinding will occur.
Cyclic subclassing can be handled in asimilar way, by regarding one of the classes as causing
the cycle, and treating it semantically asif it had ObjectClass asits superclass. The class treated
this way can be chosen depending on the editing history.

Error reporting can be donein several waysin an interactive system. One way isto highlight the
erroneous language constructions on the screen. Another way isto maintain alist of errorsina
separate window. Regardless of how it is done there is aneed for a communication mechanism
in the incremental analyzer which updates the report as the program is analyzed.

44 Chapter 3 Incremental Static-Semantic Analysis

3.7 Techniquesfor incremental analysis

A number of techniques have been proposed for implementing incremental static-semantic anal-
ysis. One line of development is based on semantic action routines, i.e., procedures connected
to productions. The Gandalf system uses this approach [Med82]. The advantage of the action
routine approach isthat it allows efficient incremental static-semantic analysisto be implement-
ed. The disadvantage is that the action routines are difficult and error-prone to implement. The
editor callsthe action routines according to given patterns, but it is up to the programmer of the
routines to make sure they implement the correct actions in the correct order.

There are also some language-specific systems with completely hand-coded incremental static-
semantic analyzers. In particular, the Rational system [WL86] which is acommercia environ-
ment for Ada. This system isinteresting as it is actually used for large practical programming
projects. Although the implementation technique used is ad hoc, it provesthat it is possible to
use incremental techniques for practical systemsin industrial settings.

The by far most influential technique for incremental static-semantic analysisis the one based
on attribute grammars. This techniques was introduced by Reps, Teitelbaum, and Demers
[DRT81], [RTD83], [Rep84] and their work also resulted in a comprehensive practical system:
the Cornell Synthesizer Generator which supports generation of language-based editors from
attribute grammar specifications [RT88].

The major benefit of attribute grammarsin incremental systemsis that they allow an attribution
of asyntax tree to be specified declaratively. General algorithms can be employed to automati-
cally build the attribution and to update it in the event of changes to the syntax tree. Attribute
grammars thus free the compiler implementor from programming explicitly how the attribution
isto be built. It is sufficient to specify what the attribution should be like when it is correct. This
is especially attractive in incremental systems, since there may be complex dependencies
between attributes which would make hand-coding of updating the attribution very complex and
error-prone.

The disadvantage of attribute grammarsisthat they are poorly suited for some of the problems
in static-semantic analysis. In particular, name anaysisis difficult to expressin attribute gram-
mars, and results in poor efficiency for incremental systems. These problems are even more
pronounced for object-oriented languages which have comparatively complex naming
semantics.

Many proposals have been made for improving the attribute grammar techniquein various ways,
with the goal of keeping the declarative nature of the specification while achieving efficient
incremental evaluators. However, these suggested improvements are primarily directed towards
procedural languages and do not solve the problems for object-oriented languages.

The next chapter covers attribute grammarsin more detail, pinpointsthe problemswith thistech-
nique, and discusses earlier suggested enhancements.

3.8 Summary 45

3.8 Summary

We have shown how a simple visibility-graph based model for name analysis can be used to
describe important name analysis problems occurring in object-oriented languages: block struc-
ture, subclassing, remote access, nested classes, Simula' s inspect statement, and BETA's virtual
classes. Problems like overloading and visibility restrictions have not been taken into account,
but could be added to the basic model.

We have reviewed anumber of existing methods for performing incremental name analysis and
compared their worst-case time complexity. The best method reviewed isthe“Maintain Traces’
method which achieves the lowest bound for all the investigated edit cases: add declaration,
remove declaration, change declaration, change visibility graph. However, the space overhead is
larger for this method than for the other methods. In a practical system, it can be motivated to
make tradeoffs between time and space and use hybrid methods.

Type checking of object-oriented programsinvol ves comparison of classtypes, arranged accord-
ing to the class hierarchy. Such comparisons need to be performed at each reference assignment,
and also at some other language constructs. In the incremental situation it must be taken into
account that changes to the class hierarchy may affect the results of such comparisons.

For detection of static-semantic errors, we have proposed the use of a history-dependent policy.
Such apolicy associates errors with the latest program changesin case there are multiple causes
of the error. For example, adding a new declaration of an already existing name causes the new
declaration to be considered erroneous, whereas the old one remainsin effect. We find thisa
highly desirable behavior of an interactive system.

46

Chapter 3

Incremental Static-Semantic Analysis

Chapter 4
Standard Attribute Grammars

This chapter reviews standard attribute grammars, incremental attribute eval uation, and the prob-
lems of using standard attribute grammars in the incremental setting.

4.1 Introduction

Attribute grammars were introduced by Knuth in 1968 [Knu68]. The idea gave rise to intense
research activity, both in devel oping the theory and in experimental compiler construction. An
extensive bibliography on attribute grammars was published in 1988 [DJL88]. The attribute
grammarsin their original form asintroduced by Knuth will be referred to as standard attribute
grammars, to distinguish them from other variations and extensions such as the Door Attribute
Grammarsintroduced later in thisthesis.

4.2 Definitions and notation

A standard attribute grammar G is an extension of a context-free grammar which associates
with each nonterminal X a set of attributes A(X), and with each production p: Xg ::= Xy . . Xqy)
aset of equations E(p). In asyntax tree T of G, each nonterminal instance (syntax node) x of a
nonterminal X will have instances of the attributes in A(X). An attribute a € A(X) is denoted by
X.a and an attribute instance of ain anode x of X is denoted by x.a.

An equation in E(p) has the following form:

ap=fa, .., ap

whereag . . a,areattributesin U A(Xy), 0 =< k = n(p), and f is a semantic function defining the
value of agintermsof theargumentsa .. a,,. Theequationsof aproduction apply to al instanc-
es of the production, and a; . . &, then denote attribute instances. Both in the case of attributes
and attribute instances, agissaid to dependon a; . . a,. A dependency graph D(T) isadirected
graph whose vertices are attribute instances in T, and where thereis an edge from ato b iff b

48 Chapter 4 Sandard Attribute Grammars

depends on a. In practice, the semantic function is often the identity function. In this case, the
equation is referred to as a copy equation.

Each set A(X) is divided into two digjoint sets: a set of synthesized attributes S(X) and a set of
inherited attributes 1(X). G is said to be well-formed if the start nonterminal does not have any
inherited attributes, and if, for each production p, E(p) contains equations defining all the syn-
thesized attributes of X, all the inherited attributes of X, 1 < k < n(p), and no other equations.
If Giswell-formed, each attributeinstancein any syntax tree of G will have exactly one defining
equation. We will only consider well-formed attribute grammarsin thisthesis, unless explicitly
stated otherwise.

An attribute instance x.a has either the special value null, or anon-null value. If the valueis non-
null, the attribute is available. An attribute instance x.a is evaluated by applying its semantic
function to the arguments and assigning the resulting value to x.a. Such evaluation may only be
performed if all the arguments are available. An attribute instance x.ais consistent if al its argu-
ments are available and if its defining equation holds, i.e. if the value of x.a equals its semantic
function applied to the arguments. Thetree T is consistent if all its attribute instances are consis-
tent. G describes an equation system for T, where al the attribute instances are variables in the
equation system. If T is consistent, its attribution is a solution to the equation system.

An attribute grammar is said to be well-defined if every possible syntax tree has at |east one solu-
tion. If every possible syntax tree has exactly one solution, the grammar is said to be uniquely-
defined. If the grammar is well-defined, but some syntax trees have more than one solution, the
grammar is said to be underdetermined.

An exhaustive evaluator takes as input a syntax tree T where all the attribute instances are null,
and evaluates semantic functions until T is consistent. An incremental evaluator restores consis-
tency in atree T which was initially consistent, but was then modified by syntactic changes.

4.3 AG classes and evaluation techniques

There are two principle kinds of evaluation techniques. data-driven and demand-driven evalua-
tion. In data-driven evaluation, which isthe usual technique, attribute instances are represented
by memory cells, whose values can be read and stored. To obtain an attribution, the attribute
instances are evaluated in topological order, i.e. according to atopological sort of the dependen-
cy graph. In demand-driven evaluation, each attribute is represented by its semantic function.
The attribute values are thus not stored using this technique. Accessing the value of an attribute
isimplemented by calling its semantic function. This actually obviates the whole eval uation pro-
cess - al attributes are automatically available and consistent. The drawback of this techniques
isthat it may be extremely slow since the same semantic function can be called many times. In
theworst case, thetime complexity isexponential in thetotal number of attributes. Lazy attribute
evaluation is avariant on demand-driven evaluation which stores the value of an attribute the
first timeits semantic function is called, and uses that value in subsequent calls. Thistechnique
istime-optimal (linear in the number of attributes). Data-driven and demand-driven techniques

4.3 AG classes and evaluation techniques 49

can be freely combined by selecting some attributes to be data attributes, treated by data-driven
techniques, and others to be demand attributes, treated by demand-driven techniques. This can
be a useful way to trade evaluation time (in demand-driven evaluation) for space (used by the
attributesin data-driven evaluation). In incremental systemsit may even be possible to save both
space and time by using demand or lazy attributes: If an attribute value is not always needed,
timeis saved by not having to update it at incremental evaluation. Lazy attributes only have to
be marked asinvalid but do not need to be recomputed until they are actually needed. Examples
of incremental systems employing demand and lazy attribute evaluation schemes include
[LMOWS8S] and [Hud91].

A data-driven evaluation algorithm can be either dynamic or static, depending on when the eval-
uation order is computed. A dynamic agorithm builds and sorts the dependency graph at
evaluation time, whereas a static algorithm analyzes the attribute dependencies in the grammar
at evaluator construction time, and can then evaluate any tree without doing dependency analy-
sis. Static evaluatorsarein practice much faster than dynamic evaluators and al so consume much
less storage.

Attribute grammars are classified according to the dependencies between attributes. The classes
of interest in this thesis are the following:

* Non-circular. An attribute grammar is non-circular if D(T) of every possible syntax tree T is
acyclic. All non-circular grammars are uniquely-defined, i.e., there exists exactly one solu-
tion for each possible syntax tree.

* Ordered. An attribute grammar is ordered (OAG), according to Kastens definition [Kas30].
Thisisasubclass of the non-circular grammars.

e 1-visit. Thisisasubclass of the ordered attribute grammars. In [DJL88] these grammars are
called “simple-1-sweep”.

» Circular. An attribute grammar iscircular if, for some T, D(T) hasacycle. Circular grammars
may be well-defined under certain circumstances.

General non-circular AGs require dynamic evaluators. The first time-optimal incremental algo-
rithm for this general class was a dynamic change propagation algorithm by Reps [Rep82].
Ordered AGs by Kastens [Kas30] is an important class of grammars for which static evaluators
can be applied. Ordered AGs are sufficient for many practical applications. E.g., compilers for
complex existing programming languages like Ada have been implemented using ordered AGs
[KHZ82]. Incremental versions of Kastens' algorithm for ordered AGs have been presented by
Yeh [Yeh83] and Reps [Rep84], and the version of this algorithm which is used in the Cornell
Synthesizer Generator is presented in detail in [RT88].

Kastens' evaluator for ordered AGs (and itsincremental versions) isbased on avery simple prin-
ciple of visit sequences. A visit sequence is a sequence of instructions of the following three

types:
» EVAL(a) Evauatethe attributeinstance a.

50 Chapter 4 Sandard Attribute Grammars

e VIST(i,r) Visitthei’'th descendant node for the r’th time.
 RETURN(r) Return to the ancestor node for ther’th time.

At evaluator constructiontimeavisit sequenceis computed for each production according to the
attribute dependencies of the grammar. At evaluation time a simple evaluator walks the tree and
visits descendant nodes and ancestor nodes according to the VIS T and RETURN instructions,
and evaluates attributes according to the EVAL instructions. Such an evaluator can be pro-
grammed using co-routines, recursive procedures, or afinite state automaton.

We use the term n-visit AG to mean an ordered AG which requires at most n visits to any node.
I.e., nisequal to the maximum value of r occurring in any instruction in the visit sequences. The
special case of 1-visit grammarsis of particular interest for thisthesis. Standard 1-visit AGs are
useful only for rather simple applications such as one-pass compilers. A more complex language
like Simulawould require at least a 3-visit AG in order to handle that class declarations, variable
declarations, and name applications of these declarations may occur in any order. However, as
will be discussed in detail in 88.11, the Door attribute grammars introduced in this thesis often
have less complex dependencies than standard AGs and 1-visit dependencies are often sufficient
even for quite complex languageslike Simula. 1-visit grammars are attractive because evaluators
for them are even simpler to implement than general evaluators for ordered attribute grammars.
Using object-oriented techniques, both exhaustive and incremental evaluators can beimplement-
ed in avery simple way for such grammars, as will be demonstrated in Chapter 7.

In Knuth's original definition of attribute grammars, circular AGs were considered erroneous.
Most subsequent work has dealt only with non-circular AGs or subclasses thereof. However, it
is quite possible to consider circular AGs, and several practical problems can be expressed in a
simpler way if circularities are allowed. Typical examples are live-analysis in data-flow, and
arbitrary declaration/application order in static semantics. Incremental algorithms for handling
circular attribute grammars have been developed by e.g. Farrow [Far86] and Jones [JS36],
[Jon90].

In contrast to non-circular AGs, acircular AG does not necessarily have a solution for every syn-
tax tree. A tree with acyclein its dependency graph may have zero, one, or many solutions. The
attributes on a cycle can be evaluated iteratively, and if the consecutively computed val ues con-
verge, asolution is found. Under certain circumstancesit is possible to decide if acircular
grammar always has such converging behavior. The usual approach is to arrange the possible
values of each attribute on the cyclein alattice. If the semantic functions are monotone and if
the lattices are of finite height the iteration is guaranteed to converge. Furthermore, by using the
bottom elements as start values, the iterative evaluation is guaranteed to find the least solution
(theleast fixed point). Theleast solution isusually the only interesting sol ution, and by choosing
it as the solution, the circular grammar is uniquely-defined.

Asdiscussed in §3.3.6 there are several constructs in object-oriented languages which lead to
cyclic dependencies, at least on an informal intuitive level. It is reasonable to expect that these
dependencies are simpler to expressin aformal specification language which allows cyclic
dependencies than in one which does not allow cycles.

4.4 Limitations of standard AGs 51

4.4 Limitations of standard AGs

Standard AGs make it possibleto define attributions of syntax trees. However, the nature of these
attributions and the ways they can be defined is limited by the definition of standard AGs. In
particular:

VI

Regular values. The attributes of individual syntax nodes are limited to have regular val-
ues, and must not be object identity values, denoting objects whose contents can be altered
(as a consequence of syntax tree modifications).

Whole attributes. A semantic function always defines awhole attribute, never just part of it.

Smple assertions. An AG equation is an assertion which states something about the attribu-
tion and which can be true or false. Taking a more general view on attributions, a solution
isan attribution for which all assertions are true. In this perspective, AGs restrict the asser-
tionsto be of avery ssimple form.

Local dependencies. The attributesin an equation always involve only attributes bel onging
to the nodes of asingle production, i.e. all attribute dependencies are local (with respect to
the syntax tree). If thereis a dependency between attributes of two nodes distant from each
other in the syntax tree, such a dependency hasto be expressed by a chain of dependencies
viaall intermediate nodes. There is thus no way to express adirect non-local dependency.

Rigid dependencies. The dependencies between attributes arerigid in the sense that they are
completely governed by the form of the syntax tree and not at all by the values of the
attributes. Also, the dependenciesarerigidin the sensethat an attributeisalways considered
to depend on whole other attributes, not just on parts of them.

Uniquely-defined. Standard non-circular attribute grammars are always uniquely-defined.
In some situations underdetermined grammars would be preferrable. For example, thisis
useful to handle history-dependent error reporting as discussed in §3.6.

As an example of what it can mean to relax the above restrictions, consider defining name anal-
ysis of an object-oriented language like Simula. By following the visibility graph approach of
§3.3, the following attributes can be used:

Each declaration node has a decl arati on object which containsthe name, represented asatext
string, and the type, represented as a reference to a type object.

Each block node has a symbol-table vertex object which contains a set of referencesto the
declaration objects of declaration nodes appearing in the declaration part of the block. A
block node also has a static path vertex object, containing references to other vertex objects
(representing the outgoing edges in the visibility graph).

Each class node has in addition a prefix path vertex object.

Each name application node has: adeclarative environment, represented by areferenceto one
of the vertex objects; a binding, represented by a reference to the appropriate declaration
object (according to the name and the declarative environment); and a type attribute, repre-
sented by areference to the same type object asis referred in the declaration object.

52 Chapter 4 Sandard Attribute Grammars

Itisclear that thiskind of attribution cannot be described by astandard AG. We seeimmediately
that (1) isrelaxed. For example, the contents of the set in a symbol-table object is altered if dec-
laration nodes are added or removed. In defining such an attribution, it is useful to relax also the
other limitations. For example:

» Anequation could define the type of a declaration object. Since the declaration object isan
attribute of a declaration node, this means defining only part of an attribute, thusrelaxing (11).

» To state which declaration objects belong to a specific symbol table, amembership assertion
could be used, thus relaxing (I11).

» Viathe binding reference attribute in the name applications, each name application is made
directly dependent on the corresponding name declaration, thus relaxing (1V).

» The dependencies from name declarations to name applications are flexible in the sense that
they may change due to changesin the attribution, even if the syntax tree structure between
these nodes remains intact. For example, if the name of the declaration or application is
changed, or if the structure of the visibility graph is changed (e.g. by changing the superclass
of aclass), the bindings (and thereby the dependencies) will change. Thus, (V) is relaxed.

» Tohandlemultipledeclarations of the same name, the symbol table contents could be defined
toinclude declaration objectsin such away that all the declaration objectswould have unique
names. Thus, if there were more than one declaration object with the same name, only one
of them would be included in the symbol table. This leads to an underdetermined grammar
since it does not express which of the declaration objects to include. Thus, (V1) is relaxed.

One of the main goals of thework presented in thisthesis has been to devel op aformalism which
allowsthesekinds of relaxations. An additional requirement on such aformalismisthat it should
be reasonably simple to develop efficient incremental attribute evaluators for a given specifica-
tion in the formalism. The Door attribute grammars, presented in Chapter 8 and onwardsis the
proposed solution to meet these goals.

4.5 On optimality

The performance of an incremental evaluation algorithm is usually characterized by the number
of attribute evaluations performed after a modification to the syntax tree [Rep82]. The set of
attributesrequiring new values, dueto the syntax tree modification, isreferred toasAFFECTED.
Each attribute evaluation is considered to take unit time. Clearly, the lower bound is |AFFECT-
ED|. If the agorithm uses O(JAFFECTED)) time, it is said to be (asymptotically) optimal. Itis
with respect to this measure that the algorithm for non-circular AGs of Reps [Rep82] and the
algorithm for ordered AGs of Yeh [Yeh83] are optimal. Werefer to thismeasure asthetraditional
performance measure.

However, the traditional measure is useful only for comparing eval uation algorithms within one
formalism (e.g. standard attribute grammars). It is not useful for comparing the performance

between evaluators based on different formalisms. The problem with the traditional measureis
that it assumes that all attributes defined in an attribute grammar are interesting. Thisis usually

4.6 Related work 53

not the case. A better measureisobtained if we only consider interesting attributes, i.e. attributes
which are of interest to maintain with respect to the application, and disregard additional
attributes introduced for technical reasons. We refer to this measure as the interesting perfor-
mance measure. A formalism, e.g. standard attribute grammars, may force us to use alot of
uninteresting attributes, ssimply in order to define the interesting ones. Now, let AFFECTED
mean only the interesting attributes which require new values. If the interesting measureis used,
the traditional algorithms are no longer optimal.

Toillustrate this, consider maintaining only atype attribute for each name application, but no
other attributes. To define the type attributes in a standard attribute grammar, additional (unin-
teresting) attributes are needed which propagate the type from each name declaration nodeto all
its name applications. This can only be done by defining alarge dictionary-like attribute which
maps names to types and which is propagated throughout the scope of the declaration. The tra-
ditional algorithms store and update also these uninteresting dictionary attributes. Suppose the
typeis changed of aglobally visible declaration for which there are n name applications.
AFFECTED isin this case the type attributes of these n name applications, and |JAFFECTED| =
n. This change leadsto all dictionary attributes receiving new values. The updating of the dictio-
nary values can actually be donein acomparatively efficient way since many of them can share
implementation. Worse is, however, that all type attributes in the whole program are re-eval uat-
ed, sincethey depend on adictionary attribute which has changed value. The performancein this
case isthus O(|T|) rather than O(|n|) and clearly very far from optimal.

4.6 Related work

Several methods have been proposed for overcoming the problems of standard AGsin the incre-
mental setting. Some approaches aim at devel oping improved eval uation schemes while staying
within the standard AG formalism. Others extend the standard AG formalism with new con-
structs to allow improved description and evaluation. There are al'so some approaches which
abandon standard AGs altogether and propose other declarative formalisms. Most approaches
aredirected towardsimproving incremental name analysisfor block structured languages. A few
methods have been applied to modular languages, but we have not found any method applied to
object-oriented languages, except for the author’s earlier work. Most of the proposed methods
are based on dynamic attribute evaluation algorithms rather than on the more efficient static
algorithms.

Extending AGs with additional constructs

Johnson and Fischer suggested extending AGs with context-sensitive relation sets [JF82], a
mechanism allowing a declaration site to be linked to its application sites based on block-struc-
tured scope rules. The mechanism allowed information to flow directly over these links and
special procedures were devel oped to handle addition and deletion of declarations. The mecha-
nism was later developed into non-local productions [JF85]. This approach is more formal but
unfortunately has the same efficiency problems as standard AGs for additions and del etions of
declarations.

54 Chapter 4 Sandard Attribute Grammars

Beshers and Campbell suggested extending standard AGs by maintained and constructor
attributes [BC85], [Bes87]. A maintained attribute is an instance of a data type with a given set
of operations. Instead of defining the value of the maintained attribute with an equation, the value
is defined by constructor attributes which each correspondsto an operation pair (an action and a
retraction). A construction attribute is associated to the nearest maintained attribute on the path
to the root of the syntax tree. The value of amaintained attribute is equal to the value obtained
by applying the action operation of all its associated constructor attributes. Trigger clauses serve
asimilar purpose as the context-sensitive relation sets of Johnson and Fischer. The technique
allows name analysis of block structured languages to be defined by using maintained attributes
to represent symbol tables, constructor attributes for adding declarations to the symbol tables,
and trigger clausesto allow information flow directly from declaration sitesto application sites.
The evaluation algorithm is based on the dynamic algorithm of [Rep82].

Kaiser introduces action equations [Kai85], an extension to AGs primarily intended for specifi-
cation of dynamic semantics. Some of the action equation constructs are relevant also for
specifying static semantics. Set-valued attributes can be defined to model symbol tables, amem-
bership construct can be used to assert the membership of a declaration in a symbol table set,
and a propagation construct to link declaration sites to application sites. The evaluation algo-
rithm is based on the dynamic algorithm of [Rep82].

Improving evaluation of standard AGs

Hoover et al. [Hoo86], [HT86b], [Hoo87] and Reps et al. [RM T86] have the goal of improving
incremental eval uation without extending or changing the attribute grammar formalism as such.
Thetechnique used isto provide special eval uation support for apre-defined dictionary datatype
supporting block structured scope rules and for accelerating change propagation by supporting
non-local dependencies. In [RMT86] the latter is done by allowing access to attributes of ances-
torsin the syntax tree, while Hoover uses amore general approach of bypassing copy equations.
Evaluation in [RMT86] is based on the dynamic algorithm of [Rep82]. Peckham [Pec90a]
defines a subclass of AGswhich can handle the non-local dependencies of [RMT86] using a stat-
ic evaluation algorithm. Hoover develops a new dynamic evaluation algorithm, approximate
topological ordering, based on assigning priorities to attributes. Although this algorithm is
dynamic and although it may be sub-optimal, it is reported to perform well in practice.

Support for advanced name analysis

All the above methods have in common that they support incremental name analysisfor languag-
eswith block structure. None of them supports specification of languages with more advanced
scope rules like object-oriented languages.

The author proposed extending standard AGs with operational constraints [Hed88]. An opera-

tional constraint expresses an invariant and is associated with apair of operations. An evaluation
operation enforces the invariant and a de-eval uation operation undoes the side-effects of the pre-
vious evaluation operation. The operational constraints are in this respect similar to the

4.6 Related work 55

constructor attributes of Beshers. A kernel handling incremental name analysis for Simula-like
object oriented languages was implemented and interfaced to the operational constraint mecha-
nism. Thistechnique was used to implement theincremental static-semantic checker of Mjglner/
Orm [MHM+90]. Evaluation is based on a static algorithm.

Vorthmann uses a similar but more language independent approach by extending standard AGs
by aspecial language designed for handling name analysis[VL88], [Vor90a]. This naming spec-
ification language, NSL, allows specification of scopes, scope connections, name declarations

and applications. The approach is quite flexible and can be used to implement the naming seman-
ticsof languageslike Modula-2, Pascal, and C. The eval uation algorithm isbased on the dynamic
algorithm of [Rep82]. The principle waysin which scopes can be combined is equivalent to the
visibility graphsused in §3.3. Therefore, the NSL approach should be suited &l so for implement-
ing object-oriented languages. However, NSL has not been applied to object-oriented languages
in practice and apparently some mechanisms are missing in order to implement such languages.
In particular, there is no mechanism for dealing with erroneously cyclic subclassing, aswas dis-
cussed in §3.3.2 and there is no mechanism for comparing class typeswhich isneeded to do type
checking, as was discussed in §3.5.

Other approaches based on context-free grammars

Demers et al. suggest a declarative message-passing formalism as an alternative to attribute
grammars [DRZ85]. Instead of propagating symbol table attributes to declarations and uses, the
declarations and uses send messages to the symbol table to request or assert information. How-
ever, since messages may flow only along the syntax tree structure (apart from replieswhich may
flow directly back to the request site), the approach seems suitable only for simple block struc-
tured languages and not for languages with more advanced scope rules.

Horwitz and Teitelbaum suggest combining attribute grammars with arelational database
[HT864a)]. Attributes can depend on the val uesin database rel ations and the database rel ations can
depend on attribute values (provided no circularity isintroduced). Symbol tables can be main-
tained asrelations and it is reported that the approach may prove more cost effective after
changes to declarations than the pure attribute grammar approach.

Bahlke and Snelting have built a generator system PSG, which is based on a concept of context
relationsinstead of attributes [BS86]. Instead of propagating symbol table information down to
all use sites, asis normal in attribute grammars, the sets of “still-possible attribute values’ for
use sites are collected in relations which are propagated upwards in the tree. By performing uni-
fication on such relations it is possible to detect type-checking errors even for incomplete
program fragments where declarations are missing. A special scope-analysis specification lan-
guage is used which offers various built-in concepts, but is not ageneral mechanism. In [Sne91]
itisreported that incremental typeinferencersfor Adaand Fortran 8x have been generated based
on this approach.

Ballance has devel oped the notion of logical constraint grammars where contextual constraints
are expressed by annotating productionsin a context-free grammar with goals written in alogic

56 Chapter 4 Sandard Attribute Grammars

programming language [Bal89]. This allows decl arative specification of logic databases of facts
which can be used to model symbol tables. Incremental evaluation is accomplished by a consis-
tency manager which detects inconsistencies between the syntax tree and derived data and
invokes the backtracking evaluator to (re-)attempt goals. These ideas have been implemented in
the system Pan [BGV92] and the technique has been used to specify the static-semantics of
Modula-2.

Approaches based on graphs

Attribute grammars and the related methods described above are all based on attributing a syntax
treein oneway or the other. A different approach isto start out with agraph substrate rather than
asyntax tree. Thisis useful if the underlying edited structure is a graph rather than an abstract
syntax tree. Applications include consistency checking of module interfaces. Alpern et al. have
developed a formalism for specifying attributed directed graphs [ACR+88] and incremental
attribute evaluation algorithmsfor such graphs[ACR+87]. Kaplan and Goering suggest asimilar
approach but based on graph grammars [KG89]. Graph grammars describe graphs derived from
strings, analogously to how context-free grammars describe parse trees derived from strings
[ENR83].

Other approachesto incrementality

A completely different approach to incrementality is that of making a batch computation incre-
mental. Theideahereisto start out with abatch algorithm (or function) which computes aresult
fromaninput, and to derive acorresponding incremental version of thisalgorithm which updates
the result after changed inputs (rather than re-computing the result from scratch). The work of
[YS91], [PT89], and [SH9I1] isin thisdirection. This approach is not directly comparable to
attribute grammars since the idea of AGs isto describe invariant properties of the resulting attri-
bution. I.e., theinitial description isnot abatch algorithm. Rather, the approach of making batch
computations incremental is orthogonal to that of declarative approaches like attribute
grammars.

4.7 Summary

We havereviewed the standard attribute grammar formalism and its propertiesin theincremental
setting. We find the fundamental idea of attribute grammars to be very useful and attractive for
the implementation of incremental systems: the attribution of a syntax tree is described declara-
tively, and an incrementally updating attribute evaluator can be automatically derived from the
specification. This gives robust implementations which are easy to change and maintain.
Although the technique has serious limitations in other respects, it would be preferable to over-
come these limitations while preserving the idea of a declarative description of the attribution.

We find the most serious problem with attribute grammars to be that the attributions they can
define are too limited to be practical. We have listed a number of problems which need to be

4.7 Summary 57

overcome in order to solve the static-semantic analysis problems reviewed in Chapter 3in an
adequate manner.

We have also reviewed a number of existing methods for improving attribute grammars and
related methods for incremental evaluation. However, except for the author’s own earlier work,
none of these approaches is reported to have been applied successfully to object-oriented
languages.

58

Chapter 4 Sandard Attribute Grammars

Chapter 5
A Basic Object-Oriented Specification
Language

In this chapter we introduce a basi c object-oriented specification language devel oped specifical-
ly for thisthesis. For the sake of convenience, it will be called OOS.. OOSL has basic object-
oriented features similar to those of Simula. It will be extended by grammar related features as
needed during therest of thethesis. Oneimportant feature of OOSL isthat it distinguishesfirmly
between declarative and imperative constructs. In specifying grammars, only the declarative
constructs are used. The imperative constructs are used only in the implementation of attribute
evaluators. All constructs of OOSL are straight-forward to implement in any object-oriented
language.

It is not necessary to read this chapter thoroughly to understand the subsequent chapters. It
should suffice to skim through it to get an idea of what constructs are included, and then return
later to more detailed reading if the syntax is not obvious enough.

5.1 Declarative constructs

5.1.1 Classes and subclasses

Classesin OOSL are arranged in asingle-inheritance hierarchy. A declaration of aclass defines
the class name, the name of the superclass (optional), and the class body which isalist of dec-
larations (&l so optional). If the superclassisnot given, the classis considered to be a subclass of
amost general class ANYCLASS. The class may also have aformal parameter part discussed in
more detail in §5.1.11.

<cl ass-decl > :: =
<class-id>"‘:" ‘class’ [<fornal-par-part>] [<superclass>]

60 Chapter 5 A Basic Object-Oriented Specification Language

[“{’ <decl-body> ‘}"]

<supercl ass> :: = <supercl ass-i d>
<decl - body> ::= (<decl> *;’)*
for example

A class B{ };

For clarity, we will use boldface for the most important keywords. Comments are written as (*
this is a comment *).

5.1.2 Variable declar ations

Although the term “variable” suggests imperative programming, variables are relevant also for
declarative specifications. It is possible to define the value of avariable declaratively rather than
imperatively. Thisisexactly what isdone in attribute grammars, where the attributes correspond
to variables.

A variable may be of one of the built-in types:. integer, boolean, and string. In addition, avariable

may be areference. The following syntax is used:
<decl > ::= <var-decl >
<var-decl> ::= <var-id> ‘:’ <type>

<type> ::= ‘integer’ | ‘boolean’ | ‘string | ‘ref’ <class>

<cl ass> ::= <cl ass-id>

for example

i nt eger;
bool ean;
string;
ref A

oTeo™

5.1.3 Objects

Objects can be introduced in a declarative way by declaring static references, asin BETA. The
object denoted by the static reference is created automatically at the same time as the object
declaring the static reference.

<decl > ::= <stat-ref-decl >

<stat-ref-decl> ::=
<stat-ref-id> ‘:" ‘object’ [<class>] [‘{’ <decl-body> ‘}’]

Notice that an object may (asin BETA) have abody. If it has abody, it is considered to be an

instance of an anonymous class which is a subclass of the <cl ass> (or a subclass of ANYCLASS

if no <cl ass> isgiven). For example:

5.1 Declarative constructs 61

A cl ass

{ x: object C
y: object D
{ a integer;
b

}s

For each A object which is created, there will be a C object and an extended D object created as
well. These objects are denoted by the static referencesx and y respectively. The object denoted
by y isan instance of an anonymous subclass of D.

5.1.4 Virtual functions

Functionsin OOSL are applicative in the sense that they have no side-effects and two calls will
yield the same result when called with the same parametersin agiven object configuration. How-
ever, if objects are changed between two calls, the function results may differ. Function results
and parameters may be references as well as regular values.

Functions are virtual and may be overridden in subclasses. A virtual function specification
declaresthe name, result type, and parameters. It may optionally also contain animplementation
defining the result value. A separate function implementation contains only a definition of the

result value. In defining the function result, the value assignment operator “: =" is used for reg-
ular-valued functions and the reference assignment operator “: - ” isused for functions returning
references.
<decl > ::= <func-spec> | <func-inpl>
<func-spec> ::=
<func-id> ‘':’ ‘func’ <type> ['(’ (<formpar> *‘,’)+ ‘)]
(2= ":-7) <expr>]
<formpar> ::= <paramid> ‘:’ <type>
<func-inpl> ::=
“Simpl? <func-id> (f:= | 'i-7) <expr>
For example,
A cl ass

{ f: func ref C(x: integer) :- cO;
b

62 Chapter 5 A Basic Object-Oriented Specification Language

B: class A

{ inmpl f :-
if x>0
then cl

} el se c2;

Here, thefunctionf isboth specified and implemented in class A. In the subclass B an implemen-
tation of f is given which overrides the implementation in A

5.1.5 Super

Similar to Smalltalk, an implementation of afunctionf declared in aclass Cmay call theimple-
mentation of f declared inthe superclassof C. Thisisdoneby calling f viathe special reference
super . The following syntax is used:

<exp> ::= <super-exp>

<super-exp> ::= ‘super’

The following example illustrates the use of super :

A cl ass
{ f: func integer (x: integer)
impl f = x*x; (* 1%
B. class A
C class B
{ impl f := (* 2%
if x=0
then 1
el se super.f(x)
b

Supposef iscalled for aCobject. Theimplementation at (* 2 *) istheninvoked. If the param-
eter x isnot 0 the function callsf viasuper. Thisresultsin an invocation of the function
implementation of f whichis closest above in the class hierarchy, i.e. theimplementation at (*
1%).

5.1.6 Regular value expressions

For arithmetic expressions, boolean expressions, and relations, we use the usual syntax used in

most programming languages. Also for the conditional expression we use the usual syntax:
<exp> ::= <cond- exp>

<cond-exp> ::= ‘if’ <exp> ‘then’ <exp> ‘el se’ <exp>

5.1 Declarative constructs 63

5.1.7 Reference expressions

For simple expressions involving references to objects, we use the syntax of Simula:

<exp> ::= <ref-eq>| <ref-neq> | <in-exp> | <this-exp> |
<none- exp> | <renote-access>
<ref-eq> ::= <exp> '==" <exp>
<ref-neg> ::= <exp> '=/=" <exp>
<in-exp> ::= <exp> ‘in <class-id>
<this-exp> ::= ‘this’ <class-id>
<none-exp> ::= ‘ NO\NE
<rendte-access> ::= <exp> ‘.’ (<id>| <call>)
For example,

e “rl1 == r2"istrueif r 1 andr 2 denote the same object.
e “rl1 =/=r2"istrueif r1 andr 2 denote different objects.

e “r in Cistrueif r denotesan object whichisat least of classC. |.e., the abject is of aclass
DsuchthatDC C.

e “this C' denotesthe Cobject in which the expression occurs.
* “NO\E’ isthe specia object identity value denoting “no object”.

e “r.a” isaremote access to the entity a of the object denoted by r . The remotely accessed
entity may be either an identifier (e.g. for avariable), or afunction cal. If the resulting value
of aremote accessis an object identity, it may be used asthe |eft operand of another remote
access. For example, “r. f (x) . ¢” isan access to ¢ in the object denoted by the reference
returned by the function call f (x) of the object denoted by the referencer .

5.1.8 Let-expression

OOSL includeslet-expressions. A let-expression defines the value of alocal variable which may
be accessed in the body of the let-expression. The value of the |et-expression is the same as the
value of itsbody. Thelocal variableisnot explicitly declared, but will have the same type asthe
expression used to define its value. We use a special lexical identifier for such local variables,
starting with a“$”-sign. Asfor functions, the®: =" or the“: - " operator is used depending on if
the variable has aregular value or if it isareference.

<exp> ::= <dollar-id>| <let-exp>
<let-exp>::=‘let’ <dollar-id> (‘:= “1-7) <exp> in <exp>
For example,

let $X := a*b in
X *($X-1)

64 Chapter 5 A Basic Object-Oriented Specification Language

5.1.9 Inspect-expression

OOSL includes an “inspect-expression” which does case analysis on the actual qualification of
an object. The inspect-expression isinspired by Simula’'s inspect statement, but works as an
expression rather than an imperative statement. Another difference from Simulais that the
inspect-expression uses an explicit variable for the inspected object. Thus, entitiesin theinspect-
ed object must be accessed by remote access via this inspect variable, instead of directly asin
Simula. In our view, thisleads to easier reading of the code.

<exp> ::= <inspect-exp>

<i nspect-exp> ::=

“inspect’ <dollar-id>"‘:-" <exp>

(‘when’ <class-id> ‘do’ <exp>)*
‘ot herwi se’ <exp>

An inspect-expression thus has the following form:

inspect $X .- r
when C; do eq
when G do ep

when G, do ep
ot herw se e

Here, r, which must be a reference expression, denotes an object called the inspected object.
Likein alet-expression, the local variable $Xis defined to denote this object. Depending on the
actual class of the inspected object and the classes C;..G,, one of the when-clauses or the other-
wise-clause will apply. Let A be the actual qualification of r. The first when-clause for which A
C G holds isthe one which applies, and ey is the resulting value of the inspect-expression. If
there is no when-clause for which AC G, holds, the otherwise-clause applies, and e isthe result-
ing value of the inspect-expression. Inside ey, $X has the formal qualification G, and $Xis
guaranteed to actually denote areal object (i.e. it cannot be NONE). Inside e, $X has the same for-
mal qualification as the reference-valued expressionr .

In our OOSL specifications, the most common use of the inspect-expression isto do safe access
to attributes via references which can be NONE at run time. For example, consider areference
variable r Aand a class Awith an attribute t asfollows:

rA ref A

A cl ass;
{ t: integer;

If the variable r A sometimes is NONE and sometimes denotes areal A object, this hasto be
checked before accessing the attributet viathe reference. This can be done by using an inspect-
expression as follows:

i nspect $X :- rA

when A do $X x
ot herwi se 0

5.1 Declarative constructs 65
Theresult of the expressionisr A x if r Adenotes areal object, and 0 if r AiSNO\E.

5.1.10 Loop expression

Theloop-expression isin principle equivalent to arecursive function, but is a convenient way of
writing such functionsin line:

<exp> ::= <l oop-exp> | <next-exp>
<l oop-exp> :: =

‘loop’ <dollar-id> (‘:=" | ":-") <exp> ‘do <exp>
<next-exp> ::= ‘next’ <dollar-id> (‘:= | ':-") <exp>

The form of the loop-expression is thus

| oop $X := start do
body

Asin alet-expression, the local variable $Xis assigned the value of the start expression and can
be used inside the body expression. Theresult of the loop-expressionisthevalue of itsbody. The
body may contain a* next-expression” of the form

next $X := e

Thevalue of the next-expression isthe value of the enclosing loop-expression with $X=e instead
of $X=start . l.e, theloop is“restarted” with a new value for $X.

For exampl e, the loop construct can be used to find aparticular element inalinked list asfollows:

loop $X :- list.first do
if $X data = 5
then $X

el se next $X :- $X suc;

The loop-expression is equivalent to calling a function
f(start)

which is defined as
f: func T1 ($X T2) := body

where a*“next” expression is replaced by the recursive call
f(e)

Just asfor tail-recursive functions, theloop-expression can actually be implemented asan imper-
ativeloopif al next-expressionsoccur in tail-recursive positions. |.e., if the next-expressionsare
the resulting values of the body and not used in further computations. In our examples, we will
only use tail-recursive loop-expressions.

66 Chapter 5 A Basic Object-Oriented Specification Language

5.1.11 Generic classes

Itisuseful to be able to parameterize collection classes (sets, lists, etc) with the types of their
member el ements. Some object-oriented languages support this, e.g. Eiffel by meansof “generic
classes’ [Mey88] and BETA by means of “virtual patterns’ [MM89] . Introducing such mecha-
nisms has some consequences for static type checking aswill be discussed in section 85.5.3. For
OOSL, we take an approach similar to the “constrained generic classes’ of Eiffel [Mey92].

A formal classT can be declared asaparameter of aclassC. The parameter T and itsleast formal
qualification is given within square brackets in the declaration of C and can be used inside C to
define the types of attributes, function parameters and results. C is said to be a generic class.
The formal parameter part of a class declaration has the following syntax:

<formal -par-part> ::=

(<par-class-id>*:’ ‘class’ <qual-id> ‘,’)+
l]!

and for the <cl ass> nonterminal used in declarations of reference variables, parameters, and
static references, we add the following aternative productions aswell (in addition to the produc-
tionin 85.1.1):

<cl ass> ::= <par-cl ass-id>

<class> ::= <cl ass-i d> <actual - par-part>

<actual -par-part> ::= ‘[’ (<class>, ‘,’)+ ‘]’
For example

A class [T: class T2]
{ b ref T

f: func ref T (x: ref T);
}

Here, the formal parameter T is specified to be at least class T2, i.e., T C T2. This makesit pos-
sible to use attributes of T2 inside class Awhen dealing with objects of the parameter classT. In
using class A as the type of areference, an actua class parameter is supplied. For example

ru ref AU

wherethe actual parameter Uisthe name of another class. Umust be either T2 or asubclass of T2.

5.2 Applicative classes

In addition to simple values like integers and booleans, there is aneed also to express structured
values. For these, wewill usethe sametechniquesasin functional languages, i.e. use objectsand
referencesto form structures which represent the values, but use these structures only in restrict-

5.2 Applicative classes 67

ed ways so that the immutability of valuesis not violated (referentia transparency). More
precisely:

* Anobject used to represent a value must not be changed

» Testing equality of object identities is not sufficient for determining value equality

The use of objects and referencesis essential in functional programming to save storage for val-
ueswhich are equal, or which share common substructure, and to allow fast construction of new
values. Data types with these characteristics are sometimes called applicative data types
[Mye84]. In analogy, we use the term applicative class to mean a class whose objects are used
to represent values. It could be interesting to devel op special purpose syntax for applicative
classes to enforce correct use of them. However, since such development is outside the scope of
thisthesis, wewill only add acomment (* appl i cati ve *) at thedeclaration of aclasstoindi-
catethat it is applicative. By convention, we will use these classes as follows:

* New objects of applicative classes may be created by the “new” operator.

» A reference to an object of an applicative class must not be tested for identity. Instead the
applicative class must provide afunction for testing equality.

» The contents of an object of an applicative class must never be changed.

The “new” operator used to construct a new object has the following syntax:
<exp> .= <new exp>

<new exp> ::= ‘new <class>

For example, the expression “new A’ resultsin areference to anew A object. The “new” con-
struct has, in principle, a side-effect (creating a new object) and two executions of it will result
in references denoting different objects. However, thisis transparent when used for applicative
classes, since the reference values are not tested for identity.

Applicative classes are specified with an interface of functions which can be used to construct
values, compare values, inspect parts of values, etc. These functions may very well be imple-
mented using imperative techniques as long asthisis transparent to the usage of the values. For
example, if afunction needsto construct anew value, the state of the new value can be set using
imperative code. The function implementations may also compare references, for example to
quickly determine value equality for the cases where two val ues happen to be represented by the
same object.

68 Chapter 5 A Basic Object-Oriented Specification Language

Asan example of an applicative class, consider set values. We define ageneral applicative class
Set with the following interface.

Set: class [T: class ANYQLASS] (* applicative *)
{ enpty: func bool ean;

contains: func boolean (e: ref T);

add: func ref Set[T] (e: ref T);

union: func ref Set[T] (s: ref Set[T]);

equal : func bool ean (s: ref Set[T]);

Figure5.1 Interface to class Set

A Set object models a set of referencesto T objects. The function enpt y returnst r ue if the set
is empty. The function cont ai ns returnstrueif the set contains the element e. The expression
“s. add(e)” returns anew set object which contains the same elements as s and in addition the
e element. |.e., the add function does not changetheinternal state of S. Similarly, the expression
“s1. uni on(s1)” returns anew set object containing the union of the elementsins1 and s2,
without changing the s1 or s2 objects. The expression “s1. equal (s2)” returnst r ue if s1 and
s2 represent the same set. The expression “new Set [T] ” returns an empty set of referencesto
T objects.

Note that although Set is an applicative class, the class parameter T needs not be an applicative
class. Sincereferencesareimmutabl e, the value of aset isnot changed although theinternal state
of an object denoted by areference in the set may change. Thus, the value of a set of references
to non-applicative objectsis not aregular value, but it isavalue in the same sense as references
arevalues. |.e, the set isimmutable, but mutable information is accessible viathe referencesin
the set.

An object x of an applicative class represents aregular value only if al objects reachable viax
are also applicative.

5.3 Imperative constructs

5.3.1 Statements

OOSL containsthe usual kinds of statements: assignment, conditional statement and while state-
ment. |n addition, an inspect statement is used, similar to Simula's but using alocal variable for
the inspected object, as in the inspect-expression case.

The assignment comesin two variants (asin Simula): avalue assignment for regular values, and
areference assignment for references:

<stm> ::= <assign-stm> | <cond-stni> | <while-stm> |

5.3 Imperative constructs 69

<i nspect - st nt >

<stm-list>::= (<stm> *;’")*

<assign-stnm> ::= <val -assign-stn> | <ref-assign-stni>
<val -assign-stm> ::= <exp> ‘':=" <exp>
<ref-assign-stnt> ::= <exp> ':-’ <exp>

<cond-stnt> ::=
if <exp>
‘then’ <stnt-list>
[else’ <stnt-list>]
‘end ‘if’
<while-stnt> ::=
‘while <exp>
‘do’ <stnt-list>
‘end’” ‘while
<inspect-stm> ::=
“inspect’ <dollar-id>":-' <exp>
(‘when’ <class-id> ‘do’ <stnt-list>)*
‘otherwise’ <stnt-list>
“end’ ‘inspect’

The left-hand side of an assignment statement can be a rather complex expression involving
“this’, “remote-access’, etc. Thisisthereason why we have used the non-terminal <exp> for the
left-hand side of the assignments, rather than a more specific non-terminal. To be correct, the
expression appearing on the left side of an assignment must be an assignable entity (e.g. a
variable).

5.3.2 Virtual procedures

Proceduresin OOSL are similar to the functionsin the way the virtual mechanism worksand in
the separation of specification from implementation. A virtual procedure specification declares
the name, possible result type, and parameters. A virtual procedure implementation contains a
list of statements. If the procedure returns avalue, thisis done by an assignment statement, with
the procedure name on the left-hand side (asin Algol/Simula).

<decl > ::= <proc-spec> | <proc-inpl>
<proc-spec> ::=
<proc-id>‘:’" ‘proc’ [<type>]
['((<formpar> *,")+")"]

[*{" <i np-body>"}"]

<proc-inpl> ::=
“inpl’ <proc-id> ‘{’<inp-body>}’

<i np- body> :: =
(<decl> ";’)* <stnm-1list>

70 Chapter 5 A Basic Object-Oriented Specification Language

For example,

A cl ass
{ p: proc ref C(x: integer)
{ ...

p-- ;
b
B: class A
{ impl p
{ ...
p-- ;

Here, the procedure p is both specified and implemented in class A. In the subclass B an imple-
mentation of p is given which overrides the implementation in A,

A procedure call may appear either as an expression or a statement, depending onif it returns a
value or not:

<stmt> ::= <proc-cal | >

<exp> ::= <proc-cal | >

<proc-call> ::=

<proc-id>[* (" (<exp> ‘,’)+ ‘)]

5.3.3 lterators

Many object-oriented languages have some mechanism by which iterators can be implemented.
For example, the INNER mechanism or the quasi-parallel sequencing of Simulaand BETA can
be used. In Smalltalk, the * block” -mechanism can be used. Since OOSL includes none of these
constructswe haveinstead included an explicit iterator construct, asimplified version of the con-
struct in CLU [LSAS77].

Theiterator construct in OOSL issimilar to the procedure construct in that the specification may
be separated from the implementation. The following syntax is used for defining an iterator:
<decl> ::= <iter-spec> | <iter-inpl>
<iter-spec> ::=
<iter-id>‘:’' ‘iterator’ <type>
[*{" <proc-body>"}"]

<iter-inpl> ::=
“inpl’ <iter-id> ‘{’<inp-body>}’

<stm> ::= <yield-stn>

<yield-stnm> ::= ‘yield <exp>

5.4 Modularization 71

For example, aniterator each whichiteratesover all theelementsof aLi st object can be defined
asfollows:

List: class

éé'ch: iterator ref H enent;

i mpl each
{ e ref Henent;
e .- first;
whil e e =/= none do
yield e
e .- e.suc;
end whil e;

b
}s

At aninvocation of theiterator, theiterator is executed similar to a procedure, but at eachyyi el d
statement, control is passed back to the caller. When control is passed back to the iterator again,
the execution continues after theyi el d statement. The value of theyield expression (e) is passed
to the caller at each iteration.

A call to aniterator has the following syntax:

<stm> ::= <for-stnt>

<for-stm> ::=
‘for’ <dollar-id> (*:= ‘1-7) <exp> ‘do’
<stmt-list>
‘end ‘for’

For example, the each iterator of Li st can be used to iterate over all the elementsin alist and
compute a sum as follows:

sum i nteger;

sum: = 0;

for $x :- aList.each do

sum: = sum+ $x.val;
end for;

Thelocal variable $x is set to the value returned by theyi el d statement of the iterator. For each
yield, $x receives anew value and the statements after do are executed. When the iterator runs
through its end, the execution continues after the end of the f or statement.

5.4 Modularization

OOSL alows declarations local to a class to be defined syntactically outside the body of the
class. Thisis done by using a separate clause which adds local declarations to an already exist-
ing class. This allows different aspects of an OOSL specification to be described separately,
similar to how it isdonein the SSL language, the specification language for the Cornell Synthe-
sizer Generator [RT84].

72 Chapter 5 A Basic Object-Oriented Specification Language

A modulein OOSL isalist of declarations. An OOSL specification can be split into an arbitrary
number of modules. The OOSL specification is simply the sum of all the declarationsin all the
modules with no regards taken to ordering, either within or between modules. OOSL modules
are primarily intended as “ separate understanding” modules rather than modules for separate
compilation.

The mechanism of separate clausesisimportant because it allows different aspects of aclassto
be written in different modules. In this thesis we will primarily use separate clausesin order to
separate the declarative parts of an OOSL specification (the grammar) from the imperative parts
(implementation of visit procedures for attribute evaluation). The separation mechanism isalso
useful for separating interface from implementation and for describing different aspects of a
grammar in different modules, e.g. name analysis separate from error detection.

Modules and separate clauses have the following syntax:

<modul e> ::= (<decl>, ‘;’')*
<decl > :: = <sep-cl ause>
<sep-clause> ::= "addto’ <id> ‘{’ <decl-body> ‘}’

For example, instead of writing

C class
{ f: func integer := ...;

this class could be split into two parts. One declaring the class and the interface to the function:

C class
{ f: func integer;

b
and another part adding the implementation of the function in a separate clause:

addto C
{ inmpl f :=..;

)

These two parts can be placed in different modules.

5.5 Type-checking issuesin OOSL

Most, but not all, type-checking can be done statically in OOSL. To make sure our specifications
will not giveriseto run-timetype-checking errors, wewill make use of some simple conventions
as described below. These conventions are adhered to in the examples of the subsequent
chapters.

In principle, the following run-time errors (related to type-checking) may occur in OOSL :

5.5 Type-checking issuesin OOS_ 73

» Reference is NONE in aremote access
* Missing virtual procedure/function implementation

» Violation of the relation between formal and actual qualification at assignments and calls.

5.5.1 Referenceto NONE

In a specification, we want to be certain that aremote accessis not done on referenceswhich are
NCNE since that would constitute a run-time error. To accomplish thiswewill by default assume
that all references are intended to denote real objects rather than NONE. In some cases, it can be
convenient to alow areference variable to have the value NONE, or afunction or procedure to
return NONE. For these cases we will mark the declaration of the variable, function, or procedure
with the comment (* may be NONE *) or (* may return NONE *).Inusing these references
we will take special care. We will not use remote access on these references, but use the inspect
expression or inspect statement. Thisallows safe handling of the reference since the “ otherwise”
clause of the inspect construct will be executed in case the reference is actually NONE.

5.5.2 Missing virtual implementation

It is sometimes useful to specify avirtual procedure or function in a class, without giving an
implementation of it in that class. Thisis often the case for “abstract” classes which are not
intended to be instantiated. If such a class would be instantiated, and the procedure or function
called, thiswould result in arun-time error. We say that a classisincompleteif it has such spec-
ifications without implementations. We will prevent run-time errors of thistype as follows: A
comment (* abstract *) isadded to the declaration of classes which areintended to beincom-
plete. Classes marked thisway will not be instantiated. Further, classes which are not marked as
abstract must be complete.

5.5.3 Qualification violation at assignment

The type system used in OOSL is based on the qualification relation stated in §3.2.1:

A reference with formal qualification Cmust have an actual qualification Dsuch that DC Cor
D= NOCLASS (i.e. reference to NONE).

To ensure that this relation always holds, it must be checked at each reference assignment. (In
this respect, parameters passed into functions and procedures can also be viewed as assign-
ments.) Although most such checking can be done statically, there are some situationswhen this
isnot possible. Theseissues have been adiscussion topic at recent conferences on object-orient-
ed programming, initiated by a paper by Cook [Co089].

The principles for qualification-based type-checking and the consequences for static/dynamic
type checking are treated in [MMM90]. To summarize the consequences of these principles,
applied to OOSL, consider areferenceassignment “r 1 : - r2”. In most cases the correctness of

74 Chapter 5 A Basic Object-Oriented Specification Language

the assignment can be checked statically. There are two cases when full information is not avail-
able statically (disregarding possible information from data-flow analysis):

| Theformal qualification of r 2 isless than the formal qualification of r 1. In this case, the
assignment may be correct (if the actual qualification of r 2 is equal to or greater than the
formal qualification of r 1).

Il rilisdeclared asareference of aformal type of ageneric class. In general, the formal qual-
ification of r 1 isthen unknown at compile-time.

Casel: For this case, we simply regard such assignmentsin OOSL asillegal. We have not found
the need for such assignmentsin our applications of OOSL. If such need would arise, itisaways
possible to use the “inspect” construct to write the assignment in away which can be statically
type-checked.

Case ll: Consider the following generic class:

A class[T: class T2]
{ r:ref T,
p: proc(s: ref T);

Here, theformal class T may have different actual valuesfor different Aobjects. |.e., to know the
formal qualification of ther and s references, it is necessary to know the actual qualification of
the A object (which includes information about the actual parameter for T). Thisinformation is
available statically for part-objects, but not for objects references via dynamic references. For
example:

rstat: object AY;
. *

rstat.r :=. statically checkabl e *)
rstat.p(...); (* statically checkable *)
rdyn: ref AU;

rdyn.r := ...; (* requires dynam c check *)
rdyn.p(...); (* requires dynanic check *)

Anassignmenttorstat.r can thus be type-checked statically. Likewise, the “assignment” to
the parameter s at acall tor st at . p can be checked statically. On the other hand, if an A object
is accessed viaa dynamic reference, the actual qualification of the A object isin general not
known statically, and a dynamic type-check is needed for assignmentstor ands.

In our applications of OOSL, we have found it sufficient to do thiskind of assignmentsviastatic
references (part-objects), and thus obtain statically checkable specifications.

5.6 Summary

OOSL isan object-oriented specifi cation language with both declarative and imperative features.
The declarative features include classes, generic classes, objects, variables, functions, and

5.6 Summary 75

expressions. The imperative features include statements, procedures, and iterators. Additional
grammar-rel ated features will be added in subsequent chapters.

A modularization mechanism, in the form of separate clauses, alows different aspects of classes
to be declared separately. Thiswill be utilized in subsequent chapters for specifying grammars
and incremental attribute evaluators. The grammars will be specified using only declarative
OOSL constructs. The attribute evaluators will extend the grammar by imperative constructs,
resulting in executable incremental evaluators. Thus, the declarative specification is extended
(rather than translated) into an executable program.

OOSL isageneral-purpose notation for specification and programming. A few simple conven-
tions have been given to obtain specific use of certain language constructs. In particular,
conventions for writing “applicative classes” and conventions for avoiding run-time type-check-
ing errors have been introduced. These conventions are useful for general -purpose specification/
programming aswell, but are not supported by existing languages. It could be an interesting area
of further research to construct some mechanism for supporting these conventions and allowing
them to be checked statically.

76

Chapter 5 A Basic Object-Oriented Specification Language

Chapter 6
Object-Oriented Attribute Grammars

Attribute grammars are descriptions of consistently attributed syntax trees. Taking an object-ori-
ented perspective, the nodes in the syntax tree are objects, and alanguage can be described by
classes organized in a specialization hierarchy. In this chapter we extend OOSL to allow speci-
fication of object-oriented attribute grammars, supporting this view.

6.1 Introduction

For along time, probably sincetheintroduction of Simula, an object-oriented view on grammars
has been used as a practical programming technique in many systems. Recently, explicit object-
oriented formalisms for context-free grammars have been proposed in several forms, e.g.
[Ner87], [CNS87], [MN88], [TTTI88]. In this chapter we bring the attributes and equations of
attribute grammars into such an object-oriented framework, introducing object-oriented
attribute grammars. The presentation here is based on earlier papers by the author [Hed88],
[Hed89], athough these papers used a slightly different specification language (hot OOSL).

Object-oriented AGs are equivalent to standard AGs, i.e. all attributes have regular values asin
standard AGs. Although regul ar values may beimplemented by objects of applicative classes (as
described in the previous chapter), it is only the syntax nodes that are conceptually regarded as
objects. The examplesin this chapter therefore model name analysisin the traditional AG style.
In Chapter 8, the object-oriented AGswill be extended to “ Door AGS’ where true objects can be
part of the attribution, allowing name analysis to be based on explicit visibility graphs.

Although object-oriented AGs are equivalent to standard AGs there are differences in notation
which make certain things easier to expressin object-oriented AGs. Attributes and equations are
defined in node classes and inherited along the classification hierarchy, similarly to variablesand
proceduresin object-oriented programming. The classification hierarchy represents a specializa-
tion hierarchy of language concepts. Behavior (in the form of equations) can be defined at
suitable levels of generalization and default behavior can be overridden in specialized node
classes. Thisallows specificationsto be written in amore compact and readable way than is pos-
siblein traditional AG formalisms.

78 Chapter 6 Object-Oriented Attribute Grammars

Attributes declared in amost general node class will appear in all nodes. Such attributes can be
accessed by tools which have no detailed knowledge of the language. The object-oriented nota-
tion plays an important role here, sinceit allows the attributes to be specified very easily. Ina
traditional notation, the grammar would have to be cluttered with trivial attribute declarations
and equations, and one would simply not think of using attributes for these purposes.

6.1.1 Conflicting terminology

In combining the ideas of object-orientation and attribute grammars, the term “inherited” may
be a source of confusion sinceit is used in both areas with different meanings. Henceforth, we
use inherited in the sense of attribute grammars. To refer to inheritance in the object-oriented
sense, we will use the term oo-inherited.

6.1.2 Outline of chapter

Therest of this chapter is organized asfollows: §6.2 and §6.3 extend OOSL with constructs for
defining context-free grammars, attributes and equations. §6.4 gives an example of an object-ori-
ented AG by specifying asimple desk calculator. 86.5 gives examples of how the classification
hierarchy can be expanded and how behavior can be defined at general levels. 86.6 discussesthe
use of local attributes. 86.7 discusses criteria for well-formedness of object-oriented AGs. §6.8
comments on possible extensions, including multiple-inheritance. 86.9 discusses some related
approaches to object-oriented grammars, and 86.10 gives a summary of the chapter.

6.2 Context-free grammars

The object-oriented specification style lendsitself to express context-free grammars. For exam-
ple, instead of defining anon-terminal st at ement and two productionswhi | e- st at ement and
i f - st at ement , onecan definest at ement asaclass, andwhi | e- st at enent andi f - st at enent
as subclasses, i.e. specialized statements. The nodes of a syntax tree are then class instances
(objects) rather than “non-terminal instances labelled by productions’. We extend OOSL with
the notion of node classes intended for description and construction of abstract syntax trees. If
Xisanon-terminal and p is a production with left-hand side X, then X and p will be formulated
as node classes and p will be asubclass of X. A traditional CFG thus corresponds to atwo-level
class hierarchy. The object-oriented formulation in addition allows the class hierarchy to be fur-
ther expanded, both by forming more general classes and more specialized classes. Later in this
chapter, we will show how the use of general classes allows specification of AGsto be simplified.

6.2.1 Alternation and construction classes

OOSL differs between different kinds of node classes similar to how the GRAMPS system
[CI84] differs between production rules. The basic kinds of node classes are alternation node
classes and construction node classes. Alternation classes are used for abstract language con-

6.2 Context-free grammars 79

structs whereas the construction classes are used for concretelanguage constructswith aspecific
structure of son nodes. |.e., alternation classes correspond to non-terminals and construction
classes to productions. More general node classes are a'so modeled by alternation classes.

The following syntax is used:
<al t-node-decl > :: =
<alt-class-id> ‘:" ‘alt’ [<alt-superclass-id>]
[“{’ <decl-body> ‘}"]

<cons- node-decl > :: =

<cons-class-id> ‘:" ‘cons’ [<alt-superclass-id>]
‘(" (<son-decl> ‘,")* ")’
["{" <decl-body> ‘}"]
<son-decl > ::= <son-id> ‘:’ ‘ref’ <node-cl ass-id>
For example:
Stnt: alt;

Wil eStmi: cons Stni(cond: ref Exp, doPart: ref Stnt);

The optional superclass must aways be an alternation class. If no superclassis explicitly given,
the classis considered to be a subclass of amost general node class ANYNCDE. The class ANYNCDE
isin turn considered a subclass of ANYCLASS.

The declarations of references to son nodes in a construction class corresponds to the “right-
hand-side” of aproduction. In alegal syntax tree, these references will denote real objects (i.e.,
they will not be NONE).

The node classes may, like ordinary classes, have a body of declarations. Thiswill be used for
defining attributions and evaluation of attributions.

6.2.2 Lexemes

L exemes, such asidentifiersand literal values, can in principle be defined using alternation and
construction classes, by including the lexical definitionsin the context-free syntax. However,
that would be highly impractical and we therefore introduce a specia kind of node class for
lexemes:

<l exene- node-decl > : : =

<l exene-class-id> ‘.’ ‘lex’
(7 <attr-id> ‘i’ <type> ‘)’

A lexeme class cannot be declared as subclass to any other class, but is considered to be a sub-
class of the most general node class ANYNCDE. Further, alexeme class does not have abody. Itis
considered a purely lexical entity.

In therest of thisthesis we will use the following two predefined lexeme classes for handling
identifiers and integer constants:

80 Chapter 6 Object-Oriented Attribute Grammars

ID. lex (ident: string);
INT: lex (val: integer);

6.2.3 Lists

Listscan, in principle, a so be defined using alternation and construction class. However, in prac-

tical systemsit isuseful to have specid list constructs, modeling a node with a variable number

of sons of the same class. In OOSL thisis done by introducing alist node class:
<list-node-decl> ::=

<list-class-id>":" ‘list’ <alt-superclass-id>
‘(" <son-id> ‘:" ‘ref’ <node-class-id> ‘)’

For example:
StntList: list (s: ref Stnt)

Here, a St nt Li st node has a variable number of sons of class St nt .

In the examplesin this thesis we will use lexeme and list classes whenever thisis handy. How-
ever, in the algorithms and discussions we will often, for simplicity, ignore the lexeme and list
classes, and treat only the basic node classes (alternations and constructions). Extending the
algorithms to handle also lexeme and list classesistrivial.

6.2.4 Completing Classes

In structure-oriented programming environmentsit is necessary to handle incomplete syntax
trees. Usually, thisis done by extending the grammar by so called completing productions, i.e.
one nullary production for each non-terminal. This way, syntax trees considered incompl ete by
the user can be considered complete by the system. The same technique can be used in object-
oriented CFGs, i.e., extending the set of node classes such that for an alternation class A, appear-
ing on theright-hand side of aconstruction class, thereisacompleting nullary construction class
“Nul l A: cons A()”.

It would be possible to | et the class A itself act as the completing class and thus also allow
instances of alternation classes in the syntax tree. Thiswould be attractive from a code-sharing
view. However, this may sometimes lead to conflicts between defining the behavior of the class
initsrole as completing class and the behavior of the classin itsrole as superclass of other class-
es. An example of this conflict isgiven in 86.5.2. Henceforth, we will therefore use explicit
nullary construction classes as completing classes. By convention, these classes will be named
Nul | Afor an alternation class A. If no such classis explicitly given in the examples, we will
assume there is such a class definition el sewhere.

Theuse of nullary construction classes as compl eting classes meansthat only construction class-
es (and lexeme and list classes) will be used for generating syntax node objects. All alternation

6.3 Attributes and equations 81

classes are abstract classes which are never instantiated (other than as part of amore specialized
object).

6.3 Attributes and equations

An object-oriented AG is an object-oriented CFG where each node class is extended with
attribute and equation declarations. Attributes are similar to variablesin that they are oo-inherit-
ed to subclasses. Equations are similar to virtual proceduresin that they can override other
equations. An equation in aclass C, overrides equations in superclasses of C defining the same
attribute.

Intraditional AGs, the attributes are declared in non-terminals and the equationsin productions.
In object-oriented AGs, attributes and equations can be declared in both alternation and construc-
tion classes. This gives new interesting possibilities. In particular, it allows general behavior to
be defined in general classes and to be overridden by specialized behavior in subclasses. Thisis
very useful in many cases, as discussed in more detail in 86.5.

6.3.1 Attributes

Attribute declarations are similar to variable declarations, but preceded with a keyword to indi-
cate if the attribute is inherited, synthesized, or local. A local attribute means here an attribute
which must be defined in the node itself, just like a synthesized attribute, but which may not be
accessed by the father node. The distinction between inherited, synthesized, and local attributes
could, in principle, be derived from the ways the equations use the attributes, but we prefer this
to be explicit in the declarations.

<attr-decl> ::=
(“inh” | “syn” | ‘loc’) <attr-id>‘:' <type>

For example:

inh al: ref B;
syn a2: ref G
| oc a3: bool ean;

Note that it is possible to define attributes with reference types. However, in a standard object-
oriented AG, all references must denote objects representing regular values, i.e. the classes used
for reference types must be applicative classes.

6.3.2 Equations

An equation defines the value of asynthesized or local attributein the nodeitself, or an inherited
attribute of one of the son nodes. Equations have the form of assignment statements, but are pre-

82 Chapter 6 Object-Oriented Attribute Grammars

ceded by akeyword “eq” to indicate the difference. Asusual for AGs, the order of the equations
iscompletely irrelevant.

<eg-decl> ::=‘eq <attr> (‘:= | ‘:-") <exp>
<attr> ::= <attr-id>| <son-id> ‘.’ <attr-id>
For example:

eq s.al :- al;
eq a3 := true;

6.3.3 Collective equations

We introduce collective equations to make better use of the possibilitiesin object-oriented AGs
to define general behavior. A collective equation defines an inherited attribute for all sons of a
given class. Collective equations are used in alternation classes where the exact number and
types of sons are not known:

<col | -eqg-decl > :: = _
‘eq’ ‘son’ <node-class-id> ‘.’ <attr> (‘:= f1-7) <exp>

For example,

eq son Cx := true;
Here, “son C’ denotes any son node declared to be of the node class C (or a subclass of C). The
equation defines the attribute x of these son nodes. Collective equations make it possible to

define general behavior for propagating information downwardsin the syntax tree. Suppose the
above collective equation appearsin an alternation class A and that A has a construction subclass:

B: cons A (tl: ref D1, t2: ref D2)

where D1 and D2 are subclassesto C. The collective equation isin this case equivalent to two ordi-
nary equationsin B:

true
true

eq tl.x :
eq t2.x :

6.4 An example: Desk calculator

As an example of atraditional AG expressed in OOSL, we will use aslightly simplified and
adapted variant of the desk calculator example in [RT84].

The calculator grammar describes integer expressions, using integer constants, let-expressions,
and normal arithmetic operators such as addition and subtraction. To handle the identifiersintro-
duced by let-expressions, symbol tables are introduced to keep track of identifiers and associate

6.4 Anexample: Desk calculator 83

them totheir values. The symbol tabletypeisdefinedin OOSL by using an applicative classwith
the following interface:

Tabl e: class (* applicative *)

{ add: func ref Table(id: string, val: integer);
| ookup: func integer(id: string);

found: func bool ean(id: string);

}
enptyTab: obj ect Table;

Figure6.1 Interface to data type for symbol tables

A cal “tab. add(id, val)” returnsareferenceto anew Tabl e object which includes the asso-
ciation pair (i d, val) in addition to the contents of t ab. The function | ookup returns the value
associated with thei d (or Oif thei d is not in the table). The f ound function returns true if the
i disinthetable. The object enpt yTab is an empty table.

The desk calculator grammar can now be defined as shown in Figure 6.1. The specification is
very similar to the specification in Reps' paper. One notable differenceisthe use of the collective
equation in Exp. This equation defines that the env attribute of an expression is propagated to all
of its expression son nodes. This default behavior appliesto most expressions. In atraditional
notation, each normal expression would need one equation stating this behavior for each son
node. For example, the Sumexpression would need two equations defining the env attributes of
its two sons. In the object-oriented AG such repeated equations are not needed, the default
behavior isspecified once and for all inthe Exp class. TheLet expressionistheonly classwhich
needsto overridethisbehavior. It overridesthe default behavior by the equation “eq i nExp. env
:- ...". Notethat the default behavior still appliesto the other son (def Exp).

84 Chapter 6 Object-Oriented Attribute Grammars

Calc: cons (e: ref Exp) Let: cons Exp
{ loc result: integer; (letld: ref ID
eq e.env :- enptyTab; def Exp: ref Exp,
eq result :=e.val; i nNExp: ref Exp)
; { eq val :=inExp.val;
eq i nExp.env :-
Exp: alt env. add(l etld.ident,
{ inh env: ref Table; def Exp. val) ;
syn val: integer; }s

eqg son Exp.env :- env,

Use: cons Exp (useld: ref ID
{ loc error: bool ean;

Nul | Exp: cons Exp () eq val :=
{ eqval :=0; env. | ookup(usel d.ident);
; eq error := not
env. found(usel d. i dent);

Sum cons Exp };

(lop: ref Exp, rop: ref Exp)
{ eq val :=1lop.val + rop.val; Const: cons Exp

; (constint: ref INI

{ eq val := constlnt.val

Dff: cons Exp };

(lop: ref Exp, rop: ref Exp)
{ eqval :=1lop.val - rop.val;

Figure6.2 OOSL specification of adesk calculator

6.5 Defining general behavior

One of the main benefits of object-oriented description techniquesis that the classification hier-
archy allows properties of objects to be described at suitable levels of generalization. In a
traditional AG, all attributes are declared at the level of non-terminals, and all equations at the
level of productions. In contrast, the object-oriented AGs allows a class hierarchy with an arbi-
trary number of levels, where attributes and equations can be declared at any level of
generalization. In this section we will give a couple of examples of how this can be utilized.

The general behavior is often defined in general aternation classes which are motivated only
from the static semantics and not from the context-free syntax. Thus, they never appear on the
right-hand side of construction classes. We refer to such classes as behavior classes.

6.5.1 Propagation of environment information

Standard attribute grammars are usually cluttered with copy equations, most of which simply
servetheroleof propagating information from one placein thetreeto another. A typical example
isthe propagation of declarativeinformation throughout thetree. Object-oriented grammarsgive

6.5 Defining general behavior 85

apossibility of describing such behavior on ageneral level, rather than specifically for each sin-
gle language construct.

For example, in the desk calculator grammar, the collective equation in the Exp class definesthe
genera propagation behavior of the env attribute. In a standard AG each construction class
would instead need one copy eguation for each Exp son node. The desk calculator grammar is,
however, very simplein that it includes only one aternation class, Exp. Thismade it possible to
define the general behavior directly in Exp. In more complex grammars behavior may need to be
described at a more general level. This can be done by introducing behavior classes which are
superclasses of existing alternation classes. For the few language constructs which do not follow
the general behavior, the behavior can be overridden in the corresponding subclass, just asin the
desk calculator grammar.

Consider specification of name analysis for a block-structured language (in the traditional AG
style). Similar to the desk calculator grammar, an inherited attribute env represents the declara-
tive environment. The env attributeis propagated throughout the syntax treein order to reach all
name applications. The name applications use the env attribute to ook up the corresponding dec-
laration and associated type information. Some syntax nodes affect the declarative environment,
but most nodes simply passthe env attributeto all the son nodes by copy equations. In an object-
oriented AG thisgeneral behavior can be described as shown in the exampl e below. The behavior
class Node models syntax nodesin general and istherefore the superclass of all other node class-
esin the grammar (excluding the lexeme classes). Node is specialized into the behavior classes
Root and Descendant . Root models the possible root nodes and can be seen as ageneralization
of start non-terminals. Descendant models all other nodes, i.e. all nodes which have a father
node in the syntax tree. All Descendant nodes have an inherited env attribute (1). The general
behavior isto propagate the same env value to all son nodes. Thisis described by the collective
equation (2). A root node does not have any env attribute, but propagates the value of an empty
environment to its son nodes (3).

Node: alt;

Descendant: alt Node

{ inh env: ref Environment; (* 1 %)
eqg son Descendant.env :- env; (* 2 %)

Root: alt Node

{ eq son Descendant.env :- enptyEnv; (* 3%*)

¥

This general behavior is suitable for most language constructs, e.g. while-statements, if-state-
ments, arithmetic expressions, etc. In astandard AG each such construct would need to explicitly
define one copy equation for each son node. In the object-oriented AG above, the collective equa-
tion (2) gives the same result.

For language constructs which do alter the declarative environment, explicit equations need to
be given. E.g., the Algol-like block statement below defines a new declarative environment in
terms of the enclosing environment and the declarations local to the block. The equation (4)

86 Chapter 6 Object-Oriented Attribute Grammars

overrides the collective equation (2) for the St nt Li st son node. However, the collective equa-
tion still appliesto the Decl Li st son node.

Begi nBl ock: cons Descendant
(dl: ref DeclList, sl: ref StnilList)
{ eqsl.env :- f(env, dl.l|ocal env); (* 4 %)
Similarly, the collective equation can be overridden in other language constructs which change
the declarative environment, e.g. procedures, classes, remote access expressions, and inspect-
statements. However, for the great majority of language constructs, the general behavior applies.

6.5.2 Left-valuesof actual out-parameters

As an example of genera behavior of a synthesized attribute we consider the use of out-param-
eters. Out-parameters are assigned a value inside a procedure and the actual parameter in acall
must therefore have aleft-value (i.e. it must denote a location which can be assigned a value).
Thisiseasy to check asin equation (1) below, by letting each expression have a synthesized
attribute hasLef t Val ue.

Actual Param cons Descendant (e: ref Exp);

{ i nh i sQut Param bool ean;
eq leftVal Error: bool ean;
eq leftvValError := (* 1 %)

i sQut Param and not e. haslLeft Val ue;

}s

Most expressions do not have aleft-value. For example, none of the many relations and arith-
metic expressions have aleft-value. The general behavior of expressions can in this case be
defined in the Expr alternation class as follows:

Exp: alt Descendant;

{ syn hasLeftVal ue: bool ean;
eq haslLeft Val ue: = fal se; (* 2 %)

One of the few expressions which do have aleft-value is name applications denoting variables.
The class for name applications thus needs an equation which overrides (2), e.g. asbelow in (3).

Use: cons Exp (useld: ref 1D);
eq hasLeft Val ue: = f(env, useld.ident); (* 3 *)
Heref should beafunctionwhich returnst r ue if the name application denotes avariable, anoth-
er out-parameter, or another assignabl e entity.

It can be noted here that syntactically incomplete expressions should be defined as having | eft-
values. Otherwise, an incomplete expression at the place of an actual out-parameter would result

6.6 Local attributes 87

in anirrelevant error message. The completing class for expressions therefore needs to override
the equation (2):

Nul | Exp: cons Exp ()
{ eq haslLeftValue:'= true; (* 4

We have here an exampl e of when the behavior of acompleting classisdifferent from the behav-
ior of its superclass, thus motivating the use of explicit completing classes asdiscussed in §6.2.4.

6.6 Local attributes

Local attributes are like synthesized attributes in that they are defined in the node itself. They
differ from synthesized attributesin that they are not allowed to be accessed by equations of the
father node. The explicit distinction between synthesized and local attributes will be utilized in
the construction of attribute evaluators as explained in §7.3.4.

It should be noted we use the term “local” in a dlightly different sense than isdonein SSL, the
specification language of the Cornell Synthesizer Generator. In SSL, “local” meanslocal to a
production. Such local attributes were introduced in SSL to allow nodes of individual produc-
tions to have individual attributes, which is not possible in the AGs of Knuth. An SSL local
attribute corresponds, in an object-oriented AG, to declaring alocal or synthesized attributein a
construction class. The locality in the sense of SSL can thus be achieved with synthesized
attributesin object-oriented AGs. L ocality in object-oriented AGs means protection from access
from other nodes, and this can apply to attributes declared at any level of generalization. Thus,
attributes in alternation classes can also be declared local, although thisis|ess common than in
construction classes.

A typical use of local attributesisin the modelling of static-semantic errors, like the attribute
error intheWse classin Figure 6.1.

Another use of local attributesisin connection with demand attributes. In the examplein §86.5.1,
most of the env attributes are defined by the collective copy equation. Most of these attributes
arenot particularly interesting to store since they can be computed very easily when needed. One
might therefore want to implement the env attribute as a demand attribute. For the few cases
where the copy equation is overridden and anew environment valueis computed in anon-trivial
manner, alocal attribute can be added to store the value. E.g., the definition of the Begi nBl ock
could be changed to:

Begi nBl ock: cons Descendant
(dl: ref DeclList, sl: ref StnilList)
{ storedEnv: ref Environnent;
eq storedeEnv :- f(env, dl.l|ocal env)
eq sl.env :- storedEnv;

}s

A third use of local attributesisfor specifying information to be accessed by external tools such
as code generators or facilitiesin the user interface. Thisis discussed morein §7.4.1.

88 Chapter 6 Object-Oriented Attribute Grammars

6.7 Well-formed object-oriented AGs

An attribute grammar iswell-formed if, for each possible syntax tree, each attribute instance has
exactly one defining equation. In deciding if an object-oriented AG iswell-formed, similar con-
ditions are used as for standard AGs. |.e., classes used for generating root nodes must not have
any inherited attributes, and each construction class must have defining equations for all its syn-
thesized and local attributes and for all the inherited attributes of al its son nodes.

In deciding well-formedness, there is one particular difficulty which occurs for object-oriented
AGs which does not occur for standard AGs. The problem lies in deciding what inherited
attributes a son node has. Because of oo-inheritance, it is possible to construct grammars where
this cannot be determined statically. We will rule out such grammars by adding a special rule.

Consider a construction class C with son nodes

t]_: r ef Xl
th : ref X,

The actua qualifications of the son nodest; . . t,, are not known statically. An actual son nodet,
may be of amore specialized class Z which isasubclass to X.. Suppose Z declares an inherited
attribute. This would imply that the set of equations needed in C is not statically known, but
would haveto be dynamically adapted, depending on the actual qualification of t,. Although this
would be possible in principle, it would be highly impractical. We therefore put the following
additional requirement on object-oriented AGs:

6-1 Condition Additional condition for well-formedness of object-oriented attribute
grammars.

Let Abeanode class. If there exists a superclass SO Awhich isused in declaring a son node
reference“t: ref S’ for some construction class, then Amust not declare any inherited
attributes.

end 6-1

This condition guarantees that the set of equations necessary in each construction class is stati-
cally known. In standard AGs this condition is automatically fulfilled since productions
(corresponding to subclasses) cannot declare inherited attributes.

The condition does not cause any practical problemswhen designing agrammar. If onefindsthat
an inherited attribute a is needed for a class Z which is subclass of a class X occurring on the
right hand side of aconstruction class, one simply hasto declareain X instead of in Z. Thiswill
have the effect that all other subclasses of X will also have this attribute although they will not
useit.

6.8 Possible extensions 89

6.8 Possible extensions

There are many ways to define object-oriented grammars. We will now discuss a couple of pos-
sible extensions to the object-oriented AGs defined in this thesis.

6.8.1 Subclasses of construction classes

In our definition of object-oriented AGs, construction classes cannot have subclasses. However,
such specialization could be useful in some situations. Consider binary arithmetic operators. The
general properties of such expressions could be described in a construction class as follows:
Bi naryAri thExpr: cons Expr
(leftQp: ref Expr, rightQp:ref Expr)
{ typesQX bool ean;
eqtp =
if leftQ.tp = Real Type or right.tp = Real Type
then Real Type
el se | nt eger Type;
eq typestX : =
isArithnetic(leftQ.tp) and isArithnetic(right.tp);
}

It would be useful to specialize this class into subclasses Add, Sub, Mul , and Di v. Thisway, the
type checking could be described at the general level in Bi nar yAri t hExpr and would not have
to be repeated in each of the specialized classes. It would be straight-forward to extend our for-
malism to allow such specialization of construction classes, but for simplicity we have not
included this possibility.

6.8.2 Multipleinheritance

Our object-oriented AG definition is based on single inheritance. We have not found any need
for multipleinheritance grammarsin practice. Neverthel ess, the question naturally arises of what
the consegquences would be of extending the formalism to allow multiple inheritance. Asin all
other object-oriented systems, multiple inheritance leads to name clash problems and the need
for more complex implementation techniques. For object-oriented grammars, there is an addi-
tional difficulty which arises.

Consider the following fragment of awell-formed grammar.
A alt;
B. alt {inh x: integer;};
C cons (s: ref A);

Suppose we would like to introduce anew class Dwhich isasubclass of both Aand B. This class
would naturally have access to the x attribute which is oo-inherited from B and could use this
attribute to define alocal attribute as follows:

0 Chapter 6 Object-Oriented Attribute Grammars

D cons A B ()
{ loc y: integer;
o eqy 1=1f(x);
However, adding this class has the consequence that the s son of a C node can actually beaD
node (since Disasubclass of A). In such atree, there would be no defining equation for the inher-
ited attribute x of the son node since C does not contain such an equation. The grammar is thus
no longer well-formed.

This problem is similar in nature to the problem mentioned in 86.7. The class D could actualy
be viewed as violating the condition 6-1: Suppose Disinitially asubclass only of A. Declaring D
as asubclass also of Bimplicitly adds the inherited attribute x to D. This violates the condition
6-1 since A (which isasuperclass of D) isused for declaring ason node (theson“s: ref A’in
class C).

Although the problem is similar to the one mentioned earlier for single-inheritance, thereisin
this case no way of moving the declaration of the problematic x attribute in order to make the
grammar well-formed. The problem has to be solved by changing the class hierarchy, for exam-
ple by adding a mutual superclass E to classes Aand B and moving the declaration of x to E. This
would imply that Cmust declare an equation defining the x attribute, since Anodes now also have
this attribute.

6.9 Related approaches

The traditional nonterminal/production formalism for context-free grammars, and the BNF and
extended BNF variants, are primarily parsing-oriented. Their main purposeisto describe the set
of strings belonging to alanguage, in order to alow the strings to be recognized (parsed). In an
interactive environment parsing is of secondary interest. It is only one of several possible tools
in the editor of the environment. Most work in grammar-based programming environments
instead use grammar formalisms which describe abstract syntax trees, emphasizing that each
node in the syntax tree is atyped data object.

The Metal formalism [KLMM83] used in the Mentor project [DHKL84] is based on tree alge-
bras, describing the grammar by sorts (also called phyla) and operators. The Synthesizer
Generator [RT84] also uses the phylum/operator terminology and the systems devel oped within
the Gandalf project [Not85] uses asimilar class/operator terminology. A sort is equivalent to a
nonterminal and an operator to aproduction. The main differenceisthat the operatorsare named,
whereas productions are usually anonymous. Because the operators are named, it is natural to
view them as node types. In the algebraic terminology, a sort is a set of operators and corre-
spondsto atype union. In relation to object-oriented programming, subsets can beinterpreted as
subclassing. Further, if two sorts have a non-empty intersection and one is not a subset of the
other, this correspondsto multipleinheritance. Metal allows such grammars, but sinceit handles
only context-free syntax and not attributions, this does not cause the problems described in
86.8.2. The Synthesizer Generator, on the other hand, restricts all sortsto be digjoint, thus mak-

6.10 Summary 91

ing the formalism equivalent to the nonterminal/production formalism, or atwo-level single-
inheritance scheme.

Other type-based approaches to context-free grammars include the GRAMPS system (GRAmM-
mar-based MetaProgramming Scheme) [C184]. This system makes use of four kinds of
production rules: construction rules, alternation rules, repetition rules, and lexical rules. These
rules are similar to usual BNF rules, but structured in such away that each production rule
defines a syntactic type. The GRAMPS formalism has inspired the similar use of classesin
OOSL. GRAMPSis, however, not object-oriented and deal s only with the context-free grammar
and not attributions.

Explicitly object-oriented approaches to context-free grammars include the hierarchical gram-
mars of Narmark [Ner87] (inspired by the phylum/operator approach), the ASDL system
[CNS87], [KS89], based on subtype specialization and variant record generalization, the struc-
tured CFGs by Madsen and Nargaard [MN88](inspired by the GRAMPS approach), and the
nodeclass approach of Tenmaet a. [TTTI88] (inspired by the AND/OR rules of BNF). Koski-
mies also gives an object-oriented interpretation of BNF-style grammarsin [Kos88], and defines
S-structured (Single Inheritance) and MI-structured (Multiple Inheritance) CFGs in [Kos91]
which are object-oriented interpretations of traditional BNF-style grammars. Although some of
these object-oriented approaches to context-free grammars make use of node attributes, they are
all based on operational computation rather than AG-based definition of the attribute values.

The object-oriented approach to attribute grammars described in this thesisis based on earlier
work by the author presented in [Hed88] and in more detail in [Hed89]. A similar approach was
suggested later by Grosch [Gro90]. One difference is that Grosch does not distinguish between
construction classes and alternation classes. Attributes, equations, and son references are all oo-
inherited to subclasses. The motivation of Grosch for introducing object-oriented techniquesis
compactness of specification and compactness of the resulting syntax trees. OO-inheritance of
attributes is mentioned, but not emphasized, and there is no mechanism for collective equations
allowing general behavior to be described. Theformalismisused in acompiler generator system
for exhaustive evaluation.

6.10 Summary

This chapter has extended OOSL with constructs for specifying attribute grammarsin an object-
oriented manner. Four new kinds of classes were added: alternations, constructions, lists, and
lexemes, together referred to as node classes. Notation for declaring attributes and equations was
also added.

The object-oriented approach allows attributes and equations to be declared at any level in the
class hierarchy, thereby allowing behavior to be defined at suitable levels of generalization.
Some examples were given on how this can be utilized.

92 Chapter 6 Object-Oriented Attribute Grammars

A discussion was also given on the problems of augmenting an object-oriented AG with multiple
inheritance. It turns out that such a grammar is, in general, not well-formed.

Chapter 7
Attribute Evaluation Techniques

Object-oriented AGs are equival ent to standard AGs and evaluation of object-oriented AGs can
therefore be done using standard algorithms. But by formulating the algorithms using object-ori-
ented techniques, the implementation can in many cases be simplified. In this chapter, we will
look at some eval uation techniques and show how they can beimplemented in an object-oriented
language. These techniqueswill be used as a basis for the algorithmsintroduced in Chapter 10,
treating incremental evaluation of Door Attribute Grammars.

The evaluation algorithms we will treat in this chapter are the following:
* A demand-driven algorithm for general non-circular AGs
* Anexhaustive data-driven agorithm for 1-visit AGs

* Anincrementa data-driven algorithm, also for 1-visit AGs.

We show how these algorithms can be programmed using object-oriented techniques. We a so
give avery simpletechniquefor computing the visit sequencesfor 1-visit AGs. This can be done
in amuch simpler way than for the more general Ordered AGs. The incremental data-driven
algorithm employs a new technique of static skipping of visit sequence instructions, rather than
the usual dynamic skipping techniques. Thismakesit possible to avoid expensive attribute value
comparisons needed for the dynamic skipping agorithms. Although this technique may give
non-optimal evaluation for a standard AG, this non-optimality is normally irrelevant for Door
AG evaluation.

We basethe algorithmsfor incremental eval uation on the usual subtree replacement editing mod-
el where a subtree OLD is replaced by an unattributed subtree NEW. To restore consistency all
three evaluation algorithms described are used: Exhaustive evaluation is performed on the new
subtree, incremental evaluation is performed to propagate changes and re-eval uate affected
attributes, and demand-driven evaluation is used for those attributes which are implemented as
demand attributes rather than data attributes. In §7.4 the effects of combining data and demand
evaluation are discussed in more detail.

94 Chapter 7 Attribute Evaluation Techniques

7.1 Demand-driven evaluation

The principle of demand-driven evaluation is very simple; each attribute is represented by its
semantic function. This principle can be applied to all non-circular attribute grammars, although
it results in non-optimal evaluation. In Engelfriet’s survey of evaluation methods [Eng84], the
demand-driven algorithmisreferred to as “P4”. Engelfriet also gave an optimal version of this
algorithm, employing “lazy” evaluation, referred to as“P5”. The lazy demand-driven algorithm
wasfirst described by Jalili in [Jal85] and Jourdan gave a Lisp implementation of thisalgorithm
in [Jou84].

In this section we present object-oriented versions of these algorithms. The resulting programs
are remarkably simple because of the use of virtual functions. Synthesized attributes can be
mapped directly to virtual functions. Inherited attributes can be implemented by virtual func-
tionsin the father node, but since the father node may have many sons of the same class, an extra
parameter isneeded in thisfunction to | et the father node decide which of the equationsto apply.

7-1 Construction Demand-driven evaluator

Given an object-oriented AG in OOSL, ademand-driven evaluator, equivalent to Engelfriet’s
“P4" evaluator, can be implemented in OOSL as follows.

e Referenceto father. Each nodeis equipped with areferenceto its father node by adding a
reference variable to the most general node class ANYNCDE:

addt o ANYNCDE
{ father: ref ANYNCDE (* NONE for the root node *)
b

Thef at her reference denotes the father node in the syntax tree. The father of the root
node is NO\E.

e Synthesized attributes. A declaration of a synthesized attribute aSyn of type TinaclassC
isreplaced by avirtual function specification in class C.

addto C
{ aSyn: func T;
b

e Equationsfor synthesized attributes. An equation defining asynthesized attribute aSyn as
the expression e in aclass Cisreplaced by animplementation of thevirtual function aSyn:
addto C
{ inpl aSyn := e;
b

e Local attributes. Declarations and equations for local attributes are implemented in the
same way as synthesized attributes.

e Inherited attributes. A declaration of an inherited attribute al nh of type TinaclassCis
replaced by afunction specification and implementation in class C

addto C
{ alnh: func T := father.C alnh(this ANYNCDE);
b

7.1 Demand-driven evaluation 95

Note that the remote access “f at her . C al nh. .. ” can be safely done sincef at her will
only be NONE for the root node, and the root node has no inherited attributes.

The function C_al nh isdeclared as avirtual function specification in class ANYNCDE:
addt o ANYNCDE
{ C.alnh: func T(s: ref ANYNCDE);
e Collective equations. A collective equation “son C. al nh : = e” inan alternation classD
isreplaced by an implementation in class D of the virtual function C_al nh:
addto D
{ impl Calnh := g
e Equationsfor inherited attributes. Consider a construction class Dwhich declares equa-
tions defining the attribute al nh of son nodes of class C. These equations are replaced by
an implementation of the virtual function C_al nh. The parameter s in the specification of
this function is used to do case analysis on which equation to apply. If no equation
declared in D applies, the defining equation must be in the superclass, and in this case
super iscaled.

For example, suppose D has four sonsof classC: t 1,t 2, t 3, and t 4, and two equations:

eq tl.alnh := el;
eq t2.alnh : = e2;

In this case, these equations are replaced by the following function implementation:

addto D
{ inmpl Calnh :=
if s=1t1
then el
el se if s==12
then e2
el se super.C alnh(s);

end 7-1

96

7.1.1 An example

Chapter 7 Attribute Evaluation Techniques

The example below shows the resulting demand-evaluator for the desk calculator example of
86.4. Note how similar the implementation isto the original grammar.

addt o ANYNCDE
{ father: ref ANYNCDE
(* NONE for the root node *)

Exp_env: func ref Table
(s: ref ANYNCDE);

addto Calc

{ result: func integer;

i mpl Exp_env :- enptyTab;
impl result := e.val;

b

addt o Exp
{ env: func ref Table:-
f at her . Exp_env
(t hi s ANYNCDE) ;
val : func integer;
i mpl Exp_env :- env;

addt o Nul | Exp
{ impl val :=0;
H

addto Sum
{impl val :=
lop.val + rop.val;

addto Dff

{ impl val :=
lop.val - rop.val;;

’

addt o Let
{ inmpl val :=inExp.val;
i npl Exp_Env :-
if s ==inExp
then
env. add(l etld.ident,
def Exp. val)
el se

super . Exp_env(s);
addto Use
{ error: func bool ean;
impl val :=
env. | ookup(usel d.ident);
i mpl error := not
env. f ound(usel d. i dent)
addt o Const
{ inmpl val

;= constlnt.val;

Figure7.1

7.1.2 Lazy evaluation

Demand-driven evaluator for desk calculator

A lazy evaluator works like a demand evaluator, but stores the attribute value the first time the
attribute is accessed. At subsequent accesses, the stored value is returned directly, instead of
applying the semantic function. This makes the algorithm optimal. A mark bit for each attribute
isused to check if the attribute has been evaluated previously. In addition, another mark bit can
be used to check for circularity at evaluation time. This functionality is easily incorporated into
the object-oriented evaluator as shown below. However, in the rest of this thesis, we will not

make use of lazy evaluation.

7.2 Exhaustive 1-visit evaluation 97

7-2 Construction Lazy evaluator

A lazy evaluator, equivalent to Engelfriet’s* P5” evaluator, and including the circularity check
of Jalilisevaluator [Jal85] can be constructed by modifying the demand-driven evaluator 7-1
asfollows:

e Additional instance variables. For each attribute declaration a in aclass C, add a declara-
tion of avariablea_val ue which will be used to store the attribute value. Also introduce
aboolean variable conput ed_a whichistrueif aisstoredina_val ue, and aboolean vari-
able conput i ng_a which istrue if the value of a is under computation. Initially (before
evaluation), all the boolean variables are false:

addto C

{ awvalue T,
conput ed_a: bool ean;
conput i ng_a: bool ean;

e Attribute procedures. In 7-1 each attributea: T declared in aclass Cwasimplemented by
afunctioninC
a: func T := e
where e was the right hand side of the equation defining a (in case of a synthesized or
local attribute) or acall to afunction in the father node (in case of an inherited attribute).
In the lazy evaluator, this function is replaced by a procedure implemented as follows.

addto C
{ a proc T,
{ if conputing_a then
error(“Grcularity in grammar”);
if conputed_a then
a := a val ue
el se
conputing_a : = true;
a value : = g
conputing_a : = fal se;
a := a_val ue;
end if;

end 7-2

7.2 Exhaustive 1-visit evaluation

We now turn to data-driven evaluation techniques. A simplified form of Kastens' algorithmsfor
Ordered AGs (OAGs) [KasB80] can be used for 1-visit grammars. For these grammars, the visit
sequences will have only one segment. In addition, the computation of visit sequences can be
substantially simplified, compared to the more general OAG case. In this section we show how
an exhaustive 1-visit evaluator based on these techniques can be implemented in OOSL.

98 Chapter 7 Attribute Evaluation Techniques

7.2.1 Total attribute and equation sets

Whereas implementation of demand-driven evaluators could be done more or less directly by
replacing attribute and equation declarations, the implementation of data-driven evalutors
requiresthat we consider thetotal set of attributes and equations of anode, taking oo-inheritance
and overriding into account. We therefore define A(C) as the total set of attributes that a C node
has, and E(C) asthe total set of equations applying to a C node. We say aclass Cdeclares an
attribute or an equation if the attribute declaration or equation appearsin the declaration of class
Crather than in the declaration of any of the superclasses {S| SD C}. Further, we say that aclass
Chasan attribute or equation, if it isamember of A(C) or E(C) respectively. These setsare defined
asfollows:

7-3 Definition Total set of attributes

Thetotal set of attributes A(C) of anode class Cisthe union of al attributes declared in any
of the classes {X| X2 C}.

end 7-3

7-4 Definition Total set of equations

Thetotal set of equations E(C) of anode class Cisthe union of all equations declared in any
of the classes {X| X2 C}, subject to overriding and replacement of collective equations as
follows:

e Letebeanordinary equation“eq a : = ...” declaredinaclassD2 C. Theequation eis
amember of E(C) if it isnot overriddenin C, i.e., if thereis no other equation € defining
aandwhichisdeclaredinaclassD suchthatD D D 2 C.

e Letebeacollective equation “eq son S.a :=..." declaredinaclassD2 C. If Cisan
alternation class, e does not giverise to any equationsin E(C). If Cisaconstruction class
with son nodes

tg: ref X

th: ref X,
then for each son node't | such that S 2 X, we construct a corresponding ordinary
equation € “eq ty.a := ...". Theequation € isamember of E(C) if it is not

overridden, i.e., if thereis no equation € which also definest . a and which is declared
inaclass D suchthatD D D 2 C

end 7-4
7.2.2 Dependency graphs

Visit sequences are computed by approximating the dependency graphs of all possible syntax
trees by dependency graphs for the productions (construction classes) in the grammar and then

7.2 Exhaustive 1-visit evaluation 99

doing atopological sort on these graphs. The construction of the production dependency graphs
israther complicated for OAGs. For 1-visit grammars considerable simplifications are possible.

1-visit grammars have the property that an inherited attribute in a node is never dependent on a
synthesized attribute in the same node. Otherwise, the node would have to be visited twice: one
visit to calculate the synthesized attribute, then an intermediate visit to the father node to calcu-
late the inherited attribute, then a second visit to use the inherited attribute. When constructing
the dependency graph for a construction class C with son nodes

tp o ref X
ty : ref X,

we can assume that for each of the son nodesty, all synthesized attributes of t, depend on all the
inherited attributes of t,. Because of the above mentioned property, this cannot result in cyclic
dependency graphs. Therefore, to construct the dependency graph for a construction class, no
transitive dependency analysisis necessary. It is sufficient to analyze the equations in the con-
struction class itself.
7-5 Construction Dependency graph of construction class.
Given a construction class C with son nodes

t1: ref X

ty : ref X,
we construct its dependency graph DG(C).

\ertices.
DG(C) has vertices {v(i nh), v(syn), v(t;) .. v(t,), v(a1) .. v(ay) } where

e V(i nh) represents the inherited attributes of C
e V(syn) represents the synthesized attributes of C
*V(tj) represents the attributes of the son node;

* V(&) represents the attribute a, defined by the k'th equation in E(C).

Edges.
Anequation“eq a:=..b..” in E(C), givesrise to the following edges:

e If bisdefined by another equation in E(C), an edge (v(b), v(a)).
+ If bisasynthesized attribute of son t;, an edge (v(t;), v(a)).
 Ifaisaninherited attribute of son t;, an edge (V(a), V(t;)).

e If aisasynthesized attribute in A(C), an edge (v(a), v(syn)).

100 Chapter 7 Attribute Evaluation Techniques
e If bisaninherited attribute in A(C), an edge (v(i nh), v(a)).

end 7-5

If al resulting dependency graphs are acyclic, the grammar is 1-visit.

Thefigure bel ow showsthe dependency graphsfor the construction classes of the desk cal culator
grammar.

Cal c: Nul | Exp: Sum D ff:
fah] [syn] | [Tah) [Syn]
[e.env] [result | [val | [lop.env] [rop.env]

Let: Use: Const :

TaR] [sya] | [inR] [SyA]
| def Exp. env|[i nExp. env][val || [error | [val |
Tetid) [det xp] [TExp]

Figure7.2 Dependency graphs for desk calculator example

7.2.3 Exhaustive Visit Sequences

For an Ordered AG, avisit sequenceis a sequence of EVAL, VISIT, and RETURN instructions
(84.3). We will refer to the visit sequences used in exhaustive evaluation as exhaustive visit
sequences. Aswill be explained later, we will use slightly different visit sequencesfor theincre-
mental evaluation. The exhaustive visit sequences contain instructions only of the following
kinds:

EVAL a meaning: evaluate attribute a

VISIT t meaning: visit son node t
We do not use explicit RETURN instructions. For OAGs, RETURN instructions are used to
mark the end of asegment in asequence, but sincevisit sequencesfor 1-visit AGs consist of only

one segment, this instruction is not needed. We can view all sequences as ending in an implicit
RETURN instruction which returns control to the father node.

A visit sequenceisobtained by sorting the vertices of adependency graph into avertex sequence
and then translating the vertex sequence to a visit sequence as follows:

7.2 Exhaustive 1-visit evaluation

101

7-6 Construction Exhaustive visit sequences

Let Sort(G) be afunction which sorts all the vertices of the graph G into atopologically
ordered sequence. The exhaustive visit sequence of a construction class C is denoted by

EVS(C) and is constructed as follows
EVS(C) := Trandate(Sort(DG(C))

end 7-6

The function Trandate is defined as follows:

7-7 Function Trandate(S)

Given avertex sequence S, the function Translate(S) produces a visit sequence as follows:

e A vertex v(a) for an attribute a is replaced by a corresponding instruction EVAL a.

e A vertex v(t) for ason nodet, wheret isalexeme, isremoved from the sequence.

e Avertex v(t) for ason nodet, wheret isnot alexeme, isreplaced by aninstruction VISIT

t.

e Thev(i nh) and v(syn) vertices are removed from the sequence.

end 7-7

Note that lexeme nodes do not need to be visited since they do not contain any equations. A ver-
tex for alexeme son node need therefore not result in any visit instruction.

Figure 7.3 shows the exhaustive visit sequences for the desk calculator example.

EVS(Cal ¢) =
(EVAL e.env,
MSIT e,
EVAL result)

EVS(Nul | Exp) =
(EVAL val)

EVS(Sum) = EVS(Di ff) =
(EVAL | op. env,
VISIT | op,
EVAL rop. env,
VISIT rop,
EVAL val)

Let)=

(EVAL def Exp. env,
VI SIT def Exp,
EVAL i nExp. env,
VI SIT i nExp,
EVAL val)

EVS(Use) =
(EVAL error,
EVAL val)

EVS(Const) =
(BVAL val)

Figure7.3 Exhaustive visit sequences for desk calculator example

102 Chapter 7 Attribute Evaluation Techniques

7.2.4 Construction of Exhaustive Evaluator

Given the exhaustive visit sequencesit is very simple to program an exhaustive evaluator in
OO08SL:

7-8 Construction Exhaustive data-driven evaluator

Given an object oriented AG and the exhaustive visit sequences for its construction classes,
an exhaustive data-driven evaluator can be implemented in OOSL asfollows:

e Evaluation procedure. A virtual procedure exhVi si t isdeclared in the general class
ANYNCDE:

addt o ANYNCDE
{ exhVisit: proc;

b
e Attribute declarations. An attribute declaration (synthesized, inherited, or local) isinter-
preted as variable declaration.

e \isit sequences. For each construction class, an implementation of the virtual procedure
exhVi si t isgiven. Thisimplementation isastraight-forward translation from the exhaus-
tive visit sequence for the construction class. Each EVAL instruction isimplemented as
an assignment statement (interpreting the equation as an assignment statement). Each
VISIT instruction of ason sisimplemented as a call

s.exhVisit

end 7-8

7.3 Incremental 1-visit evaluation

7.2.5 An example

103

The example below shows the resulting exhaustive data-driven evaluator for the desk calculator
example. Given a syntax tree with root noder , the treeis evaluated by callingr. exhVi si t.

addt o ANYNCDE addt o Let
{ exhVisit: proc; { inmpl exhVisit
}; { def Exp.env :- env;
def Exp. exhVi si t;
addto Calc i NExp. env : -
{ inpl exhVisit env. add(l etld.ident,
{ e.env :- enptyTab; def Exp. val) ;
e.exhVisit; i NExp. exhVi sit;
result :=e.val; val :=inExp.val;
; H
1 b
addto Nul | Exp
{ inpl exhVisit addt o Use
{ val :=0; { inmpl exhVisit
; { error := not
env. found(usel d.ident);
val :=
addt o Sum env. | ookup(usel d.ident);
{ inpl exhVisit };
{ lop.env :- env; };
| op. exhVisit;
rop.env :- env; addt o Const
rop. exhVisit; { inmpl exhVisit
) val :=lop.val + rop.val; { val := constint.val;
1 b
addto Dff
{ inmpl exhVisit
{ lop.env :- env;
| op. exhVisit;
rop.env :- env;
rop. exhVisit;
val :=lop.val - rop.val;
b
h
Figure7.4 Exhaustive data-driven evaluator for desk calculator

7.3 Incremental 1-visit evaluation

We base incremental evaluation on the usual subtree replacement editing model. Let T be acon-
sistently attributed syntax tree, OLD asubtree in T, and NEW an un-attributed syntax tree which
may syntactically replace OLD in T. The incremental evaluation problem isto obtain a new con-
sistent attribution after OLD has been replaced by NEW.

104 Chapter 7 Attribute Evaluation Techniques

7.3.1 Standard Incremental OAG Evaluators

Yeh published an incremental algorithm for OAGsin [Yeh83]. The evaluator is very similar to
the stack automaton exhaustive evaluator by Kastens [Kas80]. To make the technique incremen-
tal, three modifications were made:

» Before the incremental evaluation is started, a stack configuration is computed which corre-
spondsto thefirst visit (in an exhaustive eval uation) of theroot of the new subtree. Thus, after
each subtree replacement, such a stack configuration has to be computed.

» Attributesto be evaluated are kept track of by amarking mechanism. At an EVAL instruction
the attribute is evaluated only if it is marked. After evaluating an attribute its new valueis
compared with the old value, and if they differ, all successor attributes are marked. Thus, it
is necessary to have dependency information available at evaluation time. Thisinformation
can be computed statically, however.

» Techniquesare employed for determining if certain visits can be skipped, or if the evaluation
can be stopped altogether. These checks are done dynamically (at evaluation time) using
information about which attributes have changed val ues.

Reps published asimilar incremental algorithm for OAGsin histhesis[Rep84]. Another version
of thisalgorithm, which useslessbookkeeping information, was published in [RT88]. In contrast
to Yeh, Reps uses afinite automaton rather than a stack automaton. The finite automaton imple-
mentation uses explicit instructions to visit the father node instead of popping a stack. An
advantage of thisin theincremental setting isthat no initial stack configuration needsto be
computed.

The algorithm in [RT88] does dynamic visit-skipping in an elegant way. A boolean flag in each
syntax nodeis used to determineif avisit to that node can be skipped or not. After evaluating a
synthesized or inherited attribute, the new value is compared to the old one. If the values differ,
theflag of the father node or the appropriate son node is set. In thisway, an asymptotically opti-
mal algorithm is achieved without having the extra overhead of marking individual attributes.
However, markings of individual attributesis suggested as an optimization.

7.3.2 An evaluator based on incremental sequences

The standard incremental evaluation algorithms discussed in the previous section rely on com-
paring old and new attribute valuesin order to limit the evaluation propagation. Clearly, such
value comparison isirrelevant for demand attributes since their values are not saved anywhere.
In Door Attribute Grammars, which will be introduced in the next chapter, very many attributes
are demand attributes. The standard algorithms are therefore unnecessarily complex in the con-
text of Door AGs.

In this section we describe a new incremental evaluation algorithm for 1-visit AGs which is not
based on attribute value comparisons. The algorithm instead limits evaluation propagation by
using information determined statically from the grammar. The advantage of this approach is

7.3 Incremental 1-visit evaluation 105

that it simplifies the evaluation substantially. If applied to agrammar with many data attributes,
the algorithm will be non-optimal in general. It will not recognize when attribute values have
converged, but may continue to evaluate arbitrarily many attributes which aready have correct
values. However, if the grammar is such that convergence is unlikely, this algorithm may per-
formwell, even for astandard AG with only data attributes. For example, it will perform nearly
optimal for the desk-calculator grammar. Actually, in this case it may well run faster than the
standard algorithms since it does not spend any time on comparing attribute values. However,
the main motivation for introducing this algorithm is not for running it on standard AGs, but to
make use of it in the algorithms introduced in Chapter 10, for evaluation of Door AGs.

Theideaisto do static dependency analysis to avoid unnecessary visits and re-eval uation of
attributes. Thisisdone by using aset of visit sequencesfor each construction class, onefor each
adjacent node. We refer to these visit sequences as incremental visit sequences since they are
used in the incremental evaluator. An incremental visit sequence gives the sequence of instruc-
tionsto perform when an adjacent node executes an instruction to visit the node in question. The
seguence to execute when the control comesfrom thefather nodeis called theincremental father
seguence. The sequence to execute when the control comes from a son nodeis called an incre-
mental son sequence. In addition to the EVAL and VISIT instructions the following instruction
isalso used:

VISITFATHER meaning: visit the father node

Thisinstruction is different from the implicit RETURN instruction ending all sequences. In
incremental evaluation the control starts at the point of subtree replacement, rather than at the
root asin exhaustive evaluation. To visit ancestor nodes of the replaced subtree, the explicit VIS-
ITFATHER instruction is needed. The implicit RETURN instruction at the end of the
incremental father sequence means (asfor the exhaustive sequence) return to the father node. For
ason sequence executed at avisit from ason t, on the other hand, theimplicit RETURN instruc-
tion means return to the son t.

In constructing anincremental son sequence, we assumethat all the synthesized attributes of that
son node have changed. In constructing an incremental father sequence, we assume that all the
inherited attributes of the node have changed. This corresponds to approximating all the defini-
tionsin an adjacent node by one vertex in the dependency graph (a son vertex v(t) or the v(i nh)
vertex) aswas donein §7.2.2. The incremental visit sequences are constructed as follows:

106 Chapter 7 Attribute Evaluation Techniques

7-9 Construction Incremental visit sequences

Let v belong to adependency graph DG and let SortReachable(v) be afunction which returns
atopologically ordered sequence Sof all verticesin DG which are reachable from v (exclud-

ing v itself).

For a construction class C with son nodes
t1 o ref Xy
ty : ref X,

n incremental son sequences, denoted IVS(C, t,) . . IVSC, t,)), and one incremental father
sequence, denoted 1VF(C), are constructed as follows:

IVF(C) := Translate(SortReachable(v(i nh)))
IVS(C,t) ;= let S= SortReachable(ty) in

let VS=Trandate(S) in
if v(syn) € Sthen

Append(VS, VISITFATHER)

else
VS
where Append(VS instr) is a function which appends the instruction instr at the end of the
visit sequence VS
end 7-9

Note that VISITFATHER instructions occur only at the end of incremental son sequences. The
VISITFATHER instruction can, without |oss of generality, be placed |ast rather than at the place
of v(syn) since v(syn) has no outgoing edges.

I VF(Cal c) = I VS(Sum | opp) = I VS(Let, inExp)=
(I'VS(Sum rop)= (EVAL val,
IVS(D ff, lop)= VI S| TFATHER)
IVS(Calc, €)= IVS(Diff, rop)=
(EVAL result) (BEVAL val, I VF(Use) =
VI SI TFATHER) (EVAL error,
I VF(Nul | Exp) = EVAL val)
() | VF(Let) =
(EVAL def Exp. env, | VS(Use, useld)=
I VF(Sum) = VI SI'T def Exp, (EVAL error,
IVF(Dff)= EVAL i nExp. env, EVAL val ,
(EVAL | op. env, VI SIT i nExp, VI SI TFATHER)
VISIT | op, EVAL val)
EVAL rop. env, | VF(Const) =
VISIT rop, IVS(Let, letld)= ()
EVAL val) I'VS(Let, def Exp)=
(EVAL i nExp. env, I VS(Const, constint)=
VI SIT i nExp, (EVAL val,
EVAL val , VI S| TFATHER)
VI S| TFATHER)

Figure7.5

Incremental visit sequences for the desk calculator

7.3 Incremental 1-visit evaluation 107

Figure 7.5 shows the incremental visit sequences for the desk calculator example.

7.3.3 Construction of Incremental Evaluator
An incremental evaluator can be constructed in OOSL as follows.

7-10 Construction Incremental data-driven evaluator

Given an object-oriented AG and the incremental visit sequences for its construction classes,
an incremental data-driven evaluator can be implemented in OOSL by extending the exhaus-
tive evaluator of 7-8 asfollows:

e Evaluation procedures. Two virtual proceduresi ncFat her Vi sit andi ncSonVisit are
specified in the general class ANYNCDE. A reference to the father nodeis also declared (as
for the demand-driven evaluator):

addt o ANYNCDE
{ father: ref ANYNCDE (* NONE for the root node *)
incFatherVisit: proc;

incSonVisit: proc(s: ref ANYNCDE);

The procedurei ncFat her Vi si t models avisit from the father node. The procedure
i ncSonVi sit modelsavisit from the son node s.

e Thefather sequence. For each construction class, an implementation of the virtual proce-
durei ncFat her Vi si t isgiven. Thisimplementation is a straight-forward translation
from the incremental father sequence for the construction class. Each EVAL instruction
isimplemented as a corresponding assignment statement. Each VISIT instruction to ason
node s isimplemented as a call

s.incFatherVisit;

e Theincremental sequences. For each construction class, an implementation of the virtual
procedurei ncSonVi si t isgiven. The parameter s is used to do case analysis on which
incremental son sequence to apply. The EVAL and VISIT instructions are implemented
in OOSL asin the father sequence case. Each VISITFATHER instruction isimplemented
asacdll

father.incSonVisit(this ANYNCDE);

end 7-10

After areplacement of asubtree with root OLD by an un-attributed subtree with root NEW in a
tree, attribute consistency is restored by the following procedure:

7-11 Procedure RestoreConsistency(OLD, NEW)

Rest or eConsi st ency: proc

108 Chapter 7 Attribute Evaluation Techniques

(OLD ref ANYNCDE, NEW ref
{ Copy the values of inherited attrlbutes in QLD
to the inherited attributes in NEW
NEW exhVi si t ;
NEW f at her . i ncSonVi si t (NEW;

end 7-11

The exampl e bel ow showsthe implementation of incremental data-driven evaluation for the con-
struction class Let in the desk calculator example.

addt o Let
{ inmpl incFatherVisit
{ def Exp.env :- env;
def Exp. i ncFatherVisit;
i nNExp.env :- env.add(letld.ident, defExp.val);
i NExp. i ncFatherVisit;
val = inExp.val;

b
i mpl incSonVisit

if S=letld or S == def Exp then
i NExp.env :- env.add(letld.ident, defExp.val);
i NExp. i ncFatherVisit;
val = inExp.val;
father.incSonVisit(this ANYNCDE);
else if S ==inExp then

val := inExp.val;
father.incSonVisit(this ANYNCDE);
end if;
}
Figure7.6 Incremental data-driven evaluation for the construction class Let.

7.3.4 Static vs. dynamic skipping of instructions

The incremental algorithms of Yeh and Reps discussed in §7.3.1 use the exhaustive visit
sequences also for incremental evaluation. At the first visit to a C node from its father node, the
complete exhaustive sequence of C is executed. At thefirst visit from a son nodet the execution
is started after thefirst VISIT t instruction. For 1-visit grammars, the Yeh and Reps algorithms
correspond to an incremental sequence algorithm using the following tail sequences:

TVF(C) :=EVS(C)
TVS(C, t) := Append(MatchTail(EVS(C), VISIT t), VISITFATHER)
where the function MatchTail (VS instr) returns the subsegquence of VSstarting with the instruc-

tion following instr. The incremental visit sequences are subsets of the corresponding tail
sequences. If aninstruction in atail sequence does not appear in the corresponding incremental

7.4 Combining data and demand attributes 109

seguence we say the instruction has been statically skipped. The agorithms of Yeh and Reps
instead rely on dynamic skipping, using markers on attributes and nodes.

If an EVAL instruction is skipped this savesthe work of one attribute evaluation. Skipping aVIS-
IT instruction will save re-evaluation in awhole subtree. Skipping aVISITFATHER instruction
terminates the evaluation all together since the

VISITFATHER instruction is aways the last instruction in a son sequence.

There are two effects which may cause our algorithm based on static skipping to evaluate more
attributes than an a gorithm based on dynamic skipping:

» Valueconvergence. If re-evaluation of an attribute resultsin the same value asbefore, the stat-
ic skipping agorithm does not recognize this, but will re-evaluate all successor attributes,
both direct and transitive ones.

» Paralle attributes. Two attributes a and b of anode are said to be parallel if they are both
synthesized or both inherited. In the dependency graph for anode class C, parallel attributes
which are defined by a given neighbor node are approximated by the same vertex. |.e., all
synthesized attributes of a son nodet are represented by the vertex v(t). Likewise, all the
inherited attributes of C are represented by the vertex v(i nh). Due to this approximation, the
re-evaluation of an attribute a will cause al successors of an attribute b, where b is parallel
to a, to be re-evaluated.

Our algorithmis primarily intended to be used as a part of an evaluator for Door Attribute Gram-
mars, rather than as an evaluator for standard AGs. In Door AGs the above sources of sub-
optimality have avery limited effect, aswill be discussed in §10.8.4.

In comparing the incremental visit sequencesto the tail sequences for the desk calculator gram-
mar we can note that most of the father sequences are the same as the corresponding tail
seguences (i.e. no instructions have been skipped) and that most of the son sequences have not
skipped the VISITFATHER instruction. As will be discussed in §10.8.3, there will be a higher
degree of skipping in Door AGs. The distinction between local and synthesized attributesis
important for allowing skipping of VISITFATHER instructions. If thelocal attributes were treat-
ed as synthesized attributes this would lead to many cases of parallel attributes which could
cause unnecessary evaluations.

7.4 Combining data and demand attributes

Incremental systems store data to allow fast updates. However, storage consumption can be a
bottleneck in these systems so it isimportant to store only the most important information. One
way to reduce the storage consumption in an AG system isto implement some of the attributes
as demand attributes (i.e. functions) rather than as data attributes (i.e. stored values). To use
demand attributesinstead of data attributesis not always atime/space tradeoff. On one extreme,
demand attributes may degrade performanceif they are accessed often, thus using less space but
moretime. On the other extreme, demand attributes may save both time and space. For attributes

110 Chapter 7 Attribute Evaluation Techniques

which are seldom used, the cost of incrementally maintaining their values may be more than the
cost of accessing them as demand attributes. Some attribute instances may even bein asyntactic
context where they are not accessed at all. The grammar in 86.5.2 is an example of this: The
hasLef t Val ue attribute is present in all Exp nodes, but only afew of these nodes will have a
father node actually using this attribute.

The data and demand-driven eval uation approaches can be combined freely. Demand attributes
areimplemented as described in §7.1. In implementing the incremental data-driven evaluator,
the demand attributes must be considered during dependency analysis, but when constructing the
visit sequences, the evaluation instructions for these attributes are ssmply removed.

7.4.1 Externally accessed demand attributes

Given an incrementally maintained attribution, it can be useful to make this information avail-
able to programming environment tools like editors and debuggers. This can be done by letting
thetoolscall virtual functions of individual nodes. For exampl e, acontext-sensitive editor might
have use for asking if an expression can be replaced by an expression of typet without causing
atype-checking error. This could be implemented by a boolean function t ypeAccept abl e(t)
defined for expressions. The function can be defined in terms of attributes, either existing ones
or additional ones added specifically for this purpose, as follows:

Exp: alt

{ inh allowedTp: ref Type; (* external *)

typeAcceptabl e: func boolean (t: ref Type)
=t == all onedTp;
b

Add: cons Exp(lop: ref Exp, rop: ref Exp)
{ eq lop.allowedTp :- intType;
eq rop.allowedTp :- intType;

The attribute al | owedTp is an external attribute. With this we mean a demand attribute which
implements a service needed by an external tool, but which is not used in the definition of any
data attribute. An external attribute can be accessed only by other external attributes, by func-
tions, and by external tools. The reason for distinguishing between externa and ordinary
attributesisthat the external attributes need not be considered in dependency analysis since they
have no dependent data attributes.

7.5 Summary

This chapter has described how some attribute eval uation algorithms can be implemented using
object-oriented techniques. Three basic a gorithms have been treated: demand-driven evalua-
tion, exhaustive data-driven evaluation for 1-visit grammars, and incremental data-driven
evaluation for 1-visit grammars. All of these are very simple to implement in an object-oriented
language by making use of virtual functions and procedures. In the incremental algorithm anew
technique for static skipping of instructions was introduced. This was accomplished by using

7.5 Summary 111

several visit sequencesfor each node classinstead of only one. Static skipping avoids value com-
parisons at evaluation time, but results, in general, in sub-optimal evaluation. This sub-
optimality haslittle or no effect for grammarswhere value convergenceisunlikely, and for gram-
mars with many demand attributes. The primary motivation for the static skipping techniqueis
that it is useful in the evaluation of Door Attribute Grammars aswill be described in subsequent
chapters.

112 Chapter 7 Attribute Evaluation Techniques

Chapter 8
Door Attribute Grammars

In this chapter we introduce Door Attribute Grammars, an extension to standard AGs allowing
declarative specification of attributions containing objects and references. This enables attribu-
tionswhich are suitable for incremental update to be specified. In particular, visibility graphsfor
object-oriented languages, such as those described in §3.3, can be defined explicitly in Door
AGs. We show how Door AG specifications are written and give an example of specifying name
analysis for asimple block structured language. More advanced examples for object-oriented
languages are given in Chapter 11.

8.1 Introduction

Thenotion of Attribute Grammars can be generalized by viewing an attribute grammar as a spec-
ification (A, 1) where A defines which attributes the attribution consists of, and where | isa set of
invariants, stating truths about the attribution. A syntax treeis consistently attributed if the syn-
tax tree has al the attributes declared in Aand if all theinvariantsin | arefulfilled. For astandard
AG, Aiisthe set of declarations of inherited, synthesized, and local attributes, and | is the set of
equations defining the values of these attributes.

A Door AG extends a standard AG both in what kind of attributes can be defined and in what
kind of invariants can be given. For aDoor AG, A includes not only the attribute declarations of
standard AGs, but also declarations of semantic objects and door objects which may have their
own attributes. The semantic objects may be used for context-dependent object structures such
asvisibility graphs. Door objects serve as connections between syntax nodes and semantic
objects. Theset of invariants| for aDoor AG includes equations defining attribute val ues, exactly
asin standard AGs, but also another kind of invariants called conditions, which can be used for
defining the members of collection-valued attributes.

An important difference between Door AGs and standard AGsis that Door AGs allow reference
attributes to denote any object, i.e. any node, door, or semantic object. These objects are, in gen-
eral, mutable since their attributes may change values as a consequence of changesto the syntax
tree. Door AGs thus allow references to denote mutable objects. In standard AGs, all attributes

114 Chapter 8 Door Attribute Grammars

must have regular values, and references are therefore allowed only if they denote immutable
objects (with the goal of space-efficient representation of regular values). The introduction of
references to mutable objects is essential in order to model explicit visibility graphs and to
implement the best incremental name analysis methods. The price for allowing such references
isthat non-local attribute dependencies areintroduced. In general, this prevents evaluatorsto be
completely automatically generated from the grammar. The reasonsfor thiswill be discussed in
more detail in §10.10.

If evaluators cannot be generated automatically from agrammar, one of the most important ben-
efits of the attribute grammar approach islost. One of the major design goals of Door AGs has
therefore been to be able to separate those parts which can be treated automatically from those
which require manual treatment. Thisisdone by splitting aDoor AG specification into two parts:
adoor package and a main grammar. The door package contains the classes defining door
objects and semantic objects and must be implemented manually. The main grammar contains
the node classesand is very similar to astandard AG. It can beimplemented automatically using
techniques based on those for standard AGs. Although the implementation of door packagesis
manual, it can be donein ahighly systematic fashion aswill be shown in detail in chapters9 and
10. A door package can be designed to handle some important aspects of afamily of program-
ming languages, e.g., name analysis and type systems. To specify alanguage it sufficesto write
amain grammar, using the door package asatool box. The main grammar can then be processed
and an incremental evaluator can be constructed automatically.

8.2 Nodes, doors, and semantic objects

A Door AG defines attributed syntax trees built out of three kinds of objects. syntax nodes, mak-
ing up the syntax tree; semantic objects, which may be used to model context-dependent
structures; and door objectswhich serve asinterfaces between the syntax nodes and the semantic
objects. The Door AG consists of class definitions for these objects. Syntax nodes may own door
objects which in turn may own semantic objects. Thus, via static references, the doors and
semantic objects can be seen as an extension of the syntax tree (Figure 8.1). The objects may
have dynamic reference attributes, thus turning the tree into a graph (Figure 8.2).

8.2 Nodes, doors, and semantic objects 115

O syntax node
D door object
I:l semantic object
D —» static reference
Figure8.1 Syntax tree extended with doors and semantic objects

attribute

]

dynamic reference

Figure8.2 Attributed syntax tree

Semantic objects are instances of ordinary OOSL classes, which we will henceforth refer to as
semantic classes. Nodes are instances of node classes, asintroduced in Chapter 6, and doors are
instances of special door classes. A semantic classmay declarelocal attributes, virtual functions,
and part-objects (of semantic classes).

Door classes have similaritiesto both semantic classes and node classes. The graphical depiction
of the door objects isintended to indicate this. A door is similar to anodein that it may have
inherited and synthesi zed attributes. This allows a door to be treated exactly like a son node by
itsowning syntax node. |.e., asyntax node must define theinherited attributes of itsdoor objects,
and it may use the synthesized attributes of its door objects to define other attributes. Similarly,
adoor must define its synthesized attributes, and it may use itsinherited attributes to define its
synthesized and other attributes.

A door issimilar to asemantic object in that it may declarelocal attributes, virtual functions, and
part-objects (of semantic classes). It isthe responsibility of the door to declare equations defin-
ing the values of the local attributes in both the door itself and all its part-objects (including

116 Chapter 8 Door Attribute Grammars

transitive part-objects). Some part-objects may, however, be so called collection objects. The
contents of these objects are defined by conditions rather than equations, aswill be described in
§8.3.

A Door AG may also contain constant semantic object definitions. Such semantic objects are
declared globally and are not owned by other objects.

Formally, a Door Attribute Grammar G is the combination of amain grammar Gy, and a door
package Gp. The main grammar isatuple Gy, = (N, Cy) where N is a set of node classes and
Cy aset of constant semantic objects. The door packageisatriple Gp = (D, S Cp), whereD is
aset of door classes, Saset of semantic classes, and Cp a set of constant semantic objects. The
Door AG isthe quadruple G = (N, D, S, C) where C=Cy, U Cp.

8.2.1 OOSL extensions

Node classes for Door AGs are specified in OOSL in the same basic way as for the object-ori-

ented AGs of Chapter 6. Semantic classesare specified asthenormal classes of OOSL in Chapter

5, using the keyword “ class’. Door classes are specified using the keyword “door” as follows:
<door - cl ass-decl > :: =

<door-class-id> ‘:" *door’ [<door-superclass-id>]
[“{" <decl-body> ‘}"]

The optional superclass of adoor class must be another door class. If no superclassis explicitly
given, the classis considered to be a subclass of a most general door class ANYDOCR. The class
ANYDOCRisin turn considered a subclass of ANYCLASS. Thetop level of the OOSL classhierarchy
isshown in Figure 8.3.

semantic classes >

node classes
(constructions,

aternations, lists,

lexemes)

e dords)

Figure8.3 Top of OOSL class hierarchy

ANYCLASS ANYNCDE

Semantic objects, constant or not, are specified using static references as explained in Chapter
5. Door objects are specified using the keyword “doorobject” as follows:

<stat-door-ref-decl> ::=
<stat-door-ref-id> ‘:’ ‘doorobject’ <door-class-id>

8.3 Collections and conditions 117

For example:
D. door
{ inh x: integer;
b
N cons
{ rD doorobject D
eq rbx :=3;
I

Here, r Disa static reference to a D door object. |.e., each object of the node class N has a part-
object of door class D. The node defines the inherited attribute x of its door object. Figure 8.4
shows a syntax tree attributed according to the above definition.

Figure8.4 Attributed syntax tree

8.3 Collections and conditions

A semantic object may be declared as a collection. The content of a collection object is defined
by conditionswhich appear in other door objects, distributed over the syntax tree. Thisisin con-
trast to other semantic objects whose contents are defined by equations in the owning door.

A condition declared in adoor class D contributes to the total definition of a collection object by
stating that an object x is amember of the collection. The object x must be either the D object
itself or one of its part-objects (direct or indirect). Formally, a condition is simply a boolean
expression which may be true or false. This allows a condition to state memberships condition-
ally. By using recursive functions, it is also possible to let a condition state an arbitrary number
of memberships. In a consistently attributed syntax tree, all conditions must be true. The defini-
tion of collections follow a*closed world assumption” in that if the membership of an object y
does not follow as alogical consequence from any condition, theny is defined to not be amem-
ber of the collection.

The following syntax is used.

<col I ection-decl > ::= *collection’ <stat-ref-decl>
<condition-decl > ::= <cond-id> ‘:" ‘cond <exp>

Asan example, consider the specification of symbol tables. Supposethereisageneral classLi st
which has a boolean function cont ai ns(x) which returnstrueif x isamember of the list:

118 Chapter 8 Door Attribute Grammars

List: class[T: class ANYCLASS]
{ contains: func boolean(x: ref T);

b

A classEnt ry isspecified to model symbol table entry objects and a class Synbol Tabl e to mod-
el the symbol table. The class Synbol Tabl e declaresalLi st object asacollection in order to
collect suitable Ent ry objects:
Entry: cl ass
.
b

Synbol Tabl e: cl ass
{ collection entries: object List[Entry];

To use these semantic classesin aDoor AG, we define one door class D1 introducing a Synbol T-
abl e object, and another door class D2 introducing an Ent ry object. The class D2 registers the
Ent ry object as a member of the list of a Synbol Tabl e by using a condition:

Dl: door

{ nyTable: object Synbol Tabl e;
syn tbl: ref Synbol Tabl e;
eq thl :- nyTabl e;

D2: door
{ inh tbl: ref Synbol Tabl e;
nyEntry: object Entry;
reg: cond thl.entries.contains(nyEntry);

The condition r eg defines that nyEnt ry isamember of thelistt bl . entri es. The reason for
giving conditionsaname (e.g. r eg) ismerely that it makesit easier to refer to a given condition
when analyzing specifications. The condition names are not used in the Door AG specification
itself.

By inherited and synthesized reference attributes, information about a Synbol Tabl e object can
be transmitted from aD1 object to one or several D2 objects. Figure 8.5 shows an example syntax
tree attributed according to the above definitions. In this example, areference to the D1 object

8.4 Aggregates 119

has been transmitted via the syntax tree to two D2 objects which each register an Ent ry object
in the Synbol Tabl e list.

E =[] A

condition ¢ defines member in
the collection object A

Figure8.5 Members of a collection defined using conditions

8.4 Aggregates

The depiction of an attributed syntax tree can become quite complex if all details are included.
We will use the term aggregate for a set of objects connected by static references. Depictions of
attributed syntax trees can be simplified by collapsing aggregates to a single graphic symbol.

Asan example, Figure 8.5 can be simplified as below. Here, the Synbol Tabl e and Li st objects
are collapsed to an aggregate, and each D2 and its corresponding Ent r y object are also collapsed
to aggregates. An additional simplification has been made by not showing thet bl attributes.

120 Chapter 8 Door Attribute Grammars

N [O

01 Aggregate symbols

/ \ Synbol Tabl e
Ve

Figure 8.6 Simplifying depictions by using aggregate symbols

8.5 Fix attributes and functions

8.5.1 Fix attributes

Attributes may be declared asfix. Thismeansthat the definition of the attribute must be such that
the value of the attribute never needsto be updated. |.e., once afix attribute has obtained avalue,
it will need no future re-evaluation. The reason for introducing fix attributesis to simplify the
construction of evaluatorsfor door packages. Fix attributes also allow ahigher degree of instruc-
tion skipping, aswill be discussed in §10.9.1.

We assume the usual editing model based on subtree replacements. In thismodel, the lifetime of
anode always spans the lifetime of its son nodes. Suppose a node n defines a fix inherited
attribute a of a son node. Because of the subtree replacement editing model, the lifetime of the
attributes in n will span the lifetime of a and the equation defining a may therefore use fix
attributesin n. The equation may also use synthesi zed attributes of door nodes owned by n, since
apart-object has the same lifetime asits owning object. The equation may, however, not use syn-
thesized attributes of ason node of n, since replacement of the son node may resultin anew value
for the synthesized attribute. This could lead to a new value for a which would violate its fix

property.

To declare an attribute as fix, the keyword “fix” is added at the end of the declaration:

<fix-attr-decl> ::=
(“inh | ‘syn’ | ‘loc’) <attr-id>"‘:’ <type> ‘fix’

8.6 Non-local dependencies 121

Typicaly, fix attributes are used to propagate information from one door in the syntax tree to
another door further down in the syntax tree. For example, consider the example on Synbol T-
abl e objects of §8.3. The synthesized and inherited t bl attributes can be declared fix asfollows:

Dl: door
{ nyTable: object Synbol Tabl e;

syn tbl: ref Synbol Table fix; (* 1%)
eq thl :- nyTabl e; (* 2 %)
b
D2: door

{ inh tbl: ref Synbol Table fi x; (* 3 %)
nyEntry: object Entry;
reg: cond thl.entries.contains(nyEntry);

The synthesized attributet bl at (* 1 *) isdeclared asfix. Clearly, the equation defining this
attribute (* 2 *) fulfillsthissincenyTabl e isastatic reference and thus never changes. A syntax
node n owning aD1 door may usethe synthesized t bl reference to define fix inherited attributes
of son nodes. The reference may be propagated throughout the subtree of n while retaining the
fix property. However, the reference cannot be propagated up to the father node of n without los-
ing the fix property. Since the D2 requiresitsinherited t bl attribute to befix (* 3 *), the
reference can only be propagated to D2 doors within the subtree rooted at n. Thus, the use of fix
attributes restricts the way the door package can be used by a main grammar.

8.5.2 Fix functions

A function may also be declared asfix. This meansthat the function must return the same value
for agiven set of parameters, regardless of changesto the syntax tree and consequent changesto
the attribution. An implementation of afix function may only make use of constant information
and of other fix attributes and functions. If afunction is declared asfix, all implementations of

it must fulfill this requirement. To declare afunction asfix, the keyword “fix” is added after the
function specification:

<fix-func-spec> ::=

<func-id> ‘:" ‘func’ <type>
[‘((<formpar> *,")+ ")"]
fix

For example:

f: func boolean fix;

8.6 Non-local dependencies

Theintroduction of reference attributesin Door AGs leads to non-local dependencies. This sec-
tion will define what is meant by such dependencies and give an example of how they can occur.

122 Chapter 8 Door Attribute Grammars

Henceforth, we will use the term access dependency for the dependencies usually considered in
standard AGs. Chapter 9 will consider slightly different kinds of dependencies.

81 Definition Access dependency

Let a be an attribute defined by an equation e. For each attribute b accessed by the right hand
side of e, thereisan access dependency from b to a, and ais said to be access-dependent on b.

end 8-1

In astandard AG, all access dependencies arelocal. |.e., they occur between attributes of the
same or neighbor syntax nodes. With neighbor syntax nodeswe mean nodesrelated asfather and
son. The concept of local access dependenciesis extended to Door AGs by considering the
extended syntax tree, i.e. the syntax tree extended by door objects and semantic objects. In the
extended syntax tree, adoor object and all its semantic part-objects are considered to be neigh-
borsto each other and to the syntax node owning the door object. Local and non-local access
dependenciesin aDoor AG are defined as follows:

8-2 Definition Local/non-local access dependency

Let a be an attribute which is access-dependent on another attribute b. Let x, be the object
declaring a and x;, the object declaring b. The dependency is said to be alocal access depen-
dency iff x5 and X, are the same object or x, and x;, are neighborsin the extended syntax tree.
Otherwise, the dependency is said to be anon-local access dependency.

end 8-2

As an example of anon-local access dependency, consider the following classes.

A cl ass

{ loc x: integer;

D1: door

{ inhix: integer;
syn rAl: ref A
nyA object A

eq NnyA X :=1iXx; (* 1 %)
) eq rAlL :- nyA (* 27%)
D2: door
{ inh rA2: ref A

syn sx: integer;

eq sx := rA2.x; (* 3%

A D1 door usesthe inherited attributei x to define the x attribute of its A part-object (* 1 *). A
main grammar declaring a D1 door gets access to the A object by the synthesized reference
attributer A1 (* 2 *). Thisreference may be propagated (using normal copy equations) to
another part of the syntax tree into the r A2 attribute of a D2 door. The D2 door accesses the x
attribute of the A object and copies this value to the synthesized attribute sx (* 3 *).

8.6 Non-local dependencies 123

Figure 8.7 illustrates this example. References to the A object are propagated from r Al along the
syntax treeto r A2. In contrast, the information from x to sx flows directly from the A object to
the D2 door athough these two objects may belocated far from each other in the syntax tree. The
attribute sx is also dependent on r A2. |.e., changing either x or r A2 will affect sx.

Y
access dependency
(the definition of y accesses x)

Figure8.7 Access dependencies

From the definition above, it is clear that the dependency fromi x to x (by equation (* 1 *))is
alocal access dependency, whereas the dependency from x to sx (by equation (* 3 *)) isanon-
local access dependency. The copy equations which must be present in the syntax tree in order
to propagate the A reference from the D1 door to the D2 door give rise to a chain of local access
dependencies.

Note that the equation (* 2 *) does not give rise to any dependency since nyAis a static refer-
ence and not an attribute (in the attribute grammar sense).

Note also that a change to the attribute x does not affect any of the references denoting the A
object (e.g. nyA, r AL, andr A2). Thevalues of these attributesisthe object identity of the Aobject,
which isimmutable and unaffected by any changes to the contents of the object.

The non-local dependencies between attributes can be mapped to non-local dependencies
between objects. We are here only interested in syntax nodes and door objects and see the seman-
tic part-objects more as passive entities. |.e., an attribute of a semantic part-object is mapped to

124 Chapter 8 Door Attribute Grammars

the owning door object rather than to the semantic object in which it is declared. Thisimplies
that the dependency from x to sx is mapped to a dependency from the D1 object to the D2 object.

In principle, it would make sense to put the equation (* 3 *) directly in asyntax node instead
of inthe door D2. There is an important reason why thisis not done. The reason is that we want
no non-local access dependenciesinvolving syntax nodes. Putting the equation (* 3 *) inasyn-
tax node would give a non-local access dependency from the A object to that syntax node. We
want all non-local access dependencies to be mapped on “door-to-door” dependencies. Thisis
necessary in order to be able to automatically generate evaluators for the main grammars. This
restriction is accomplished by the following rule:

8-3 Rule Access viareference attributes in syntax nodes

Syntax nodes may not access mutabl e information viareference attributes. The only informa-
tion which a syntax node may access via a reference attribute is the immutable information,
i.e., the object identity itself, and fix functions in the denoted object.

end 8-3

Although access to mutable information via reference attributes is not allowed directly in the
syntax nodes, such accesses can always be performed indirectly by introducing a door object
performing the access.

8.7 Data and demand attributes

In Door AGs, most of the important information is maintained in doors and semantic objects.
The attributes of syntax nodes are used mainly for propagating information between doors and
for simple computations which take little time to recompute when needed. For this reason, we
consider al attributes in the syntax nodes as demand attributes by default. In addition, both the
synthesized and the inherited attributes of doors are considered as demand attributes. It is thus
only the local attributes of semantic objects and doors which are stored as data attributes.

For syntax nodes, attributes can be explicitly specified as data attributes by adding the keyword
“data” after the attribute declaration. For semantic objects and doors there is no need for a cor-
responding possibility to explicitly specify attributes as “demand” attributes, since parameter-
less virtual functions are equivalent to local demand attributes.

The following items summarize the default scheme for data/demand attributes:

e All attributes (synthesized, inherited, and local) of syntax nodes are by default implemented
as demand attributes.

e All synthesized and inherited attributes of door objects are implemented as demand
attributes.

e All local attributes of door objects and semantic objects are implemented as data attributes.

8.8 Summary of graphical symbols 125

The difference between data and demand attributes does not affect the meaning of a Door AG.
Itisonly aquestion of time and space consumption. However, when the goal isto develop prac-
tical incremental attribute evaluators, we find it very important that the grammar designer has
full control over what part of the attribution isstored. In particular, it isimportant to not be forced
to store large numbers of attributes simply to be able to propagate information from one part of
the syntax tree to another.

8.8 Summary of graphical symbols

The previous sections have introduced a number of graphical symbols used for depicting attrib-
uted syntax trees. Figure 8.8 summarizes this graphical notation.

Note that an attribute dependency often pointsin the opposite direction of adynamic reference.
Thisis because a dynamic reference attribute of an object a which denotes another object b
makes it possible to define attributes in a using attributesin b.

syntax node

B e W

reference attribute x denotes
object of classA

door object

semantic object

door object aggregate | X H y |

attribute y depends on
attribute x

semantic object aggregate

static reference IE . D A

dynamic reference condition ¢ defines member in the
membership definition collection object of classA

attribute access dependency

——
attribute or condition

Figure 8.8 Graphical notation for attributed syntax trees

iv+y0O D oDb o

126 Chapter 8 Door Attribute Grammars

8.9 An example Door AG

Asan example of aDoor AG we will show the construction of adoor package supporting name
analysisfor nested blocks. The static semantics of asmall Algol like language will be specified
using this door package. The language includes nested blocks, integer and boolean variables,
assignment statements, and integer constants. An example program in this language may be;
begi n
integer x;
X =1
end;

Figure 8.9 shows an attributed syntax tree for this program. The main goal of the attribution is
to bind name applications to name declarations. Name applications are represented by UseDoor
objects and name declarations by Decl Door objects. Bindings are represented by the reference
attribute bi ndi ng in a UseDoor which denotes the appropriate Decl Door (see the lower part of
the figure).

Blocks are represented by Bl ockDoor objects. Each Bl ockDoor has a Synbol Tabl e object
which collects the declarations of the block. Synbol Tabl e objects are connected by objects
modelling the vertices of visibility graphsas described in 83.3. The class TwoPat h modelsapath
vertex with two outgoing edges (fi r st and second). Each Bl ockDoor has a TwoPat h object to
model the combination of local and enclosing scope. In this example, the block is the topmost
block in the program. The attribute second therefore denotes the constant object enpt yPat h
which models the null vertex.

8.9 Anexample Door AG 127

In addition to the UseDoor , Decl Door , and Bl ockDoor , the example shows a Root Door . The
Root Door isused at the root of the syntax tree to provide a suitable definition for the enclosing
scope for the first block. There will thus only be one Root Door object in a syntax tree.

enpt yPat h

Bl ockSt nt

Bl ockDoor

TwoPat h

— L

first

Synbol Tabl e

second

Assi gnSt m

Var Decl

UseDoor | i dent =“x" | | val =“1" |

regi stered

Figure8.9 Attributed syntax tree

To define and incrementally maintain an attribution such as the one above, several additional
attributes are needed. There are two main groups of attributes not shown in the figure. One group
isal theinherited and synthesized attributes of the nodes and doors needed for communicating

information from one part of the syntax tree to another. The other group is the attributes needed
for efficient incremental evaluation.

128 Chapter 8 Door Attribute Grammars

For example, information about the Synbol Tabl e object needs to be propagated down to the
Decl Door so it can register itself properly. Similarly, information about the TwoPat h object
needs to be propagated down to the UseDoor object so it can use thisinformation to set its bind-
ing attribute properly. This propagation can be done by synthesized and inherited attributesin
the nodes and doors. Since these attributes are by default demand attributes, they take up no
storage.

As an example of information needed during incremental evaluation, consider changing the

i dent attribute of the Var Decl | Dnodefrom“x” to“y”. Such achangeimpliesthat thebi ndi ng
attribute of the UseDoor needsto be updated to denote some other object. There is thus a need
of additional attributes which makeit possibleto locate the affected UseDoor objects efficiently
after such a change.

In this section, we consider only the attributes needed for defining the above attribution. The
additional attributes needed for efficient incremental evaluation will be discussed in Chapter 9.

The Door AG isdivided into amain grammar and adoor package as described in §8.2. The door
package consists of definitions of the four door classes Root Door , Bl ockDoor , Decl Door , and
UseDoor , and of definitions of associated semantic classes and constant objects. The main gram-
mar consists of node classes for a specific language.

Entry
Abstract Entry <
nul | Entry

Synbol Tabl e

TwoPat h

Sear chPat h <$/rrbol Tabl ePat h
enpt yPat h

Type ——— —unknownType

Figure8.10 Specialization hierarchy of semantic classes and objects

8.9.1 Semantic classes and constant objects
The semantic classes and constant objects of interest and their specialization relationships are
shown in Figure 8.10.

e Theclass Ent ry models adeclared identifier. The nul | Ent ry isa constant object represent-
ing an undeclared identifier. The class Abst r act Ent ry is a generalization of these two.

e Theclass Synbol Tabl e collects Ent ry objects.

8.9 Anexample Door AG 129

* Theclass Sear chPat h models avertex in avisibility graph. Its specialization TwoPat h mod-
elsapath vertex with two outgoing edges. The Synbol Tabl ePat h models atable vertex and
connects to a Synbol Tabl e object. The enpt yPat h object models the null vertex.

» Theclass Type models the general concept of atypein a programming language. One con-
stant specialization is given: unknownType, which is used for modelling the types of
undeclared identifiers. Other constant objects which are specializations of Type can be
defined in the main grammar, in order to suit the needs of the specified programming
language.

8.9.1.1 Linked lists

The door package makes use of a separate package for linked lists to implement the collection
of Ent ry objectsin a Synbol Tabl e object. The linked list package has the following interface:

List: class[T: class E enent]

{ contains: func boolean(e: ref T);
first: func ref T, (* may return NONE *)
sucCr: func ref T(e: ref T); (* may return NONE *)
predd: func ref T(e: ref T);(* may return NONE *)

)

El ement: cl ass;

TheclassLi st modelsalist head and the class Bl enent alist element. The function cont ai ns
returnstrueif e isinthelist. Thefunctionfirst returnsthefirst element inthelist, or NONE if
thelistisempty. The sucCf and predCt functions return the successor and predecessor of an
element e in thelist, or NONE if e isthe last or first element, respectively.

8.9.1.2 AbstractEntry, Entry, nullEntry

The class Abst r act Ent ry and its specializations are defined as below. A reference qualified by
Abst ract Ent ry may be used to represent the binding of an identifier. It will denotean Entry
object if theidentifier isdeclared or thenul | Ent ry object otherwise. Thevirtual function get Tp

130 Chapter 8 Door Attribute Grammars

can be used to retrieve the type of theidentifier. Abst r act Ent ry isdefined as a subclass of E e-
ment in order to be ableto put Ent ry objectsinto linked lists.

AbstractEntry: class E enent (* abstract *)
{ getTp: func ref Type;

Entry: class AbstractEntry
{ loc ident: string;

loc tp: ref Type;

impl getTp :- tp;

nul |l Entry: object AbstractEntry
{ inpl getTp :- unknownType;

8.9.1.3 SymbolTable

The class Synbol Tabl e collects Ent ry objects using a collection part-object of class
Li st[Entry] . A function | ookup traverses the collection to find an Ent ry object for agiven
identifier.

Synbol Tabl e: cl ass
{ collection entries: object List[Entry];
| ookup: func ref Entry(ident: string)
(* may return NONE *)
:- loop $L :- entries.first do
i nspect $E :- $L
when Entry do
if $E ident = ident
then $E
el se next $L :- entries.sucr ($L)
ot herwi se NONE;

8.9.1.4 SearchPath

The class Sear chPat h specifies avirtual function | ookup which traverses the visibility graph
reachable from that point to find the declaration of agiven identifier. The function isimplement-
ed in different ways in the specializations of Sear chPat h.

8.9 Anexample Door AG 131

SearchPat h: cl ass (* abstract *)

{ lookup: func ref Entry(ident: string);
(* may return NONE *)

b

TwoPat h: cl ass SearchPat h
{ loc first: ref SearchPath;
| oc second: ref SearchPath;
i mpl | ookup : -
i nspect $E :- first.|ookup(ident)
when Entry do $E
ot herw se second. | ookup(i dent);

Synbol Tabl ePat h: cl ass SearchPat h
{ loc table: ref Synbol Tabl e;
i mpl 1 ookup :- table.|ookup(ident);

enpt yPat h: obj ect SearchPath
{ inmpl 1ookup :- NONE
b

8.9.1.5 Type

The definition of the semantic class Type and its specialization unknownType is as follows.

Type: cl ass;
unknownType: obj ect Type;

8.9.2 Door classes

8.9.2.1 RootDoor

The door class Root Door simply defines a synthesized attribute which denotes the constant
semantic object enpt yPat h. This attribute isintended to be used as the enclosing environment
for the topmost block:

Root Door: door
{ syn rootPath: ref SearchPath fi x;
eq rootPath :- enptyPath;

132 Chapter 8 Door Attribute Grammars

8.9.2.2 BlockDoor

Thedoor classBl ockDoor definesthree part-objects: a Synbol Tabl e, aSynbol Tabl ePat h, and
a TwoPat h object. The TwoPat h object models the static path vertex according to the construc-
tion of visibility graphs for block structure given in §3.3.1. The part objects of Bl ockDoor are
connected to each other and to a Sear chPat h object representing the enclosing environment.
Information about the | atter object is obtained via an inherited reference attribute of the door.

The door aso defines two synthesized reference attributes. One denoting the Synbol Tabl e
object and one denoting the TwoPat h object. The Synbol Tabl e reference can be propagated to
other parts of the syntax tree allowing Decl Door objectsto register Ent ry objects as members
of the Synbol Tabl e collection. The TwoPat h reference can be propagated to other parts of the
syntax tree allowing other blocksto be constructed using this one as enclosing environment, and
allowing UseDoor objectsto look up declarations of identifiers.

The definition of the Bl ockDoor classis as follows:

Bl ockDoor: door

{ inh encPath: ref SearchPath fix;
syn locPath: ref SearchPath fix;
syn table: ref Synbol Table fix;
theTabl e: obj ect Synbol Tabl €;
staticPath: object TwoPat h;
t heTabl ePat h: obj ect Synbol Tabl ePat h;
eq staticPath.first :- theTabl ePath;
eq staticPath.second :- encPath;
eq theTabl ePath.tabl e :- theTabl e;
eq table :- theTabl e;
eq locPath :- staticPath;

Thefollowing figure showsaBl ockDoor attributed according to the above definition. Its synthe-
sized and inherited attributes are shown as well, although they are demand attributes and not
actually stored. The incoming and outgoing dependency edges show the information flow for
these attributes. The Sear chPat h object will actually be a specialization of class Sear chPat h.
It will either be the constant enpt yPat h or a TwoPat h object of another Bl ockDoor .

8.9 Anexample Door AG 133

Sear chPat h

Bl ockDoor

D‘%

— =t encPat h

—=—| ocPat h

-1 table

Synbol Tabl e
first
Li st[Entry] Synbol Tabl ePat h second |—
TwoPat h

8.9.2.3 DeclDoor

The Decl Door class declares an Ent ry part-object which it registersin a Synbol Tabl e by
declaring a condition. Information about the Synbol Tabl e object is obtained via an inherited
reference attribute. The door al so hastwo additional inherited attributes containing the name and
the type of the declaration. These attributes are used for defining the corresponding attributesin
the Ent ry object:

Decl Door: door
{ inh table: ref Synbol Table fi x;
inh ident: string;
inh tp: ref Type;
theEntry: object Entry;
regi stered: cond table.entries.contains(theEntry);
eq theEntry.ident :=ident;
eq theEntry.tp :- tp;

134 Chapter 8 Door Attribute Grammars

Thefollowing figure shows aDecl Door attributed according to the above definition. The depen-
dency edges show the information flow from the inherited i dent and t p attributesto the
corresponding attributesin the Ent ry object.

__w[]| synbol Tabl e

Decl Door

N

— tabl e —
- Entry
—=— ident —
T tp di - i dent
regi stere —
8.9.2.4 UseDoor

The UseDoor ooks up the appropriate Ent ry object for an identifier by calling the| ookup func-
tion of a Sear chPat h object. Both the identifier and the reference to the Sear chPat h are
inherited attributes of the door. The result of the | ookup function is used for defining alocal
attribute bi ndi ng in the door. In case there is no matching Ent ry object, the bi ndi ng attribute
is defined to denote the nul | Ent ry object. The bi ndi ng attribute is also defined to denote the
nul | Ent ry object if the identifier isthe empty string. This reason for thisisthat thei dent
attribute of un-expanded | D nodes in the syntax tree is assumed to have the value of the empty
string. If anormal binding would be attempted for the empty string this could lead to binding an
applied un-expanded identifier to a declared un-expanded identifier, which is probably not a
desirable behavior of the door package.

The bi ndi ng attribute is used for retrieving the type of the identifier. A reference denoting the
appropriate Type object is made available to the syntax tree through a synthesized attribute of
the door. In addition, a synthesized attribute decl ar ed is defined which istrue if the identifier
has a proper declaration.

8.9

An example Door AG 135

UseDoor: door
{ inh path: ref SearchPath;
inh ident: string;
syn tp: ref Type;
syn decl ared: bool ean;
| oc binding: ref AbstractEntry;
eq binding :-
if ident =*”
then null Entry
el se
i nspect $E :- path. | ookup(ident)
when Entry do $E
ot herwi se null Entry;
eq tp :- binding.getTp;
eq declared := binding =/= null Entry;
b

The following figure shows an example of aUseDoor attributed according to the above defini-

tion. Theinherited Sear chPat h attribute denotes a TwoPat h object whichisin turn connected to
another TwoPat h object of an enclosing block. Thefunction | ookup findsthe appropriate Ent ry
object by first searching thelower Synbol Tabl e collection and, when not found there, continues
searching intheupper Synbol Tabl e collection. Thefigureal so showsthe dependency edgefrom
thet p attribute of the bound Ent r y object to the corresponding synthesized attribute of the door.

Theinherited attribute pat h is not declared asfix. It may thus change during incremental evalu-
ation to denote other Sear chPat h objects. Thisallowsthe UseDoor to be used not only insimple
Algol-like languages, but also in languages with remote access. Thiswill be discussed in
§11.3.2.2.

136

Chapter 8 Door Attribute Grammars

enpt yPat h

[

Synbol Tabl e TwoPat h
I:l D first
second —
Entry
i dent = x”"
L tp
Synbol Tabl e TwoPat h
D D— first
Entry Entry second
i dent="y” i dent =*z"
tp tp
UseDoor
— = path

“

— = ident="x"

—=—|— decl ared

binding |—!

Figure8.11 A UseDoor bound to an Ent ry object in an enclosing block

8.9.3 Thedoor packageinterface

The definitions of the previous two sections constitute the door package. However, only asmall
part of thisinformation is actually used directly by amain grammar. An interface can be extract-
ed from the door package, containing only those definitions which are needed to write amain

grammar:

8.9 Anexample Door AG 137

Sear chPat h: class; (* non-instantiable *)
Synbol Tabl e: cl ass; (* non-instantiable *)

Type: cl ass;
unknownType: obj ect Type;

Root Door: door
{ syn rootPath: ref SearchPath fi x;

1

Bl ockDoor: door

{ inh encPath: ref SearchPath fix;
syn locPath: ref SearchPath fix;
syn table: ref Synbol Table fix;

};

Decl Door: door

{ inh table: ref Synbol Table fi x;
inh tp: ref Type;

inh ident: string;

};

UseDoor: door

{ inh path: ref SearchPath;
inh ident: string;
syn tp: ref Type;
syn decl ared: bool ean;

Figure8.12 Door package interface

The essence of the door package interface is the inherited and synthesized attributes of the door
classes. In addition, the interface includes the types (semantic classes) of these attributes. The
interface also includes constant objects which are of interest when defining the main grammar.

Note that the interface includes only the abstract semantic class Sear chPat h and not its special-
izations. Note also that the Abst r act Ent ry and its specializations are completely hidden. In
principle, an equivalent door package could be constructed which has the same interface as
above, and the same black box behavior, but a different internal specification, involving other
semantic classes.

Both Sear chPat h and Synbol Tabl e are marked as(* non-i nstanti abl e *) intheinterface.
This means that the main grammar may not declare constant semantic objects of these classes.
Because of thisrestriction, the main grammar cannot construct itsown constant semantic objects
of these types and feed them into the door package. It can only get access to objects of these
classes through synthesized reference attributes of the door package itself.

138 Chapter 8 Door Attribute Grammars

The Type class, on the other hand, can freely be used by the main grammar for declaring seman-
tic constants to suit the needs of a particular language. For example, constant Type objects may

be declared in order to represent integers and booleans.

i nt Type: obj ect Type;
bool Type: object Type;

Program cons (s: ref Stnt)
{ r: doorobject RootDoor;
eq s.path :- r.rootPat h;

Stm: alt
{ inh path: ref SearchPath fi x;

Nul I Stnt: cons Stnt();
Bl ockStmt: cons Stm
(d: ref Decl, s: ref Stnt)
{ b: doorobject Bl ockDoor;
eq b.encPath :- path;
eq d.table :- b.table;
eq s.path :- b.locPath;

Decl: alt
{ inh table:
ref Synbol Table fi x;

Nul | Decl : cons Decl ();
Var Decl : cons Decl
(dt: ref Decl Type,

declId: ref ID
{ d: doorobject Decl Door;

eq d.table :- table;
eq d.ident := declld.ident;
eq d.tp :- dt.tp;

h

Decl Type: alt

{ syn tp: ref Type;

Nul | Decl Type: cons Decl Type()
{ eq tp :- unknownType;

I nt Decl Type: cons Decl Type()
{ eq tp :- intType;

Bool Decl Type: cons
{ eq tp :- bool Type;

Decl Type()

AssignStni: cons Stnt
(to: ref Use, from
{ loc error: bool ean;
eq to.path :- path;
eq frompath :- path;

ref Exp)

eq error := not
(to.tp == unknownType or
fromtp == unknownType or

to.tp == fromtp);
Exp: alt
{ inh path: ref SearchPath;
syn tp: ref Type;

Nul | Exp: cons Exp()
{ eq tp :- unknownType;

Use: cons Exp (useld: ref 1D
{ u: doorobject UseDoor;
| oc error: bool ean;
eq u.path :- path;
eq u.ldent := useld.ident;
eq tp :- u.tp;
eq error :=
useld.ident <> *”
and not u. decl ar ed;

}s

IntConst: cons Exp
(n: ref INT)
{ eq tp :- intType;

Figure8.13

An example main grammar

8.9 Anexample Door AG 139

8.9.4 The main grammar

A main grammar for asmall Algol-likelanguageisgivenin Figure 8.13. It usesthe door package
to define the attribution of Figure 8.9. Two constant Type objects are declared: i nt Type and
bool Type, to represent the types used in this small language.

The grammar also does static semantic error checking, by defining boolean er r or attributes.

» TheUse node checksif the applied identifier isdeclared. However, if theidentifier istheemp-
ty string, thisisnot considered an error since empty strings represent un-expanded | D nodes.

» TheAssi gnSt nt node checksif the left and right hand sides are type compatible. If either
one of these typesis the unknownType, thisindicates an undeclared identifier or an un-
expanded | Dor expression, and is not considered an error.

Figure 8.14 shows the attributed syntax tree of Figure 8.9 again, but now with all the attributes
of the main grammar and the synthesized and inherited attributes of the door objects, and with
all of the semantic part-objects collapsed into aggregates. The dependency edges between

140 Chapter 8 Door Attribute Grammars

attributes show the information flow through the syntax tree. It can be noted that all of these
attributes are demand attributes, and thus take up no storage.

Program

Root Door

r oot Pat h

Bl ockSt nt

~ encPat h
~ locPath
— table
Var Decl
Assi gnSt mt
[path
epr ror |nt-
Use ! Const
- path'/ k'path
, tp - tp
error
UseDoor
begi n aDth ' i dent val
i nteger x; P
X =1 i dent
end;
tp
decl ar ed-

Figure8.14 Information flow in an example attributed syntax tree

8.10 Underdetermined grammars 141

8.10 Underdetermined grammars

A standard AG solution of asyntax treeis an attribution for which all equations of the grammar
hold (84.2). In analogy, for aDoor AG, a solution of a syntax treeis an attribution for which all
equations hold and for which all conditions are true.

Non-circular standard AGs are always uniquely-defined, i.e. thereisexactly one solution for each
possible syntax tree. In constrast, it is both possible and useful to construct Door AGswhich are
underdetermined, i.e., some syntax trees may have multiple solutions. One reason to use an
underdetermined grammar isto makeit possibleto implement history-dependent error reporting,
asdiscussedin §3.6. Circular standard AGs can, in principle, also be underdetermined (see 84.3).
However, to the author’s knowledge, this has not been utilized in practical applications.

It isthe use of collectionsin Door AGs which makes it possible to construct interesting under-

determined grammars. A direct way of constructing an underdetermined grammar is simply to
use an ordered collection, e.g. alist. The conditions define which elements should be members
of thelist, but not in which order the elements should appear in the list. There are thus as many
solutions as there are permutations of the elements. The values of other attributes may depend

on the actual order, so quite different solutions can result from this underdeterminedness.

As an example, the Door AG of §8.9 is underdetermined in exactly thisway. In this grammar,
thelist of Ent ry objectsinaSynbol Tabl e isordered, but the order isnot defined in the grammar.
The order is of importance at lookup, where the first Ent ry for agiven identifier is returned. If
ablock contains more than one declaration for the sameidentifier, thelookup function can return
different Ent r y objects depending on the order in the list and the binding of a name application
can thus differ in different solutions. Consider the following program:
begi n
i nteger x;
bool ean x;
X :=1;
end;

The syntax tree for this program (according to the Door AG of §8.9) has two solutions, asillus-
trated in Figure 8.15.

142 Chapter 8 Door Attribute Grammars

Synbol Tabl e

[

UseDoor

N

i dent = x” I dent =" x

tp
bi ndi ng

s

i nt Type bool Type

Synbol Tabl e

[

UseDoor
i dent =*x”

tp
bi ndi ng

i dent =" x”

-

bool Type i nt Type

i dent =" x”
tp

Figure8.15 Two solutions of an underdetermined syntax tree

Thetwo Ent ry objects a and b appear in different order in the two solutions. This leads to that
both the bi ndi ng and thet p attribute of the UseDoor denote different objectsin the two solu-
tions. Thus, in thefirst solution, the name application x is considered to be an integer and in the
second it is considered to be a boolean.

In any given solution, preference is thus given to one of the Ent ry objectsfor a given identifier,
and name applications cannot be bound to the other ones. |.e., it isonly one of the Ent ry objects
for agiven identifier which is actualy visible, although all of them are present in the symbol
table. A natural extension of the door package would be to add a synthesized boolean attribute
vi si bl e to Decl Door which isdefined to be trueif the Ent ry object is not preceeded by any
other Ent ry object for the same identifier. This attribute could then be used in amain grammar
to define an error message for declarations that are not visible. Such an extension will be dis-
cussed in more detail in Chapter 11.

8.11 Comparison to standard AGs 143

The above method of using ordered collectionsis not the only way to construct an underdeter-
mined Door AG. Underdeterminism can be achieved also if only unordered collections are used,
by defining reference attributes of the collected objectsin a certain way. An example of thiswill
be given in Chapter 11 to show how cyclic subclassing can be handled by a Door AG.

Note that it is perfectly possible to specify uniquely-determined Door AGs rather than underde-
termined ones. For example, other door packages can be constructed which handle multiple
declarations in the traditional uniquely-determined manner. |.e., by either defining all declara-
tions that have namesakes in the same block as “invisible”, or by defining the syntactically
foremost declaration as the visible one.

8.11 Comparison to standard AGs

In 84.4, we discussed a number of limitations of standard AGs. These limitations are all relaxed
by the extensions introduced in Door AGs. Below, we again list these limitations and comment
briefly on how they are relaxed.

I Regular values. While attributes of nodes in standard AGs must have regular values, the at-
tributes of nodes, doors, and semantic objects in Door AGs may be references.

[l Wholeattributes. An equation in astandard AG always defines awhol e attribute value. In a
Door AG, large attribute values are replaced by semantic objects. These objects have their
own attributeswhich are defined individually by equations or conditions. Thisallowsafiner
granularity of definition than what is possible in standard AGs.

11 Smpleassertions. Standard AGs have only one kind of assertions, namely equations. Door
AGs have, in addition, conditions which allow the membership of elementsin collection
objects to be expressed.

IV Local dependencies. In astandard AG, non-local dependencies have to be expressed by a
chain of local dependencies. Thereis no way to express a direct non-local dependency. In
contrast, the use of referencesin Door AGs allows direct non-local dependenciesto be
expressed, simply by accessing the contents of an object denoted by a reference.

V Rigid dependencies. In astandard AG, all attribute dependencies are completely governed
by the form of the syntax tree. The attribute dependencies of a Door AG are more flexible
inthat they may be governed also by attribute values. Thiswill be discussed in greater detail
in Chapter 9. The dependenciesin Door AGs are also lessrigid than those of standard AGs
because they allow an attribute to depend on a small part of a structure, rather than on the
structure as awhole. Thisis possible since structures can be built out of objects, and an
attribute can depend on an attribute of another object. In astandard AG, all structures must
be regular values, and an attribute must depend on the whole value.

VI Uniquely-defined. Whereas standard non-circular AGs are always uniquely-defined, a Door
AG can be underdetermined in useful ways, allowing history-dependent error reporting to
be implemented.

144 Chapter 8 Door Attribute Grammars

One of the most important advantages of Door AGs compared to standard AGs is the fine gran-
ularity of definition which can be obtained. It is possible to let the equations and conditions
define avery small amount of information each. Thisisin contrast to standard AGs where one
isforced to let some equations define very large information structures. The finer granularity in
Door AGs allows the size of AFFECTED (the set of affected attributes after a syntactic change)
to be dramatically decreased for some important problems and therefore makes it possible to
implement much more efficient incremental evaluators.

In comparing the example of §8.9 with ausual standard AG for the same language, there are
some important similarities and differences to be noted. First, the use of the search path objects
resembl es the use of “environment” attributes often used in standard AGs. New path/environ-
ment attributes are computed at each block level and, using inherited attributes, propagated down
throughout the statement part to reach name applications. The important difference hereis that
the path attributes are references whereas the environment attributes of standard AGs havelarge
complex regular values, including all possibly interesting information about all visible declara-
tions. Thisleads to dramatic differences for the size of AFFECTED after a change. Consider
changing the name of a declaration. The path attributesin the Door AG example are unaffected
by this change since they still denote the same search path objects. In a corresponding standard
AG, onthe other hand, all environment attributes containing information about the changed dec-
laration are affected. The size of AFFECTED is here proportional to the size of the syntax
subtree which is within the scope of the changed declaration, and may thus be very large.

Another difference between Door AGs and standard AGs is in how environments can be con-
structed. In the Door AG example areference to the symbol table object is propagated by
inherited attributes from the block to the declarations. Each declaration can then individually
define, by using a condition, that its entry is a member of the symbol table list. This makes the
declarations independent of each other, and syntactic changes to one declaration does not affect
other declarations. In a standard AG an environment is typically built by arranging the declara-
tionsin alist and using partial environment attributes for accumulating the total environment
information. This makes the declarations dependent on each other and increases the size of
AFFECTED.

If name declarations and applications may occur in any order, a standard AG needs several par-
tial attributes to build up the total information in “passes’. The resulting standard AG is
complicated, low-level, and the use of “ passes’ increases the grammar complexity, for example
from 1-visit to OAG. The Door AG, on the other hand, is completely insensitive to the order of
declarations. Dependencies between name declarations and name applicationsare handled in the
same way regardless of where in the syntax tree the name applications occur.

To sum up, solving incremental name analysisin Door AGs instead of in standard AGs leads to:

» Dramatic decrease of the size of AFFECTED after changes to declarations. For example,
from a number proportional to the size of the syntax tree to avery small number, close to
zero. (Thisisthe case for adding a global declaration of a name not previously used in the
program.)

8.12 Summary 145

» Simpler local attribute dependencies, for example areduction from OAG to 1-visit.

» Simpler specification without intermediate “pass’ attributes whose values are uninteresting
in thefinal attribution.

8.12 Summary

We haveintroduced Door Attribute Grammars and given asimple example to show how they can
be used for specifying visibility-graph based name analysis. Although this exampl e showed only
how to define visibility graphs for simple block structure, it is straight-forward to extend the
exampl e to define more complex visibility graphs such as those needed for object-oriented lan-
guages. Thiswill be discussed in greater detail in Chapter 11. In thischapter it will also be shown
how doors can be used as an interface mechanism towards an externa environment such asa
window system or other tools in a programming environment.

A Door AG is an extension of astandard AG. These extensions can be summarized as follows:

e A syntax node can be extended with part-objects. A part-object owned directly by a syntax
node is called a door, and transitively owned objects are called semantic objects.

» A semantic object can be specified as a collection, meaning that it is a collection of member
objects, and the members are defined non-locally by conditions.

» Attributesmay bereferences. |.e. they may have object identity val ues, denoting other nodes,
doors, or semantic objects.

These extensions allow attributions containing objects and references to be specified in a
straight-forward way. The use of objects and references allows visibility graphs to be modelled
explicitly and allows the best incremental name analysis methods to be implemented. The price
for using referencesis that non-local attribute dependencies are introduced which prevent eval-
uatorsto be generated completely automatically from the grammar. The solution to this problem
has been to separate those parts of a Door AG which can be treated automatically (the main
grammar) from those which require manual treatment (the door package). The following two
chapters explain how evaluators for Door AGs can be implemented.

146 Chapter 8 Door Attribute Grammars

Chapter 9
Door AG Implementation, part |

This chapter and the next one describe how an evaluator for Door AGs can be implemented,
based on an incremental visit-oriented technique. This chapter describes dependency analysis
while the next one describes the eval uation algorithm and the construction of visit procedures.

9.1 Evaluation principle

The attribute evaluator isimplemented as a global object with operations to be called by the edi-
tor. Basic operations are: replace a subtree, insert/del ete a subtreein alist, and evaluate awhole
new syntax tree. We will only discuss the replace subtree operation in detail since the other oper-
ations can be seen as special cases of this operation.

It isthe task of the evaluator to update the attribution after each change to the syntax tree. The

evaluator performs this update by calling visit procedures in the syntax nodes and door objects.
A visit procedure may propagate the eval uation by calling visit procedures of other syntax nodes
and door objects. For the syntax nodes, this propagation isalwayslocal, from node to node along
the syntax tree. The door objects, on the other hand, may propagate the eval uation by calling visit
procedures of other door objects, located anywhere in the syntax tree.

Figure9.1lillustratesthis. The user replacesthetype of avariable declaration. The editor handles
this change by calling the replace operation of the evaluator with the old and the new type sub-
trees as arguments. The evaluator in turn calls avisit procedure of the syntax node at the
replacement point. From this point, the evaluation is propagated along the syntax tree into the
Decl Door object connected to the variable declaration. From the Decl Door the evaluation prop-
agates directly to the UseDoor objects for the name applications using the variable. From these
objects, the evaluation propagates into the syntax tree where the type attributes of the expres-
sions using the variable are updated.

148 Chapter 9 Door AG Implementation, part |

repl aceSubt r ee(ol d, new)

Eval uat or

visit

Var Decl

Decl Type Decl Door

Figure9.1 Propagation of evaluation by visit procedures

Thisisadightly smplified description: the evaluator actually doesalittle more than calling just
one visit procedure. There are also several types of visit procedures which are called under dif-
ferent circumstances. Nevertheless, this description contains the essence of the evaluation
process. Implementation of an incremental evaluator for aDoor AG consists of implementing a
number of visit procedures for each node class and door class in the grammar.

9.2 Implementation steps

The separation of a Door AG into amain grammar and a door package is very important from
an implementation point of view: Those parts of a grammar which can be treated automatically
areisolated from those which require manual implementation. This allows door packages to be
viewed as tool sets which extend standard AGs. Advanced facilities for common problemsin

9.2 Implementation steps 149

static-semantics such as name analysis, type checking, and error detection, can be implemented
in adoor package which is used by many main grammars describing different languages.

Main grammars can be implemented by adapting existing techniques for standard AGs. We will
base the implementation on the 1-visit technique for standard AGs described in Chapter 7, but it
isalso possible to use other algorithms. The implementation of main grammarsis described in
§10.8.

The implementation of door packages is substantially more complicated. We have developed a
manual, but systematic, method for implementation. It involves analysis of the non-local depen-
dencieswhich occur between door objects, and the design of information structures allowing the
dependent doorsto be located efficiently at evaluation time. After the dependency analysis, the
construction of visit procedures for the door classes is comparatively straight-forward.

The door dependency analysisistreated in this chapter. As part of thisanalysis, additional so
called dependency attributes are added to the door classes. These attributes define the additional
information structures which allow dependent doors to be located efficiently. This explicit addi-
tion of dependency attributesisone of the keysto the generality and efficiency of Door AGs. The
door package implementor is free to choose which dependency attributes to use and it is there-
fore possible to achieve performance close to hand coded and to tune the space and time
consumption as desired. The dependency attributes are defined in the same way as the normal
attributes, i.e. by equations or conditions. The addition of such attributes may add new non-local
dependencies, and the construction of dependency graphsis thus an iterative process.

Chapter 10 describesthe detail s of the evaluator and how the door visit procedures are construct-
ed. The global evaluator object is general in that it contains no specific information about the
door package. It only assumesthe existence of afew virtual visit proceduresin the node and door
classes.

Figure 9.1 illustrates the steps involved in specifying and implementing a Door AG. Here we
have split the door package into an interface and a body. The interface contains only the door
class declarations with their inherited and synthesized attributes, as in the example of §8.9.3.
Thisisthe only information needed in order to write and implement a main grammar using the
door package. During the dependency analysis, the door classes are extended with dependency
attributes, dependency functions, and procedures which implement eval uation and de-eval uation
of the conditions. The dependency functionsand condition procedures are called by thevisit pro-
cedures which are added later.

150

Chapter 9 Door AG Implementation, part |

SPECIFICATION

DOOR PACKAGE MAIN GRAMMAR

door package interface uses
main grammar

door package body
Manually derived g g ib Automaticall
during ependency attributes visit procedures | | u.og Iglo)é
depencency dependency functions erived (810.8).
g;\dyss(Chapter condition procedures
Manually
derived (Chapter visit procedures
10).
IMPLEMENTATION

Figure9.2 Specification and implementation of Door AGs

9.3 Dependencies

9.3.1 Invariantsand evaluation

We will use the term invariant to mean either an equation or a condition. An invariant isin one
of thetwo statesuneval uat ed or eval uat ed. All invariants of anew syntax node or door object
areinitialy intheuneval uat ed state. An invariant whichisin theeval uat ed stateiseither con-
sistent or inconsistent:

9-1 Definition Consistent invariants

e Aneguationwhichisintheeval uat ed stateissaid to be consistent if its defined attribute
has the same value as the right hand side of the equation.

¢ A condition whichisin the eval uat ed state is said to be consistent if the condition
expression has the value true.

9.3 Dependencies 151

An invariant which isin the eval uat ed state, but is not consistent, is said to be inconsistent.
end 9-1

This definition is a straight-forward extension of the notions of “available” and “ consistent” for
attributes of standard AGs (see 84.2). Let e be an equation defining the value of an attribute a. If
eisconsistent, this corresponds the attribute a being consistent in the standard AG terminol ogy.
If eisintheeval uat ed state, this corresponds to a being available in the standard AG
terminol ogy.

Invariants are subject to evaluation, de-evaluation, and re-evaluation. With evaluation of an
invariant we mean executing actionsto make theinvariant consistent. For an equation thismeans
evaluating the right-hand side and assigning it to the defined attribute. For a condition, a special
evaluation procedure has to be implemented which (possibly conditionally) inserts an element
into a collection.

Invariants can be evaluated, de-evaluated, and re-evaluated. With evaluation of an invariant we
mean executing actions to make the invariant consistent. For an equation this means eval uating
the right-hand side and assigning it to the defined attribute. For acondition, aspecial evaluation
procedure has to be implemented which (possibly conditionally) inserts an element into a
collection.

With de-evaluation of an invariant we mean executing actions to remove possible earlier side-
effectsfrom the previous evaluation. For conditions, a special de-evaluation procedure hasto be
implemented which (possibly conditionally) removes an element from a collection. For equa-
tions, the evaluation has no side-effects other than setting the value of the defined attribute. No
explicit de-evaluation operation istherefore needed for equations. Nevertheless, it is sometimes
useful to consider the de-evaluation of an equation as an implicit action which makes the value
of the defined attribute inaccessible.

With re-evaluation of an invariant we simply mean a de-evaluation followed by an evaluation.

Evaluation may only be applied to invariants in the uneval uat ed state and brings the invariant
into the eval uat ed state. Conversely, de-evaluation may only be applied to invariantsin the
eval uat ed state, and brings the invariant into the uneval uat ed state. The figure below depicts
these legal state transitions:

152 Chapter 9 Door AG Implementation, part |

evaluation
de-evaluation
Figure9.3 State transition diagram for invariants

9.3.2 Dependencies and events

9-2 Definition Dependency

A dependency isadirected relation (a, b) from an invariant a to another invariant b, meaning
that the evaluation or de-eval uation of a may cause b to become inconsistent. Theinvariant b
is said to be dependent on a.

end 9-2

A dependency will also be written (x.a, y.b) meaning that a and b are invariants of the objects x
and y respectively. The notation (x.a, Y.b) refers to the set of dependencies outgoing from x.a
which end in an invariant y.b such that y is an object of the class.

The evaluation or de-evaluation of aninvariant will bereferred to asan event. An event iswritten
(action, €), where action is an evaluation action, either eval for evaluation or deeval for de-
evaluation, and eisaninvariant. The dependency set of an event (action, €) isthe set of invariants
which may become inconsistent if action is applied to the invariant e. If the dependency sets of
(eval , €) and (deeval , €) differ, the invariantsin the (eval , €) set are said to be eval-dependent
on g, and the invariants in the (deeval , €) set are said to be deeval -dependent on e.

Inanalogy to definition 8-2in §8.6, adependency (a, b) issaid to belocal if aand b are declared
in the same or neighbor objectsin the extended syntax tree. Otherwise the dependency issaid to
benon-local. Likewise, an event (action, x.a) issaid to be non-local to an object y if xisan object
non-neighbor toy.

From 88.6 we recall that non-local dependencies can occur only between door objects. For non-
local dependencies we distinguish between static dependencies and eval uation-time dependen-
cies. A static dependency isadependency (X.a, Y.b) where X and Y are door classes. For an object
x of class X, the static dependency corresponds to a set of k eval uation-time dependencies{ (x.a,
y1.0) .. (x.& y,.b)}, n= 0, wherey; . .y, are objects of classY.

Note that we consider dependencies as occurring between invariants. Thisisin contrast to most
techniques for standard AGs which consider dependencies as occurring between attributes.

9.3 Dependencies 153

However, thisdifferenceis purely technical sincethere is aone-to-one correspondence between
attributes and equations. For convenience, wewill usetheterms*attribute” and “ equation” inter-
changeably in connection to evaluation and dependencies. E.g., “evaluation of an attributea” is
equivalent to “evaluation of the equation defining a”. Likewise, “the attribute a is dependent on
theattribute b” isequivalent to “the equation defining a is dependent on the equation defining b”.

9.3.3 Actual dependencies

The usual way to decideif an event can cause another invariant to become inconsistent isto ana-
lyze accesses. In 88.6 we defined access-dependencies for attributes. However, access-
dependencies are sometimes unnecessarily pessimistic. In particular, this can be the case for cer-
tain non-local dependencies. Suppose an attribute a is access-dependent on another attribute b.
By taking attribute valuesinto account, it isin some cases possible to deduce from the attribute
definitions that a given event (action, b) will only cause a subset of the access-dependent invari-
antsto actually become inconsistent. If thisisthe case, the invariantsin the subset are said to be
actually dependent on b:

9-3 Definition Actual dependency set

Let (action, b) be an event with the access-dependency set P. If it can be deduced from the
Door AG that this event will cause only a certain subset Q of P to become inconsistent, then
Qisreferred to asthe actual dependency set. Each invariant in Q is said to be actually depen-
dent on b.

end 9-3

Thus, an access-dependency does not always imply an actual dependency. This can be utilized
in order to avoid unnecessary re-evaluation of access-dependent invariants.

For example, the lookup function used in defining the bi ndi ng attribute of a UseDoor (in the
example of §8.9) may search through many symbol tables and access thei dent attributes of
many Ent ry objects. Thebi ndi ng attribute in aUseDoor can thus be access-dependent on very
many i dent attributes. However, changing any of thesei dent attributes will only cause the
binding to becomeinconsistent if it is changed to the sameidentifier as the one of the UseDoor .
Thus, for agiven changeto ani dent attribute, the set of actually dependent bi ndi ng attributes
isonly asubset of the set of access-dependent bi ndi ng attributes. By considering actual depen-
denciesinstead of access-dependencies, many unnecessary re-eval uations of bi ndi ng attributes
can be avoided.

9.3.4 Non-local dependencies

Aninvariant in a door class which accesses mutable information in non-neighbor objects has
incoming non-local dependencies. Such invariants are called receiving invariants. Invariants
defining information which is accessed non-locally have outgoing non-local dependencies. Such

154 Chapter 9 Door AG Implementation, part |

invariants are called sending invariants. During incremental evaluation, changes are propagated
from sending invariants to receiving invariants.

To perform this non-local change propagation it is necessary to have some mechanism for find-
ing the set of receiving invariantsfor each static dependency. | .e., given astatic dependency (X.a,
Y.b) and an object x of class X, thereisaneed for away of obtaining theset {y;,, . . y,} of objects
of classY for which there are evaluation-time dependencies (x.a, i.b).

This problem is solved by adding dependency functions to the door class X. Each dependency
function returns a set of door objects for a given receiving invariant. The dependency functions
make use of ordinary attributes to compute the set of dependent doors. In order to perform this
computation efficiently, additional attributes usually need to be added to the grammar.

9.3.5 Conditions

In the implementation of adoor package, each condition of adoor class D is associated with an
evaluation procedure and a de-evaluation procedure. These procedures are located in the class
D and may access attributes of D and its part-objects. However, the de-eval uation procedure will
be called by the evaluator at times when non-fix inherited attributes have inconsistent values.
Therefore, the de-evaluation procedure must not access such attributes. For simplicity, we
restrict both the eval uation procedure and the de-eval uation procedure to only uselocal attributes
and fix inherited attributes.

The access of attributes in the evaluation and de-evaluation procedures cause access-dependen-
ciesto conditions:

9-4 Definition Access-dependencies to conditions

Let ¢ be acondition. For each attribute b accessed by the evaluation or de-eval uation proce-
duresfor c, there is an access dependency from b to ¢, and c is said to be access-dependent
onb.

end 9-4

A condition may also have dependent invariants. Let t be a collection object and ¢ a condition
which defines (possibly conditionally) amember in t. Invariants accessing information in the
collection t may be dependent on the condition c. Aninvariant accessing information in acollec-
tion usually accesses many of the member elements, but only in order to find one of them with
certain properties. For these dependenciesit istherefore usually useful to consider actual depen-
dencies rather than access-dependencies.

9.3.6 Local copy attributes

In some cases, the values of non-fix inherited attributes need to be stored in the door to be avail-
able at alater time. One example of thiswasin order to de-eval uate conditions, as was discussed

9.4 Door dependency graphs 155

in 89.3.5. Such de-evaluation must be done using the same information as the previous evalua-
tion, and the values of non-fix inherited attributes used at the previous eval uation must therefore
be stored in the door. We do this simply by adding alocal copy attribute, i.e. alocal attribute
which is defined to have the same val ue as the non-fix inherited attribute.

If alocal copy attributeisadded, werequireall invariantsin the door which depend on the copied
attribute to be revised to use the local attribute instead of theinherited one. Thisinsures that all
theinvariantsin the door have been computed using the same inherited information at any given
time during evaluation. This simplifies the dependency analysis.

9.4 Door dependency graphs

In dependency analysis of adoor package, we build one dependency graph per door class. This
dependency graph shows the local dependencies between invariants of the door, as well as non-
local dependenciesto and from invariants in other doors.

A door dependency graph contains oneinherit vertex v(a) for each inherited attribute a, one syn-
thesize vertex v(b) for each synthesized attribute b, and one local vertex v(c) for each local
attribute c or condition c defined by the door. In addition, the graph contains send and receive
vertices modelling the non-local dependencies. A receive vertex v(L) has alabel L. The receive
vertex is connected to anumber of vertices for receiving invariants (often only one). A send ver-
tex is denoted v(L, D, f) where L isthe label of areceive vertex for the door classD and fisa
dependency function returning a set of D objects. A send vertex represents a set of non-local
dependents, namely the set of invariants reachable from v(L) in the door objects of class D
returned by the function f.

The following graphical symbolswill be used in door dependency graphs:

inherit vertex v(a) L receive vertex v(L)
(aisan inherited attribute)

. L) sendvertexv(L, D,)
synthesize vertex v(b) f

(bisasynthesized attribute)

o [[
s

evaluation edge
local vertex v(c) —d— de-evaluation edge
(cisacondition or a normal edge

local attribute)

Figure9.4 Symbols used in dependency graphs

Dependencies are represented in the graphs by edges. An evaluation edge (a, b), labelled by e,
represents an eval dependency. Thismeansthat thereis adependency fromatobif theinvariant
aisevauated. A de-evaluation edge (a, b), labelled by d, correspondingly represents a de-eval

156 Chapter 9 Door AG Implementation, part |

dependency and means that there is a dependency from ato b if the invariant a is de-eval uated.
A normal un-labelled edge is equivalent to both an evaluation edge and a de-eval uation edge.

9.4.1 Unordered collections

In order to implement efficient dependency functions, additional attributes can be added to the
grammar. Often, it is useful to add a collection object which keeps track of dependent doors as
an unordered collection. We will make use of the following collection class for this purpose:

UnorderedCol | ection: class[T: class ANYCLASY
{ contains: func boolean(e: ref T);
contents: func ref Set[T];
add: proc(e: ref T);
renove: proc(e: ref T);

TheclassUnor der edCol | ect i on modelsacollection of referencesto T objects. Itisvery similar
tothe class Set , but in contrast to Set it isnot an applicative class. |.e., its set of references may
change as a consequence of changesto the syntax tree. However, the function cont ent s returns
acorresponding set value (areference to a Set object). The set value obtained by acall at one
point in time cannot change even if elements are later added to or removed from the collection.
Thisisimportant since the result of the dependency function must be a set value which must not
be affected by subsequent evaluation in the syntax tree.

The add and r enove procedures can be used to implement evaluation and de-eval uation proce-
dures for conditions defining elements in the collections.

9.4.2 A ssimple example of dependency graphs

Asasimple example, wewill show how dependency graphs can be constructed for thefollowing
door package:

A cl ass

{ loc x: integer;
b

D1: door

inh ix: integer;
syn rAl: ref A
nyA. object A
eq nyA X :=ix;
eq rAl - nyA

D2: door

{ inh rA2: ref A
syn sx: integer;
eq sSXx := rA2.x;

Thisis the same example door package as of §8.6.

9.4 Door dependency graphs 157

Thefirst step in the construction is to add vertices for invariants and inherited attributes and to
add edges for local dependencies. In addition, for each receiving invariant, areceive vertex is
inserted. Thisyields the following graphs:

D1:

D2:

A x_changed

The class D2 has one receiving invariant, namely the equation defining sx. This equation uses
non-local information: it uses the x attribute in the A object denoted by the inherited reference
r A2. This dependency is represented by areceive vertex labelled A x_changed.

The next step isto add send vertices matching the receive vertices. In this case, thereceive vertex
represents a static dependency (DL. nyA x, D2. sx). The D1 door should therefore have a send
vertex V(A x_changed, D2, f Uses) wheref Uses isafunction which computesthe set of affected
D2 doors. The resulting graph for D1 is the following:

D1:

A x_changed

A x D2
il Uses i

—h

The next step isto define the function f Uses of class DL. Thisfunction should return a set of ref-
erences to all D2 doors for which the r A2 attribute denotes the nyA object of the D1 door. One
possibility would beto search thewhole syntax treefor finding D2 objectsfulfilling these criteria.
A moreefficient solution isto add dependency attributes which keep track of the D2 objects. This
can be done by adding a collection object to D1 and | et each D2 object register in the proper col-
lection object by using a condition. The function f Uses can then be defined simply as the set
contents of the collection object:

addto D1

{ collection uses: object UnorderedCollection[D2];
fUses: func ref Set[D2] :- uses.contents;

b

addto D2

{ loc localrA2: ref A2; (* local copy attribute *)

158 Chapter 9 Door AG Implementation, part |

eq localrA2 :- rA2;

eq sx := localrA2. x; (* revised to use | ocal copy *)
clses: cond |ocal rA2. uses. contains(this D2);

eval Oses: proc

{ localrA2 uses.add(this D2);

1
deEval OJkes: proc
{ localrA2. uses.renove(this D2);

b
b

The two procedures eval QUses and deEval Cses are the evaluation and de-eval uation proce-
duresfor the condition cUses. Since these procedures may not use the non-fix inherited attribute
r A2 directly, alocal copy attribute has been added according to §9.3.6. The equation defining sx
isalso revised to use thislocal copy. Since the new invariant cUses has been added to D2, the
dependency graph for D2 must be revised accordingly. Thisimplies adding a new vertex v(cUs-
es) and a dependency from v(r A2) to v(cUses).

The resulting dependency graphs for the door package are as follows:

A _x_changed

D2
Uses i

—h

A _x_changed

9.4.3 Restricted use of attributesin dependency functions

There are certain restrictions on which attributes may be used in the implementation of a depen-
dency function. The dependency functions of a door object are aways called prior to the
evaluation or de-eval uation of invariantsin the object. Depending on the current evaluation state,
the attributes of the door object will be un-evaluated or evaluated, consistent or inconsistent.
Which attributes are allowed to be used can be deduced from the door dependency graph by ana-
lyzing the incoming dependencies to the send vertices using the dependency function.

9.4 Door dependency graphs 159

Consider asend vertex v(L, D2, f) of adoor classDL. Thefunction f isthenafunctioninD1. The
implementation of f can access any collection part-objectsin D1, but access to attributes of DL
and its part-objectsis subject to certain restrictions. The restrictions depend on the kind of
dependency edgesendinginv(L, D2, f). Recall that an edge can be an evaluation edge, ade-eval -
uation edge, or anormal edge (equivalent to both an evaluation and a de-evaluation edge). The
following cases apply:

| Thereisan evaluation edge (v(a), v(L, D2, f)) where a isan inherited attribute or alocal in-
variant. Inthiscase, f will be called by the evaluator when no local attributesin the door or
its semantic part-objects have yet been evaluated. In this case, f must not access these at-
tributes. It may, however, access inherited attributes if no other restrictions apply.

[l Thereisade-evaluation edge (v(a), v(L, D2, f)) where a is an inherited attribute or local
invariant, or thereisan edge (v(L), v(L, D2, f)) where v(L) isareceive vertex. In this case, f
will be called by the evaluator when the door is fully evaluated and when all invariants are
consistent, except for those depending on non-fix inherited attributes. In this case, f must
not access any non-fix inherited attribute. It may, however, access all local attributes of the
door and its semantic part-objects and al fix inherited attributes, if no other restrictions

apply.

For example, the function f Uses in the example of §9.4.2 isused in a send vertex

V(A x_changed, D2, f Uses). Since this vertex has an incoming normal edge (v(nyA. x),

V(A _x_changed, D2, f Uses)), both the above restrictions apply. The implementation of f Uses is
therefore not allowed to access inherited attributes or local attributes of D1 and its part objects.
It may, however, accessthe part-objectsthemsel ves. Theimplementation of f Uses accessesonly
the collection object uses. Thus, the restrictions above are adhered to.

9.4.4 Construction of dependency graphs

The construction of the door dependency graphs involves design decisions such as which send
and receive verticesto add and how to implement the dependency functions. The constructionis
inprincipleaniterative process since the addition of new attributesto implement the dependency
functions efficiently may lead to additional non-local dependencies. Although we provide no
complete formal agorithm for constructing the door dependency graphs, it is possible to con-
struct them in a systematic manner as follows:

9-5 Construction Door dependency graphs

| Implement conditions. For each condition, implement evaluation and de-eval uation pro-
cedures. Possibly add new local attributes to perform these operations without using non-
fix inherited attributes.

[l Local analysis. For each door class D, construct a dependency graph DG(D) with one
inherit vertex for each inherited attribute, one synthesize vertex for each synthesized
attribute, one local vertex for each local attribute defined by an equation in D, and one
local vertex for each conditionin D. Do local dependency analysis on the invariants of D

160

Chapter 9 Door AG Implementation, part |

and add edges corresponding to local access-dependencies. If aninvariant r accesses non-
fix non-local information, add a receive vertex with anew label L and add an edge from
V(L) to v(r). The invariant r is said to be areceiving invariant.

Add send vertices. Consider each added receive vertex v(L) and its corresponding receiv-
ing invariant r of adoor class D,. Analyze the door package to find the set of invariants S
whose evaluation or de-evaluation can cause a non-local instance of r to become incon-
sistent. Consider each invariant sin S. Let Dg be the door class of s. Construct a send
vertex v(L, D,, f) where f is a dependency function returning the appropriate set of D,
doors. Declaref in Dgif it isanew function (implementation can wait until step V). Add
the vertex v(L, D, f) to the dependency graph of Dg, unless such avertex aready existsin
the graph. If evaluation (de-evaluation) of s can causer to become inconsistent, add an
evaluation (de-evaluation) edge from v(s) to v(L, Dy, f). (If both evaluation and de-evalu-
ation can cause inconsistency, add a normal edge instead.)

Smplify send/receive vertices. Consider two receive vertices v(L) and v(L,) of a door

class D,. Suppose thereisadoor class Dgwith two send verticesv(L 4, D,, f) and v(L,, Dy,
f). Two edges (X1, Y1), (Xo, Y) are said to be equivalent if x;=X, and if the edges have the
samelabel. If the sets of incoming edgesto the two send vertices are equivalent, then sim-
plification of the dependency graphsis possible asfollows: A new receive vertex v(L3) is
added to D, and an edge (v(L3), X) is added for each edge (v(L1), X) or (v(L,), X). Thetwo
send vertices are then collapsed and replaced by a send vertex v(Lg, Dy, f). Each of the

receive verticesv(L ;) and v(L,) isremoved unlessit isreferred to by another send vertex.

Implement dependency functions. Implement the dependency functions used by the send
vertices. If thisinvolves addition of attributes and invariants, go back to step | and repeat
the construction for the added attributes and invariants.

end 9-5

9.5 Analysis of example door package

We wi

Il now construct the dependency graphs for the door package of §8.9 according to con-

struction 9-5.

951

Step |

I mplement conditions (step 1)

isto implement evaluation and de-eval uation procedures for the conditions in the door

classes. Inthe example door packagethereisone condition: r egi st er ed in Decl Door (88.9.2.3)

which

states the membership of an Ent ry object in aLi st object:

Decl Door: door
{

}s

'régi stered: cond table.entries.contains(theEntry);

9.5 Analysisof example door package 161

To implement this condition, we assumethat theclassof t abl e. ent ri es, i.e. Li st , hastwo pro-
cedures add and r enove. The procedure add adds an element to the end of the list and the
procedure r enove removes an element from the list:

addt o List
{ add: proc(e: ref T);
renove: proc(e: ref T);

The condition can then be implemented by extending the Decl Door class by the following two
procedures:

addt o Decl Door
{ eval Registered: proc
{ table.entries.add(theEntry);

b
deEval Regi stered: proc
{ table.entries.renove(theEntry);

o
Since the inherited attributet abl e isfix, thisisin agreement with the rules for attribute access
in evaluation/de-evaluation procedures as stated in §9.3.5. If t abl e had been non-fix, an addi-
tional local attribute would have had to be added to Decl Door , and the eval uation procedures be
revised to use this attribute instead of t abl e.

9.5.2 Local analysis(step I1)

Step |1 isto analyze the local access-dependenciesfor the door classes and to identify the invari-
antsdepending on non-local information. Thisanalysisfor thefour doors Root Door , Bl ockDoor ,
Decl Door , and UseDoor of §8.9.2 results in the dependency graphs shown in Figure 9.5.

For example, consider the invariants of UseDoor (§8.9.2.4):
UseDoor: door

eq binding :- (* 1 %)
if ident ="~
then nul |l Entry
el se
i nspect $E :- path.| ookup(ident)
when Entry do $E
ot herwi se nul |l Entry;
eq tp :- binding. getTp; (* 2%)
eq declared := binding =/= null Entry; (* 3 %)
The equation defining bi ndi ng (* 1 *) dependslocally on the attributesi dent and pat h. In
addition, the bi ndi ng depends on what is returned by the function | ookup. Thisis a non-fix

function using non-local information and areceive vertex v(I ookupChanged) is added to reflect
this non-local dependency.

162 Chapter 9 Door AG Implementation, part |

The equation definingtp (* 2 *) dependslocally on bi ndi ng and non-locally on what is
returned by the non-fix function get Tp. A receivevertex v(get TpChanged) isadded toreflect this
non-local dependency.

For equation (* 3 *) thereisonly alocal dependency from bi ndi ng to decl ar ed.

Root Door : Bl ockDoor :
[encPath | [locPath]| [table |

[theTabl ePath.table | [staticPath.first ||staticPath.second

Decl Door :
v v
[are] [tr]
| registered| [theEntry.tp| [theEntry.ident |

UseDoor :

get TpChanged

| ookupChanged |-

Figure9.5 Dependency graphs after step |1

9.5.3 Add send vertices (step I11)

In this step, send vertices are added to match the receive vertices v(get TpChanged) and
V(I ookupChanged).

9.5.3.1 Send vertices for getTpChanged

Thereceive vertex v(get TpChanged) for UseDoor represents non-local events which may affect
the result of the function call bi ndi ng. get Tp and thereby cause thet p attribute of UseDoor to

9.5 Analysisof example door package 163

become inconsistent. The function get Tp has two implementations: one in nul | Ent ry and one
inEnt ry. Theimplementation in nul | Ent ry returns a constant value and can therefore not lead
to any non-local dependencies. The implementation of get Tp in Ent ry (see §8.9.1.2) depends
on thet p attribute of class Ent ry. This attribute is defined in Decl Door by the equation

eq theEntry.tp :- tp;

Thereistherefore a static dependency
(Decl Door . theEntry. tp, UseDoor.tp)
For agiven Decl Door object d, the dependent objects are those UseDoor objectswhosebi ndi ng

attribute denotes d. t heEnt ry. To find these objects at evaluation time, we add a dependency
function f Uses to Decl Door :

addt o Decl Door
{ flses: func ref Set[UseDoor];
}

We defer the implementation of this function until §9.5.5.

A new send vertex v(get TpChanged, UseDoor , f Uses) and an edgefrom v(t heEnt ry. t p) tothis
send vertex are then added to the dependency graph of Decl Door (see the edge marked by (1)
in Figure 9.6).

9.5.3.2 Send vertices for lookupChanged

Thereceivevertex v(l ookupChanged) for UseDoor represents non-local eventswhich may affect
theresult of the function call pat h. | ookup and thereby cause the bi ndi ng attribute of UseDoor
to become inconsistent.

According to the definitions of classes Synbol Tabl e and Sear chPat h (§8.9.1.3, §8.9.1.4), the
result of acall to | ookup of a Sear chPat h object p depends on the following non-local
information:

1. which Synbol Tabl e objects are found viap

2. which Ent ry objects are found in the lists of these Synbol Tabl e objects
3. thevaluesof thei dent attributesin these Ent ry objects

4. the order of the Ent ry objectsin the lists

We will now consider each of these sources of non-local dependenciesin turn.

164 Chapter 9 Door AG Implementation, part |

Symbol table objects

The Synbol Tabl e objects found via a given Sear chPat h object can in fact not change in this
door package since all connections between Sear chPat h objects are defined using fix informa-
tion. Thisis seen from the definition of Bl ockDoor (88.9.2.2).

Entry objects

TheEnt ry objectsfound in thelist of a Synbol Tabl e object may change due to evaluations and
de-evaluations of the condition r egi st er ed in Decl Door . There is thus a static dependency

(Decl Door . regi st ered, UseDoor . bi ndi ng).

The dependency sets of evaluating and de-evaluating this condition are different. Let d be a
Decl Door object. If the conditionr egi st er ed for d is de-evaluated, the d. t heEnt ry object is
removed from the symbol table. Thisinvalidates the bi ndi ng in UseDoor objects whose bi nd-
i ng attribute denotes d. t heEnt ry. Thisis exactly the set of objects returned by the f Uses
function of Decl Door which was defined to handle the get TpChanged dependency. We use the
same function to construct a send vertex v(I ookupChanged, UseDoor , f Uses) which isadded to
the dependency graph of Decl Door . A de-evaluation edge is added from v(r egi st er ed) to this
send vertex (edge (2) in Figure 9.6).

In evaluating the condition r egi st er ed of d, the d. t heEnt ry object is added to the symbol
table. This affectsthe bi ndi ng attribute of another set of UseDoor objects. Consider computing
the bi ndi ng attribute of a UseDoor object u. The u. pat h. | ookup function looks for Ent ry
objectsin aseries of symbol tables until either amatching entry isfound in asymbol tables,, or
there are no more symbol tables on the path. Let s; . . 5,_; be the symbol tables where no match-
ing entry was found. We say the UseDoor object has attempted to bind to these symbol tables. If
an entry object e isadded to any of these symbol tables, and e. i dent = u. i dent , then thiswill
make u. bi ndi ng inconsistent. Evaluating the condition r egi st er ed of d will thus affect all
UseDoor objects u which have attempted to bind to d. t abl e and for which u. i dent =

d. theEntry. i dent . To find these objects at evaluation time, we add a dependency function

f At t enpt ed to Decl Door :

addt o Decl Door
{ fAtenpted: func ref Set[UseDoor];
}

Again, the implementation of this function is deferred to §9.5.5.

A new send vertex v(l ookupChanged, UseDoor , f At t enpt ed) and an evaluation edge from
V(r egi st er ed) to this send vertex are then added to the dependency graph of Decl Door (edge
(3) inFigure 9.6).

9.5 Analysisof example door package 165

| dent values

Thevalue of thei dent attribute of an Ent ry object is defined by the equation
eq theEntry.ident :=ident

in Decl Door . Evaluation or de-evaluation of this equation has the same effect as the evaluation
or de-evaluation of ther egi st er ed condition. De-eval uating the equation means making the old
value of i dent inaccessible, and will affect the bi ndi ng attribute of the UseDoor objects
returned by the f Uses function. Evaluating the equation means making a new value accessible
and this will affect the bi ndi ng attribute of the UseDoor objects returned by the f At t enpt ed
function. Thus, the dependency graph of Decl Door is updated by adding a de-evaluation edge
from v(t heEnt ry. i dent) to v(I ookupChanged, UseDoor , f Uses) and an evaluation edge from
V(t heEnt ry.i dent) to v(l ookupChanged, UseDoor , f At t enpt ed) (edges(4) and (5) in Figure
9.6).

Entry order

The order of the entry objectsin a symbol table list matters only if there are namesake declara-
tionsintheblock, i.e. if two or more entries have the samei dent value. Inthiscase, thel ookup
function will return thefirst of these entries. For the present discussion, we assume that this does
not occur. We will return to the issue of namesake declarationsin Chapter 11.

Step |11 in the dependency graph construction has thus resulted in three new send verticesin the
graph for Decl Door as shown below:

Decl Door :
|registered| [theEntry.tp| [theEntry.ident
(1) get TpChanged
UseDoor -
fUses
(4)
d—— ~ .|l ookupChanged
(2) UseDoor
d \ f Uses
(3) e\(5) »| | ookupChanged
e » UseDoor >
fAttenpted

Figure 9.6 Send vertices added to DeclDoor graph

166 Chapter 9 Door AG Implementation, part |

9.5.4 Simplify send / receive vertices (step 1 V)

No simplification of send/receive verticesis possiblein our example: The two send vertices
V(get TpChanged, UseDoor , f Uses) and V(I ookupChanged, UseDoor , f Uses) fulfill thefirst cri-
terion of two matching verticesv(L,, Dy, f) and v(L,, D,, f), but the second criterion of equivalent
incoming edges for these verticesis not fulfilled.

9.5.5 Implement dependency functions (step V)

In this step, the two dependency functionsf Uses and f At t enpt ed declared in Decl Door are
implemented.

9.5.5.1 The function fUses

Thefunction f Uses of class Decl Door should return the set of UseDoor objects whose bi ndi ng
attribute denotes the Ent r y object of the Decl Door . To implement this function we add a collec-
tion object uses to class Ent ry which keeps track of these UseDoor objects. The collection
objectisdeclared asan Unor der edCol | ect i on (see§9.4.1). A condition cUses isadded to Use-
Door to define which UseDoor objects are members of which collections. The f Uses function
can then be defined simply as the set contents of the uses object:

addto Entry
{ collection uses: UnorderedCol |l ection[UseDoor];

addt o Decl Door
{ inpl fUses :- theEntry.uses.contents;

addt o UseDoor

{ clWses: cond
i nspect $B :- binding
when Entry do $B.uses. contai ns(this UseDoor)
ot herwi se true;

b

The condition defines the membership conditionally: the UseDoor is declared asamember of a
uses collection only if bi ndi ng actually denotes an Ent ry object. The bi ndi ng attribute might
denote the nul | Ent ry object (which isnot of class Ent ry) in which case the UseDoor will not
be member of any uses collection. The “inspect”-expression used in the condition does case
analysis on bi ndi ng to separate these two cases.

The function f Uses occurs in the send vertex v(get TpChanged, UseDoor , f Uses) which has an
incoming normal dependency edge, corresponding to both an evaluation and a de-evaluation
edge. Therefore, the implementation of f Uses may not make use of local or inherited attributes,
but only of collection objects (as stated in §9.4.3). This requirement is met by the above
implementation.

9.5 Analysisof example door package 167

The evaluation and de-evaluation procedures for the cUses condition can be implemented by
using the add and r enove procedures of class Unor der edCol | ect i on:

addt o UseDoor
{ eval Okes: proc
{ inspect $B :- binding
when Entry do $B.uses. add(t hi s UseDoor)
end i nspect;

1
deEval Okes: proc
{ inspect $B :- binding
when Entry do $B. uses.renove(this UseDoor)
end inspect;
b
b

These procedures use the “inspect” -statement to conditionally add and remove the UseDoor
from the collection. The procedures use no inherited attributes at all, so thisisin agreement with
therules for attribute access in evaluation/de-evaluation procedures as stated in §9.3.5.

9.5.5.2 The function fAttempted

Consider aDecl Door object d. The function f At t enpt ed of d should return the set of UseDoor
objects which have attempted to bind to d. t abl e, and for which thei dent attribute is equal to
acertain value v. Recall that f At t enpt ed is called in connection to the evaluation of the condi-
tionr egi st er ed and the evaluation of the attribute t heEnt ry. i dent . The value v is the new
value of the attributet heEnt ry. i dent . However, the function f At t enpt ed is called before any
evaluation startsin the Decl Door . At this point in time, the inherited attributes are available, but
the attribute t heEnt ry. i dent isnot (or contains an old value). The new value v can instead be
found in the inherited attribute d. i dent .

To implement the function f At t enpt ed we will make use of aclassDi cti onary with the fol-
lowing interface:

Dictionary: class [T: class ANYCLASS|
{

associationAt: func ref T(key: string);
(* may return NONE *)
b

A dictionary associates objects with strings. The function associ at i onAt returns the object
associated with agiven string. If thereisno object associated with the string, the function returns
NONE. The objects we will associate with strings will be of class

Unor der edCol | ect i on[UseDoor].

A collection object at t enpt ed of class Di cti onary will be added to class Synbol Tabl e. The
function associ at i onAt (i dent) will return an unordered collection of UseDoor objectswhich
have attempted to bind to the Synbol Tabl e using theidentifier i dent . It isthen straight-forward
to implement the function f At t enpt ed:

168 Chapter 9 Door AG Implementation, part |

addt o Synbol Tabl e
{ collection attenpted: object

D cti onary[Unor der edCol | ect i on[UseDoor]];
b

enpt yUseDoor Set: obj ect Set[UseDoor];

addt o Decl Door

{ inpl fAttenpted :-
i nspect $C :- table.attenpted. associati onAt (ident) do
when UnorderedCol | ecti on[UseDoor] do $C contents
ot herw se enptyUseDoor Set ;

}s

Since the function associ at i onAt may return NONE, an inspect-expression is used to take care
of thiscase. If the function returnsan Unor der edCol | ect i on object, the“when” clause applies,
and the set contents of that object isreturned. If the function returnsNONE, the“ otherwise” clause
applies and the constant semantic object enpt yUseDoor Set is returned.

The function f At t enpt ed occurs only in the send vertex v(l ookupChanged, UseDoor , f At -

t enpt ed) which has only an incoming evaluation edge. According to the rules of §9.4.3 the
implementation of f At t enpt ed may therefore use inherited but not local attributes. As seen
above, the implementation usesthet abl e and thei dent attributes which are both inherited.

The contents of the collection at t enpt ed isdefined by acondition cAt t enpt ed in UseDoor . The
evaluation procedure of cAt t enpt ed should add the UseDoor to the at t enpt ed collection of
each symbol table occurring on its path, up to but not including the symbol table containing the
entry which the UseDoor isbound to. To implement the eval uation and de-eval uation procedures
some additional attributes are needed. We add alocal attributet abl e to class Ent ry, making it
possible to find the symbol table of an entry object in an efficient way:

addto Entry
{ loc table: ref Synbol Table;

addt o Decl Door
{ eq theEntry.table :- table;

Further, we add two local copy attributes| ocal Pat h and | ocal | dent to UseDoor to be ableto
implement the cAt t enpt ed condition without using the non-fix inherited attributes pat h and
i dent (in order to adhereto therulein §9.3.5):

addt o UseDoor

{ loc local Path: ref SearchPath;
l oc localldent: string;
eq |local Path :- path;
eq local ldent := string;

}s

The definition of the condition cAt t enpt ed and the implementation of the evaluation and de-
evaluation proceduresis straight-forward, but resultsin rather lengthy definition. For brevity, we

9.5 Analysisof example door package 169

have therefore hidden the detailsin the functionsf , g, and h whose implementation has been | eft
out.

addt o UseDoor

{ cAttenpted: cond
if localldent <>
then f(local Path, |ocalldent, binding)
el se true;

W

eval CAttenpted: proc
{ if localldent <> *"”
then g(local Path, |ocalldent, binding);

’

deEval CAttenpt ed: proc
{ if localldent <> *“”
then h(local Path, |ocalldent, binding);

}s
9.5.5.3 Comment

The implementation of the dependency functionsf Uses and f At t enpt ed corresponds exactly
to solving the incremental name analysis problems|, Il and |11 treated in §3.4.

The problems |l and Il (remove and change declaration) correspond to the v(I ookupChanged,
UseDoor , f Uses) and v(get TpChanged, UseDoor , f Uses) send vertices respectively. Thef Uses
function solves these problems by the uses collection in each Ent ry object. Thisisan imple-
mentation of method 4 (maintain cross-references).

Theproblem | (add adeclaration) correspondsto the v(I ookupChanged, UseDoor , f At t enpt ed)
send vertex. Thef At t enpt ed function solves this problem by the at t enpt ed collectionin each
Synbol Tabl e object. Thisis an implementation of method 6 (maintain traces).

Thelast problem 1V (change the visibility graph) does not occur for this simple door package
since al edgesin the visibility graph (thefi r st and second attributes of TwoPat h objects) are
defined using fix attributes and can thus not change.

An dternative implementation of f Uses and f At t enpt ed could have used the same “maintain
traces’ method for al three problems. This could have been done by defining theat t enpt ed col-
lection of a symbol table to include also collections of the UseDoor objects bound to entriesin
the table.

It was argued in 83.4.1 that it can be motivated to trade space for time in implementing incre-
mental name analysis. Some examples were given of how the space overhead could be reduced
by not maintaining full trace information, and instead combine with some searching to find the
affected name applications. Thiswould correspond to another implementation of thef At t enpt -
ed function and the at t enpt ed collection. An aternative implementation could let the

at t enpt ed collection store only information about what blocks contain name applications

170 Chapter 9 Door AG Implementation, part |

attempting to bind to certain identifiers. Thef At t enpt ed function would then haveto search the
syntax trees of these blocks to find the affected name applications.

9.5.6 Repeat construction for added invariants

During step V, invariants were added to the door classes. The construction of the dependency
graph therefore has to be repeated for these additions.

The following conditions were added:

* cUses of class UseDoor

e CcAttenpted of class UseDoor

and the following equations:

e theEntry. tabl e of class Decl Door

* | ocal Pat h of class UseDoor (alocal copy attribute)
* local I dent of class UseDoor (alocal copy attribute)

Theinvariantsin UseDoor are revised to use the local copy attributes instead of the inherited
attributes directly, as discussed in §9.3.6.

Both of the conditions depend on non-local information. Following the steps of construction 9-
5, we would add areceive vertex for each of the conditions and send vertices which match these
receive vertices. However, it is easily seen that the conditions depend on exactly the same non-
local information asthebi ndi ng attribute. Therefore, simplification of send and receive vertices
according to step IV lead to graphs with no new send and receive vertices. Instead, edges

(v(I ookupChanged), v(cUses)) and (v(I ookupChanged), V(cAt t enpt ed) are added.

The vertices for the equations are straight-forward to add since they depend only on local
information.

9.5 Analysisof example door package

Thefinal resulting dependency graphs are depicted below:

171

Root Door :

Bl ockDoor :

[encPath |

[locPath| [table |

| theTabl ePath. table | [staticPath.first|[staticPath.second

Decl Door :

egi stered | |theEntry tp||theEntry.ident

theEntry. tabl e

[r

get TpChanged

UseDoor >

\ﬁ» f Uses

\J

f Uses

— | I ookupChanged
UseDoor

Y

— | l ookupChanged
e— UseDoor
fAttenpted
UseDoor :
pat h [ident | [tp | [decl ared |

Y

[local Path | [localldent |

cAtt enpt ed

get TpChanged

| ookupChanged |¢-

Figure9.7

Final dependency graphs

172 Chapter 9 Door AG Implementation, part |

9.6 Summary

We have described a technique for constructing dependency graphs for door packages. One
graph is constructed for each door class. A graph shows the local dependencies between inher-
ited attributes and local invariants of adoor. It also shows the non-local dependencies to other
doors. Send vertices represent outgoing non-local dependencies and receive vertices incoming
non-local dependencies. At evaluation time, asend vertex corresponds to a set of receiving door
objects of agiven class. Dependency functions are added to the sending door classes and have
the responsihility to return the set of receiving door objects. To implement the dependency func-
tions efficiently, additional attributes must usually be added.

The technique for constructing dependency graphsis systematic but not automatic. The non-
local dependencies are analyzed manually, and the implementation of the dependency functions
ismanual. The manual implementation of dependency functions makesit possibleto trade space
for time, in order to achieve desired performance. Thelocal analysisis straight-forward to auto-
mate, and automatic or semi-automatic techniques also for the non-local analysis would be
desirable. Thisis an areafor future research.

As an example of dependency graph construction, the door package of §8.9 was analyzed.
Dependency functions were constructed for this package to achieve incremental name analysis
according to the best methods treated in §3.4.

Chapter 10
Door AG Implementation, part ||

This chapter describes the incremental evaluation algorithm and the construction of visit proce-
dures. A door package isimplemented by extending each door class with a set of visit

procedures, according to the door dependency graphs constructed in Chapter 9. A main grammar
isimplemented by extending the node classes with visit procedures, using the same technique as
was used for standard AGsin Chapter 7. It isal so shown how circular dependencies are handled.

10.1 Outline of evaluator algorithm

The Door AG evaluator is an extension to the evaluator for 1-visit standard AGs presented in
§7.3. The basic editing operation is the same: a subtree replacement where an old subtreeis
replaced by a new completely unevaluated subtree.

The standard AG evaluator performsthree stepsto restore consistency. Thefirst step isthe actual
syntactic subtree replacement and copying of attribute values for the inherited attributes at the

replacement point. The second step isan exhaustive eval uation of the new subtree. Thethird step
isan incremental evaluation, starting at the point of subtree replacement.

For aDoor AG, this operation needsto be extended. First, the old subtree may contain conditions
stating memberships in collection objects located in the rest of the tree. These conditions must
be de-evaluated to remove the corresponding elements. Second, evaluation which propagates
into doors may need to be propagated to other non-local doors, according to the send vertices.
Third, evaluation which propagates non-locally to a door may propagate into the syntax tree
again, viathe synthesized attributes of the door.

To handle these additional issues, the Door AG evaluator works in five steps as follows:

10-1 Outline Door AG evaluator algorithm

| Exhaustive de-evaluation phase. The conditions in the doors of the old subtree are de-
eval uated.

176 Chapter 10 Door AG Implementation, part |1

1 Subtree Replacement. The old subtreeisreplaced by the new subtree. Each inherited data
attribute of the root of the new subtree is assigned a value by copying the corresponding
value from the root of the old subtree.

[l Exhaustive evaluation phase. The new subtree is evaluated exhaustively.

IV Local incremental phase. Incremental evaluation proceeds in the syntax tree, starting at
the successors of the synthesized attributes of the root of the new subtree.

V' Non-local incremental phase. Incremental evaluation is started in the syntax tree at the
successors of the synthesized attributes of each non-locally affected door.

end 10-1

Step | handles the de-evaluation of conditions in the doors of the old subtree. This step is done
before the actual subtree replacement so the de-evaluation procedures of the conditions can
access the inherited attributes of its doors. Recall that the inherited attributes of doors and al
attributes in the syntax tree are implemented as demand attributes (by default). Thus, to access
the inherited attributes of the doors, access to the remaining syntax tree may be necessary.

Step 11 performsthe subtree replacement and is exactly the same asthe corresponding step in the
standard AG evaluator. However, the copying of inherited attributesis usually an empty opera-
tion since all attributes in the syntax tree are (by default) demand attributes.

StepslIl and 1V also correspond exactly to the exhaustive and incremental phases of the standard
AG evaluator. During these steps, the eval uation may propagate from the syntax tree out to door
objects. Inthis case, evaluation is propagated over to the receiving doors of non-local dependen-
cies, but not back into the syntax tree at these receiving doors. Instead, referencesto thereceiving
doors are saved in aglobal work list so that evaluation can be propagated into the syntax tree at
these doors at alater point in time.

Step V deals with the doors on the work list. For each of these doors, evaluation is propagated
into the syntax tree to successor attributes of the synthesized attributes of the door. During this
phase, the evaluation may again propagate out to door objects, and additional receiving door
objects can be added to the work list. If adoor object is already on the work list, it is not added
again. Step V goes on as long as there are any doors left on the work list.

10.1.1 Scattered evaluations

We will refer to the evaluation starting at a specific point in the syntax tree as the execution of
an evaluation thread. In step V of the evaluator outline, eval uation threads are started at door
objectsonthework list, i.e. at pointswhich may be scattered all over the syntax tree. In our algo-
rithm, these eval uation threads are executed in sequence. If a given attribute a depends on two
door objects on the work list, thiswill lead to a being evaluated twice. In principle, the threads
could be coordinated in order to avoid such duplicate evaluation.

10.1 Outline of evaluator algorithm 177

Thisproblem isanalogousto the problem of multiple subtree replacement. Several methods have
been proposed for dealing with this problem for standard AGs, e.g. [RMT86], [Y K88], [Pec90b],
[Vor90b], [FKT90] and the same methods could be applied to step V of our Door AG eval uator.
However, the situation is slightly different in Door AGs than in standard AGs:

First, an evaluation thread in aDoor AG is usually very short. Attributes are propagated from a
door through the syntax tree to another door, but more seldom long distances in the syntax tree.
Thisisin contrast to standard AGs where at |east some evaluation threads are very long, passing
through the entire syntax tree. Second, if evaluation is propagated viaanon-local dependency to
adoor, the evaluation thread starting at that door is queued up onthework list. Thus, even if eval-
uation is propagated twice to a door via hon-local dependencies, thiswill result only in one
evaluation thread starting at that door. For these reasons, coordination is not as critical in Door
AGsasin standard AGs. We have not found it motivated to improve the al gorithm in thisrespect.

Consider the example in Figure 10.1.

Figure10.1 Multiple evaluation of the same attribute

The door d3 islocally dependent on both d1 and d2. The door d4 is non-locally dependent on
d3. Suppose the work list contains the two doors d1 and d2. When executing the evaluation
thread starting at d1, evaluation is propagated through the syntax treeto d3. The change may then
propagate non-locally to d4 which isadded to the work list. When the evaluation thread of d1 is
finished, a new evaluation thread is started at d2. This evaluation al so propagates to d3, and the
change may again propagate to the non-locally dependent door d4. Since d4 is already on the
work list, it is not added again. Thus, the uncoordinated evaluation of the threads starting at d1
and d2 leads to multiple evaluation of the attributesin d3, but not to multiple evaluation of the
thread starting at d4. At this point, the evaluation is again coordinated.

178 Chapter 10 Door AG Implementation, part |1

10.2 Typesof visit procedures

A visit procedure schedules evaluation of local invariants with callsto visit procedures of other
objects. For syntax nodes, the same types of visit procedures are used as described in §7.3: exh-
Visit,incFatherVisit,andincSonVisit.Inaddition, asyntax node can be visited from its
door part-objects. Thisisimplemented by an additional visit procedurei ncDoor Vi si t whichis
implemented analogously to i ncSonVi si t. |.e., the procedurei ncDoor Vi si t (d) schedules
evaluation of invariants dependent on the synthesized attributes of the door part-object d.

10.2.1 Visitsto doorsfrom syntax nodes

A door node can be visited from its owning syntax node during the exhaustive de-evaluation
phase (step 1), during the exhaustive evaluation phase (step 111), or during one of theincremental
phases (steps 1V and V). These three types of visits are implemented by three visit procedures
exhDeEval Vi si t, exhEval Visit,andi ncOmerVisit:

» Theprocedure exhDeEval Vi si t modelsavisit from the owning node during the exhaustive
de-evaluation phase. The procedure de-evaluates all conditionsin the door.

» The procedure exhEval Vi si t modelsavisit from the owning node during the exhaustive
evaluation phase. The procedure schedules evaluation of all invariants in the door.

* Theprocedurei ncOaner Vi si t modelsavisit from the owning node during one of theincre-
mental evaluation phases. The non-fix inherited attributes of the door may have new values,
and the procedure schedules re-eval uation of their dependent invariants.

10.2.2 Visitsto doorsfrom other doors

A door may also bevisited from other doorsvianon-local dependencies, according to thereceive
vertices of the dependency graph of the door. For each receive vertex v(L) a pair of visit proce-
duresdeEval L and eval L are implemented:

» The procedure deEval L schedules de-evaluation of all conditionsin the door which depend
on the receive vertex v(L).

» Theprocedure eval L schedules evaluation of al invariantsin the door which depend on the
receive vertex v(L).

10.2.3 Summary of visit procedures

To summarize, the visit procedures needed by all nodes and doors are the following:

addt o ANYNCDE

{ exhVisit: proc;
incFatherVisit: proc;
incSonVisit: proc (s: ref ANYNCDE);
incDoorVisit: proc (d: ref ANYDOOR);

10.2 Types of visit procedures 179

}s

addt o ANYDOCR

{ exhBvalVisit: proc;
exhDeEval Visit: proc;
incOwerVisit: proc;

}s

In addition, areceiving door class Dwith n receive vertices will have a pair of visit procedures
for each of these vertices..
addto D

deEval Ly: proc;
eval Ly: proc;

déiEvaI L, proc;
eval L. proc;

b

The construction of the visit procedures of door classes will be treated in detail in §10.4.

10.2.4 Extension to OOSL

The door visit procedures have a more complex structure than the visit procedures for standard
AGs. In order to make it clearer which statements correspond to evaluations and which state-
ments have other purposes, we introduce two new OOSL statements: eval and deeval for the
evaluation and de-evaluation of invariants, respectively. The syntax is as follows:

<eval -stnt> ::= ‘eval’ (<attr-id> | <cond-id>)
<deeval -stnt> ::= ‘deeval’ <cond-id>

Theeval statement is shorthand for the assignment statement evaluating an attribute, or a call
to the evaluation procedure of a condition.

Thedeeval statement is shorthand for the de-evaluation procedure of a condition.

For example, consider the following equation and condition:

eq a:=f(s,t)
c: cond g.contains(r)

A de-evaluation of c, followed by an evaluation of a and ¢ can be written using deeval and eval
statements as follows:
deeval c

eval a
eval ¢

Thisis equivalent to the following statements (given that the eval uation and de-evaluation pro-
cedures for ¢ are named eval Cand deEval Crespectively):

deEval C
a = f(s,t);

180 Chapter 10 Door AG Implementation, part |1

eval C

10.3 Theevaluator object

Our Door AG evauator isimplemented as a global object called eval uat or . The eval uat or
contains a procedure r epl aceSubt r ee to be called by the editor when a given subtreeisto be
replaced. The procedure r epl aceSubt r ee both actually replaces the subtree and restores con-
sistency inthe attribution of thewhole syntax tree. Theeval uat or object also containsthe work
list of door objects to be evaluated during the non-local incremental phase. Between callsto
repl aceSubt r ee, the work list is empty.

10.3.1 Work list implementation

Thework list isimplemented as an O der edCol | ect i on object with the following interface:

O deredCl I ection: class[T: class ANYCLASS|
{ enpty: func bool ean;
add: proc(e: ref T);
addSet: proc(s: ref Set[T]);
renmovel f Found: proc(e: ref T);
renoveFirst: proc ref T;

b

This class models an ordered collection of T objects. The function enpt y returns true if the col-
lection is empty. The procedure add adds an object e at the end of the collection (unless the
object isaready in the collection). The procedure addSet adds each of the objectsin aset at the
end of the collection (except those already in the collection). The procedure r enovel f Found
removes a given object from the collection if it is found there. The procedurer enoveFi r st
removes the first object and returns areferenceto it.

Theevaluator also makesuse of Set objects. Theinterfaceto classSet (whoseinterface was giv-
enin Figure5.1) is extended with an iterator each which iterates over all the elementsin the set:

addt o Set
{ each: iterator ref T,
b

10.3.2 Functionality in nodes and doors

The evaluator assumes some additional functionality in syntax nodes and doors:

addt o ANYNCDE

{ father: ref ANYNCDE (* I\O\Efor the root node *)
repl aceBy: proc(n: ref
copyl nheri tedAttri butesFrom proc(n ref ANYNCDE) ;
al | Doors: func ref Set[ANYDOOR];

}s
addt o ANYDOOR

10.3 Theevaluator object 181

{ owner: ref ANYNCDE;
}.

Thereferencef at her of asyntax node denotesthe father node, or NONE in case of the root node.
The procedurer epl aceBy replaces the subtree rooted at the node by another subtree rooted at
noden. The procedurecopy! nheri t edAt t ri but esFr omassignsavalueto each of theinherited
data attributes in the node, using the values of the corresponding attributesin n. This procedure
will be empty for most node classes since attributes in the syntax nodes are usually demand
attributes. The function al | Door s returns a set of references to all doors owned by any of the
nodesin the subtree rooted at the node.

The reference owner of adoor object denotes the owning syntax node.

10.3.3 Evaluation algorithm

Theeval uat or object containsaprocedurer epl aceSubt r ee which can be called by the editor.
We assume that the editor calls this procedure only for syntactically legal replacements and nev-
er for theroot syntax node. It is also assumed that the attribution is already in a consistent state
whenr epl aceSubt r ee iscalled. The procedure replaces the subtree and updates the attribution
incrementally to a new consistent state.

This definition of ther epl aceSubt r ee procedure is a straight-forward implementation of the
algorithm outlined in 10-1. The only detail which was not mentioned earlier isthe statement dur-
ing step | which removes adoor from the work list. The reason for this statement will be
explained later in §10.5.3.

182 Chapter 10 Door AG Implementation, part |1

eval uator: object
{ worklist: object OderedCollection] ANYDOCR] ;

repl aceSubtree: proc
(ol dNode: ref ANYNCDE, newNode: ref ANYNCDE)
{ d: ref ANYDOCR

(* I: Exhaustive de-eval uati on phase *)
for $d :- ol dNode. al | Door s. each do

wor kl i st. renovel f Found($d) ;

$d. exhDeEval Visit;
end for;

(* I'l: Subtree Repl acenent *)
ol dNode. r epl aceBy(newNode) ;
newNode. copyl nheri t edAt t ri but esFron{ ol dNode) ;

(* I'l'l: Exhaustive eval uation phase *)
newNode. exhVi si t;

(* I'V: Local increnental phase *)
newNode. f at her . i ncSonVi si t (newNode) ;

(* V: Non-local incremental phase *)
whi | e not worklist.enpty do

d :- worklist.renoveFirst;

d. owner . i ncDoor Vi sit(d);
end whi | e;
b
b

Figure 10.2 Subtree replacement algorithm

10.4 Construction of door visit procedures

10.4.1 Basic outlinefor door visit procedures

The visit procedures for the door classes are constructed from the dependency graphs and they
all use the same basic algorithm outline. The visit procedures schedule de-eval uation and/or
evaluation of local invariants. In addition, they call visit procedures of dependent doors and add
these doorsto the work list of the evaluator. Let D be adoor class. The basic outline for the visit
procedures of D isasfollows:

10.4 Construction of door visit procedures 183

10-2 Algorithm outline Basic door visit procedure
1. Compute the set of dependent doors.
Call deEval L for each dependent door.

Local de-evaluation of conditionsin D.

Call eval L for each dependent door.

2.

3

4. Local evaluation of invariantsin D.

5

6. Add the dependent doors to the work list of the evaluator.
end

10-2

The above outline applies directly to the three visit procedures present in all door classes: exhE-
val Vi sit, exhDeEval Vi si t, andi ncOaner Vi si t. ThedeEval L and eval L visit procedures
can be seen as two halves of the same visit. These procedures are implemented by dividing the
above pattern, so the deEval L procedure implements steps 1 to 3 and the eval L procedure the
steps4to 6.

The deEval L procedures are called before local evaluation, to allow the non-locally dependent
doors to de-evaluate conditions using the old attribute valuesin D. The eval L procedures are
called after local evaluation to alow the non-local dependents to use the new attribute values.
Noticethat a(deEval L, eval L) procedure pair may haveitsown non-local dependents, and these
may have additional non-local dependents, and so on. As can be seen from the algorithm outline,
all non-locally dependent conditions, including transitive ones, will be de-evaluated before any
evaluation of invariants starts.

The example door package of §8.9 for Algol-like block structure does not contain any transitive
non-local dependencies. However, one example of such dependencieswill be givenin 811.2,
which treats subclassing.

10.4.2 Visit procedure characteristics

Each visit procedure for adoor D can be characterized by three sets of vertices from the depen-
dency graph for D. In this context we consider each procedure pair (deEval L, eval L) for a
receive vertex v(L) as one unit. The three characteristic sets are the following:

» aset of condition vertices S.ng. (With “condition” vertex we mean alocal vertex v(c) for a
condition c.)

+ aset of local vertices g
» aset of send vertices Sy

In step 3 of the basic outline above, the visit procedure should de-evaluate the conditions corre-
sponding to Syong. The order of de-evaluation is arbitrary since the conditions are independent

184

of one another. In step 4 the visit procedure should evaluate the invariants corresponding to § ..
These evaluations should be done in topological order according to the dependency graph. In
step 1 thevisit procedure should compute the set of dependent doors according to the dependen-
cy functions of the send vertices in Syng. 1N steps 2 and 5 the deEval and eval procedures for
the appropriate receive vertices should be called for these non-local doors, and in step 6 the doors
should be added to the evaluator work list. The characteristic sets for the different kinds of visit

Chapter 10 Door AG Implementation, part |1

procedures are summarized in the table below.

S:ond Soc Ssend
exhDeEval - all condition %) all send vertices with
Visit vertices incoming de-eval edge

reachable from a
condition vertex
exhEval - %) al local all send vertices with
Visit vertices incoming eval edge
i ncOnner - all condition vertices all local vertices all send verticesreachable
Visit reachable from vertices reachable from from vertices for inherited
for inherited non-fix vertices for inherited non-fix attributes
attributes non-fix attributes
deEval / al condition vertices al local vertices al send verticesreachable
eval L reachable from the reachable from the from the receive
receive vertex v(L) receive vertex v(L) vertex v(L)
Figure 10.3 Visit procedure characteristics

The basic algorithm for avisit procedure outlined in 10-2 can how be formulated more precisely

in terms of the characteristic sets;

10.4 Construction of door visit procedures 185

10-3

Algorithm Basic door visit procedure

Given the characteristic setS S;ong, Soc: aNd Syeng for adoor visit procedure p of adoor class
D, the algorithm of p isasfollows:

1

Letv(Ly, Dy, fq) . . (L, D, f 1y) betheverticesin Sg,q. Compute n dependency sets DR,
1 <k=n, of non-locally dependent doors by calling the corresponding dependency func-
tion:

D:)k - f ki
where DPisalocal variablein p (or in D for deEval /eval pairs)
declared as

DR ref Set[D];

For each dependency set DRy, 1 < k < n, call the appropriate deEval procedure for each of
its doors:
for $d :- DP each do $d.deEval Ly, end for

For each condition ¢ in S.yq, de-evaluate c:
deeval c;

For each invariant e in §, evaluate e:
eval e;

Theinvariants should be evaluated in topological order according to
the dependency graph.

For each dependency set DRy, 1 < k < n, call the appropriate eval procedure for each of
itsdoors:
for $d :- DP. each do $d.evalLy; end for

Add each dependency set DRy, 1 < k < n, to the work list of the evaluator:
eval uat or . wor kl i st . addSet (DPy) ;

end 10-3

Note that in step 1, the local variables for the dependency sets are normally declared in the visit
procedure. This works for the exhDeEval Vi si t, exhEval Vi sit, andi ncOaner Vi si t proce-
dures. However, it does not work for adeEval /eval pair since the variables are computed in the
deEval procedure and used in the eval procedure. For this case, the dependency set variables
areinstead stored in the door itself. An example of thisis givenin 811.2.7 (8Figure 11.19).

Thecharacteristic setsfor agiven door class D and the basic algorithm for agiven visit procedure
p can be computed automatically from the dependency graph of D. However, there are some
additional issues which need to be taken into account and which may call for modifications to
the basic algorithm above. In particular:

* The dependency sets DR, 1 < k < n, may overlap.

» Attributes can be tested for convergence to avoid unnecessary change propagation.

» Additional code can be added to affect which of several consistent solutionsischosen, in the
case of underdetermined grammars.

186 Chapter 10 Door AG Implementation, part |1

To deal with these issues, the basic algorithm of 10-3 hasto be modified. Thiswill betreated in
§10.6.

10.5 Door evaluation states

During evaluation, adoor can be in one of the following states: | nNewTr ee, Eval uat ed,
DeEval uat ed(L), | n4 dTr ee, and Busy. In each of these states, the following holdsfor the states
of theinvariantsin the door (we recall from §9.3.1 that an invariant can be either in the uneval -
uat ed or eval uat ed state):

e Whenadoor isinthel nNewTr ee state, no invariants of the door have yet been evaluated. |.e.,
al theinvariants are in the uneval uat ed state.

* When adoor isin the Eval uat ed state, all itsinvariants are also in the eval uat ed state.

e Whenadoor isinthe DeEval uat ed(L) state, wherev(L) isareceive vertex of the door depen-
dency graph, the conditions depending on v(L) of the door are in the uneval uat ed state,
whereas the rest of the invariantsin the door remain in the eval uat ed state.

* Whenadoor isinthel nd dTr ee state al its conditions are in the uneval uat ed state.
The evaluation states for the doors serve as pre- and post-conditions for the visit procedures

according to the following state transition graph. The door isin the Busy state during each of
these transitions:

exhEval Vi si t

eval L
DeEval uat ed(L) Eval uat ed
deEval L

i ncOnner Vi si t

I nA dTree

exhDeEval Vi si t

Figure 10.4 Evaluation states for doors

We will now discuss under what circumstances these preconditions are fulfilled.

10.5.1 Callsfrom the evaluator algorithm

In aconsistently attributed syntax tree, all door objects arein the Eval uat ed state. At a subtree
replacement, the doors in the new subtree are initially in the | nNewTr ee state. The evaluator
algorithm of 10-1 should terminate by leaving all the doorsin the old subtreeinthel nd dTr ee
state and all doors in the modified syntax tree in the Eval uat ed state.

10.5 Door evaluation states 187

We observe that the net effect of executing one of the procedures exhDeEval Vi si t, exhE-

val Vi sit, andi ncOaner Vi si t of adoor does not change the state of other doors. Thisis clear
from the basic visit procedure algorithm 10-2 since adeEval L call is aways matched by an
eval L call.

Itisnow easy to verify that the evaluator algorithm of 10-1 fulfillsthe preconditions of the called
visit procedures and that the algorithm terminates with all doorsin the Eval uat ed state:

Step | brings all doorsin the old subtree from the Eval uat ed state to the | nQ dTr ee state by
calling the exhDeEval Vi si t procedure of these doors. Step 111 brings al doors in the new sub-
tree from the | nNewTr ee state to the Eval uat ed state by calling the exhEval Vi si t procedure
of these doors. After this step, all doorsin the syntax tree arein the Eval uat ed state. During the
subsequent incremental evaluation steps |V and V, the visit procedures of the syntax nodes will
call thei ncOnner Vi si t procedure of dependent doors. Calling this procedure for a door does
not change its door state (other than temporarily to Busy during the call), and all doorsin the
syntax tree are therefore in the Eval uat ed state when the eval uation algorithm terminates.

10.5.2 Callsfrom inside visit procedures

Each door visit procedure must fulfill the preconditions of thedeEval L and eval L proceduresit
calls. We will now investigate the requirements this puts on the implementation of the visit pro-
cedures. We do this by considering theincremental and exhaustive evaluation phases separately.

Incremental phases

First, consider evaluation during one of the incremental phases |V or V in the evaluation algo-
rithm 10-1. During these phases, al door objects are in the Eval uat ed state except for during
the call of thei ncOaner Vi si t procedure of adoor.

Let d beadoor object visited viathei ncOaner Vi si t procedure during one of these phases. Let
DP,(d) . . DP,(d) be the sets of non-locally dependent doors, according to step 1 of the basic algo-
rithm 10-3. Clearly, these sets must be digjoint. Otherwise, adeEval L procedurewould becalled
for adoor aready inthe DeEval uat ed state which would viol ate the precondition of thedeEval L
procedure. Similarly, if therearetransitive non-local dependencies, the setsDP;(d) . . DP,(d) must
be disjoint to all the dependency sets DP;(d") . . DP,(d") where d’ isadoor non-locally dependent
on d (directly or transitively). Furthermore, the door object itself, d, must not be a member of
any of these dependency sets. Otherwise, adeEval L procedure would be called for d whileinits
Busy state.

For any dependent door d’ = d which occursin only one of the direct and transitive dependency
sets, the agorithm 10-3 fulfills the preconditions: Step 2 callsdeEval L when d’ isin the Eval -
uat ed state, bringing it into the DeEval uat ed state. Step 2 later calls the corresponding eval L
procedure, bringing d’ back to the Eval uat ed state.

188 Chapter 10 Door AG Implementation, part |1

Thus, if al the direct and transitive dependency sets are digjoint and d is not amember of any of
them, then the preconditions of the called visit procedures are fulfilled.

Exhaustive phases

Now, consider the exhaustive phases | and I11. During these phases some doors will bein the

I nA dTr ee or | nNewTr ee states respectively. The dependency functions must not return objects
in these states, since thiswould lead to violation of the preconditions when calling the deEval L
procedures of those doors. In addition, the non-local dependency sets must be digoint, just as
for the incremental phases.

Consider first the exhaustive evaluation in phase 111. A door d isin the | nNewTr ee stateif it has
not yet been evaluated. In this case, d cannot yet be amember of any collection object of another
door, sinceit isonly conditionsin d which can add d to collection objects of other doors. Thus,
dependency functionswhich consult theinformation in collection objects, asdescribedin §9.5.5,
cannot return sets containing objects in the | nNewTr ee state. However, if the dependency func-
tion performs a search in the syntax tree to find affected doors, it must explicitly test the state of
the encountered door objectsin order to avoid returning door objects in the | nNewTr ee state.

Thesituationisanalogousin phasel. Here, doorsinthel nQ dTr ee state have been de-evaluated
so they can no longer be members of collectionsin other doors. Thus, dependency functions con-
sulting information in collections cannot return doors which are in the | nQ dTr ee state.

10.5.3 Visit order during exhaustive de-evaluation

During the exhaustive de-evaluation (phase |), changes may be propagated via non-local depen-
dencies from one door in the old subtree to other doors also in the old subtree. This can happen
if the receiving doors have not yet been visited by the exhDeEval Vi si t procedure, i.e. they are
gtill in the Eval uat ed state. The normal action for avisit procedure which propagates to non-
local dependentsisto add the receiving doors to the work list (step 6 of agorithm 10-3). How-
ever, receiving door objects in the old subtree should not remain on the work list after phase |
since this would result in meaningless evaluation in the old subtree during phase V. Such eval-
uation would also break the precondition of thei ncOaner Vi si t proceduresof these doors, since
they areinthe | nQ dTr ee state after the de-eval uation phase.

We have chosen to solve this problem as follows: The visit procedures add receiving doors as
usual, according to step 6, regardless of if the doors arein the old subtree or not. If adoor of the
old subtreeis added to the work list, it will be removed just beforeit is de-evaluated. Thisisthe
reason for the statement

wor kl i st . renovel f Found($d) ;

in phase | of the evaluator agorithm.

10.6 Modificationsto the basic visit procedure algorithm 189

10.5.4 Meeting visit procedure preconditions. Summary.

The preconditions of the proceduresexhEval Vi si t , exhDeEval Vi si t,andi ncOaner Vi si t are
met as was shown in §10.5.1.

To ensure that the preconditions of the procedures deEval L and eval L are met, the following
must be observed in the implementation of door visit procedures:

Given adoor object d and adoor visit procedure p, the preconditions of the deEval L and eval L
procedures called by p are met if:

1. dl direct and transitive sets of dependent doors are digjoint, and d itself is not a member of
any of these sets, and

2. all dependency functions consult collection object information rather than search the syntax
tree

If (1) does not hold, the algorithm of p has to be adapted. Thiswill be discussed in §10.6.1.

If (2) doesnot hold, i.e. if the dependency functions search the syntax tree, an explicit state flag
can be stored in each door object and the dependency function can test this flag to return only
objects in the appropriate state.

10.6 Modificationsto the basic visit procedure algorithm

10.6.1 Overlapping dependency sets

As mentioned in the previous sections, the non-local dependency sets computed by a door visit
procedure may overlap. In this case, the basic algorithm of 10-3 hasto be modified in order to
avoid violation of the legal state transitions of doors.

Consider the non-local dependency sets DP; . . DP,, computed according to the send verticesv(Lq,
Dy, f1) .. V(Ly, Dy, f) instep 1 of the basic algorithm 10-3. Clearly, if D, . . D, are al different
door classes, the dependency setswill all be digjoint. If thisis not the case, the door package has
to be more closely examined to determineif the dependency sets can overlap, and if so, how this
can be amended. If any of the receive vertices v(L,) in turn has dependent send vertices, this
implies transitive non-local dependency sets which have to be examined as well.

One situation which may occur is the following: Consider two verticesv(L;, §, f ;) and v(Ly, Dy,
fi) whereL; =L, O =D, andf;=f,. Wesay that areceive vertex v(L,) is covered by another

190 Chapter 10 Door AG Implementation, part |1

receive vertex v(L,) if al verticesreachable from v(L,) are reachable also from v(L,). If L; is cov-
ered by Ly, then the dependency set DP; can simply be dropped since all evaluation according to
DP; iscovered by the set DPy. This particular example occursin Decl Door wherethe send vertices
V(get TpChanged, UseDoor , f Uses) and V(I ookupChanged, UseDoor , f Uses) arerelated exactly
likethis.

Another example, also occurring in Decl Door , isthe vertices v(l ookupChanged, UseDoor , f Us-
es) and v(I ookupChanged, UseDoor , f At t enpt ed). Although both these dependency sets
contain UseDoor objects, they will not overlap because the sets returned by f Uses and f At -

t enpt ed will always be digoint. In this case, there is thus no problem of overlapping
dependency sets.

10.6.2 Testing attribute valuesfor convergence

There-evaluation of aloca attribute defined in adoor may result in the same value as before. In
thiscase, it isnot necessary to re-eval uate dependent invariants. In principle, general techniques
can be used to automatically generate code for detecting such value convergence and the visit
procedure algorithm can be modified accordingly. However, in our examples we will only
employ such testsin afew specia cases.

Thei ncOaner Vi si t procedure re-evaluates the invariants which depend on non-fix inherited
attributes. In the case where all directly dependent invariants are copy equations defining local
attributes, an additional step O will be added to the visit procedure. This step tests the values of
the non-fix inherited attributes against thelocal attributes defined by the copy equations. If all of
these attributes converge, the rest of the visit procedure is skipped. If only a subset of the non-
fix inherited attributes have new values, the visit procedure will perform only a corresponding
subset of its normal actions. These convergence tests improve performance by avoiding unnec-
essary re-evaluation. In addition, such tests are necessary to handle circular dependencies, as
treated in §10.9.

Another case of value convergence may occur when calling the deEval L and eval L visit proce-
dures of non-locally dependent doors. If the synthesized attributes are unchanged, athough they
depend on the re-eval uated invariants, the eval uation does not need to be propagated out into the
syntax tree. |.e,, it is unnecessary to add the non-local door to the evaluator work list.

10.6.3 Affecting the solution for underdeter mined grammars

Asdiscussed in §8.10, aDoor AG can be made underdeter mined. For example, the order of alist
collection can be left undefined by the grammar. For such grammars, any permutation of the
member elements is consistent with the Door AG definition and the actual permutation will
depend on the order of evaluation. It is possible to add additional code to the visit proceduresto
explicitly control the permutation. This may be necessary in order to obtain a particular history-
dependent behavior. An example of thisisgiven in §11.1 where additional code is added to the
visit procedures of Decl Door to handle multiple declarations of the same identifier.

10.7 Visit procedures for the example door package 191

10.7 Vidit proceduresfor the example door package

In this section we will implement visit procedures for the four door classes Root Door , Bl ock-
Door , Decl Door, and UseDoor in the example door package of §8.9. The characteristic sets for
each visit procedure are computed from the dependency graphsin Figure 9.7. The visit proce-
dures are then implemented according to algorithm 10-3, with possible modifications as
described in §10.6.

10.7.1 RootDoor

The dependency graph for class Root Door contains only a synthesize vertex, and all the charac-
teristic sets of itsvisit procedures are therefore empty. The visit procedure implementations are
consequently empty as well.

10.7.2 BlockDoor

The dependency graph for class Bl ockDoor gives the following characteristic sets:

Scond Soc %nd
exhDeEval Vi si t 1%} (%} %)
exhEval Vi si t (%) { V(theTabl ePat h. tabl e), %)

V(staticPath.first),
V(staticPath.second) }

i ncOwner Vi si t %] &) %)

The characteristic sets for the procedures exhDeEval Vi sit andi ncOaner Vi si t areal empty,
and these procedures are consequently empty as well. For the procedure exhEval Vi si t, only
the § Set is non-empty. The resulting implementation therefore only contains step 4 of the
basic agorithm:

addt o Bl ockDoor
{ inmpl exhEval Vi sit
{ (* Step 4. Evaluate local invariants *)
eval theTabl ePath. tabl e;
eval staticPath.first;
eval staticPath. second;

10.7.3 DeclDoor

The class Decl Door isthe most complex of the door classes since it has non-locally dependent
doors. All three visit procedures exhDeEval Vi si t, exhEval Vi si t, and i ncOaner Vi si t have
non-empty implementations.

192 Chapter 10 Door AG Implementation, part |1

10.7.3.1 Procedure exhDeEval Visit

The procedure exhDeEval Vi sit for class Decl Door has the following characteristic sets:

Scond Soc Ssend

exhDeEval - |{ V(registered) } (%) { V(I ookupChanged, UseDoor, fUses) }
Visit

The basic algorithm gives the following implementation of procedure
exhDeEval Visit:

addt o Decl Door
{ i mpl exhDeEval Vi sit
{ boundWses: ref Set[UseDoor]; (* dependency set *)

(* Step 1. Conpute dependent doors *)
boundUses : - fUses;

(* Step 2. De-eval uate dependent doors *)
for $d :- boundUses.each do $d.deEval LookupChanged; end for;

(* Step 3. De-evaluate | ocal conditions *)
deeval registered,;

(* Step 5. Eval uate dependent doors *)
for $d :- boundUses.each do $d.eval LookupChanged; end for;

(* Step 6. Add dependent doors to work |ist*)
eval uat or. wor kl i st . addSet (boundUses) ;

10.7.3.2 Procedure exhEval Visit

The procedure exhEval Vi si t for class Decl Door has the following characteristic sets:

S:ond Soc SSend
exhEval - (%) { V(theEntry.table), { Vv(get TpChanged,
Vi sit V(registered), UseDoor, f Uses) ,
V(theEntry. tp), V(| ookupChanged,
V(theEntry.ident) } UseDoor, fAttenpted) }

Thefunctionsf Uses and f At t enpt ed will always return disjoint sets. This follows from the
grammar since a UseDoor object which is bound to an entry object cannot at the sametime be a
member of theat t enpt ed collectioninthe symbol table containing the entry. Thus, thetwo send

10.7 Visit procedures for the example door package 193

verticesin Syng represent disjoint dependency sets. The implementation of the exhEval Vi si t
procedure is therefore a direct application of the basic algorithm:

addt o Decl Door
{ impl exhEval Vi sit

b

{

}s

tplses: ref Set[UseDoor]; (* dependency set *)
attenptedUses: ref Set[UseDoor]; (* dependency set *)

(* Step 1. Conpute dependent doors *)
tplses :- flkes;
attenptedUses :- fAttenpted,

(* Step 2. De-eval uate dependent doors *)
for $d :- tpUses.each do $d.deEval Get TpChanged; end for;
for $d :- attenptedUses. each do
$d. deEval LookupChanged;
end for;

(* Step 4. Evaluate local invariants *)
eval theEntry.table;

eval registered;

eval theEntry.tp;

eval theEntry.ident;

(* Step 5. Eval uate dependent doors *)
for $d :- tplses.each do $d.eval Get TpChanged; end for;
for $d :- attenptedUses. each do
$d. eval LookupChanged;
end for;

(* Step 6. Add dependent doors to work list*)
eval uat or. workl i st . addSet (t pUses) ;
eval uat or. wor Kkl i st . addSet (at t enpt edUses) ;

It can be deduced from the grammar that thet pUses dependency set will always be empty. This
isbecause there can only be UseDoor objectsbound to theentry if theentry isin the symbol table
list, which is not the case at the beginning of procedure exhEval Vi si t . The visit procedure
above can thus be simplified by removing the code associated with t pUses.

194 Chapter 10 Door AG Implementation, part |1

10.7.3.3 Procedure incOwnerVisit

The procedurei ncOnaner Vi si t for class Decl Door has the following characteristic sets:

Scond Soc Ssend
i ncOaner - (%) { V(theEntry.tp), { V(get TpChanged,
Visit V(theEntry.ident) } UseDoor, fUses),

V(| ookupChanged,
UseDoor, fUses),
V(| ookupChanged,
UseDoor, fAttenpted) }

In this procedure, the step 0 discussed in 810.6.2 is added to test for convergence of the two non-
fix inherited attributest p and i dent by comparingthemtot heEntry.tpandtheEntry. i dent.
For each possible outcome of these comparisons, refined characteristic sets S and S Can
be computed by treating the unchanged attributes as fix inherited attributes. This resultsin the
following characteristic sets:

SIoc Ssend
a) tp unchanged [%) 6]
i dent unchanged
b) tp changed { V(theEntry.tp) } { Vv(get TpChanged,
i dent unchanged UseDoor, fUses) }
c) tp unchanged { V(theEntry.ident) } |{ V(| ookupChanged,

i dent changed UseDoor, fUses),
V(| ookupChanged,
UseDoor, fAttenpted)

d) tp changed { V(theEntry.tp), { V(get TpChanged,
i dent changed V(theEntry.ident) } UseDoor, fUses),
V(| ookupChanged,
UseDoor, fUses),
V(| ookupChanged,
UseDoor, fAttenpted)

The visit procedure is modified to handle these four cases.
In case (@), where both t p and i dent are unchanged, the rest of the visit procedure is skipped.

In case (d), where both attributes are changed, there is a dependency set overlap between
v(get TpChanged, UseDoor , f Uses) and V(I ookupChanged, UseDoor , f Uses), since the same
dependency function is used for these vertices. However, since the receive vertex

V(get TpChanged) is covered by the receive vertex v(I ookupChanged) in the dependency graph
for UseDoor , the dependency set corresponding to the send vertex v(get TpChanged, UseDoor ,
f Uses) can simply be dropped in the implementation of exhDeEval Vi si t, asdiscussed in
810.6.1.

10.7 Visit procedures for the example door package 195

In steps 2, 5, and 6, we will make use of the following constant object, modelling an empty set
of UseDoor objects.

enpt yUseDoor Set: obj ect Set[UseDoor];

The procedurei ncQaner Vi si t can now be implemented as follows:

196 Chapter 10 Door AG Implementation, part |1

addt o Decl Door
{ inmpl incOanerVisit
{ tpWses: ref Set[UseDoor]; (* dependency set *)
boundUses: ref Set[UseDoor]; (* dependency set *)
attenptedUses: ref Set[UseDoor]; (* dependency set *)
t pUnchanged: bool ean;
i dent Unhchanged: bool ean;

(* Step 0. Check for val ue convergence *)
tpUnchanged :=tp == theEntry.tp;
i dent Unhchanged : = ident = theEntry.ident;

i f tpUnchanged and i dent Unchanged t hen
(* case (a) - skip the rest *)

el se
(* Step 1. Conpute dependent doors *)
tplses :- flkses;
boundUses : - fUses;
attenptedUses :- fAttenpted,;

(* Adjust dependency sets according to cases (b,c,d) *)
i f identUnchanged then (* case (b) *)
boundUses : - enpt yUseDoor Set ;
attenptedUses : - enptyUseDoor Set;
el se if tpUnchanged then (* case (c) *)
tpUses :- enptylUseDoor Set ;
el se (* case (d) *)
tpUses :- enptylUseDoor Set ;
end if;

(* Step 2. De-eval uate dependent doors *)
for $d :- tpUses.each do $d. deEval Get TpChanged; end for;
for $d :- boundUses.each do $d.deEval LookupChanged; end for;
for $d :- attenptedUses. each do
$d. deEval LookupChanged;
end for;

(* Step 4. EBEvaluate local non-fix invariants *)
i f not tpUnchanged then eval theEntry.tp; end if;
i f not identUnchanged then eval theEntry.ident; end if;

(* Step 5. Eval uate dependent doors *)
for $d :- tpUses.each do $d.eval Get TpChanged; end for;
for $d :- boundUses. each do $d.eval LookupChanged; end for;
for $d :- attenptedUses. each do

$d. eval LookupChanged;
end for;

(* Step 6. Add dependent doors to work list *)
eval uat or. workl i st. addSet (t pUses) ;
eval uat or. wor kl i st . addSet (boundUses) ;
eval uat or. workl i st. addSet (att enpt edUses) ;
end if;

b

10.7 Visit procedures for the example door package 197

10.7.4 UseDoor

The dependency graph for class UseDoor has two receive vertices v(get TpChanged) and

V(I ookupChanged). Thus, in addition to the procedures exhDeEval Vi si t, exhEval Vi si t, and
i ncOnner Vi si t , thetwo visit procedure pairs (deEval Get TpChanged, eval Get TpChanged) and
(deEval LookupChanged, eval LookupChanged) need to be implemented. The dependency
graph for class UseDoor gives the following characteristic sets:

Scond Soc Ssend
exhDeEval - { V(cUses), %] %}
Visit V(cAttenpted) }
exhEval - Vi si t (%) { V(I ocal Pat h), (%)

V(| ocal I dent),
V(bi ndi ng),
V(cUses),
V(cAttenpted) }
i ncOaner - { V(cUses), { V(I ocal Pat h), (%)
Visit V(cAttenpted) } V(| ocal I dent),
V(bi ndi ng),
V(cUses),
V(cAttenpted) }
deEval / Eval %) &) (&)
get TpChanged
deEval / Eval { Vv(cUses), { V(I ocal Pat h), (&)
| ookupChanged V(cAttenpted) } V(| ocal I dent),
V(bi ndi ng),
V(cUses),
V(cAttenpted) }

The procedures are all straight-forward implementations of the basic agorithm:

198

Chapter 10 Door AG Implementation, part |1

addt o UseDoor

{

i mpl exhDeEval Vi si t

{ (* Step 3. De-evaluate |ocal conditions *)
deeval clses;
deeval cAttenpted,;

i mpl exhEval Vi sit
{ (* Step 4. Evaluate local invariants *)
eval | ocal Path;
eval |ocalldent;
eval binding;
eval clkes;
eval cAttenpted;

}

i mpl incOanerVisit

{ (* Step 3. De-evaluate |ocal conditions *)
deeval clses;
deeval cAttenpted,

(* Step 4. Evaluate local invariants *)
eval | ocal Path;

eval localldent;

eval binding;

eval clUses;

eval CcAttenpted;

}s

deEval Get TpChanged: proc
{(* emty™)

eval Get TpChanged: proc
{(* emty)

deEval LookupChanged: proc

{ (* Step 3. De-evaluate | ocal conditions *)
deeval clses;
deeval cAttenpted,;

eval LookupChanged: proc

{ (* Step 4. Evaluate local invariants *)
eval binding;
eval clkes;
eval cAttenpted;

10.8 Evaluation of main grammar 199
10.8 Evaluation of main grammar

10.8.1 Main grammar classification

The main grammar of aDoor AG can be classified according to standard AG classes such as 1-
visit, OAG, non-circular, and circular. Thisisdone by considering each door classasan ordinary
node class and by ignoring all send and receive vertices of the door class dependency graphs.
While 1-visit standard AGs are applicable only to very simple 1-pass languages, the class of 1-
visit main grammars is sufficient for amuch larger range of practical languages. The reason for
thisisthat problems like name analysis which give rise to complex dependenciesin standard
AGs are handled by doors and semantic objects in Door AGs. The remaining dependenciesin
the main grammar are very simple. For example, languages like Algol and Simula, where order
of declaration isirrelevant, can be described by Door AGs with 1-visit main grammars. Describ-
ing these languages in standard AGs requires an OAG.

Our evaluation technique for Door AGs handles 1-visit main grammars, and the evaluation tech-
nigque used is the very simple one based on static skipping which was introduced in Chapter 7.
We find it interesting that it is possible to use such simple implementation techniques and yet
achieve an efficient incremental system for a complex language like Simula.

Nevertheless, it is straight-forward to adapt our evaluation technique to other existing standard
AG algorithmsin order to handle more complex main grammars. In §10.8.6 we will show how
this can be done.

Another interesting thing to note isthat a door package may have non-local dependencieswhich
lead to circular chains of attribute dependencieswhen combined with amain grammar. However,
sincethe non-local dependenciesareirrelevant for attribute evaluation in the main grammar, this
does not affect the main grammar complexity. Thus, simple 1-visit eval uation techniques can be
used for the main grammar even if the Door AG as awhole s circular. Examples of circular
dependencies are given in §10.9.

10.8.2 Extensionsto standard AG method

In order to evaluate the main grammar, the visit proceduresexhVi si t, i ncFatherVisit,

i ncSonVi si t, and i ncDoor Vi si t need to be implemented for the node classes. This can be
done automatically. TheexhVi si t, i ncFat her Vi si t, andi ncSonVi si t procedures areimple-
mented as described in Chapter 7, with certain extensions as described below. The

i ncDoor Vi si t procedure isimplemented analogously to thei ncSonVi si t procedure, simply
by considering the door objects declared in a node class as another kind of son nodes.

200 Chapter 10 Door AG Implementation, part |1

10.8.2.1 Dependency graphs

The dependency graph construction of 7-5isextended to handle door part-objects. The doorsare
treated exactly like son nodes, i.e., avertex v(d) is added to the graph of anode class for each
door object d declared in the node class. Edges to and from door vertices are added in exactly
the same way as for son nodes, according to the use of synthesized attributes and definitions of
inherited attributes of the doors.

10.8.2.2 Exhaustive evaluation

Theimplementation of the procedure exhVi si t described in 7-8 is extended to handle door part-
objects. Each VISIT instruction corresponding to adoor vertex v(d) isimplemented as a call

d. exhBEval Vi si t

10.8.2.3 Incremental evaluation

Theimplementation of the proceduresi ncFat her Vi si t andi ncSonMi si t ismodifiedtohandle
fix attributes and door part-objects.

We recall from §8.5.1 that afix attribute receives a value during exhaustive eval uation, but can-
not change during incremental evaluation. |.e., during incremental evaluation, the fix attributes
are equivalent to constants. Thisimpliesthat these attributes need not be considered in the depen-
dency analysis for incremental evaluation.

A subset of the edges in the dependency graphs constructed according to algorithm 7-5, corre-
spond to use or definition of fix attributes. In the construction of theincremental visit sequences,
according to 7-9, these edges are removed from the graph before performing the topol ogical sort.

Theimplementation of the proceduresi ncFat her Vi si t andi ncSonVi sit asdescribedin 7-10
is extended to handle door part-objects. Each VISIT instruction corresponding to a door vertex
v(d) isimplemented asacall

d. i ncOmner Vi sit

Theprocedurei ncDoor Vi si t isimplemented exactly analogousto the procedurei ncSonVi si t
but dispatches on door part objects instead of on son nodes.

10.8.2.4 Demand attributes

The synthesized and inherited attributes of a door class are demand attributes and can be imple-
mented in the same way as demand attributes of standard AGs astreated in 87.1.

10.8 Evaluation of main grammar 201

10.8.3 Visit proceduresfor the main grammar example

Asan example, consider the main grammar examplein Chapter 8 (defined in §8.9.4). The depen-
dency graphs for the construction classes are shown in Figure 10.5.

Program Nul | St mt Bl ockSt nt :

nh] [syn] |Miibech:

[inh][syn]| [b.encPath] [d.table]

Var Decl :

[d.table]| [d.ident] [d.tp] lerror

[[dectta) [ar)

Nul | Decl Type,)
I nt Decl Type, Assi gnnent :
Bool Decl Type,
Nul | BExp,

I nt Const :

Figure 10.5 Dependency graphs for main grammar. Dependency edges corre-
sponding to use or definition of fix attributes are drawn with thicker
lines.

syn

to.path

The visit procedures are straight-forward to construct from these dependency graphs, using the
algorithmsin 7-8 and 7-10, modified as described in the previous section. Note that al the
attributes in the main grammar are demand attributes, and therefore dropped in the visit
procedures:

202

Chapter 10 Door AG Implementation, part |1

addt o Program

{ inpl exhVisit
{ r.exhEBval Visit;

s.exhVisit;

};
b

addt o Bl ockStnt
{ impl exhVisit

{ b.exhEval Visit;
d.exhVisit;
s.exhVisit;
1
b

addt o Var Decl
{ impl exhVisit
{ dt.exhVisit;
d. exhBval Vi sit;
s

npl incSonVisit
d.incOmerVisit;

addt o Use

{ inpl exhVisit

{ u.exhBval Visit;
}s

i mpl incSonVisit
{ u.incOmerVisit;
father.incSonVisit
(thi's ANYNCDE) ;
}s

i mpl incDoorVisit

{ father.incSonV sit
(this ANYNCDE);

}.

}s

addt o Assi gnnent
{ inmpl exhVisit
{ to.exhVisit;

fromexhVisit;

b
}s

[

{

}
}s

Figure 10.6 Visit procedures for main grammar

As shown in the above figure, the visit procedures for the main grammar are extremely simple
and short. Empty procedures need not be implemented since they can rely on empty default
implementations in class ANYNCDE.

The incremental procedures (i ncFat her Vi si t, i ncSonVi sit, andi ncDoor Vi si t) are often
empty or very simple due to the heavy use of fix attributes. This leads to alarge amount of
instruction skipping compared to theexhVi si t procedure. For example, consider the dependen-
cy graphfor Bl ockSt nt . All edgesin thisgraph represent uses or definitions of fix attributes, and
all incremental visit procedures are consequently empty for the Bl ockSt nt class.

10.8.4 Effectsof static skipping

The evaluation algorithm used for main grammars is based on the static skipping agorithm
described in Chapter 7. As discussed in §7.3.4, this algorithm is sub-optimal and may evaluate
more attributes than an algorithm based on dynamic skipping. On the other hand, it may in some
cases befaster than adynamic skipping al gorithm sinceit avoids comparisons of attribute values.
The primary advantage of the static skipping algorithm isits simplicity and the ease with which
it can be implemented.

10.8 Evaluation of main grammar 203

The static skipping algorithm does not compare old and new attribute values and can therefore
not stop change propagation if attribute values converge. For astandard AG, this can be a serious
limitation and lead to poor incremental performance. However, amain grammar of a Door AG

isradically different in character from a standard AG. Because non-local information is propa-
gated via doors, the dependency paths in the syntax tree can be much shorter than in a standard
AG. Convergence tests are performed in the door visit procedures and can thus prevent unnec-

essary non-local propagation.

For example, consider the dependency graphs of the main grammar in Figure 10.5. Changes to
theidentifier or type of aVar Decl nodewill only propagateintod (the Decl Door). A correspond-
ing node classin a standard AG would have a synthesized attribute which would be dependent
on such changes, and the changes would be propagated to the father node and further on through
the syntax tree. A changeto the identifier of aUse node will propagateinto u (the UseDoor) and
alsoviathet p attribute up to the father node. If the grammar had contained some more advanced
expressions, such a change could propagate further up in the syntax tree, but not further up than
to the enclosing statement, since the statements have no synthesized attributes. Although this
main grammar is extremely simple, it is representative for the way the standard static-semantic
problems of hame analysis, type checking, and error checking can be specified in a Door AG.

For static-semantic checking using Door AGs, the sub-optimal effects of the static skipping algo-
rithm are thus very limited.

10.8.5 Effectsof using demand attributes

The use of demand attributesin the main grammar saves storage. However, there is al so a poten-
tial danger of using such attributes since evaluation time can grow very quickly for certain kinds
of uses.

Consider evaluation of a UseDoor . Thisinvolves an access to the demand attribute pat h. Such
access leadsto a series of function calls, typically onefor each syntax node on the way up to the
nearest node with aBl ockDoor . Thisis usually not along distance - perhaps 10 nodes at the
most. This gives an overhead of 10 function calls per evaluation of a UseDoor . If only few Use-
Door objects are evaluated, which should be the common case in an incremental system, this
overhead should be no problem. However, one should take care in defining the equations and
code inside the UseDoor so the pat h attribute is accessed only once during the evaluation. This
isthe case for our implementation of UseDoor since alocal copy of pat h is stored in the door.
In evaluating the door, the demand attribute is accessed only once to assign avalue to the local
copy. Thereafter the local copy is accessed.

A potentially more dangerous use of demand attributes is when using them for synthesized
attributes. Consider atype attribute of an expression which is defined in terms of the type
attributes of its son nodes, and the type attributes of these son nodes are defined in terms of their
son nodes and so on. Thus, accessto one type attribute could result in anumber of function calls
proportional to the size of the whole subtree. It could even be much worse, if each such function

204 Chapter 10 Door AG Implementation, part |1

accesses the types of its son nodes more than once, in which case there would be an exponential
growth of the number of function calls.

To be useful in practice, it is necessary that demand attributes are not used in situations where
the subtrees can grow large, and where the same attribute is accessed more than once. Type-
checking is usually not problematic from this point of view. First of all, the size of subtreesis
bound by the size of the largest statement since statements do not have synthesized type
attributes. Usually, at least in object-oriented programming, the number of syntax nodes within
a statement subtree (not counting sub-statements) israther small. In addition, it isusually possi-
ble to avoid accessing the same attribute more than once by using let-expressionsin the
definition of the equations.

Nevertheless, thereis a potential time-sink in using demand attributes, and one must be careful
when writing the grammar in order to avoid situations where the same attribute functioniscalled
over and over again. It could be useful to devel op ascheme for caching demand attributes during
athread of evaluation.

10.8.6 Using standard evaluation algorithms

We have chosen to use the statically skipping 1-visit algorithm for implementation of main
grammars becauseit isvery simple and yet sufficient for practical problems. However, any incre-
mental evaluation algorithm for standard AGs could, in fact, be adapted and used for the main
grammar, by a simple adaptation of the Door AG evaluator. The only restriction isthat the main
grammar must treat the door objectsas 1-visit nodes. |.e., asynthesized attribute of adoor object
must not be used (directly or transitively) to define an inherited attribute of the same door object.

Consider any incremental evaluation algorithm for standard AGs. For most such algorithmsit is
straight-forward to construct the two following procedures: St andar dNew(ol d, new) and
St andar dChanged(n) with the following semantics:

e StandardNew(ol d: ref ANYNCDE, new ref ANYNCDE) iscalled when asubtree of acon-
sistently attributed syntax tree has been replaced by a new completely un-attributed subtree.
Thereference ol d denotes the root of the replaced subtree and new denotes the root of the
new subtree. The procedure restores consistency in the syntax tree.

e StandardChanged(n: ref ANYNCDE) iscalled when al attributesin the whole syntax tree
are consistent except for the immediate successors of the synthesized attributes of a node n.
The procedure restores consistency in the syntax tree.

These procedures must then be adapted to handl e eval uation which propagates into door objects.
For dependency analysis, only the door package interface needs to be considered. The door
classes are considered as a special kind of node classes where all the synthesized attributes
depend on all the inherited attributes of the door. I.e., all door classes areinherently 1-visit. The
procedures above are adapted as follows:

10.8 Evaluation of main grammar 205

Adapt edSt andar dNew(ol d: ref ANYNCDE, new ref ANYNCDE) isan adaptation of St an-
dar dNew. When evaluation is propagated into a door object, the procedurei ncOaner Vi si t
iscalled, unlessthe door isin the subtree rooted at new and it is thefirst time the door isvis-
ited. In this case the procedure exhEval Vi si t iscalled instead.

Adapt edSt andar dChanged(n: ref ANYDOOR) isan adaptation of St andar dNew. The
parameter is here a door object. When evaluation is propagated into another door object, the
procedure i ncOaner Vi si t iscalled.

eval uator: object
{ worklist: object OrderedCollection] ANYDOCR ;

repl aceSubtree: proc
(ol dNode: ref ANYNCDE, newNode: ref ANYNCDE)
{ d: ref ANYDOCR

(* I: Exhaustive de-eval uati on phase *)
for $d :- ol d\Node. al | Door s. each do
i f worklist.contains($d) then
wor kl i st. renove($d);
end if;
$d. exhDeEval Vi sit;
end for;

(* I'l: Subtree Repl acenent *)
ol dNode. r epl aceBy(newNode) ;

(* I, I'V: “Standard” eval uati on phase *)
Adapt edSt andar dNew(ol dNode, newNode) ;

(* V: Non-local incremental phase *)
whi | e not worklist.enpty do

d :- worklist.renoveFirst;
Adapt edSt andar dChanged(d) ;
end whil e;

}
}s

Figure 10.7 Door AG evaluation based on standard algorithm

Figure 10.7 shows how the Door AG evaluator of Figure 10.2 can be adapted to standard algo-
rithm, by collapsing phases |11 and IV into one “standard” phase, where Adapt edSt andar dNew
iscalled, and by calling the Adapt edSt andar dChanged procedure in phase V. Thus, the algo-
rithmin Figure 10.7 can evaluate Door AGswith main grammars of any standard AG class, given
that the door objects aretreated as 1-visit nodes. To handle several visitsto door objects, each of
the door visit proceduresexhEval Vi si t andi ncOaner M si t would haveto berefined into a set
of visit procedures.

206 Chapter 10 Door AG Implementation, part |1

10.9 Circular dependencies

There are severa situationsin static semantic checking which lead to circular chains of informa-
tion dependencies, at least intuitively. Thiswas discussed in §3.3.6. When specifying these static
semantic problems in Door AGs, some of these intuitively circular dependencies also lead to
actual circular dependencies between attributes in the attributed syntax tree. Fortunately, these
circular dependencies are very simple to handle in Door AGs.

The collections and conditions used in Door AGs are inherently cyclic in the following way:
Information about a collection (e.g. areference to it) is propagated to a number of door objects
distributed in the syntax tree. By defining membersin the collection, using conditions, informa-
tion is propagated back from these door objects to the collection. While this does not directly
introduce circular dependenciesin the dependency graphs, it definesacircular path along which
other information can be propagated giving true circular attribute dependencies.

In comparison to theintuitive circular dependencies discussed in §3.3.6, thefirst issue, arbitrary
declaration / application order, can be solved in Door AGs simply by using conditions and col-
lections, as described in the example of §8.9. In the case of cyclic subclassing, the circularity is
explicitly broken in order to avoid constructing cyclic visibility graphs. Thiswill be shownin
811.2. The case of reference variablesleadsto true circular chains of attribute dependencies, but
this circularity convergesimmediately and is straight-forward to handle as will be shownin
§11.3.3.

Potential circular dependencies can easily be recognized from the door dependency graphs by
matching send and receive vertices. Let D1 be a door class with asend vertex v(L, D2, f) and D2
adoor class with areceive vertex v(L). If thereis a dependency path from an inherited attribute
a of D1 to the send vertex, and a path from the receive vertex to a synthesized attribute b of 2,
then thisis a potential cyclic dependency. Figure 10.8 illustrates this.

L
02 |y
f

| b |

D2:

Figure 10.8 Dependency graphs with potentia cycle

10.9 Circular dependencies 207

A cycleisobtained if the main grammar defines the attribute a by using the value of the b
attribute asillustrated in Figure 10.9.

/O\
~—
ﬁ/\\

di d2

Figure 10.9 Circular chain of dependencies

A circular chain of dependencies which passes through a non-local dependency like this can be
handled in avery simple way. The chain passes via the inherited attribute a of a door object of
class D1. Provided that the eval uation converges, the evaluation loop is stopped simply by insert-
ing a convergence test on a in thei ncOaner Vi si t procedure of D1, exactly as described in
§10.6.2.

A circular dependency as the one above can appear as the result of using collections and condi-
tions. Consider Figure 10.10. The door d3 has a collection part-object and a reference to this
object is passed through the syntax tree to both d1 and d2. Hence, the dependencies from

col I Ref 3tocol | Ref 1 and col | Ref 2. The condition ¢ in d1 definesthe object d1 as a member
of the collection. This makes the information in d1 available to d2 and resultsin the non-local
dependency from a to b. When eval uating this tree exhaustively, the doors are eval uated accord-
ing to the local dependenciesin the syntax tree: d3, d2, d1. When d2 isfirst evaluated, d1 is not
yet amember of the collection. When d1 is evaluated later, it adds itself to the collection and

208 Chapter 10 Door AG Implementation, part |1

discoversthat there isanon-local dependency from d1 to d2. The door d2 is then re-evaluated
and the change will propagate around the dependency cycle until the attribute a of d1 converges.

dl

a !

col | Ref 1
c

b
col | Ref 2

Figure10.10 Circular dependency appearing as aresult of using a collection.

Of the intuitive cyclic dependencies discussed in 83.3.6, it is only the one concerning reference
variableswhich actually leadsto circular attribute dependencies. For this problem, the attributes
on the cycle converge immediately (after asingle cycle). Thiswill be discussed in §11.3.3.

10.9.1 Example: adding like-types

Asasimple example of circular dependencies, we will extend our example language of §88.9.4
with “like-types’ asin Eiffel [Mey88]. An example program in this extended language may be
the following:

This meansthat y has the sametypeasx, i.e. it isalso an integer. Like-types can be introduced
by adding the following specialization of the Decl Type node class.

Li keDecl Type: cons Decl Type(u: ref Use);
{ eq u.path :- path;
eq tp :- u.tp;

This alows the type of aVar Decl to be declared as alike-type. In addition, the grammar must
be extended to propagate apat h attribute from Bl ockSt nt down to the declaration part, so it can
reach the Use node son of the Li keDecl Type node.

10.9 Circular dependencies 209

Theintroduction of like-types leadsto potential cyclic dependencies. For example, it is syntac-
tically correct (although static-semantically erroneous) to write:
begi n
x: like x;
end,;

Here, the type of x is declared to be the same as the type of x, an obviously cyclic definition.
Figure 10.11 shows the circular chain of dependencies for this declaration.

Var Decl

Decl Door

L, reference bi ndi ng
-~ dependency - P

Figure10.11 Circular definition of like-type

Thei ncOQaner Vi si t procedure of Decl Door contains a convergence test on the inherited
attributet p (see 810.7.3.3). Thus, since al the equations defining thet p attributes are copy equa-
tions, the evaluation will terminate. However, there are many attribute solutions to this syntax
tree. All thet p attributes on the cycle must be equal, but the grammar is underdetermined in that
it does not define which value to use in case of acycle. Any Type value will in this case be con-
sistent with the equations, e.g. i nt Type, bool Type, or unknownType. The actual solution will
depend on the order of evaluation.

For example, exhaustive evaluation of the whole declaration will yield the value unknownType
for al thet p attributes. Onthe other hand, if adeclaration“x: i nt eger” ischangedto“x: |i ke
x" by replacing the Decl Type subtree of the declaration, thiswill result inthevaluei nt Type for
all thet p attributes.

Although the incremental evaluation will work and terminate with a correct attribution (accord-
ing to the grammar), this history-sensitive behavior is probably not desirable for this particular
type-checking problem. A better behavior would beif the introduction of acyclelead to an error
message, and if all thet p attributes on the cycle got the value unknownType. Thisis possible to
accomplish, but requires extensions to the door package. A similar problem is the detection of
cyclic subclassing which must be handled in order to define name analysis for subclassing. This
will be discussed in §11.2. A similar solution can be used to detect cyclic like-types.

210 Chapter 10 Door AG Implementation, part |1

10.10 Possibilitiesfor automatizing the implementation

Our proposed method for implementing door packagesis systematic, but manual. Some parts of
this construction could be performed automatically while other parts are inherently manual:

e Theanalysisof local access-dependenciesis analogousto normal attribute dependency anal -
ysis and could be performed automatically.

e Thenon-local dependency analysis, on the other hand, is probably very difficult to automa-
tizein general sinceit involves finding actual dependencies rather than only access
dependencies and this requires reasoning about the semantics of the specification. One could,
however, imagine automatic support for detecting the existence non-local access-dependen-
cies and allow manual refinement of these dependencies.

e Themanua implementation of dependency functions allows arbitrary time/space tradeoffs
to be done. Nevertheless, it may be possible to develop automatic support for default imple-
mentations, at least in simple cases.

e Theimplementation of evaluation and de-evaluation procedures for conditions is inherently
manual. However, it might be possible to find some suitable “ standard” conditions and col-
lections and express them in away suitable for automatization.

e Thegeneration of the basic visit procedures could be done completely automatically. How-
ever, as we have seen in some examples, modifications to these basic algorithms are
sometimes needed.

e Theaddition of extracodeto the visit proceduresin order to control underdeterminedness of
the grammar isinherently manual.

e Thedetection of overlapping dependency setsis probably very difficult in general, but a pes-
simistic automatic detection of possible cases of overlap would be straight-forward.

e A pessimistic automatic detection of possible circularities via non-local dependenciesis
straight forward. Also, in the simple case where al the invariants on the circularity are copy
equations, convergence is guaranteed.

It would be an interesting area of future research to build a semi-automatic system which gives
automatic support for certain parts of the implementation, asindicated in the list above. Such a
system should keep track of both automatic and manual implementation stepsin order to handle
changes to the door package without having to redo the manual steps. For example, suppose an
attribute was added to a door class, and the dependency analysis and all other implementation
steps could be done automatically for this attribute. The system should then update the visit pro-
cedures without destroying earlier manual additions or changes to these procedures.

10.11 Summary

We have described a visit-oriented evaluator for Door-AGs. A number of visit procedures are
constructed for each door class. Each of these proceduresis characterized by three “ characteris-

10.11 Summary 211

tic sets” computed from the dependency graph of the door. Given these characteristic sets, the
basic algorithm for the procedureis straight-forward to generate. However, modifications of the
basi c algorithm may be needed for some visit procedures. In particular, overlapping non-local
dependency sets must be detected and the algorithm modified accordingly. In addition, conver-
gence tests on inherited attributes can be added to increase efficiency and to allow circular
dependencies to be handled.

Evaluators for the main grammars can be constructed automatically by using simple adaptions
of standard AG a gorithms. We have shown how the simple 1-visit static-skipping algorithm of
§7.3 can be adapted to evaluation of main grammars. This algorithm has the advantage of being
very simple to implement, yet sufficiently powerful for practical problems.

The collections and conditions of Door AGs introduce implicit circular dependencies. Along
these circular paths, explicit circular attribute dependencies can occur. Such circular dependen-
cies are straight-forward to handle, simply by relying on convergence tests in the door visit
procedures. The circular dependencies are useful for avariety of static semantic checking prob-
lems, including handling reference variables and cyclic subclassing.

212 Chapter 10 Door AG Implementation, part |1

Chapter 11
Advanced Attributions

In this chapter we will give some more advanced examples of how Door AGs can be used in

order to specify full-blown object-oriented languages. The simple door package of the previous
chaptersis extended to handle the mgjor static-semantic problemstreated in Chapter 3. All these
extensions have been implemented and tested. In particular, the following problems are treated:

1. Multiple declarations of the same identifier in the same block

2. Name analysisin the presence of subclassing

3. References and remote access

4. Type-checking reference assignments

5. Error presentation

The solutionsto problems 1 and 2 both utilize an underdetermined grammar in order to achieve
history-dependent error handling. Problem 2 leadsto transitive non-local dependencies. Problem

3 leadsto cyclic dependencies. Problem 5 shows how adoor class can be used as an interface to
external components in the interactive environment.

In 811.6 we sketch how procedures and parameters can be added, and comment on the possibil-
ities for supporting the advanced virtual class concept of BETA.

11.1 Multiple declarations

In theimplementation of the door package of §8.9 we assumed that al the entry objectsinasym-
bol table have different names (see §9.5.3.2 - “Entry order”). In this section, the door package
will be extended to detect multiple declarations of the same identifier.

Wewill adopt the history-dependent error-detection policy outlined in 83.6. |.e., if there are mul-
tiple declarations of the same identifier in the same block, one of these will be considered to be
correct, and the others faulty. Which oneis considered correct depends on the editing history.

214 Chapter 11 Advanced Attributions

More precisely, one of the multiple declarations is considered to be visible, whereas the other
declarations of the same name are considered to be hidden by the visible declaration. Uses of the
name can only be bound to the visible declaration and not to the hidden ones. Additional actions
will beinserted in the visit proceduresto give older declarations precedence over newer decla-
rations. |.e., adding anew declaration with the same name as an existing one will cause the new
declaration to be considered the erroneous one. Similarly, changing the name of a declaration to
take on an already existing name, will cause the changed declaration to be considered the erro-
Neous one.

11.1.1 Theattributevisible

From the definition of the door package, it is clear that if there are multiple declarations of the
same name, it isthe one occurring first in the symbol table list which will be considered the vis-
ible one, since the ookup function of the symbol table will return this declaration entry. We
model the visible/hidden status of a declaration by adding a synthesized attribute vi si bl e to
Decl Door :

addt o Decl Door
{ syn visible: bool ean;
eq visible := table.l ookup(theEntry.ident) == theEntry;

|.e., thedeclarationisvisibleif thel ookup function of the symbol table returnsthe Ent r y object
owned by Decl Door, and not another Ent ry object with the same name. The synthesized
attribute vi si bl e can be used by the main grammar to report the non-visible declarations as
€rroneous.

To implement the history-dependent error-detection policy, the procedure i ncOaner Vi si t of
Decl Door (810.7.3.3) is modified to affect the permutation order of the Ent ry objectsin the
symbol tablelist: Eachtimethei dent attribute of the Decl Door isupdated (in step 4 of the visit
procedure), the Ent ry object is moved to the end of the list as follows:

(* Step 4. Evaluate local non-fix invariants *)
i f not tpUnchanged t hen
eval theEntry.tp;
end if;
i f not identUnchanged t hen
eval theEntry.ident;
tabl e.entries.renove(theEntry);
table.entries. add(theEntry);
end if;

The procedure add of class Li st adds the element to the end of thelist (§89.5.2). By removing
and adding the Ent ry object it is thus moved to the end of thelist. Thisisan example of avisit
procedure modification to affect the solution for underdetermined grammars as discussed in
§10.6.3.

11.1 Multiple declarations 215

Theresult of this modification is that each time the name of adeclaration is edited, the declara-
tion will be moved to the end of the symbol table list and will thus become hidden by other
declarations of the same (new) name.

11.1.2 Dependency analysis

We now redo the dependency analysis of Decl Door , with respect to the new attribute vi si bl e,
and take into consideration that there may be several declaration entries with the same identifier
in asymbol table.

The new attribute vi si bl e depends locally on the attributet heEnt ry. i dent . In addition, it
depends non-locally on the existence of other Ent r y objects with the same identifier which pre-
cedesit in the symbol tablelist. Thisis modelled by areceive vertex v(Vi sSt at us) (see Figure
11.2).

Let d1 and d2 betwo Decl Door objectswith Ent ry objectsel and e2 respectively. Suppose that
e2 isadirect or indirect successor of el inthe symbol tablelist, and that el. i dent =e2. i dent
= id, asshown in Figure 11.1. Suppose furthermore that there is no other Ent r y object with this
identifier located between el and e2, or before el. Thus, el isvisible and e2 is hidden by e1.

Entry el Entry e2
i dent =id i dent =id
tp tp
visible not visible

Figure11.1 Declaration hides other declaration with the same name

The de-evaluation of the attribute el. i dent will cause e2 to become visible, since e2 then
becomes thefirst entry withi dent = idinthelist. Thisis modelled by adding a send vertex
v(Vi sSt at us, Decl Door , f Next) to the dependency graph of Decl Door and adding a de-evalua
tion edge from v(t heEnt ry. i dent) to this vertex. For the situation in Figure 11.1, the function
f Next should return a singleton set containing d2. In other situations, i.e. if e1 is not the first
entry withi dent =id, or if thereisno entry e2, thenf Next should return the empty set. A similar
argument for the condition r egi st er ed leads to a de-evaluation edge from v(r egi st er ed) to
v(Vi sSt at us, Decl Door, f Next).

Now consider evaluating the attributet heEnt ry. i dent of d1 again. If the order between theele-
ments is not changed, this would make e2 invisible again. However, because of the additional
code added to i ncOaner Vi si t, an Ent ry object for which thei dent attribute is evaluated is
always placed at the end of the symbol table list. Thus, the evaluation of t heEnt ry. i dent does

216 Chapter 11 Advanced Attributions

not have any Decl Door dependents. Similarly, evaluation of the conditionr egi st er ed will add
the Ent ry at the end of the symbol table list, and no Decl Door objects are affected.

Figure 11.2 shows the resulting dependency graph for Decl Door .

vi sible

|registered| [theEntry.tp|[theEntry.ident |

[theEntry.table]| L gUSt 'lggChanged
eDoor >

f Uses

Y

[theEntry. owner |

d__ .|| ookupChanged
UseDoor >
\ » f Uses
€__ ,[IookupChanged
UseDoor >
& fAttenpted
d
~—_ | VisStatus

—— | Decl Door {p

f Next

d
e
d

Figure11.2 Dependency graph for Decl Door

The dependency function f Next isstraight-forward to implement, but it requires adding an addi-
tional reference attribute to class Ent ry, which denotes the Decl Door object owning the Ent ry:
addto Entry
{ loc owner: ref Decl Door;

)

addt o Decl Door
{ eq theEntry.owner :- this Decl Door;

)

The additions needed to the door visit procedures of Decl Door follow exactly the basic door visit
procedure algorithm of 10-3. For brevity, these details (and the exact implementation of f Next)
are left out.

11.2 Nameanalysisin presence of subclassing 217

11.2 Name analysisin presence of subclassing

The simple door package of §8.9 supports Algol style scope rules by means of the Bl ockDoor .
We will now extend this package to support also classes and subclassing by adding a new door
d assDoor . Werecall from 83.3.2 that name analysisin the presence of subclassing can be done
by attaching two path verticesto each class. a prefix path and a static path. Thisisin contrast to
the simple (Algol) blocks which have only a static path. The A assDoor will thus have part
objects for both a prefix path and a static path whereas the Bl ockDoor has only a static path.

11.2.1 TheClassDoor and itspart objects

Classes can be modelled by adoor O assDoor which issimilar to Bl ockDoor but has two

Sear chPat h part-objectsinstead of only one, asillustrated in Figure 11.3. The prefix path vertex
has two outgoing edges: thefirst edge endsin the symbol table of the class, and the second edge
ends in the prefix path of the superclass (a). Thus, the symbol tables of a class and all its super-
classes are reachable via the prefix path. The static path also has two outgoing edges: the first
edge endsin the prefix path of the class and the second edge ends in the static path of the enclos-
ing block (b). Thus, the static path gives access to the symbol tables of the class and al its
superclasses, to the enclosing block, to the superclasses of the enclosing block (if itisalso a
class), to the enclosing block of the enclosing block, and so on. The specification of A assDoor
isshown in 811.2.5.

This visibility graph model handles not only ordinary class hierarchies, but also arbitrary com-
binationsof classesand block structure. In 83.3.2 an examplewas given of nested classes (Figure
3.3). Figure 11.4 shows a corresponding attributed syntax tree which embedsthe visibility graph
in the attribution using objects and references. Similar to Figure 3.3, adiagonal line represents
areference attribute denoting the enpt yPat h object.

218 Chapter 11 Advanced Attributions

a b
Sear chPat h Sear chPat h
d assDoor
staticPath
prefixPath
d assType DX first N first
Synbol Tabl e second — second —
TwoPat h TwoPat h

Figure11.3 A d assDoor and its part objects

Cl assDoor for C

Figure11.4 Attributed syntax tree for program with nested classes.

11.2 Nameanalysisin presence of subclassing 219

11.2.2 Classtypes

In addition to the two paths and the symbol table, the A assDoor also hasad assType part
object. A assType objects are used for type checking of classes. In the attributed syntax tree of
agiven user program there will be one A assType object for each classin the user program. A
A assType object has areference attribute pr ef i xA ass, denoting the A assType object of the
superclass. In thisway, the A assType objects form aforest of trees modelling the class hierar-
chy in the user program. Asdiscussed in 83.5, it is useful to extend thisforest to asingle tree by
adding amost general class “ObjectClass’ which is considered to be a superclass of all the user
program classes. It isalso useful to introduce aclass“NoClass’ modelling the class of the value
“NONE”". Although “NoClass’ is not related to the other classes, it is for some purposes useful
to regard it as a subclass of all other classes, thus extending the tree to alattice. We model the
types of “ObjectClass’ and “NoClass’ by two constant semantic objectsobj ect A assType and
nod assType. The generalization of these constant objects and the classd assType ismodelled
by an abstract class Abst r act A assType. These classes and objectsare all specializations of the
class Type introduced in the basic door package (88.9.1), and the resulting specialization hierar-
chy for Type is shown in Figure 11.5.

unknownType
Type < ° .aSSType
Abstract d assType obj ect A assType

nod assType

Figure11.5 Extensions to Type class hierarchy

The specification of Abst ract d assType and its specializationsis shown in Figure 11.6. The
function call x. subcl assQ Equal (y) returnstrueif x isasubclassof y, or if x and y are the
same class. The function also returnstrueif x isthe constant object nod assType, to indicate
that “NoClass’ isregarded asasubclass of all other classes. Thefunction call x. get Prefi xPat h
returns the prefix path of the classx. The prefix path is defined as enpt yPat h for the obj ect -
A assType and the noQ assType.

A assType objects are linked together to a class hierarchy by the local attribute pr ef i xd ass.
The A assType aso hasalocal attribute owner used for defining the get Pr ef i xPat h function.

220 Chapter 11 Advanced Attributions

Abstract d assType: cl ass Type (* abstract *)
{ subcl assO Equal : func bool ean (ct: ref Abstractd assType);
get PrefixPath: func ref SearchPath fix;

d assType: cl ass Abstractd assType
{ loc prefixdass: ref Abstractd assType;
| oc owner: ref O assDoor;
i mpl getPrefixPath :- owner. prefixPat h;
i mpl subcl assO Equal : =
if ct == this dassType
then true
el se
i f ct == nod assType
then fal se
el se prefixd ass. subcl assCO Equal (ct);

obj ect d assType: obj ect Abstractd assType
{ I nmpl getPrefixPath :- enptyPath;
i mpl subcl assOrEqual : = ct == obj ect d assType;

nod assType: obj ect Abstractd assType;
{ inpl getPrefixPath :- enptyPath;

i mpl subcl assO Equal : = true;

b

Figure 11.6 Specification of class types

11.2.3 ClassDoor interface

The objects a and b of Figure 11.3 have to be communicated to the A assDoor by inherited
attributes. For b (the static path of the enclosing block), we use an inherited attribute encPat h,
exactly asfor the Bl ockDoor . To obtain areference to a (the prefix path of the superclass), we
add an inherited attribute

syn syntPrefixd ass: ref Abstractd assType

which isthe superclass according to the user program syntax tree. The prefix path is obtained by
calling the function get Pref i xA ass of this attribute.

Similar to Bl ockDoor , thed assDoor has synthesized attributes| ocPat h andt abl e, to be used
inan analogousway. Thed assDoor also hasasynthesized attribute cl assTp which denotesthe
A assType part object. Finally, as discussed in §3.3.2, cyclic subclassing must be detected. For
thistype of static semantic error we will use a history-dependent error-detection policy, similar
to the handling of multiple declarations: The class declaration whose prefix was last changed is
considered as causing the cycle. A synthesized attribute causesCycl e will be true for this class
declaration. The resulting interface of A assDoor isshownin Figure 11.7.

11.2 Nameanalysisin presence of subclassing 221

d assDoor: door
{ inh encPath: ref SearchPath fix;
i nh syntPrefixdass: ref Abstractd assType;
syn locPath: ref SearchPath fi x;
syn table: ref Synbol Table fix;
syn classTp: ref dassType fiXx;
syn causesCycl e: bool ean;

}

Figure11.7 Interface to d assDoor

11.2.4 Main grammar extension

Themain grammar of §8.9.4 can be extended to include class declarations by adding anode class
A assDecl which makes use of ad assDoor as shown in Figure 11.8.

d assDecl : cons Decl
(prefix: ref Wse, declID ref ID b: ref Bl ock)
{ cDoor: doorobject dassDoor;
dDoor: door obj ect Decl Door;
| oc prefixTypeError: bool ean;
| oc cyclicdassError: bool ean;
eq cDoor.encPath :- path;
eq b.path :- cDoor. | ocPath;
eq b.table :- cDoor.table;
eq cDoor.syntPrefixdass :- (* 1%
if prefix.tp in Abstractd assType
then prefix.tp
el se obj ect d assType;
eq dDoor.tp :- cDoor.cl assTp;
eq dDoor.ident :- declld.ident;
eq dDoor.table :- table;

eq prefixTypeError : = (* 27%)
not prefix.tp in Abstractd assType;
eq cyclicdassError : = cDoor. causesCycl e; (* 3%

Figure11.8 Specifying class declarations in amain grammar

A d assDecl node hasthree son nodes: pref i x (aUse node for the name application of the pre-
fix class), decl | D(the name of the declared class), and b (the body of the class). Thed assDecl
further declares two door objects: cDoor (ad assDoor) and dDoor (aDecl Door). The bulk of
the equations are similar to those of the node classes Bl ockSt nt and Var Decl . However, some
of the equationsin d assDecl deserve some comments:

222 Chapter 11 Advanced Attributions

One type of static semantic error which can occur in A assDecl isthat theprefi x may bea
name application denoting some other entity than aclass, e.g. an integer asin thefollowing erro-
neous Simula program:

begi n
i nteger x;

x class A (* Error: Prefix is not a class *)
begi n

end;

end;

Thiserror is detected by equation (* 2 *) which checksif thet p attribute of theson prefi x is
at least an Abst r act d assType object. The equation (* 1 *) also takesthis situation into
account by defining the inherited attribute synt Pr ef i xd ass of the A assDoor as obj ect -

A assType in casethet p attribute of prefi x isnot at least an Abst r act A assType.

A second type of static semantic error which can occur in d assDoor iscyclic subclassing asin
the following erroneous Simula program:

A cl ass B; (* Bis a subclass of A *)
begi n
end;

B class A (* Ais a subclass of B *)
begi n
end;

Inequation (* 3 *), theattribute causesCycl e isdefined as true for only one of the classesin
acycle. Which one depends on the editing history.

11.2 Nameanalysisin presence of subclassing 223

11.2.5 Specification of ClassDoor

A first version of the O assDoor specification is shown in Figure 11.9. This definition will be

d assDoor: door
{ inh encPath: ref SearchPath fix;
i nh syntPrefixd ass: ref Abstractd assType;
syn locPath: ref SearchPath fi x;
syn table: ref Synbol Table fi x;
syn classTp: ref dassType fi x;
syn causesCycl e: bool ean;

thed assType: obj ect d assType;

eq classTp :- thed assType;

eq thed assType.owner :- this dassDoor;

eq thed assType. prefi xd ass : - (* 1%
i f syntPrefixd ass. subcl assO Equal (t hed assType)
then obj ect d assType
el se syntPrefixd ass;

theTabl e: obj ect Synbol Tabl e;

t heTabl ePat h: obj ect Synbol Tabl ePat h;
eq table :- theTable;

eq theTabl ePath.tabl e :- theTabl e;

prefixPath: object TwoPath;

eq prefixPath.first :- theTabl ePat h;

eq prefixPath. second : - (* 2%
t hed assType. prefixd ass. get Prefi xPat h;

staticPath: object TwoPat h;

eq locPath :- staticPath;

eq staticPath.first :- prefixPath;
eq staticPath.second :- encPath;

eq causesCycle : = (* 37%)
synt Prefixd ass =/= thed assType. prefi xd ass;

Figure11.9 First version of A assDoor specification

dightly refined during the dependency analysis. Most of the equations are straight-forward,
defining the Sear chPat h connectionsin asimilar way asfor the Bl ockDoor . However, equations
(* 1 %),(* 2 *),and(* 3 *) deserve some comments.

Equation (* 1 *) definesthe attribute t heQ assType. pref i xA ass. Normally, this attribute
will get thevalue of theinherited attribute synt Pr ef i xA ass. However, in case thiswould intro-
duce acyclic class hierarchy, the pref i xQ ass attribute isinstead assigned a reference to the
constant object obj ect d assType. Thus, this equation guarantees that A assType objects
chained together by the reference attribute pr ef i xd ass cannot form acyclic chain. Thisis nec-
essary since the function subcl assQ Equal would loop otherwise.

224 Chapter 11 Advanced Attributions

Equation (* 2 *) defines the attribute second of pr ef i xPat h in terms of the pr ef i xA ass
attribute. Since the pr ef i xd ass attributes cannot form a cycle, this prevents also the pr ef i x-
Pat h objects to be connected in acycle. Thisis necessary since acyclic visibility graph would
cause the function | ookup to loop.

Equation (* 3 *) definesthe attribute causesCycl e astrueif the synt Prefi xA ass attribute
differsfromt heQ assType. pref i xA ass. Thisindicates a syntactic cycle in the subclass hier-
archy which is broken at this particular d assDoor . For other A assDoor objects on the same
syntactic subclass cycle the causesCycl e attribute will have the value false. For A assDoor
objects which are not on any cycle, the causesCycl e attribute will also have the value false.

11.2.6 Dependency analysis

The dependency analysis of A assDoor involvestwo kinds of non-local dependencies. One con-
cerning cyclic subclassing and one concerning changes to edges of the visibility graph.

11.2.6.1 Cyclic subclasses

The attribute A assType. pref i x4 ass depends on non-local information. The equation defin-
ingthisattribute (* 1 *) inFigure11.9) accessesthesubcl assQ Equal functionwhichinturn
accesses the pr ef i xA ass attribute of other A assType objects. There isthus a static
dependency

(A assType. prefixd ass, A assType. prefi xd ass).
This non-local dependency is modelled by areceive vertex v(cycSt at us) and a send vertex

v(cycSt at us, d assDoor , f Cycl i ¢) inthedependency graph for A assDoor asshownin Figure
11.10.

[synt Prefixd ass

causesCycl e

[1 ocal Synt Prefixd ass

Y cycSt at us
| t heCl assType. prefi xd ass d C assDoor
fCyclic

Figure11.10 Partia dependency graph for A assDoor

A local copy attributel ocal Synt Pref i xd ass hasbeen added. Thiswill allow the dependency
function f Cycl i ¢ to determineif other d assDoor objects are considered to cause a cycle with-

11.2 Nameanalysisin presence of subclassing 225

out consulting non-fix inherited attributes whose values may have changed after the latest
evaluation of thed assDoor objects. The equations defining t hed assType. prefi xd ass and
causesCycl e are updated accordingly as shown in Figure 11.11.

addt o d assDoor
{ loc local SyntPrefixd ass: ref Abstractd assType;
eq | ocal SyntPrefixd ass :- syntPrefixd ass;
eq thed assType. prefixd ass : - (* 1 *)
i f | ocal Synt Prefixd ass. subcl assO Equal (t hed assType)
t hen obj ect d assType
el se | ocal Synt Prefixd ass;
eq causesCycle : = (* 3 %)
| ocal Synt Prefi xd ass =/= thed assType. prefixd ass;
}

Figure11.11 Extension and refinement of A assDoor by the local
copy attribute | ocal Synt Prefi xd ass

Itispossible for achangeto theinherited attribute synt Pr ef i xA ass of ad assDoor X to break
or introduce a syntactic subclass cycle. If acycle isintroduced, the cause of the cycle will be
associated with x. If acycleis broken, the cause can be either in x or in any of the other A ass-
Door objectsinvolved in the cycle. In the latter case, thereisanon-local dependency to another
A assDoor object y (the one on the cycle whose causesCycl e attributeistrue). Sinceitisonly
the breaking of a cycle which can affect non-local doors, the edge from v(t heQ assType. pr e-
fi xd ass) to the send vertex is a de-evaluation edge rather than a normal edge.

Thede-evaluation of t hed assType. prefi xd ass will break acycle caused by another 4 ass-
Door object yiff:

e yisasuperclass of x, and
e y'sattribute causesCycl e istrue, and

» the syntactic superclass of y is asubclass or equal to x

The dependency function f Cycl i ¢ should in this case return asingleton set containing y. Other-
wise, f Qycl i ¢ should return an empty set. To find a superclass causing a cycle, we use a
recursive function f i ndCycl eCauser in class Abst r act A assType as shown in Figure 11.12.
The implementation of the function f Cycl i ¢ isgivenin Figure 11.13.

Theimplementation of fi ndCycl eCauser in d assType accesses the synthesized attribute
causesCycl e, whichinturn (sinceit is a demand attribute) accesses the local copy of the inher-
ited attribute synt Pref i xd ass. By accessing the local copy instead of the inherited attribute
directly, the causesCycl e attribute isinsured to return the value used in the latest evaluation of

226 Chapter 11 Advanced Attributions

thed assDoor , and not be dependent on possible changes or re-evaluationsin the enclosing syn-
tax tree.

addt o Abstract d assType
{ findCycl eCauser: func ref dassType (* may return NONE *)
c- NONg;

}s

addt o d assType
{ inmpl findCycleCauser :-
i f owner.causesCycl e
then this dassType
el se prefixd ass. fi ndCycl eCauser;

Figure11.12 Thefunctionfi ndCycl eCauser

enpt yd assDoor Set: obj ect Set[d assDoor];

addt o d assDoor
{ fCclic: func ref Set[dassDoor] :-
i nspect $ct :-
t hed assType. prefixd ass. fi ndCycl eCauser
when d assType do
i f $ct.owner.|ocal SyntPrefixd ass.
subcl assO Equal (t hed assType)
t hen enptyd assDoor Set . add($ct . owner)
el se enptyd assDoor Set
ot herw se enptyd assDoor Set ;

}s

Figure11.13 Extension of d assDoor by the dependency function
fCyclic

11.2.6.2 Changesto visibility graph edges

Theattribute pr ef i xPat h. second inA assDoor depends on the non-fix inherited attribute syn-
t Prefi xd ass and may thus change during incremental evaluation. This attribute models an
edge in the visibility graph and a change to it may affect the bindings of UseDoor objects. This
outgoing non-local dependency in A assDoor ismodelled by asend vertex v(I ookupChanged,
UseDoor , f At t enpt edEdge), wheref At t enpt edEdge isadependency function returning the set
of UseDoor objects which have attempted to bind viathe pr ef i xPat h. second edge.

We will keep track of the affected UseDoor objects by maintaining a collection of UseDoor
objectsfor thisvisibility graph edge. To program thisin a simple way, we introduce anew class
Wat chPat h which is a specialization of Sear chPat h as shown in Figure 11.14. A Wat chPat h
object models a path vertex with one outgoing edge. The collection at t enpt edEdge in Wt ch-
Pat h collectsall UseDoor objectswhich have attempted to bind viathe Wat chPat h object. Thus,

11.2 Nameanalysisin presence of subclassing 227

UseDoor objects attempting to bind via a given edge can be collected simply by redefining that
edge to go viaaWat chPat h object.

A condition cAt t enpt edEdge is added to UseDoor to maintain the at t enpt edEdge collections
of Wat chPat h objects. The condition simply states that the UseDoor object is a member of the
at t enpt edEdge collection of all Wat chPat h objects encountered during lookup. This condition
has dependencies similar to the cUses and cAt t enpt ed conditions, and is straight-forward to
add to UseDoor .

Wat chPat h: cl ass SearchPat h
{ loc path: ref SearchPath;
col l ection: attenptedEdge:
obj ect UnorderedCol | ecti on[UseDoor] ;
i mpl 1 ookup :- path.|ookup(ident);

)

addt o UseDoor
{ cAttenptedEdge: cond ...;

)

Figure11.14 TheclassWat chPat h

Figure 11.15 shows how the edge outgoing from pr ef i xPat h. second in A assDoor isrede-
fined to go viaawat chPat h object, and how the dependency function f At t enpt edEdge is
implemented. This function corresponds to solving the incremental name analysis problem IV
(changethe visibility graph) treated in 83.4. The solution, using Vat chPat h objects, isanimple-
mentation of method 6 (maintain traces).

addt o d assDoor
{ theWat chPat h: obj ect WatchPat h;
eq prefixPath. second :- theWatchPath; (* 22 %)
eq theVatchPath. path : -
t hed assType. prefi xd ass. get Prefi xPat h;

f Attenpt edEdge: func ref Set[UseDoor] :-
t heVat chPat h. at t enpt edEdge. cont ent s;
h

Figure11.15 Extension and refinement of A assDoor by
t heWat chPat h and the dependency function
f At t enpt edEdge

Thefinal dependency graph for A assDoor isshown in Figure 11.16.

228 Chapter 11 Advanced Attributions

[encPath || syntPrefixdass || locPath |[tablel|classTp|| causesCycle |

A
[I'ocal Synt Prefixd ass

[thed assType. prefixd ass
d cycSt at us
[thed assType. owner | ~_ ClyassDoor >
fCyclic

[theTabl ePat h. tabl e |

[prefixpPath.first|

[prefixPath. second|

[t hewat chPat h. pat h |

staticPath. first | IUtSJOIB.lnghanged
eDoor
f Att enpt edEdge

stati cPath. second |

Figure11.16 Dependency graph for A assDoor

11.2.7 Visit procedures

The visit procedures exhDeEval Vi sit and exhEval Vi si t for d assDoor are implemented
according to the basic visit procedure algorithm. The visit procedurei ncOaner Vi si t has tran-
sitive non-local dependents (viathe visit procedures for cycSt at us) which overlap the direct
non-local dependents. Thei ncOaner Vi si t must thus be modified in order to not violate the pre-
conditions of the visit procedures of its dependent doors. In al other respects, the

i ncOaner Vi sit and the eval /deEval pair for cycSt at us are implemented according to the
basic algorithm.

11.2 Nameanalysisin presence of subclassing 229

The characteristic setsfor i ncOaner Vi sit and cycSt at us are asfollows:

Sbond Soc Ssend
i ncOaner - & |{ V(local SyntPrefixC ass), [{ Vv(cycStatus,
Visit V(thed assType. C assDoor,
prefixC ass), fCyclic),
V(t heWat chPat h. path) } V(| ookupChanged,

UseDoor ,

f Att enpt edEdge) }
deEval / Eval @ |{ V(thed assType. { V(cycStatus,
cycSt atus prefixC ass), Cl assDoor,

V(t heWat chPat h. path) } fCyclic),
V(| ookupChanged,

UseDoor,
f At t enpt edEdge) }

The dependency set computed by f Cycl i ¢ will actually always be empty when called from the
deEval CycSt at us procedure. Thisisbecause f Cycl i ¢ will only be called for ad assDoor
object y which causes a cycle. The attribute t hed assType. pref i xd ass of y will in this case
denoteobj ect A assType, and thefunctionf Cycl i ¢ of y will returnthe empty set. Wetherefore
removethesend vertex v(cycSt at us, A assDoor , f Gycl i ¢) from Sy Of cycSt at us and obtain
the following simplified characteristic sets:

St;ond Soc Ssend
i ncOaner - & |{ V(I ocal SyntPrefixC ass), [{ V(cycStatus,
Vi sit V(thed assType. Cl assDoor,
prefixC ass), fCyclic),
V(t heWat chPat h. path) } V(| ookupChanged,

UseDoor ,

f At t enpt edEdge) }
deEval / Eval g |{ V(thed assType. { V(I ookupChanged,
cycStatus prefixC ass), UseDoor ,

V(t heWat chPat h. path) } f Att enpt edEdge) }

Overlapping dependency sets can occur for ani ncOaner Vi si t procedure. Consider aQ ass-
Door object X with two dependency sets X. f Cycl i c and X f At t enpt edEdge. If X f Cyclic
contains another A assDoor object Y, the dependency sets X. f At t enpt edEdge and . f At -

t enpt edEdge may overlap. The basic algorithm for i ncOaner Vi si t must be modified to ensure
that the deEval procedureis called only once for each of these dependent doors.

Asan actual example of overlapping dependency sets, consider the (erroneous) Simulaprogram
of Figure 11.17. Thisprogram containsacyclic subclassing hierarchy (Yisdeclared asasubclass
of Xand Xis declared as a subclass of Y). Class Y (the uppermost class) is considered to cause
the cycle.

230 Chapter 11 Advanced Attributions

begi n
Xclass Y; (* Error: dass Y causes cycle *)
begi n
p:=gq;(* Error: p and g are undecl ared *)
end;
edit point
— = [Y]class X
begi n
r :=s;(* Error: r and s are undecl ared *)
end;
class z
begi n
integer p, q, r, s;
end;
end;

Figure11.17 Breaking a syntactic subclass cycle by changing Y to Z.

Consider changing the program by replacing the prefix of class X (the middle class) from Y to Z.
This change would break the syntactic subclassing cycle and result in a correct Simula program
whereall of thename applicationsp, g, r , and s become bound to the corresponding declarations
in Z. Such an edit resultsin a call to thei ncOaner Vi si t procedure of A assDoor X, giving

X foyelic = {V}

Since the name applicationsp, g, r, and s are all undeclared, the dependency sets of UseDoor
objectsfor Xand Y are

Y. fAttenptededge = {p, q, r, s}
X fAttenptededge = {r, s}

and these dependency sets are thus overlapping.

Thei ncOaner Vi si t procedure can be modified in asimple way in order to handle this overlap.
Theideaisto delay the computation of Y. f At t enpt edEdge until all the UseDoor objects of

X. f At t enpt edEdge have been de-evaluated. At this point, the overlapping UseDoor objectswill
no longer be part of the set computed by Y. f At t enpt edEdge, since the de-evaluation of these

UseDoor objects have removed them from al at t enpt edEdge collections. Figure 11.18 shows
the resulting implementation of i ncQaner Vi si t .

Thei ncOaner Vi si t procedureis constructed according to the basic algorithm, but special care
has been taken to order the two de-evaluation iterations of step 2 so that the deEval Look-
upChanged procedure of the UseDoor objectsin at t enpt edSet is called before the

deEval CycSt at us procedure of thed assDoor objectsincycSt at usSet (i.e.Y)iscalled. Thus,
the dependency set of UseDoor objects computed by Y will not contain any of the UseDoor

11.2 Nameanalysisin presence of subclassing

231

objects de-evaluated so far. The reverse ordering of Step 2 would lead to overlapping dependen-
cy sets and violate the legal evaluation state transitions for the overlapping UseDoor objects.

addt o d assDoor
{ inpl incOmnerVisit
{ cycStatusSet: ref Set[d assDoor]; (* dependency set *)
attenptedSet: ref Set[d assDoor]; (* dependency set *)

(* Step 1. Conpute dependent doors *)
cycStatusSet :- fQyclic;
attenptedSet :- fAttenptedEdge;

(* Step 2. De-eval uate dependent doors *)
for $d :- attenptedSet.each do $d. deEval LookupChanged; end for;
for $d :- cycStatusSet.each do $d.deEval CycStatus; end for;

(* Step 4. Evaluate local invariants *)
eval |ocal Synt Prefixd ass;

eval thed assType. prefixd ass;

eval theWat chPat h. pat h;

(* Step 5. Eval uate dependent doors *)
for $d :- cycStatusSet.each do $d.eval CycStatus; end for;
for $d :- attenptedSet.each do $d. eval LookupChanged; end for;

(* Step 6. Add dependent doors to work list *)
eval uator.workl i st.addSet (cycStat usSet);
eval uat or. workl i st. addSet (att enpt edSet) ;

Figure11.18 Procedurei ncOaner Vi si t for d assDoor

Thevisit procedures deEval CycSt at us and eval CycSt at us are implemented according to the
basi c algorithm. The dependency sets of these procedures must be stored outside the procedures
as mentioned in the discussion of algorithm 10-3. Thisis accomplished simply by storing them

inthe A assDoor itself as shown in Figure 11.19.

232 Chapter 11 Advanced Attributions

addt o d assDoor
{ (* dependency set for cycStatus deEval /eval procedures *)
attenptedSet: ref Set[d assDoor];

deEval CycStat us: proc
{ (* Step 1. Conpute dependent doors *)
attenptedSet :- fAttenptedEdge;

(* Step 2. De-eval uate dependent doors *)
for $d :- attenptedSet.each do $d.deEval LookupChanged; end for;

b

eval QycStatus: proc

{ (* Step 4. Evaluate local invariants *)
eval thed assType. prefixd ass;
eval theWatchPat h. pat h;

(* Step 5. Eval uate dependent doors *)
for $d :- attenptedSet.each do $d. eval LookupChanged; end for;

(* Step 6. Add dependent doors to work list *)
eval uator.workl i st. addSet (attenpt edSet);

Figure11.19 Procedures deEval CycSt at us and eval CycSt at us

11.2.8 Circular dependencies

En erroneous program with a cyclic class hierarchy corresponds to an intuitive cyclic chain of
dependencies, as discussed in §3.3.6. However, although the A assDoor handles and breaks
such cycles, the attributesin aQ assDoor are themselves not involved in any cyclic attribute
dependencies. |.e., introducing and/or breaking cyclesin the class hierarchy of the user program
does not lead to cyclic attribute evaluation.

Section §10.9 discussed how potential cyclic dependencies could beidentified by matching send
and receive vertices in the door dependency graphs. Doing this for the A assDoor indicates a
potential cycle between two or mored assDoor objectsviathecycSt at us send and receive ver-
tices. However, from the definition of the dependency function f Cycl i c it isclear that such a
cycle cannot actually occur. This was discussed in §11.2.7 where we noted that the f Cycl i ¢
dependency set for areceiving A assDoor isaways empty.

11.3 References and remote access 233

11.3 References and remote access

References and remote access are simple to handle based on the facilities for classes of the pre-
vious section. Only some small extensions are needed to the door package.

11.3.1 Extensionsto door package

To handle reference types, we extend the Type class hierarchy by new specializations which par-
allel those for class types as shown in Figure 11.20. There is a one-to-one correspondence
between class types and references types. Given a class type, the corresponding reference type
can be accessed and vice versa. Thisis implemented by afunction get Ref Type in Abst r act -
A assType and afunction get A assType in Abst r act Ref Type. The reference types are
specified in Figure 11.21 and the additions to the class typesin Figure 11.22.

unknownType

d assType
Abstract d assType <obj ect d assType
nod assType

Ref Type
Abst r act Ref Type <obj ect Ref Type
noRef Type

Figure11.20 Extensionsto Type class hierarchy

Type

Abstract Ref Type: cl ass Type (* abstract *)
{ getd assType: func ref Abstractd assType fi x;
H

Ref Type: cl ass Abstract Ref Type
{ loc classTp: ref dassType;
i mpl getd assType :- classTp;

obj ect Ref Type: obj ect Abstract Ref Type
{ I nmpl getd assType :- objectd assType;

noRef Type: obj ect Abstract Ref Type;
{ inmpl getdassType :- nod assType;

Figure11.21 Specifications of reference types

234 Chapter 11 Advanced Attributions

addt o Abstractd assType
{ get Ref Type: func ref AbstractRef Type fi x;

addt o d assType
{ ref Tp: obj ect RefType;
i mpl get Ref Type :- refTp;

1

addt o obj ect d assType
{ i mpl get Ref Type :- object Ref Type;

1

addt o nod assType
{ i mpl get Ref Type :- noRef Type;
}.

1

Figure11.22 Additionsto class types

Note that O assType declares a Ref Type part object and that Ref Type has alocal attribute

cl assTp. Thisimplies that the A assDoor must be extended to define the local attribute of

Ref Type objectsasshownin Figure 11.23. A corresponding eval uation statement must be added
to step 4 of the procedure exhEval Vi si t of A assDoor . This completes the extension to the
basic door package to handle classes and subclasses.

addt o d assDoor
{ eq thed assType.ref Tp.cl assTp :- thed assType;

1

Figure11.23 Additionto d assDoor

11.3.2 Extensionsto the main grammar

11.3.2.1 Declaration of reference variables

The main grammar can be extended to allow declarations of reference variables simply by add-
ing a new specialization of the node class Decl Type. This new node class, Ref Decl Type, is
shown in Figure 11.24. The Use son node should be an identifier bound to a class declaration,
i.e. thet p attribute of the Use node should be at least an Abst r act A assType. A local attribute
error detectsif thisisthecaseor not (* 1 *). Theresulting type of the Ref Decl Type nodeis
defined asthereference type corresponding to the class type of the Use node (or obj ect Ref Type

11.3 References and remote access 235

incaseof anerror) (* 2 *). Notethat the call to get Ref Type islegal sincethisisafix function.
(Recall that callsto non-fix functions viareference attributes arelegal only in the door package.)

Ref Decl Type: cons Decl Type(cls: ref Use)
{ loc error: bool ean;
eq error :=not cls.tp in Abstractd assType; (* 1 *)
eq tp :- (* 2%)
i nspect $c :- cls.tp
when Abstract d assType do $c. get Ref Type
ot herwi se obj ect Ref Type;

}s

Figure11.24 Node class Ref Decl Type

11.3.2.2 Remote access

The principles for remote access were described in §3.3.3. For aremote access

a.b

the binding of b depends on the type of a. In Simula, a must be areference variable, or a proce-
durereturning areference. Theleft-hand side of the remote access (to theleft of the dot) can also
be amore complex expression, e.g. another remote access, a“qua’, or a“this’ expression.

We extend the main grammar by anode class Renot eAccess which hasan expression on theleft-
hand side and a Use node on the right hand side (Figure 11.25). A static semantic error occursif
the type of the left hand side is not areference type. The local attribute er r or detectsif thisis
thecaseor not (* 1 *).

To bind the right-hand side in a suitable environment, the pat h attribute of theright-hand sideis
defined as the prefix path of the class of the left hand side reference (* 2 *) . By thisequation,
the right-hand-side pat h attribute is dependent on thet p attribute of the left hand side, and will
receive anew valueif thet p attribute changes. The right-hand-side pat h is thus a non-fix
attribute. The Use node will usethis non-fix attribute to define the pat h attribute of its UseDoor .
It was for this reason we did not require the inherited attribute pat h of UseDoor to be afix
attribute in §8.9.2.4. This alows the UseDoor to be used also for remote accesses.

The resulting type of the remote access expression is the same as the type of the right hand side
(* 37%).

236 Chapter 11 Advanced Attributions

Renot eAccess: cons Exp(lhs: ref Exp, rhs: ref Use)
{ loc error: bool ean;
eq error :=not |lhs.tp in AbstractRef Type;
eq rhs.path :-
i nspect $r :- lhs.tp
when Abstract Ref Type do $r. get d assType. get Prefi xPat h
ot herwi se obj ect d assType. get Prefi xPat h;
eq tp :- rhs.tp; (* 3 %)

(* 1)
(*27)

Figure11.25 Node class RemoteAccess

11.3.3 Circular dependencies
It was noted in 8§3.3.6 that an erroneous (but syntactically correct) declaration of areference
variable:

ref (a) a;
leadsto anintuitively cyclic dependency. An attributed syntax treefor thisdeclaration, according
to the main grammar extended by Ref Decl Type in §11.3.2.1, resultsin acorresponding circular

chain of attribute dependencies as shown in Figure 11.26. The evaluation converges and results
in a suitable attribution and error-detection.

Ref Decl Type
ORIN

Var Decl

tp :-

inspect $c :- cls.tp

when Abstractd assType do
$c. get Ref Type

ot herw se obj ect Ref Type;

reference
-~ dependency

bi ndi ng
L tp

Figure11.26 Circular dependency chain for erroneous declaration of reference

11.4 Type-checking reference assignments 237

This circularity is similar to the one for “like-types’ discussed in §10.9.1, but in contrast to the
“liketype” example, this circularity has exactly one solution, i.e. the grammar is determined for
this problem: If one or more declarations of reference variables areinvolved in acycle, the type
of al these declarations will be obj ect Ref Type. Thisisinsured by the equation defining t p in
Ref Decl Type asshown inthefigure. Therest of the equations on the dependency chain are copy
equations. Furthermore, the er r or attribute of the Ref Decl Type will be true for al the declara-
tions on the cycle since the UseDoor should be bound to a declaration of a class and not a
declaration of areference variable.

The evaluation converges after only onecyclein the evaluation. Figure 11.27 showsthevisit pro-
cedure calls resulting from adding the erroneous declaration.

eval uat or. repl aceSubt r ee
(* Exhaustive phase *)
Var Decl . exhVi si t
Ref Decl Type. exhVi si t
Use. exhVi sit
UseDoor . exhEval Vi si t
eval binding (-> UseDoor.binding == null Entry,
UseDoor . t p == unknownType)
Decl Door . exhEval Vi si t
UseDoor . deEval LookupChanged
eval theEntry.ident
eval theEntry.tp (-> theEntry.tp == obj ect Ref Type)
UseDoor . eval LookupChanged
eval binding (-> UseDoor. bi ndi ng == Decl Door.theEntry,
UseDoor . tp == obj ect Ref Type)

(* Non-local incremental phase *)
Use. i ncDoor Vi si t
Ref Decl Type. i ncSonVi si t
Var Decl . i ncSonVi si t
Decl Door . i ncOaner Vi si t
(* converged value for tp *)

Figure11.27 Visit procedure calls during evaluation of cyclic dependency

11.4 Type-checking reference assignments

In 83.5 we discussed type checking for object-oriented languages, and noted that this involves
comparison of formal qualifications.

To type-check areference assignment, r A : - rB, theformal qualifications of r Aand r B can be
compared by using thefunctionsubcl assQ Equal inAbst ract A assType. However, sincethis
function is non-fix it must not be called directly from the main grammar, but only from inside a
door object. A new door class Conpar ed assDoor istherefore added to the door package. A
straight-forward way of designing this door would be to give it two inherited attributes for the
two class types to be compared, and one synthesized attribute for the result of the subcl as-

238 Chapter 11 Advanced Attributions

sO Equal function called on one of the inherited attributes. However, thiswould require the
node classfor the reference assignment to use two door objects since comparisons are needed in
both directions. Instead, we will use another design where the Conpar e assDoor does both
comparisons.

Conpar ed assDoor: door
{ i nh shoul dBeGend ass: ref Abstractd assType;
i nh shoul dBeSpecd ass: ref Abstractd assType;
syn reverseQ der: bool ean;
syn i nconpar abl e: bool ean;
orderX: func bool ean : =
shoul dBeSpecd ass. subcl assCO Equal (shoul dBeGend ass) ;
eq reverseQder :=
i f orderX
t hen fal se
el se
shoul dBeGend ass. subcl assO Equal (shoul dBeSpecd ass) ;
eq inconparable : =
i f orderX
then fal se
el se not
shoul dBeGend ass. subcl assQ Equal (shoul dBeSpecd ass) ;

Figure11.28 CompareClassDoor

Figure 11.28 showsthe specification of Conpar ed assDoor . The two inherited attributesshoul -
dBeGend ass and shoul dBeSpecd ass stand for “should be the general class’ and “should be
the specialized class’. Theideaisthat when doing aclass comparison in type-checking, the nor-
mal (and statically checkable) case isthat one of the classesis more general than the other. As

an example, in the Simula reference assignment, the left-hand side should be more general than
theright-hand side. The synthesized attributer ever seQr der isdefined astrue, if shoul dBeGen-
d ass is, in fact, a specialization of shoul dBeSpecd ass. The synthesized attribute

i nconpar abl e isdefined astrueif the two classes are incomparable, i.e. if neither classismore
general or special than the other one.

11.4.1 Extension to main grammar

The reference assignment in Simula can be modelled as shown in Figure 11.29. The node class
Ref Assi gnSt nt uses the Conpar ed assDoor to compare the formal qualifications of the | eft-
hand side and the right-hand side according to the cases listed in 83.5. The local attributes
errorLhs, errorRhs, errorl nc detect static semantic errors in the assignment. The local

11.4 Type-checking reference assignments 239

attribute r t CheckNeeded detectsif arun-time check is needed to test the actual qualification of
the right-hand side before assignment.

Ref AssignStni: cons Stni(lhs: ref Exp, rhs: ref Exp)
{ loc errorLhs: boolean; (* True if lhs not a reference *)
| oc errorRhs: boolean; (* True if rhs not a reference *)
|l oc errorinc: boolean; (* True if |Ihs inconparable to rhs *)
| oc rt CheckNeeded: bool ean; (* True if runtine check needed *)
cDoor: door obj ect Conpared assDoor;
eq cDoor. shoul dBeGend ass : -
inspect $r :- lhs.tp
when Abstract Ref Type do $r. get d assType
ot herwi se obj ect d assType;
eq cDoor. shoul dBeSpecd ass : -
inspect $r :- rhs.tp
when Abstract Ref Type do $r. get d assType
ot herwi se nod assType;
eq errorLhs := not I hs.tp in Abstract Ref Type;
eq errorRhs := not rhs.tp in Abstract Ref Type;
eq errorlnc := cDoor.inconparabl e;
eq rt CheckNeeded : = cDoor.reverseQ der;

Figure11.29 Extension to main grammar: RefAssignStmt

11.4.2 Dependency analysis
We now do a dependency analysis for the Conpar ed assDoor (Figure 11.28).

Both the synthesized attributes r ever seQr der and i nconpar abl e of the Conpar e assDoor
depend on the pref i xA ass attributes of A assType objects. We model this non-local depen-
dency by areceive vertex v(conpar e) in Conpar ed assDoor and a send vertex v(conpar e,
Conpar ed assDoor , f Conps) in A assDoor . The Conpar ed assDoor objects which depend on
thepr ef i xA ass attribute of agiven A assType object can bekept track of in acollection object
conps inthe d assType object, and a condition cConps can be added to Conpar ed assDoor to
maintain these collections.

In deducing which pr ef i xA ass attributes a given Conpar ed assDoor object x depends on, it
isuseful to consider actual dependencies rather than access dependencies. We first note that the
values of the synthesized attributes of x cannot change unless any of thepr ef i xO ass attributes
corresponding to a lattice edge between x. shoul dBeGend ass and x. shoul dBeSpecd ass
changes. We also note that if any of these inherited attributes denotes either of the constant
objects obj ect d assType or nod assType, changesto the pr ef i xA ass attributes cannot
affect the values of the synthesized attributes.

Local copy attributes for the inherited attributes shoul dBeGend ass and shoul dBeSpecd ass
are added to allow de-evaluation of the cConps condition. The additions are shown in Figure

240 Chapter 11 Advanced Attributions

11.30 and the resulting dependency graphsin Figure 11.31 and Figure 11.32. For brevity, the
definition of cConps is only sketched.

addt o d assType
{ conps: obj ect UnorderedCol | ecti on[Conpared assDoor] ;
}

addt o Conpar ed assDoor
{ I oc | ocal Shoul dBeGend ass: ref Abstractd assType;
| oc | ocal Shoul dBeSpecd ass: ref Abstractd assType;
eq | ocal Shoul dBeGend ass : - shoul dBeGend ass;
eq | ocal Shoul dBeSpecd ass : - shoul dBeSpecd ass;
cConps: cond
i f | ocal Shoul dBeGend ass == obj ect d assType or
| ocal Shoul dBeGend ass == nod assType or
| ocal Shoul dBeSpecd ass == obj ect d assType or
| ocal Shoul dBeSpecd ass == nod assType
then true
else ...; (* nenber of dassType.conps for |attice edges
bet ween | ocal Shoul dBeGend ass and
| ocal Shoul dBeSpecd ass *)

}s
addt o d assDoor

{ fConps: func ref Set[Conpared assDoor]
:- thed assDoor. conps. cont ent s;
}s

Figure11.30 Additions due to dependency analysis of CompareClassDoor

shoul dBeGend ass | [shoul dBeSpecd ass | | reverseQrder | | inconparable |

| ocal Shoul dBeGend ass | | | ocal Shoul dBeSpecd ass

cConps (= conpare

Figure11.31 Dependency graph for Conpar ed assDoor

11.5 Error detection 241

[encPath || syntPrefixCass |[locPath |[tablel|classTp|| causesCycle |

[Iocal Synt Prefixd ass

| t heCl assType. prefi xd ass

cycSt at us

[thed assType. owner | S~ ClyassDoor TS
fCyclic

[theTabl ePat h. tabl e |

: : conpare
[prefixPath.first| Conpar eCl assDoor [P
f Conps
[prefixPath. second|
[thewat chPat h. pat h |
staticPath.first | I ookupChanged
UseDoor

stati cPath. second | f ALt enpt edEdge

Figure11.32 Updated dependency graph for ClassDoor

Thevisit proceduresfor Conpar ed assDoor are straight-forward implementations according to
the basic visit procedure a gorithm. The extensionsto the visit procedurefor A assDoor arealso
straight-forward.

The send vertex v(conpar e, Conpar ed assDoor , f Conps) leadsto a dependency set overlap for
i ncOaner Vi si t which is analogous to the dependency set overlap caused by the send vertex
V(I ookupChanged, UseDoor , f At t enpt edEdge). This overlap can be handled in the same man-
ner as described in §11.2.7.

11.5 Error detection

In our examples so far, detection of static-semantic errors has been specified by local boolean
attributes in the main grammar. In an interactive environment, it should be possible to monitor
the errors during program editing, e.g. by marking the erroneous constructsin the unparsed pre-
sentation of the program, or by maintaining alist of errorsin a separate window. In either case,
the presentation needs to be updated according to theincremental updates of the attribution. This
can be accomplished by using doors as an interface mechanism to the incremental evaluation.

242 Chapter 11 Advanced Attributions

The visit procedures of these doors are implemented in order to achieve controlled side-effects
in external components such as the editor and window system.

A door class Er r or Door can be specified which has two inherited attributes: a boolean attribute
error and astring attribute nessage. Theinformal semanticsisthefollowing: if er r or hasthe
value true, there will be a presentation of the error in the appropriate window, associating the
owner node of the Er r or Door with the string nessage (an error message). The visit procedures
can be written to add and remove the error presentation as appropriate, e.g. as shown in Figure
11.33. Theerror Present er used in thisimplementation could be a global object connected to
the structure-oriented editor.

Error Door: door
{ inh error: bool ean;
i nh message: string fix;

| oc nark: ref ErrorMarking; (* May be NONE *)

i mpl exhEval Vi si t
{if error then
nark :- errorPresenter. AddMar ker (owner, message);
el se
nark :- NONE
end if;

b

i mpl exhDeEval Vi sit
{if mark =/= NO\E t hen
error Present er. RenoveMar ker (mar k) ;

mark :- NON\E
end if;
b
i mpl i ncOanerVi sit
{if error and mark == NONE t hen
nmark :- errorPresenter. AddMar ker (owner, message)
else if not error and mark =/= NONE t hen
nmark :- errorPresenter. RenmoveMar ker (mar k)
mark :- NONE
end if;
b
b

Figure11.33 ClassErr or Door

11.6 Discussion 243

11.6 Discussion

The door package resulting from the extensionsintroduced in this chapter handlesthe major stat-
ic-semantic problems occurring in object-oriented languages such as nested block structure,
classes, reference variables, and remote access. In order to cover afull object-oriented language
it isalso necessary to support procedures and parameters. In 811.6.1 we sketch how this can be
done. In §11.6.2 we discuss the possibility of supporting virtual classesin BETA.

11.6.1 Proceduresand parameters

The most important functionality missing in our door package is the possibility for specifying
procedures and parameters. This functionality is, however, straight-forward to add. The follow-
ing sketch corresponds approximately to the facilities of the door package used in the Orm
system:

* A door class ProcDoor, similar to Bl ockDoor and O assDoor

* A classProcType, similar to A assType. The ProcType contains information about the
parameter types and the return type.

* A door class Par anDecl Door , for specifying the formal type for aparameter at agiven index
* A door class Par anseDoor , for retrieving the formal type of a parameter at a given index

» A classKi nd which can be specialized to anumber of constant objects, e.g. Const ant Ki nd,
Vari abl eKi nd, Ref er encePar anKi nd, Val uePar anki nd, etc.

e Extend the Decl Door and UseDoor with aKi nd attribute.

The use of virtual proceduresin addition to ordinary non-virtual procedures has only a small
effect on the needed functionality. Although virtual and non-virtual procedures have different
dynamic semantics, the static-semantic analysisisdone in practically the same manner for both
these kinds of procedures. The main difference from a static-semantic point of view isthat avir-
tual procedure may haveimplementationsin subclasses which match the virtual specification. A
virtual procedure implementation plays the role of both a name application and a name declara-
tion. It isaname application in that it matches a name declared in a superclass. It isaname
declaration in that there must be no other declarations with the same name in the same block. In
many object-oriented languages, including Simula, avirtual procedure specification hasto be
explicitly specified in the syntax, whereas an ordinary procedure declaration will be either anon-
virtual procedure or avirtual procedureimplementation, depending on if thereisamatching vir-
tual specification in a superclass or not. This behavior can be built into the Pr ocDoor .

11.6.2 Supportingvirtual classesin BETA

The Door Attribute Grammars as introduced in this thesis have the property that each semantic
object is either constant or a part-object owned (transitively) by a syntax node. All semantic

244 Chapter 11 Advanced Attributions

objects are thus static in the sense that their existence is goverened by the syntax tree alone. One
could al'so imagine dynamic objects, whose existence depends on attribute val ues. Some form of
dynamic objectsis needed in order to handle the virtual superclasses of BETA. The declaration
of an extended virtual class which is used as a superclass, leads to the implicit construction of
new path vertices for subclasses to the virtual superclass, as discussed in §3.3.5. Since the num-
ber of such subclassesisnot limited by the grammar, these new path vertices cannot be declared
as transitive part objects of the syntax node. The existence of such an implicit path vertex
depends both on the existence of the subclass in question, and on the existence of the extended
superclass. If any of these declarations is removed, the implicit path vertex should be removed
aswell. Clearly, there is a need here for some mechanism for adding and removing semantic
objects dynamically, as a consegquence of other attribute values. We have not investigated this
issue, but our guessisthat it should be possible to add such a mechanism. However, thisisan
areafor future research.

The ordinary use of virtual classesin BETA (corresponding to parametrized types), does not
require dynamic objects to be introduced. This use of virtual classes can be based on the same
visibility graphs as those used in our door package (combined block-structure and subclassing).
Thiswas also discussed in §3.3.5. The main difficulty when implementing ordinary virtual class-
esisthat akind of double lookup is needed when binding an identifier: one ordinary lookup to
find the formal declaration of the name application, and an additional to find the actual declara-
tion. To handle this, the definition of bi ndi ng in UseDoor would need to be modified. Although
we have not tried to specify this, we see no reason why it should not be possible. It isalso an
area of future study to actually verify this.

11.7 Summary

In this chapter, the basic example door package of §8.9 has been extended to handle the major
problems in static-semantics appearing for object-oriented languages. The resulting door pack-
age handles name analysis according to the visibility graph based method of §3.3. Arbitrary
combination of block structure and subclassing is supported. Cyclic class hierarchiesin the user
program are detected and resolved by breaking the cycle at one of the classes. Reference vari-
ables, remote access, and type checking of reference assignment is supported. The door package
makes use of history-dependent error detection for errors like multiple declaration of identifiers
and cyclic subclassing. A door class was introduced for communicating error information to
external components. All the examples have been implemented and tested in practice.

Chapter 12
Evaluation

This chapter reports on practical experience from using Door AGs in the Orm environment. We
discuss actual time consumption and estimates of space consumption.

12.1 Introduction

Theincremental static-semantic analyzer in the Orm programming environment is based on a
precursory form of Door AGs. The kernel of semantic primitives used in Orm correspondsto a
door package, and the grammar used for specifying static-semantics corresponds to a main
grammar. The example door package devel oped in Chapters8to 11 isessentially areformulation
of the most important parts of the Orm kernel asaformal door package. In addition, the example
door package has been implemented exactly according to the techniques presented in thisthesis.
Thisimplementation was done in a separate testbed, and is not yet integrated into the Orm
system.

12.2 Main grammar for Simula

The main grammar for Simula used in Orm contains around 100 node classes of which around
half are related to declarations, half to expressions, and afew to statements. Examples of sup-
ported declarations include classes, procedures, parameters to classes and procedures, arrays,
simpletypeslikeboolean, integer, real, and character. Examples of supported statementsinclude
value assignment, reference assignment, if-statement, while-statement, for-statement, procedure
call. Examples of supported expressionsinclude remote access, arithmetic expressions (+, -, ...),
boolean expressions (and, or, ...), relations (=, <, >, ...), and reference expressions (in, is, qua,
this, new...), in al around 40 expressions. The major part of Simulais covered, but afew con-
structs have been |eft out such as goto, labels, and switches, block statements, name parameters,
and explicit attribute protection (hidden/protected). The resulting main grammar for Simula has
1-visit attribute dependencies although there are no restrictions on the order in which the decla-
rations may occur.

246 Chapter 12 Evaluation

12.3 Modulesin Orm

Orm Simuladiffers from standard Simula by supporting a module concept which is dightly
more general than the “external” construct in standard Simula. The module concept in Orm
makes it possible to define fragments of programs as separately stored (and compiled) units. A
moduleisin many ways similar to astatically allocated object. It may contain classes, proce-
dures, local variables, and code. Importing a module is semantically similar to inspecting an
object: all the declarationsin the module become visible in the block which contains the import.

Modules can be understood in terms of Door AGs by considering connecting the syntax trees of
two modules viatwo doors as shown in Figure 12.1. However, the module concept used in Orm
is currently hand-coded, and aformalization of this use of doors remains an area of future
research. Bindings across modul e boundaries are not handled in the same way as bindingswithin
amodule. For example, bindings which occur via an import-export door do not leave tracesin
the exporting module. I nstead, theimport door maintainsinformation about the bindingsin order
to facilitate updates when the imported modul e is changed. The exporting module does not con-
tain any information about its importing modules.

Importing module M1 Exporting module M2

| mpor t Door Expor t Door

Figure12.1 Connecting modules by doors

Interactive and incremental support for changes across module boundariesis currently rather
limited in Orm. An edited module is always linked to stored versions of its imported modules.
|.e., thereisno support for editing two connected modul es where changes in one modul e affects
the other module directly. Suppose amodule M1 imports another module M2. If anew version
of M2 is stored, this does not affect M1 which will continue to use the old version of M2. To
switch to the new version, the user hasto give an explicit command to the M1 modul e to update
itself to import the newest version of M2. In the current implementation of Orm, thisisimple-
mented internally by removing the import of the old version followed by inserting an import to
the new version.

12.4 Time consumption 247

Thereare several waysinwhich the support for modules could beimproved. Oneimportant issue
isto allow connected editing of two or more modules. 1.e., changes to one of these modules
should immediately cause corresponding updatesin the other modules. In particular, thiswould
be useful when the same person works simultaneously with a number of related modules. One
could also consider connecting modules edited by different users asit is donein the Mercury
system [KKM87].

Another interesting issueis to limit the re-evaluation at module updates. The current technique
of removing and inserting an import in order to switch to the newest version of animported mod-
ule could be considerably improved. An improved strategy would be to identify which entities
in M2 were actually changed, and re-evaluate only dependents on these entities. Thiswould be
similar in nature to the idea of “smart recompilation” suggested by Tichy [Tic86].

12.4 Time consumption

For most edit operations, the incremental static-semantic analysisin Orm does not cause notice-
abledelays. Thisisin spite of several factorsin the current implementation of Orm which could
be substantially speeded up in a system intended for production use. In particular, the attribute
expressions in the main grammar are interpreted rather than compiled.

For changes to statements, there are no non-local dependents, and the time for incremental re-
evaluation isdirectly proportional to the size of the change. Adding or del eting a statement does
not cause any noticeable delay.

For changes to declarations, the time for re-evaluation depends on the number of affected use
sites. Changesto declarations thus have the potential of causing arbitrary long delay times since
there may bean arbitrary number of use sites affected by the change. Neverthel ess, most changes
to declarations affect only a small number of use sites, and in these cases, the time for re-evalu-
ation isnot noticeable. In particular, avery common operation isto add anew declaration which
isnot yet used anywhere. Although the declaration may be visible throughout the program, there
are no actual non-local dependents, and the time for re-evaluation is practically zero.

12.5 Space consumption

Space consumption in Orm is currently unnecessarily high because the implementation efforts
have been directed towards adding interesting functionality rather than optimizing the system.
Simple changes could give space savings of several factors. For this reason, we have not made
any measurements on the space consumption of Orm. Instead, we have calculated estimated
space costs for the example door package of Chapters 8 to 11. These costs are based on some
assumptions on the structure and static-semantic characteristics of average programs for which
we only have preliminary estimates. The resulting figures should therefore be taken only as a
rough indication. Nevertheless, we have tried to make realistic assumptions which are more on
the pessimistic than the optimistic side.

248 Chapter 12 Evaluation

12.5.1 Static-semantic characteristics

The space cost for the semantic attribution of agiven program depends on the syntactic structure
of the program, on afew static-semantic characteristics, and on the basic costs for objects and
references etc.

The dominant factor isthe number of name applications and their distance from the correspond-
ing declaration. When binding a name application, anumber of blocks are passed during lookup
(passed without finding a match). We split this number into two quantities: SBLK and PBLK,
where SBLK is the number of blocks passed in the “ static direction”, i.e. upwards along the nest-
ing hierarchy, and PBLK is the number of blocks passed in the “prefix direction”, i.e. upwards
along the class hierarchy. The total number of blocks passed during lookup (without finding a
match) is PBLK+SBLK. For reference assignments and other constructs which require comparison
of formal qualifications, we use the quantity PDI ST for the number of prefix class edges between
the two compared qualifications.

M easurements on alarge body of actual programs should be made in order to give accurate esti-
mates of the average values of these quantities. In the lack of such measurements we instead
make the following assumptions about the name applications:

* 50% are accesses to local variables and parameters (SBLK=0, PBLK=0).

* 20% are accesses to instance variables from inside a procedure (SBLK=1). We estimate
PBLK=1.

* 20% are remote accesses to variables and procedures (SBLK=0). We estimate PBLK=1.

» 10% are references to other entities. (Typically class names occurring in declarations of ref-
erence variables.) We estimate SBLK=3, PBLK=6, corresponding to an estimated average depth
of 4 in the nesting hierarchy and 7 in the class hierarchy.

Furthermore, we estimate the average of PDI ST to be 1. We do not think any of these estimates
is optimistic. These estimates give averages according to the table below.

estimated average

SBLK # of blocks passed in “static” direction 0.5
PBLK # of blocks passed in “prefix” direction 1
PDI ST |# of prefix class edges between conpared cl asses 1

12.5.2 Cost for objectsand references

The space cost also depends on the implementation of objects and dynamic and static references
attributes. We assume the door package isimplemented in an object-oriented language with gar-
bage collection. A reasonable implementation of such alanguage could use 12 bytesin object
overhead (CBJ): one pointer to the class template, one pointer for the static link, and one word

12,5 Space consumption 249

for garbage collection information. The static link is needed if the object or itsinner blocks (e.g.
virtual procedure implementations) access global information outside the object. If no such
information is accessed (or if some other access method is used), the object overhead could be
reduced by removing the static link. Depending on the garbage collection algorithm, it might be
possible to also remove the word used for garbage collection information.

Dynamic (DYN) and static (STAT) reference attributes are typically implemented by pointers (4
bytes). It would be possible to reduce al so this cost by inlining part-objects (giving STAT=0). The
table below shows the costs assumed in the following discussion.

assumed cost in bytes

oBJ over head per object 12
DYN dynamic reference attribute
STAT static reference (to part-object)

12.5.3 Cost for doors

To calculate the space costs for the doors we must also estimate the space for collection mem-
berships as stated by the conditions in the Door AG. There are two kinds of collection objects
used: Unor der edCol | ect i on (used for most collections) and Di ct i onary (used for collecting
the UseDoor objectswhich have attempted to bind to aSynbol Tabl e). Wewill usethe quantities
TRACE and KEYTRACE to model membershipsin these collections.

A reasonably space-efficient implementation of the Unor der edCol | ect i on would be to use a
linked list of small arrays of, say, 4 elements in each. The cost for a TRACE membership would
then be (CBJ+DYN+4DYN) / 4, i.e. object overhead + link reference + the 4 membership referenc-
es, and splitting the total on 4 memberships. The same technique could be used for KEYTRACE,
but storing also a string reference for each member, giving a cost of (CBJ+DYN+4DYN+4DYN) / 4.

TheUWnor der edCol | ect i on object would have an overhead of CBJ+DYN+2TRACE (thelatter isthe
cost for an average half empty array), and, similarly, the Di cti onary object an overhead of
CBJ+DYN+2KEYTRACE. The table below summarizes these costs.

bytes
TRACE menber ship in UnorderedCol | ection |[(OBJ+5DYN)/4 8
KEYTRACE |nenbership in Dictionary (OBJ+9DYN) / 4 12
UNCOLL over head for UnorderedCollection OBJ+DYN+2TRACE 32
DI CT overhead for Dictionary OBJ+DYN+2KEYTRACE 40

Given these quantities, it is ssmple to calcul ate the space costs for the doors as follows:

250

overhead for door object

static reference fromowner node to door

dynam c reference fromdoor to owner
| ocal attributes in door
condi tions in door
for each part object:
static reference to part object
obj ect overhead for part object
local attrs of part object
part objects of part object

Chapter 12 Evaluation

aBJ

STAT

DYN

DYN

TRACE + z KEYTRACE

STAT
aBJ

T RR K XBPRR

The following table shows the resulting costs and the estimates in bytes.

Space cost bytes
Root Door OBJ + STAT + DYN 20
Bl ockDoor 50B) + 6STAT + 6DYN + DI CT 148
Cl assDoor 80BJ + 11STAT + 12DYN + DI CT + 2UNCOLL 292
Decl Door 20BJ + 3STAT + 7DYN + UNCOLL 96
UseDoor OBJ + STAT + 4DYN + (SBLK+PBLK) * KEYTRACE + 66

PBLK* TRACE + TRACE

Conpar eCl assDoor |OBJ + STAT + 3DYN + PDI ST* TRACE 40

12.5.4 Cost for syntax trees

To estimate the space cost for the syntax tree of an average program, we have made some mea-
surements on Simula programs. The measurements were made on atotal of approximately
15000 lines of Simulacode. In order to compare the textual representation with areasonable syn-
tax tree representation, the following quantities were measured: textfile size (in lines and bytes),
number of tokens, number of identifiers, average length of identifiers, and average number of
occurrences of the same identifier. The table below summarizes these measurements.

Average over 15000 lines of Simula code
Size of textfile in bytes per line 30 bytes/ line
Nunber of tokens per line 4 tokens/ line
% of tokens which were identifiers 35%
Average length of identifier 10 characters
Aver age nunber of occurrences of the 10
same identifier

It isreasonabl e to assume that the number of syntax nodesin an abstract syntax tree isthe same,
or dightly larger than the number of tokensin the text representation. \We have made some pre-
liminary measurements which confirm this. We have estimated this factor to 1.35 to take into

12,5 Space consumption 251

account that name applications are represented by two nodes: aUse and an | D node, according
to the main grammar of §8.9.4, whereas they correspond to only a single token.

The cost for the average token is then
CBJ+2DYN+0. 35(OBJ+2DYN+DYN+(CBJ+10) / 10) = 29 bytes

This corresponds to a syntax node object + father and son references + an average 35% of an | D
son node which has a reference to atext string object of 10 characters, shared by 10 other | D
nodes.

The space cost for an abstract syntax tree is thus about 4 times as high as the space cost for the
corresponding textual representation. Thisisin approximate agreement with other reported fig-
ures. For example, the Rational environment for Adais reported to have a corresponding factor
of 4.5 and a cost of 20 bytes per syntax node [WL86].

12.5.5 Cost for semantic attribution

To compute the actual space cost for the semantic attribution, we have measured the number of
tokens corresponding to the different door classes. The weightsin the table below are the mea-
sured proportions of these tokens. These measurements were made on the 15000 lines of Simula
code used in the measurements of the previous section. The average space cost per door for one
token is computed by multiplying this weight with the cost for one door:

Door Corresponding token Weight by(tﬁﬁer b){é&ksezer
UseDoor Name application 30% 66 19.8
Decl| Door Name decl aration 5% 96 4.8
Cl assDoor Cl ass 0,3% 292 0.88
Bl ockDoor Procedure 1,5% 148 2.22
Conpar eCl assDoor Ref er ence assi gnnment 3% 40 1.20
SUM=29

Thetotal average cost for the semantic attribution amounts to 29 bytes per token. Thisis, inci-
dentally, the same figure as for the syntactic representation. |.e., the semantic attribution takes
up the same amount of space as the syntax tree. For comparison, the Rational environment is
reported to use around 25% less space for the semantic attributes than for the syntax tree, which
would correspond to 15 bytes per syntax node for their system.

252 Chapter 12 Evaluation

12.6 Comparison to other work

We have reviewed other techniques for incremental semantic analysisin §3.7 and 84.6. To our
knowledge, none of these methods has been applied successfully to object-oriented languages.
The most advanced languages which have been specified and implemented using other methods
are modular languages like Modula-2 [Vor90a], [BGV 92]. The subclassing feature of object-ori-
ented languages introduces a recursive el ement in name analysis which does not follow the
syntax tree. Many approaches have specific support for nested scopes which follow the syntax
tree, e.g. [JF82], [BC85], [Ho087], but fail to handle more complex combinations. The naming
specification language NSL of Vorthmann [Vor90a] appears to be able to describe scopes for
object-oriented languages, but has not been applied to such languages. Furthermore, NSL lacks
facilities for handling erroneous cyclic subclassing and type checking of reference assignments.

The ability to specify objects and references declaratively seems to be unique for Door AGs.
Most other systems adopt a value-oriented specification language, although objects and refer-
ences are often used internally for implementing higher-level constructs and for speeding up
evaluation. The constructsin Door AGs bear similaritiesto constructs of other attribute-grammar
based methods. E.g. the collections and conditions in Door AGs are similar to the set-valued
attributes and membership constructs of [Kai85]. The door classes have similaritiesto the main-
tained and constructor attributes of [BC85]. However, the explicit use of objects and references
in Door AGs make the technique more general and allows description of more advanced
attributions.

The use of history-dependent error checking also seems to be unique for Door AGs. Other sys-
tems intended for static-semantic checking require the grammar to specify exactly one
attribution for each possible syntax tree and cannot handle such history-dependencies.

Circular dependencies via non-local dependencies are easily handled in Door AGs, smply by
inserting a convergence test in one of the door visit procedures. We find it important and even
essential to be able to handle such dependencies. If circular dependencies are not allowed some
problems will be very difficult to define, leading to more complex attributions, less suited for
incremental update. However, few other methods allow circular dependencies. Those which do,
e.g. [Far86] and [Jon90], are not directed towards solving advanced scope handling.

Space consumption seems to be a neglected areain the field of attribute grammars and few
papers report actual figures on this. Attribute grammars have a reputation of being very space-
intensive. For example, Kiong and Welsh [KW92] developed a hand-coded incremental seman-
tic analyzer for Pascal which is reported to use 8 times less storage for the semantic attribution
than doesthe Pascal editor supplied with the Cornell Synthesizer Generator version 1.0.1. When
developing the Door AG techniqueit was an important goal to allow space-efficient attributions
to be defined. In the previous section we gave estimates on space consumption which indicate
that the space consumption isin fact low, approaching that of hand-coded systems.

12.7 Summary 253

12.7 Summary

Our experience from implementing Door AGs shows that the techniqueis useful in practice for
constructing highly interactive program devel opment environments. The resulting responsetime
after program modificationsis very low in Orm, and usually not noticeable by the user. Thisis
in spite of the fact that the system interprets the attribute expressions in the main grammar. This
confirms the view we took in 82.4, where we stated that by using appropriate incrementa tech-
niques, the amount of data which needs to be recomputed is small after each change, and one
does not have to use the fastest most optimized methods to recompute this data.

Space consumption, on the other hand, isimportant to try to keep low. Our estimate of the space
consumption for aDoor AG based system gives arough indication of about the same amount of
space for the semantic attributes asfor the syntax tree, i.e. atotal of 30+30=60 bytes per average
attributed syntax node, corresponding to a factor 8 larger than a text representation. These esti-
mates were based on reasonable, probably pessimistic assumptions about syntactic and static-
semantic properties of average programs and costs in the underlying implementation language.
These figures are on a par with the space consumption of hand-coded commercial incremental
systems.

254

Chapter 12 Evaluation

Chapter 13
Conclusions and Future Work

13.1 Contributions

The main contribution of thisthesisis a new technique for implementing incremental static-
semantic analyzers: Door Attribute Grammars. The motivation for developing this technique
wasto be able to handl e object-oriented languages. Requirements on the technique included that
it should allow fine-grained incremental updating in order to keep the static-semantic informa-
tion up to date after each single edit operation performed by the user, it should allow space
efficient representation of the static-semantic information, and the technique should scale up in
order to handle large programs.

Door Attribute Grammars extend standard attribute grammars by allowing objects and referenc-
es to be specified as part of the attribution of a syntax tree. This allows the comparatively
complex static-semantics of object-oriented languages to be described in a straight-forward
manner, including problems like name analysis in the presence of subclassing, remote access,
and type checking of reference assignments. The resulting attributions are space efficient and
suited for incremental updates. In particular, the best methods for incremental name analysis can
be used, resulting in response times proportional to the number of affected use sites after a
change to a declaration. In practice, the number of affected use sitesis small and the response
time is un-noticeable by the user even when changing a global declaration in alarge program.

We have built a complete incrementally compiling environment: Mjgainer/Orm, which currently
supports the major part of Simula. This system is based on a precursory form of Door AGs. The
Door AGs as presented in this thesis have also been tested in practice for anumber of key prob-
lems. This practical experience shows that the technique fulfills the requirements and can be
used in practice for constructing highly interactive program development environments.

Although the motivation for developing Door AGs was to handle object-oriented languages, the
technique is general and can be applied to any language based on a context-free grammar.

256 Chapter 13 Conclusions and Future Work

Theintroduction of objectsand referencesin the attribution isaradical step away from standard
AGswhich are based solely on value semantics. Neverthel ess, the Door AG formalism preserves
the principle idea of standard AGs, namely a declarative description which states the invariant
properties of a correct attribution.

Therest of this section summarizes the most interesting aspects on Door AGs.

Elementsin Door AGs

A Door AG is an extension of astandard AG. The extensions can be summarized as follows:

* A syntax node can be extended with part-objects. A part-object owned directly by a syntax
node is called a door, and transitively owned objects are called semantic objects.

» A semantic object can be specified as a collection, meaning that it is a collection of member
objects, and the members are defined non-locally by conditions.

» Attributesmay bereferences. |.e. they may have object identity values, denoting other nodes,
doors, or semantic objects.

The attributes of doors and semantic objects are defined in the same way as the attributes of syn-
tax nodes in standard AGs: by means of equations. One of the most important advantages of
Door AGs compared to standard AGsis the fine granul arity of definition which can be obtained.
Itispossibleto let the equations and conditions define avery small amount of information each.
Thisisin contrast to standard AGs where one is forced to let some equations define very large
information structures. The finer granularity in Door AGs allowsthe size of AFFECTED (the set
of affected attributes after a syntactic change) to be dramatically decreased for some important
problems and therefore makes it possible to implement much more efficient incremental
evaluators.

Applications of Door AGs

The use of objects and references for attributing syntax trees makesit is possible to implement
name analysis in a straight-forward way, using explicit visibility graphs, symbol tables, and ref-
erences between identifier declaration and application sites. This gives compact and simple
attributions which are suitable for incremental updates and for access from external tools.

To exemplify the applicability of Door AGs and to show that the suggested implementation tech-
nigue works, an advanced example door package was described in Chapter 11. The door package
handles the major static-semantic problems occurring in object-oriented languages: It supports
arbitrary combination of block structure and subclassing, including nested classes. Cyclic class
hierarchies in the user program are detected and resolved. The door package also supports ref-
erence variables, remote access, and type checking of reference assignments.

13.1 Contributions 257

Main grammarsand door packages

The price for alowing objects and references in the attribution is that non-local dependencies
areintroduced. In general, this prevents attribute evaluators to be automatically generated from
the grammar. Thisproblem isaddressed in Door AGs by splitting the grammar into amain gram-
mar and a door package. The main grammar is essentially equivalent to a standard attribute
grammar and can be eval uated exhaustively and incrementally using standard methods. The door
package isolates the non-local dependencies and must be implemented by hand. However, asys-
tematic technique has been developed for constructing evaluators for door packages. This
technique involves doing a static dependency analysis of the door package and constructing a
dependency graph for each door class. Additional dependency attributes and functions are added
to the door classes to allow efficient propagation of non-local dependencies at evaluation time.
The technique allows systematic construction of visit procedures from the dependency graphs
and the resulting attribute evaluator is very efficient since it is based on a static visit-oriented
technique.

Door packages astool box extensionsto standard AGs

The specification and implementation of door packages constitutes a systematic way of con-
structing tool box extensions to standard AGs. Door packages which implement some general
aspects of afamily of programming languages can be used as atool box by many different main
grammars, in order to implement different languages. This approach is used in the Orm system
where the static-semantic grammars for different languages are specified by using a kernel of
semantic primitives corresponding to a door package. The current semantic kernel in Orm is
designed to cover the basic language constructs in object-oriented languages: classes, proce-
dures, subclassing, reference variables, and remote access. An interesting future challengeisto
design door packages which cover general aspects of a broader range of programming
languages.

Door classes can also be used asageneral interface mechanism, in order to connect an attributed
syntax treeto external components and trigger eventsin these components as aresult of changes
inthe attribution. Thiswasillustrated in §11.5 where adoor classEr r or Door was implemented
to monitor static semantic errors. The visit procedures of the door class were implemented to
achieve suitable side-effectsin the window system (displaying and removing error messages) as
aresult of changes in the attribution.

Simplicity of main grammars

Problemslike name analysis which give rise to complex attribute dependenciesin standard AGs
are handled by objects and referencesin Door AGs. This has the effect that the remaining
attribute dependenciesin the main grammar are very simple. For example, languageslike Algol
and Simula, which allow an arbitrary order of declaration, can be described by Door AGs with
1-visit main grammars. Describing these languages in standard AGs would require an Ordered
AG.

258 Chapter 13 Conclusions and Future Work

The simple 1-visit dependenciesin main grammars makesit possible to use very simple and effi-
cient evaluation techniques. We have developed a visit-oriented evaluation technique for 1-visit
grammars based on static skipping. This technique does not compare attribute val ues, but skips
evaluation instructions and visits on the basis of a static approximation of the dependencies.
While such an algorithm isin principle sub-optimal, it works well in practice for the main gram-
mar of aDoor AG. Wefind it interesting that it is possible to use such simple implementation
techniques and yet achieve an efficient incremental system for a complex language like Simula.

Interpretation of grammars

The Orm systeminterpretsvisit sequencesfor main grammarsrather than running compiled visit
procedures. This allows the grammar to be changed easily and tried out on programs without
having to recompile and link the Orm system. In thisway, Orm supportsinteractive devel opment
of language-based environments. Although the visit sequences are interpreted, the incremental
evaluation is sufficiently efficient for practical use because the “inner loops’ of the incremental
processing are performed in the door package which is a compiled part of Orm.

Circular dependencies

There are several situationsin static semantic checking which intuitively lead to circular chains
of dependencies. In particular: arbitrary declaration order, cyclic subclassing, and declaration of

reference variables. All these problems are straight-forward to specify in Door AGs, and one of

them (reference variables) actually leadsto acircular chain of attribute dependencies viaanon-
local dependency. Such circularities are easily handled in Door AGs simply by inserting a con-

vergence test. In the case of reference variables, the circular evaluation converges immediately,

after asingle evaluation cycle.

Circularities vianon-local dependencies do not affect the complexity of the main grammars.
Thus, simple 1-visit evaluation techniques can be used for the main grammar even if the Door
AG asawholeiscircular.

History-dependent error checking

We have advocated the use of history-dependent error checking. |.e., if a static-semantic error
has several possible causes, the latest edited part of the syntax treeis regarded as causing the
error. Typical exampleswhen thiskind of error handling is useful is cyclic subclassing and mul-
tiple declarations of the same name. The use of history-dependent error checking for these
problems has the conseguence that mistakes made at one point in the program will not cause pre-
viously correct parts of the program to suddenly be considered erroneous. For example, adding
anew declaration of an already existing name causes the new declaration to be considered erro-
neous, whereas the old one remains in effect. We find this a highly desirable behavior of an
interactive system. In addition to associating the errors with the latest edited parts of the pro-
gram, this technique leads to less re-evaluation than if all possible causes of the error should be
considered as actually erroneous.

13.2 Future work 259

Although the error may be associated with one part of the program, it may very well be corrected
by editing another part of the program. One could even implement interactive support for finding
other potential causes of an error, given a current erroneous site.

History-dependent error checking is accomplished in Door AGs by using underdeter mined
grammars. |.e. grammars for which some aspect of the attribution is not uniquely defined. This
means that there are syntax trees for which there is more than one valid attribution. Which solu-
tion is actually chosen will depend on the order of evaluation and can, if desired, be controlled
by inserting additional actionsin the visit procedures of the door classes.

Object-oriented attribute grammars

The main grammars of Door AGs are based on an object-oriented variant of standard AGs pre-
sented in Chapter 6. In this object-oriented formulation of standard AGs, the syntax nodes are
viewed as objects of classes organized in a speciaization hierarchy. Behavior (in the form of
attributes and equations) can be defined at suitablelevels of generalization and default equations
can be overridden in specialized node classes. This allows the grammar to be written in amore
compact and readable way than is possible in traditional AG formalisms.

Another advantage of object-oriented AGs isthat demand attributes can be easily implemented
sincethey are essentially equivalent to virtual functions. We have found demand attributesto be
very useful ininteractive environments since they do not occupy any space. Infact, al attributes
of the main grammar of aDoor AG are by default implemented as demand attributes since most
of these attributes are defined by copy equations and very simple to compute when needed.

13.2 Futurework

Our experience so far with Door AGs shows that important problemsin incremental static-
semantic analysis can be solved in a satisfactory manner by this technique. Nevertheless, more
practical work should be done on devel oping door packages and testing them in practice.

Another interesting possibility isto work further in the direction of interactive support for lan-
guage development and do incremental static-semantic checking also during editing of the
grammars themselves. The grammar formalisms used in Orm are based on object-oriented con-
cepts, similar to OOSL, and the static-semantic checking should not be very different from
checking object-oriented programming languages.

In addition to applying the Door AG technique to various problems, there are several waysin
which the technique itself could be further developed. Below we discuss some of these
possibilities.

260 Chapter 13 Conclusions and Future Work

Cutting and pasting lar ge subtrees

Theincremental attribute evaluation algorithm presented in this thesis assumes that a new sub-
tree is aways completely un-evaluated before insertion and the old subtree is completely de-
evaluated before removing it from the syntax tree. This may be undesirable for large subtrees
such as whole classes and procedures since the eval uation/de-eval uation of such large subtrees
may lead to noticeable response times. Actually, the Orm system has a block clipboard facility
which supports moving and copying fully attributed blocks between the program and the clip-
board. This functionality has, however, not yet been formalized in the Door AG model. To do
this, the notion of fix attributes needsto be refined. Moving ablock to anew context impliesthat
thefix inherited attributes may get new values. The “fix” attributes are thusfix only during incre-
mental evaluation, but may change values at a subtree replacement. The attribute evaluation
algorithms for Door AGs need to be generalized to support this.

Dynamic objects

In Door AGs, as presented in thisthesi s, the semantic objects are always part objects owned tran-
sitively by asyntax node. |.e., the existence of al semantic objectsis determined from the syntax
tree alone. For some advanced language constructs, thismay beinsufficient. It may be necessary
to introduce new semantic objects during evaluation, and make the existence of some semantic
obj ects depend on the attribute values. For example, as discussed in 83.3.5 and 811.6.2, extend-
ing avirtual classin BETA leads to the implicit introduction of actual definitions of subclasses
to thevirtual class. In our visibility graph model for name analysis this means that the existence
of some Sear chPat h objects will depend on identifier bindings. To express thisin Door AGs,
some notion of dynamic semantic objects would need to be introduced.

Another aspect on the static scheme for attaching objectsin Door AGs isthat it may result in
attaching objects which are not always needed. For example, consider merging reference assign-
ment and value assignment to a single syntactic construct (as several languages do). In the
present Door AGs, aConpar ed assDoor object hasto be declared for the assignment node class,
to take care of comparisonsfor reference types. But this door object would be unnecessary if the
types of the assignment subcomponents were actually value types, rather than reference types.
It would be useful to introduce some dynamic schemefor attaching the door object only if it was
actually needed, i.e. attaching it depending on the attribute values.

An interesting solution to this problem could be to add support for semantically controlled
replacement of syntax nodes. E.g., one could imagine a genera node class Assi gnnment which
was specialized into three subclasses: Synt act i cAssi gnnent , Val ueAssi gnnent , and Ref As-
si gnnent . The structure-oriented editor (or parser) would always construct a syntactic
assignment, but depending on attribute values, the node would be replaced in the process of
semantic eval uation by avalue assignment node or areference assignment node. Besides saving
storage, such ascheme hasthe potential of leading to simplifications of the attribute grammar in
case the same syntactic (context-free) construct has many possible semantic interpretations.

13.2 Future work 261

General door packages

Aninteresting area of future researchisto investigateif it is possible to construct door packages
which are applicable to a broad range of languages. Rather than having a door for ablock state-
ment and adoor for aclass, asin our example door package, such adoor package should contain
more primitive doors which could be combined to model block statements, single-inheritance
classes, multiple-inheritance classes, etc. The work of Vorthmann isin this direction [VL88],
[Vor90a)]. Hislanguage NSL supports specification of advanced name analysis, althoughiitis not
sufficiently general to handle object-oriented languages. It could be interesting to try to merge
theideasin NSL with Door AGs.

Using the syntax treeitself asa symbol table

In the example door package, special semantic objects are introduced for representing symbol
tablesand declaration entries. In principle, thisinformation isavailablein the syntax treeaswell.
The symbol tableis essentially a copy of a declaration list in the syntax tree. Space reductions
would be possible by avoiding this copying. It would be valuableto devel op general mechanisms
which allowed the doors to utilize syntax nodes as semantic objects instead of specifying their
own part objects. If possible, this should be done without making the door package dependent
on the structure of the main grammar, in order to be able to use the same door package for many
languages.

262 Chapter 13 Conclusions and Future Work

Chapter 14
Bibliography

[ACR+87]

[ACR+88]

[Bal8g]

[BC8S5]

[Beng0]

[Bes87]

[BGV92]

[BS36]

[C184]

B. Alpern, A.Carle, B.Rosen, P.Sweeney, and K. Zadeck. Incremental
evaluation of attributed graphs. Technical Report CS-87-29, Brown University,
Dept. of Computer Science, Providence, R.l., December 1987.

B. Alpern, A. Carle, B. Rosen, P. Sweeney, and K. Zadeck. Graph attribution
as a specification paradigm. In P. Henderson, editor, Proceedings of the ACM
S GSOFT/S GPLAN Software Engineering Symposium on Practical Software
Development Environments, pages 121-129, Boston, Ma.,, November 1988.
ACM. SIGPLAN Notices 24(2).

R. A. Ballance. Syntactic and Semantic Checking in Language-Based Editing
Systems. PhD thesis, Computer Science Division — EECS, Univ. of California,
Berkeley, 1989. TR UCB/CSD 89/548.

G. M. Beshers and R. H. Campbell. Maintained and constructor attributes. In
Proceedings of the SSGPLAN 85 Symposium on Language Issues in
Programming Environments, pages 34-42, Seattle, Wa, 1985. ACM.
SIGPLAN Notices, 20(7).

M. Bengtsson. Real-Time Compacting Garbage Collection Algorithms.
Licentiate thesis, Lund University, Dept. of Computer Science, Lund, Sweden,
1990.

G. M. Beshers. Regular Right Part Grammarsand Maintained and Constructor
Attributes in Language Based Editors. PhD thesis, University of Illinois at
Urbana-Champaign, Urbana, I1., 1987.

R. A. Balance, S. L. Graham, and M. L. Van de Vanter. The Pan language-
based editing system. ACM Transactions on Software Engineering and
Methodology, 1(1):95-127, January 1992.

R. Bahlke and G. Snelting. The PSG system: From formal language definitions
to interactive programming environments. ACM Transactions on Programming
Languages and Systems, 8(4):547-576, October 1986.

R. D. Cameron and M. R. Ito. Grammar-based definition of metaprogramming

264

[CNS87]

[Coo88]

[Coo89]

[DEFHS7]

[DHKL84]

[DJL8S]

[DLMM87]

[DMNG68]

[DM S84]

[DRT81]

[DRZ85]

Chapter 14 Bibliography

systems. ACM Transactions on Programming Languages and Systems,
6(1):20-54, January 1984.

M.-L. Christ-Neumann and H.-W. Schmidt. ASDL - an object-oriented
specification language for syntax-directed environments. In H.K. Nichols and
D. Simplson, editors, ESEC’ 87 Proceedings, volume 289 of Lecture Notes in
Computer Science, pages 71—79. Springer-Verlag, 1987.

S. Cook. Impressions of ECOOP88. Journal of Object-Oriented
Programming, 1(4):42—43, 1988.

W.R. Cook. A proposal for making Eiffel type-safe. In S. Cook, editor,
Proceedings of the 3rd European Conference on Object-Oriented
Programming (ECOOP’ 89), BCS Workshop Series, pages 57—70, Nottingham,
U.K., July 1989. Cambridge University Press.

S.A. Dat, R.J. Ellison, P.H. Feiler, and A.N. Habermann. Software
development environments. |EEE Computer, pages 18-28, November 1987.

V. Donzeau-Gouge, G.Huet, G.Kahn, and B.Lang. Programming
environments based on structured editors: The MENTOR experience. In D. B.
Barstow, H. E. Shrobe, and E. Sandewall, editors, Interactive Programming
Environments, pages 128-140. McGraw-Hill, 1984.

P. Deransart, M. Jourdan, and B. Lorho. Attribute Grammars. Definitions,
Systems and Bibliography, volume 323 of Lecture Notes in Computer Science.
Springer-Verlag, 1988.

H. P. Dahle, M. Lofgren, O.L. Madsen, and B. Magnusson. The Mjglner
project. In Software Tools: Improving Applications: Proceedings of the
conference held at Software Tools 87, pages 81-87, London, June 1987. Online
Publications.

O.-J. Dahl, B.Myhrhaug, and K. Nygaard. SIMULA 67 common base
language. NCC Publ. S-2, Norwegian Computing Centre, Oslo, May 1968.
Revised 1970 (Publ. S-22), 1972, and 1984. Swedish Standard SS 63 61 14,
1987.

N. M. Delide, D. E. Menicosy, and M. D. Schwartz. Viewing a programming
environment asasingletool. In Proceedings of the SSIGPLAN 84 Symposiumon
Compiler Construction, pages 49-56, Montreal, Canada, 1984. ACM.
SIGPLAN Notices, 19(6).

A. Demers, T. Reps, and T. Teitelbaum. Incremental evaluation for attribute
grammars with application to syntax-directed editors. In Conference Record of
the 8th Annual ACM Symposium on Principles of Programming Languages,
pages 105-116. ACM, January 1981.

A. Demers, A. Rogers, and F. K. Zadeck. Attribute propagation by message
passing. In Proceedings of the SGPLAN 85 Symposium on Language Issuesin
Programming Environments, pages 43-59, Seattle, Wa, 1985. ACM.

[Eng84]

[ENRS3]

[Far86]

[FKT90]

[Frig3]

[Frig4]

[Gar87]

[GR83]

[Gro90]

[Gus90]

[Hedss]

[Heds9]

265

SIGPLAN Notices, 20(7).

J. Engelfriet. Attribute grammars: Attribute evaluation methods. In B. Lorho,
editor, Methods and Tools for Compiler Construction, pages 103-137.
Cambridge University Press, 1984.

H. Ehrig, M. Nagl, and G. Rozenberg, editors. Graph-Grammars and their
Application to Computer Science, volume 153 of Lecture Notes in Computer
Science. Springer-Verlag, 1983.

R. Farrow. Automatic generation of fixed-point-finding evaluators for circular,
but well-defined, attribute grammars. In Proceedings of the SSGPLAN ’'86
Symposium on Compiler Construction, pages 85-98, Palo Alto, Ca., July 1986.
ACM. SIGPLAN Notices, 21(7).

A. Feng, T. Kikuno, and K. Torii. Incremental attribute evaluation for multiple
subtree replacements in structure-oriented environments. In P. Deransart and
M. Jourdan, editors, Attribute Grammarsand their Applications, volume 461 of
Lecture Notes in Computer Science, pages 192—-206, Paris, September 1990.

Springer-Verlag.

P. Fritzson. Symbolic debugging through incremental compilation in an
integrated environment. The Journal of Systems and Software, (3):285-294,
1983.

P. Fritzson. Towards a Distributed Programming Environment based on
Incremental Compilation. PhD thesis, Linkdping University, Linkdping,
Sweden, 1984.

P. E. Garrison. Modeling and Implementation of Visibility in Programming
Languages. PhD thesis, University of California, Berkeley, Ca., December
1987. Tech. Rep. UCB/CSC 88/400.

A. Goldberg and D.Robson. Smalltalk-80. The Language and its
Implementation. Addison-Wesley, 1983.

J. Grosch. Object-oriented attribute grammars. In A.E. Harmanci and
E. Gelenbe, editors, Proceedings of the 5th International Symposium on
Computer and Information Sciences (ISCIS V), pages 807-816, Cappadocia,
Nevsehir, Turkey, August 1990.

A. Gustavsson. Software Configuration Management in an Integrated
Environment. Licentiate thesis, Lund University, Dept. of Computer Science,
Lund, Sweden, 1990.

G. Hedin. Incremental attribute evaluation with side-effects. In D. Hammer,
editor, Compiler Compilers and High Speed Compilation (2nd CCHSC
Workshop), volume 371 of Lecture Notesin Computer Science, pages 175-189,
Berlin, GDR, October 1988. Springer-Verlag.

G. Hedin. An object-oriented notation for attribute grammars. In S. Cook,

266

[Hedo1]

[Hedo2]

[HM86]

[HM87]

[HM88]

[Hoo86]

[Hoo87]

[HT86a]

[HT86b]

[Hud91]

Chapter 14 Bibliography

editor, Proceedings of the 3rd European Conference on Object-Oriented
Programming (ECOOP’89), BCS Workshop Series, pages 329-345,
Nottingham, U.K., July 1989. Cambridge University Press.

G. Hedin. Incremental static semantic analysis for object-oriented languages
using Door attribute grammars. In H. Alblas and B. Melichar, editors,
Proceedings of the International Summer School on Attribute Grammars,
Applications and Systems, volume 545 of Lecture Notes in Computer Science,
pages 374-379, Prague, June 1991. Springer-Verlag.

G. Hedin. Context-sensitive editing in Orm. In K. Systa etal., editors,
Proceedings of the Nordic Workshop on Programming Environment Resear ch,
Tampere, Finland, January 1992. Tampere University of Technology. Software
Syst. Lab. TR 14.

G. Hedin and B. Magnusson. Incremental execution in a programming
environment based on compilation. In Proceedings of the 19th Annual Hawaii
International Conference on System Sciences, pages 480—491, Honolulu, Hi.,
January 1986.

G. Hedin and B. Magnusson. Supporting exploratory programming in Simula.
In Proceedings of the 15th Smula User’s Conference, pages 73-88, St.
Helliers, Jersey, September 1987. Association of Simula Users.

G. Hedin and B. Magnusson. The Mjgalner environment: Direct interaction with
abstractions. In S. Gjessing and K. Nygaard, editors, Proceedings of the 2nd
European Conference on Object-Oriented Programming (ECOOP’ 88), volume
322 of Lecture Notes in Computer Science, pages 41-54, Oslo, August 1988.

Springer-Verlag.

R. Hoover. Dynamically bypassing copy rule chains in attribute grammars. In
Conference Record of the 13th Annual ACM Symposium on Principles of
Programming Languages, pages 14-25, St. Petersburg, Fl., January 1986.
ACM.

R. Hoover. Incremental Graph Evaluation. PhD thesis, Cornell University,
Ithaca, N.Y ., May 1987. Tech. Rep. 87-836.

S. Horwitz and T. Teitelbaum. Generating editing environments based on
relations and attributes. ACM Transactions on Programming Languages and
Systems, 8(4):577-608, 1986.

R. Hoover and T. Teitelbaum. Efficient incremental evaluation of aggregate
values in attribute grammars. In Proceedings of the SSGPLAN 86 Symposium
on Compiler Construction, pages 39-50, Palo Alto, Ca., July 1986. ACM.
SIGPLAN Notices, 21(7).

S. E. Hudson. Incremental attribute evaluation: A flexible algorithm for lazy
update. ACM Transactions on Programming Languages and Systems,
13(3):315-341, 1991.

[Jal85]

[JF82]

[JF85]

[Jon90]

[Jou84]

[JS86]

[Kaigs]

[Kas80]
[KG89]

[KHZ82]

[KKM87]

[KLMM83]

[KM8S]

267

F. Jdili. A general incremental evaluator for attribute grammars. Science of
Computer Programming, (5):83-96, 1985.

G. F. Johnson and C. N. Fischer. Non-syntactic attribute flow in language based
editors. In Conference Record of the 9th Annual ACM Symposiumon Principles
of Programming Languages, pages 185-195, Albuquerque, N.M., January
1982. ACM.

G. F. Johnson and C. N. Fischer. A meta-language and system for nonlocal
incremental attribute evaluation in language-based editors. In Conference
Record of the 12th Annual ACM Symposium on Principles of Programming
Languages, pages 141-151, New Orleans, La., January 1985. ACM.

L. G. Jones. Efficient evaluation of circular attribute grammars. ACM
Transactions on Programming Languages and Systems, 12(3):429-462, 1990.

M. Jourdan. An optimal-time recursive evaluator for attribute grammars. In
M. Paul and B. Robinet, editors, International Symposium on Programming,
6th Colloquium, volume 167 of Lecture Notesin Computer Science, pages 167—
178. Springer-Verlag, 1984.

L. G. Jonesand J. Simon. Hierarchical VLSI design systems based on attribute
grammars. In Conference Record of the 13th Annual ACM Symposium on
Principles of Programming Languages, pages 58-69, St. Petersburg, Fl.,
January 1986. ACM.

G. Kaiser. Semantics for Structure Editing Environments. PhD thesis,
Carnegie-Mellon University, Pittsburgh, Pa.,, May 1985. CMU-CS-85-131.

U. Kastens. Ordered attribute grammars. Acta Informatica, 13:229-256, 1980.

S. M. Kaplan and S. K. Goering. Priority controlled incremental attribute
evauation in attributed graph grammars. In J. Diaz and F. Orgjas, editors,
TAPSOFT 89 Val. 1, volume 351 of Lecture Notesin Computer Science, pages
306-320, Barcelona, Spain, March 1989. Springer-Verlag.

U. Kastens, B. Hutt, and E.Zimmermann. GAG: A Practical Compiler
Generator, volume 141 of Lecture Notes in Computer Science. Springer-
Verlag, 1982.

G. Kaiser, S. M. Kaplan, and J. Micallef. Multiuser, distributed |anguage-based
environments. | EEE Software, pages 5867, November 1987.

G. Kahn, B. Lang, B. Mélese, and E. Morcos. Metal: A formalism to specify
formalisms. Science of Computer Programming, 3:151-188, 1983.

J. L. Knudsen and O. L. Madsen. Teaching object-oriented programming is
more than teaching object-oriented programming languages. In S. Gjessing and
K. Nygaard, editors, Proceedings of the 2nd European Conference on Object-
Oriented Programming (ECOOP’88), volume 322 of Lecture Notes in
Computer Science, pages 21-40, Oslo, August 1988. Springer-Verlag.

268

[KMMN87]

[KMMNO1]

[Knu6s]

[Kos88]

[K0s91]

[KS89]

[KW92]

[LMOWSS]

[LSAST77]

[Mad87]

[Med82]

[Meyss]
[Mey92]
[MF81]

[Min85]

Chapter 14 Bibliography

B. B. Kristensen, O. L. Madsen, B. Mgller-Pedersen, and K. Nygaard. The
BETA programming language. In B. Shriver and P. Wegner, editors, Research
Directions in Object-Oriented Programming, pages 7-48. The MIT Press,
1987.

B. B. Kristensen, O. L. Madsen, B. Mdller-Pedersen, and K. Nygaard. Object
Oriented Programming in the BETA Programming Language. Preprint of book,
Aarhus University, Denmark, 1991.

D. E. Knuth. Semantics of context-free languages. Mathematical Systems
Theory, 2(2):127-145, June 1968.

K. Koskimies. Software engineering aspects in language implementation. In
D. Hammer, editor, Compiler Compilers and High Speed Compilation (2nd
CCHSC Workshop), volume 371 of Lecture Notes in Computer Science, pages
39-51, Berlin, GDR, October 1988. Springer-Verlag.

K. Koskimies. Object-orientation in attribute grammars. In H. Alblas and
B. Méelichar, editors, Proceedings of the International Summer School on
Attribute Grammars, Applications and Systems, volume 545 of Lecture Notes
in Computer Science, pages 297-329, Prague, June 1991. Springer-Verlag.

B. Krémer and H.-W. Schmidt. Developing integrated environments with
ASDL. |EEE Software, pages 98—107, January 1989.

D. Kiong and J. Welsh. Incremental semantic evaluation in language-based
editors. Software—Practice and Experience, 22(2):111-135, February 1992.

P. Lipps, U. Mdncke, M. Olk, and R. Wilhelm. Attribute (re)evaluation in
OPTRAN. Acta Informatica, 26:213-239, 1988.

B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. Abstraction mechanisms
in CLU. Communications of the ACM, 20(8):564-576, August 1977.

O. L. Madsen. Block structure and object-oriented languages. In B. Shriver and
P. Wegner, editors, Research Directionsin Object-Oriented Programming. The
MIT Press, 1987.

R. Medina-Mora. Syntax-Directed Editing: Towards Integrated Programming
Environments. PhD thesis, Carnegie-Mellon University, Pittsburgh, Pa.,, March
1982.

B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.
B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

R. Medina-Mora and P. H. Feiler. An incremental programming environment.
|EEE Trans. on Software Eng., 7(5):472—-482, September 1981.

S. Mindr. Structures for incremental semantic analysisin the 111 programming
environment. Technical Report LU-CS-TR:85-15, Lund University, Dept. of
Computer Science, Lund, Sweden, November 1985.

[Min90]

[MHM+90]

[MM85]

[MM88]

[MM89]

[MMM90]

[MN8S]

[Myes4]

[Nar87]

[Not85]

[Nyg86]

[Osc89]

[Pec90a]

269

S. Mindr. On Sructure-Oriented Editing. PhD thesis, Lund University, Lund,
Sweden, 1990.

B. Magnusson, G. Hedin, S. Mindr, eta. An overview of the Mjglner/Orm
environment. In J. Bezivin et al., editors, Proceedings of the 2nd Inter national
Conference TOOLS (Technology of Object-Oriented Languages and Systems),
pages 635-646, Paris, June 1990. Angkor.

B. Magnusson and S.Mindr. Il an integrated interactive incremental
programming environment based on compilation. In 1985 ACM SIGSMALL
Symposiumon Small Systems, pages 235-244, Danvers, Ma., May 1985. ACM.

O. L. Madsen and B. Mgller-Pedersen. What object-oriented programming may
be — and what it does not have to be. In S. Gjessing and K. Nygaard, editors,
Proceedings of the 2nd European Conference on Object-Oriented
Programming (ECOOP’88), volume 322 of Lecture Notes in Computer
Science, pages 1-20, Oslo, August 1988. Springer-Verlag.

O. L. Madsen and B. Mgller-Pedersen. Virtual classes: A powerful mechanism
in object-oriented programming. In N. Meyrowitz, editor, OOPSLA’'89
Conference Proceedings, pages 397406, New Orleans, La., October 1989.
ACM. SIGPLAN Notices, 24(10).

O. L. Madsen, B. Magnusson, and B. Mgller-Pedersen. Strong typing in object-
oriented languages revisited. In N. Meyrowitz, editor, OOPS_A/ECOOP’ 90
Conference Proceedings, pages 140-150, Ottawa, October 1990. ACM.
SIGPLAN Notices, 25(10).

O. L. Madsen and C. Ngrgaard. An object-oriented metaprogramming system.
In Proceedings of the 21th Annual Hawaii International Conference on System
Sciences, pages 406415, Honolulu, Hi., January 1988.

E. W. Myers. Efficient applicative data types. In Conference Record of the 11th
Annual ACM Symposium on Principles of Programming Languages, pages 66—
75, Salt Lake City, Ut., January 1984. ACM.

K. Nagrmark. Transformations and Abstract Presentations in a Language
Development Environment. PhD thesis, Aarhus University, Aarhus, Denmark,
January 1987.

D. Notkin. The GANDALF project. The Journal of Systems and Software,
5(2):91-105, May 1985.

K. Nygaard. Basic concepts in object oriented programming. SIGPLAN
Notices, 21(10), October 1986.

D. Oscarsson. HOPE: Hierarchical object-oriented presentation environment.
Reference manual, Lund University, Dept. of Computer Science, 1989.

S.B. Peckham. Incremental Attribute Evaluation and Multiple Subtree
Replacements. PhD thesis, Cornell University, Ithaca, N.Y ., February 1990.

270

[Peco0b]

[PT89]

[Reis4]

[Reps2]

[Reps4]

[RMT86]

[RT84]

[RT87]

[RT88]

[RTDS83]

[SHO1]

[SIKV82]

[Sneg1]

Chapter 14 Bibliography

S. B. Peckham. Globally partitionable attribute grammars. In P. Deransart and
M. Jourdan, editors, Attribute Grammarsand their Applications, volume 461 of
Lecture Notes in Computer Science, pages 327-342, Paris, September 1990.

Springer-Verlag.

W. Pugh and T. Teitelbaum. Incremental computation via function caching. In
Conference Record of the 16th Annual ACM Symposium on Principles of
Programming Languages, pages 315-328, Austin, Tx., January 1989. ACM.

S.P. Reiss. Graphical program development with PECAN program
development system. In Proceedings of the SSGPLAN 84 Symposium on
Compiler Construction, pages 30-41, Montreal, Canada, 1984. ACM.
SIGPLAN Notices, 19(6).

T. W. Reps. Optimal-time incremental semantic analysis for syntax-directed
editors. In Conference Record of the 9th Annual ACM Symposiumon Principles
of Programming Languages, pages 169-176, Albuquerque, N.M., January
1982. ACM.

T. Reps. Generating Language-Based Environments. MIT Press, Cambridge,
Ma., 1984.

T.Reps, C.Marceau, and T. Teitelbaum. Remote attribute updating for
language-based editors. In Conference Record of the 13th Annual ACM
Symposium on Principles of Programming Languages, pages 1-13, St
Petersburg, Fl., January 1986. ACM.

T. Repsand T. Teitelbaum. The synthesizer generator. In P. Henderson, editor,
Proceedings of the ACM S GSOFT/SGPLAN Software Engineering
Symposium on Practical Software Development Environments, pages 4243,
Pittsburgh, Pa., May 1984. ACM. SIGPLAN Notices, 19(5).

T. Reps and T. Teitelbaum. Language processing in program editors. |EEE
Computer, pages 2940, November 1987.

T.W. Reps and T. Teitelbaum. The Synthesizer Generator. A System for
Constructing Language-Based Editors. Springer-Verlag, 1988.

T.Reps, T.Teitelbaum, and A.Demers. Incremental context-dependent
analysis for language-based editors. ACM Transactions on Programming
Languages and Systems, 5(3):449-477, July 1983.

R. S. Sundaresh and P. Hudak. Incremental computation via partial evaluation.
In Conference Record of the 18th Annual ACM Symposium on Principles of
Programming Languages, pages 1-13, Orlando, Fl., January 1991. ACM.

D. C. Smith, C. Irby, R. Kimball, and B. Verplank. Designing the Star user
interface. BYTE, 7(4):242-282, April 1982.

G. Snelting. The calculus of context relations. Acta Informatica, 28:411-445,
1991.

[Str86]
[Szy92]

[THM87]

[Tics6]

[TM81]

[TR81]

[TTTISS]

[VL8S]

[Vor90g]

[Vor90b]

[WL86]

[Yehs3]

[YK88]

[YS91]

271

B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

C. A. Szyperski. Import is not inheritance. Why we need both: Modules and
Classes. To appear in ECOOP 92, Utrecht, June 1992.

M. Taube, G. Hedin, and B. Magnusson. The Mjglner observation tool: An
object-oriented view on programs and program execution. In Proceedings of the
15th Smula User’ s Conference, pages 99-108, St. Helliers, Jersey, September
1987. Association of Simula Users.

W.F. Tichy. Smart recompilation. ACM Transactions on Programming
Languages and Systems, 8(3):273-291, July 1986.

W. Teitelman and L. Masinter. The Interlisp programming environment. |EEE
Computer, 14(4):25-34, April 1981.

T. Teitelbaum and T. Reps. The Cornell program synthesizer. Communications
of the ACM, 24(9):563-573, September 1981.

T. Tenma, H. Tsubotani, M. Tanaka, and T. Ichikawa. A system for generating
language-oriented editors. |EEE Transactions on Software Engineering,
14(8):1098-1108, August 1988.

S.A. Vorthmann and R. J. LeBlanc. A naming specification language for
syntax-directed editors. In Proceedings. |EEE Computer Society 1988
International Conference on Computer Languages, pages 250-257, Miami, Fl.,
October 1988. IEEE Computer Society Press.

S. A. Vorthmann. Syntax-Directed Editor Support for Incremental Consistency
Maintenance. PhD thesis, Georgia Institute of Technology, Atlanta, Ga., June
1990. TR GIT-1CS-90/03.

S. A. Vorthmann. Coordinated incremental attribute evaluation on a DR-
threaded tree. In P. Deransart and M. Jourdan, editors, Attribute Grammars and
their Applications, volume 461 of Lecture Notes in Computer Science, pages
207-221, Paris, September 1990. Springer-Verlag.

T. Wilcox and H. Larsen. The interactive and incremental compilation of ADA
using Diana. Internal report, Rational, 1986.

D.Yeh. On incremental evaluation of ordered attribute grammars. BIT,
23(3):308—-320, 1983.

D. Yeh and U. Kastens. Improvements of an incremental evaluation algorithm
for ordered attribute grammars. SSGPLAN Notices, 23(12):45-50, December
1988.

D. M. Ydlinand R. E. Strom. INC: A language for incremental computations.
ACM Transactions on Programming Languages and Systems, 13(2):211-236,
April 1991.

272 Chapter 14 Bibliography

| ndex

D (superclassof) 24
C (subclassof) 24
1- 61,82

=/= 63

abstract 73
Abstract d assType 219
AbstractEntry 129
Abstract Ref Type 233
access dependency 122, 153
local 122
non-local 122
actual dependency 153
addto 72
AFFECTED 53
aggregate 119
alt 79
aternation 79
ANYCLASS 59
ANYDOCR 116
ANYNCDE 79
appl i cative 67
applicative class 67
attenpted 169
at t enpt edEdge 226
attribute grammar
1-visit 49
circular 49, 50
non-circular 49
n-visit 50
object-oriented 77
ordered 49
standard 47
available 48, 151

B

basic door visit procedure 186
behavior class 84

binding 24

bi ndi ng 134

block 25

Bl ockDoor 132
bool Type 139
Busy 187

C
CAttenpted 169
CAL t enpt edEdge 227
characteristic set 184
circular dependency 207, 232, 236
d assDoor 217
d assType 219
collection 117
col lection 118
collective equation 82
Conpar ed assDoor 238
completing class 81
cond 118
condition 117
access dependency 154
procedures 154
cons 79
consistent 48, 151
consistent invariant 150
consistently attributed 113
constant semantic object 116
construction 79
contains 129
context-sensitive editing 12, 110
convergence 109, 191
coordinated evaluation 177
copy equation 48
clses 167

D

data attribute 49

Decl Door 133

deeval 180
deeval-dependent 152
deBEval L 179, 184

DeEval uat ed 187
de-evauation 151
de-evaluation edge 156
de-evaluation procedure 154

274

demand attribute 49, 204
dependency 152

access 122, 153

actual 153

non-local 152

static 152
dependency attributes 149
dependency function 154
dependency set 186
D ctionary 168
door 116
door class 115
door package interface 136
door visit procedure 183
door obj ect 117

E

enptyPat h 131

Entry 130

eq 82

Err or Door 242

EVAL 50

eval 180

eval-dependent 152

eval L 179, 184

Eval uat ed 187

eval uat ed 151

evaluation 151
data-driven 48
demand-driven 48
exhaustive 48
incremental 48
lazy 49

evaluation edge 156

evaluation procedure 154

evaluation thread 177

evaluator 147
dynamic 49
static 49

eval uat or 182

event 152

exhaustive de-evaluation phase 176

exhaustive evaluation phase 176
exhDeEval Visit 179, 184
exhEval Visit 179,184
exhVisit 102

extended syntax tree 122

F

fAttenpted 165, 168
f At t enpt edEdge 226
first 129

fix attribute 120

fix function 121

for 71

func 61
f Uses 164, 167

G
generic classin OOSL 66

H
history-dependent 44, 141

|

I D 80

immutable 23

in 63

incDoorVisit 178

i ncFat herVisit 107
inconsistent invariant 150
incOmerVisit 179, 184
incremental father sequence 105
incremental son sequence 105
incremental visit sequence 105
i ncSonVi sit 107

inh 82

inherit vertex 155

inherited 78

| nNNewTr ee 187

I nA dTree 187

i nspect 64

I NT 80

i nt Type 139

invariant 150

iterator 71

L

| et 63

| ex 80

lexeme 79

Li st 129

list 80

| oc 82

local attribute 87

local copy attribute 155
local incremental phase 176
local vertex 155
lookup 24

lookup sequence 25
lookup vertex 26

| oop 65

M

may be NONE 73

may return NONE 73
multiple subtree replacement 177
mutable 23

N
name application 24
name declaration 24
new 67
next 65
NoClass 42
nod assType 219
node class 78
alternation 79
construction 79
lexeme 79
list 80
non-local dependency 152
non-local incremental phase 176
noRef Type 233
normal edge 156
null vertex 25
Nul I A 81
nul | Entry 130

O

object 23

object declaration 60
object identity 23
ObjectClass 42

obj ect d assType 219
obj ect Ref Type 233
oo-inherited 78

OOosL 59

O deredCol | ection 181
overlapping dependency sets 191
owner 24

owner 182

P

Parallel attributes 109
part-object 24

path vertex 25
predc 129

prefix path 28
prefixdass 219
proc 70

Q

qua 24

qualification
actual 24
forma 24

R

receive vertex 155
receiving invariant 154
re-evaluation 151

ref 60

reference 23

275

dynamic 24

static 24
Ref Type 233
regular value 23
remote access 29
repl aceSubtree 182
RETURN 50
Root Door 131

S

Scong 184

Sear chPat h 130
selector 29

semantic class 115

send vertex 155

sending invariant 154
separate clause 72

Set 68,181

Sioc 184

solution 48, 141

son 82

Seeng 184

static dependency 152
static path 26

static reference 60

static skipping 93, 109, 203
sucF 129

super 62

Synbol Tabl e 130
Synbol Tabl ePat h 131
syn 82

synthesize vertex 155
synt Prefixd ass 220

T
table vertex 25
this 63
TwoPat h 131
Type 131

U

underdetermined 48, 141, 192
uneval uat ed 151
uniquely-defined 48, 141
unknown type 42
unknownType 131

Unor der edCol | ecti on 156
UseDoor 134

uses 167

\Y%

v(inh) 99
v(syn) 99

value 23

virtual class 32, 244

276

virtual function 61
implementation 61
specification 61

virtual procedure 69

visibility graph 25

VISIT 50

visit procedure characteristics 184

visit procedure preconditions 190

visit sequence 50

W

Wat chPat h 226
well-defined 48
well-formed 48, 88
work list 176, 181

Y
yield 71

