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Abstract. JastAdd is an open-source system for generating compilers
and other language-based tools. Its declarative specification language
is based on reference attribute grammars and object-orientation. This
allows tools to be implemented as composable extensible modules, as
exemplified by JastAddJ, a complete extensible Java compiler. This tu-
torial gives an introduction to JastAdd and its core attribute grammar
mechanisms, and how to use them when solving key problems in building
language-based tools. A simple state machine language is used as a run-
ning example, showing the essence of name analysis, adding graphs to the
abstract syntax tree, and computing circular properties like reachability.
Exercises are included, and code for the examples is available online.
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1 Introduction

JastAdd is a metacompilation system for generating language-based tools such
as compilers, source code analyzers, and language-sensitive editing support. It is
based on a combination of attribute grammars and object-orientation. The key
feature of JastAdd is that it allows properties of abstract syntax tree nodes to
be programmed declaratively. These properties, called attributes, can be simple
values like integers, composite values like sets, and reference values which point to
other nodes in the abstract syntax tree (AST). The support for reference-valued
attributes is of fundamental importance to JastAdd, because they allow explicit
definition of graph properties of a program. Examples include linking identifier
uses to their declaration nodes, and representing call graphs and dataflow graphs.
AST nodes are objects, and the resulting data structure, including attributes, is
in effect an object-oriented graph model, rather than only a simple syntax tree.

While there are many technical papers on individual JastAdd mechanisms
and advanced applications, this is the first tutorial paper. The goal is to give an
introduction to JastAdd and its core attribute grammar mechanisms, to explain
how to program and think declaratively using this approach, and to illustrate
how key problems are solved.
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1.1 Object-oriented model

Figure 1 illustrates the difference from a traditional compiler where important
data structures like symbol tables, flow graphs, etc., are typically separate from
the AST. In JastAdd, these data structures are instead embedded in the AST,
using attributes, resulting in an object-oriented model of the program. JastAdd is
integrated with Java, and the resulting model is implemented using Java classes,
and the attributes form a method API to those classes.

Attributes are programmed declaratively, using attribute grammars: Their
values are stated using equations that may access other attributes. Because of
this declarative programming, the user does not have to worry about in what
order to evaluate the attributes. The user simply builds an AST, typically us-
ing a parser, and all attributes will then automatically have the correct values
according to their equations, and can be accessed using the method API. The
actual evaluation of the attributes is carried out automatically and implicitly by
the JastAdd system.

The attribute grammars used in JastAdd go much beyond the classical at-
tribute grammars defined by Knuth [Knu68]. In this tutorial, we particularly
cover reference attributes [Hed00], parameterized attributes [Hed00,Ekm06], cir-
cular attributes [Far86,MH07] and collection attributes [Boy96,MEH09].

An important consequence of the declarative programming is that the object-
oriented model in Fig. 1 becomes extensible. The JastAdd user can simply add
new attributes, equations, and syntax rules. This makes it easy to extend lan-
guages and to build new tools as extensions of existing ones.

JastAdd data structure 

x 

Traditional compilation data structures 

symbol table flow graph 

x  int 

Decl x 

Abstract Syntax Tree 

Object-oriented model 

name 
binding 

flow links 

int x 

Decl 

int x 

S1 
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S1 

S2 S3 

S1 S2 S3 

Fig. 1. In JastAdd, compilation data structures are embedded as reference attributes
in the AST, resulting in an object-oriented model of the program.
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1.2 Extensible languages and tools

In JastAdd, the order of defining attributes and equations is irrelevant—their
meaning is the same regardless of order. This allows the user to organize rules
into modules arbitrarily, to form modules that are suitable for reuse and com-
position. Sometimes it is useful to organize modules based on compilation prob-
lems, like name analysis, type analysis, dataflow analysis, etc. Other times it
can be useful to organize according to language constructs. As an example, in
JastAddJ, an extensible Java compiler built using JastAdd [EH07b], both mod-
ularization principles are used, see Figure 2. Here, a basic compiler for Java 1.4
is modularized according to the classical compilation analyses: name analysis,
type analysis, etc. In an extension to support Java 5, the modules instead reflect
the new Java 5 constructs: the foreach loop, static imports, generics, etc. Each
of those modules contain equations that handle the name- and type analyses
for that particular construct. In yet further extensions, new computations are
added, like non-null analysis [EH07a], separated into one module handling the
Java 1.4 constructs, and another one handling the Java 5 constructs.

JastAdd has been used for implementing a variety of different languages, from
small toy languages like the state machine language that will be used in this tu-
torial, to full-blown general-purpose programming languages like Java. Because
of the modularization support, it is particularly attractive to use JastAdd to
build extensible languages and tools.

Java 1.4 
- abstract syntax 
- name analysis 
- type analysis 
- … 

Java 5 extension 
- foreach loop 
- generics 
- static imports 
- … 

Non-null for Java 1.4 
- analysis 
- inference 

Non-null for Java 5 
-analysis 
-inference 

Fig. 2. Each component has modules containing abstract syntax rules, attributes, and
equations. To construct a compiler supporting non-null analysis and inference for Java
5, all modules in the four components are used.
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1.3 Tutorial outline

This tutorial gives an introduction to JastAdd and its core attribute grammar
mechanisms. Section 2 presents a language for simple state machines that we
will use as a running example. It is shown how to program towards the gener-
ated API for a language: constructing ASTs and using attributes. Basic attribu-
tion mechanisms are presented in Section 3, including synthesized and inherited
attributes [Knu68], reference attributes [Hed00], and parameterized attributes
[Hed00,Ekm06]. We show how name analysis can be implemented using these
mechanisms. This section also briefly presents the underlying execution model.

The two following sections present more advanced mechanisms. Section 4
discusses how to define composed properties like sets using collection attributes
[Boy96,MEH09]. These attributes are defined by the combination of values con-
tributed by different AST nodes. We illustrate collection attributes by defining
an explicit graph representation for the state machine, with explicit edges be-
tween state and transition objects. Section 5 discusses how recursive properties
can be defined using circular attributes which are evaluated using fixed-point
iteration [Far86,MH07]. This is illustrated by the computation of reachability
sets for states. Finally, Section 6 concludes the tutorial.

The tutorial includes exercises, and solutions are provided in the appendix.
We recommend that you try to solve the exercises on your own before looking at
the solutions. The code for the state machine language and the related exercise
solutions is available for download at http://jastadd.org. We recommend that
you download it, and run the examples and solutions as you work through the
tutorial. Test cases and the JastAdd tool are included in the download. See the
README file for further instructions.

1.4 Brief historical notes

After Knuth’s seminal paper on attribute grammars [Knu68], the area received
an intense interest from the research community. A number of different evalua-
tion algorithms were developed, for full Knuth-style AGs as well as for subclasses
thereof. One of the most influential subclasses is Kastens’ ordered attribute gram-
mars (OAGs) [Kas80]. OAGs are powerful enough for the implementation of full
programming languages, yet allow the generation of efficient static attribute eval-
uators. Influential systems based on OAGs include the GAG system which was
used to generate front ends for Pascal and Ada [KHZ82,UDP+82], and the Syn-
thesizer Generator which supports incremental evaluation and the generation of
interactive language-based editors [RT84]. For surveys covering this wealth of
research, see Deransart et al. [DJL88], and Paakki [Paa95].

JastAdd belongs to a newer generation of attribute grammar systems based
on reference attributes. Support for reference-like attributes were developed inde-
pendently by a number of researchers: Hedin’s reference attributes [Hed94,Hed00],
Poetzsch-Heffter’s occurrence attributes [PH97], and Boyland’s remote attributes
[Boy96].
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Other landmark developments of strong importance for JastAdd include
Jourdan’s dynamic evaluation algorithm [Jou84], Farrow’s circular attributes
[Far86], Vogt, Swierstra and Kuiper’s higher-order attributes [VSK89], and Boy-
land’s collection attributes [Boy96].

In addition to JastAdd, there are several other current systems that support
reference attributes, including Silver [WBGK10], Kiama [SKV09], and ASTER
[KSV09]. While these systems use quite different syntax than JastAdd, and
support a partly different set of features, this tutorial can hopefully be of value
also to users of these systems: the main ideas for how to think declaratively
about reference attributes, and how to solve problems using them, still apply.

2 Running example: A state machine language

As a running example, we will use a small state machine language. Figure 3
shows a sample state machine depicted graphically, and a possible textual rep-
resentation of the same machine, listing all its states and transitions.

S1 S2 S3 

a 

b 

a 
state S1; 
state S2; 
state S3; 
trans a:S1->S2; 
trans b:S2->S1; 
trans a:S2->S3; 

Fig. 3. A sample state machine and its textual representation.

2.1 Abstract grammar

Given the textual representation of a state machine, we would like to construct
an object-oriented model of it that explicitly captures its graph properties. We
can do this by first parsing the text into a syntax tree representation, and then
add reference attributes to represent the graph properties. Fig. 4 shows a typical
EBNF context-free grammar for the textual representation.

A corresponding abstract grammar, written in JastAdd syntax, is shown in
Fig. 5. The nonterminals and productions are here written as classes, replacing
alternative productions by subclassing: StateMachine is a class containing a list
of Declarations. Declaration is an abstract class, and State and Transition
are its subclasses. The entities Label, etc. represent tokens of type String, and
can be thought of as fields of the corresponding classes. An AST consists of a
tree of objects of these classes. A parser that builds the AST from a text can be
generated using an ordinary parser generator, building the AST in the semantic
actions.
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<statemachine> ::= <declaration>*;

<declaration> ::= <state> | <transition>;

<state> ::= "state" ID ";"

<transition> ::= "trans" ID ":" ID "->" ID ";";

ID = [a-zA-Z][a-zA-Z0-9]*

Fig. 4. EBNF context-free grammar for the state machine language

StateMachine ::= Declaration*;

abstract Declaration;

State : Declaration ::= <Label:String>;

Transition : Declaration ::=

<Label:String> <SourceLabel:String> <TargetLabel:String>;

Fig. 5. JastAdd abstract grammar for the state machine language

2.2 Attributing the AST

To obtain an explicit object-oriented model of the graph, we would like to link
each state object to the transition objects that has that state object as its source,
and to link each transition object to its target state object. This can be done
using reference attributes. Figure 6 shows the resulting object-oriented model for
the example machine in Figure 3. We see here how the edges between state and
transition objects are embedded in the AST, using reference attributes. Given
this object-oriented model, we might be interested in computing, for example,
reachability. The set of reachable states could be represented as an attribute in
each State object. In sections 3, 4, and 5 we will see how these attributes can
be defined.

State 
S1 

target links 

StateMachine 

State 
S2 

State 
S3 

Transition 
a:S1->S2 

Transition 
b:S2->S1 

Transition 
a:S2->S3 

transition links 

Fig. 6. The state machine graph is embedded in the object-oriented model.
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Exercise 1. In Figure 6, the objects are laid out visually to emphasize the AST
structure. Make a new drawing that instead emphasizes the state machine graph.
Draw only the State and Transition objects and the links between them,
mimicking the layout in Figure 3.

2.3 Building and using the AST

From the abstract grammar, JastAdd generates a Java API with constructors for
building AST nodes and methods for traversing the AST. This API is further-
more augmented with methods for accessing the attributes. Figure 7 shows part
of the generated API for the state machine language, including the attributes
target, transitions, and reachable that will be defined in the coming sec-
tions.

class StateMachine {

StateMachine(); // AST construction

void addDeclaration(Declaration node); // AST construction

List<Declaration> getDeclarations(); // AST traversal

Declaration getDeclaration(int i); // AST traversal

}

abstract class Declaration {

}

class State extends Declaration {

State(String theLabel); // AST construction

String getLabel(); // AST traversal

Set<Transition> transitions(); // Attribute access

Set<State> reachable(); // Attribute access

}

class Transition extends Declaration {

Transition(String theLabel, theSourceLabel, theTargetLabel);

// AST construction

String getLabel(); // AST traversal

String getSourceLabel(); // AST traversal

String getTargetLabel(); // AST traversal

State target(); // Attribute access

}

Fig. 7. Parts of the API to the state machine model

Suppose we want to print out the reachable states for each state. For the
small example in Figure 3, we would like to obtain the following output:

S1 can reach {S1, S2, S3}
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S2 can reach {S1, S2, S3}
S3 can reach {}

meaning that all three states are reachable from S1 and S2, but no states are
reachable from S3.

To program this we simply need to build the AST for the state machine, and
then call the reachable attributes to print out the appropriate information. We
do not need to do anything to attribute the AST—this is handled implicitly
and automatically. To program the traversal of the AST in order to call the
reachable attributes, it would be useful to add some ordinary Java methods to
the AST classes. This can be done as a separate module using a JastAdd aspect
as shown in Fig. 8.

aspect PrintReachable {

public void StateMachine.printReachable() {

for (Declaration d : getDeclarations()) d.printReachable();

}

public void Declaration.printReachable() { }

public void State.printReachable() {

System.out.println(getLabel() + " can reach {" +

listOfReachableStateLabels() + "}");

}

public String State.listOfReachableStateLabels() {

boolean insideList = false;

StringBuffer result = new StringBuffer();

for (State s : reachable()) {

if (insideList)

result.append(", ");

else

insideList = true;

result.append(s.getLabel());

}

return result.toString();

}

}

Fig. 8. An aspect defining methods for printing the reachable information for each
state.
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The aspect uses inter-type declarations to add methods to existing classes. For
example, the method void StateMachine.printReachable() ... means that
the method void printReachable() ... is added to the class StateMachine.1

We can now write the main program that constructs the AST and prints
the reachable information, as shown in Fig. 9. For illustration, we have used the
construction API directly here to manually construct the AST for a particular
test program. For real use, a parser should be integrated. This is straightforward:
build the AST in the semantic actions of the parsing grammar, using the same
JastAdd construction API. Any Java-based parser generator can be used, pro-
vided it allows you to place arbitrary Java code in its semantic actions. In earlier
projects we have used, for example, the LR-based parser generators CUP and
beaver, and the LL-based parser generator JavaCC. For parser generators that
automatically provide their own AST representation, a straightforward solution
is to write a visitor that traverses the parser-generator-specific AST and builds
the corresponding JastAdd AST.

public class MainProgram {

public static void main(String[] args) {

// Construct the AST

StateMachine m = new StateMachine();

m.addDeclaration(new State("S1"));

m.addDeclaration(new State("S2"));

m.addDeclaration(new State("S3"));

m.addDeclaration(new Transition("a", "S1", "S2"));

m.addDeclaration(new Transition("b", "S2", "S1"));

m.addDeclaration(new Transition("a", "S2", "S3"));

// Print reachable information for all states

m.printReachable();

}

}

Fig. 9. A main program that builds an AST and then accesses attributes.

Exercise 2. Given the API in Fig. 7, write an aspect that traverses a state ma-
chine and prints out information about each state, stating if it is on a cycle or
not. Hint: You can use the call s.contains(o) to find out if the set s contains
a reference to the object o. What is your output for the state machine in Fig.
3? What does your main program look like?

1 This syntax for inter-type declarations is borrowed from AspectJ [KHH+01]. Note,
however, that JastAdd aspects support only static aspect-orientation in the form of
these inter-type declarations. Dynamic aspect-orientation like pointcuts and advice
are not supported.
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3 Basic attribution mechanisms

We will now look at the two basic mechanisms for defining properties of AST
nodes: synthesized and inherited attributes, which were introduced by Knuth in
1968 [Knu68]. Loosely speaking, synthesized attributes propagate information
upwards in the AST, whereas inherited attributes propagate information down-
wards. The term inherited is used here for historical reasons, and its meaning is
different from and unrelated to that within object-orientation.

3.1 Synthesized and inherited attributes

The value of an attribute a is defined by a directed equation a = e(b1, ..., bn),
where the left-hand side is an attribute and the right-hand side is an expression
e over zero or more attributes bk in the AST. In JastAdd, the attributes and
equations are declared in AST classes, so we can think of each AST node as
having a set of declared attributes, and a set of equations. Attributes are de-
clared as either synthesized or inherited. A synthesized attribute is defined by
an equation in the node itself, whereas an inherited attribute is defined by an
equation in an ancestor node.

A 

F 

t 

G 

u 

E 

s i 

eq t=3 eq u=5 

eq s=F.t+G.u+i 

eq D.i=C.v 

C 

v i 

eq B.i=7 

eq v=i+11 D 

B 

Fig. 10. The attributes C.v, E.s, F.t, and G.u are synthesized and have defining equa-
tions in the node they belong to. The attributes C.i and E.i are inherited (indicated
by a downward-pointing black triangle), and are defined by equations in A and B,
respectively. For E.i, the equation in B shadows the one in A, see the discussion below.

Most attributes we introduce will be synthesized. In the equation defining
the attribute, we will use information in the node itself, say E, or by accessing its
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children, say, F and G. However, once in a while, we will find that the information
we need is located in the context of the E node, i.e., in its parent, or further up in
the AST. In these cases, we will introduce an inherited attribute in E, capturing
this information. It is then the responsibility of all nodes that could have an E
child, to provide an equation for that inherited attribute.

In JastAdd, a shorthand is used so that the equation defining an inherited
attribute, say E.i, does not have to be located in the immediate parent of E,
but can be in any ancestor of E, on the way from the parent up to the root. If
several of these nodes have an equation for i, the closest one to E will apply,
shadowing equations further up in the AST. See Fig. 10. Thus, an equation
child.i = expression actually defines the inherited i attribute for all nodes in
the child subtree that declare the i attribute. This shorthand makes it possible to
avoid cluttering the grammar with so called copy rules, i.e., equations that merely
copy a value from a node to its children. Most attribute grammar systems have
some kind of shorthand to avoid such copy rules. There are additional shorthands
for this in JastAdd, for example allowing a single equation to be used to define
an inherited attribute of all its children subtrees.

Exercise 3. What will be the values of the attributes in Fig. 10?

Exercise 4. An equation in node n for an inherited attribute i applies to the
subtree of one of n’s children, say c. All the nodes in this subtree do not need
to actually have an i attribute, so the equation applies only to those nodes that
actually do. Which nodes in Fig. 10 are within the scope of an equation for i,
but do not have an i attribute?

Exercise 5. In a correctly attributed AST, the attributes will have values so that
all equations are fulfilled. How can the correct attribute values be computed?
What different algorithms can you think of? (This is a difficult exercise, but
worth thinking about.)

3.2 Reference attributes

In JastAdd, synthesized and inherited attributes are generalized in several ways,
as compared to the classical formulation by Knuth. The most important gen-
eralization is that an attribute is allowed to be a reference to an AST node.
In this way, attributes can connect different AST nodes to each other, forming
a graph. Furthermore it is allowed to use reference attributes inside equations,
and to access the attributes of their referenced objects. This allows non-local
dependencies: an attribute in one node can depend directly on attribute values
in distant nodes in the AST. The dependencies do not have to follow the tree
structure like in a classical AG. For example, if each use of an identifier has
a reference attribute that points directly to the appropriate declaration node,
information about the type can be propagated directly from the declaration to
the use node.

Reference attributes thus allow an AST to be extended to a graph in a
declarative way. Also cyclic graphs can be defined, as in the example in Figure
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A 

G 

t 

H 

u 

F 

eq t=3 eq u=5 

eq s=this 
eq m=H.u+k.v 

eq D.k=C.r 
eq C.i=D.t 

C eq t=F.s eq r=E.r D 

B 

eq r=this 
eq v=i.G.t E 

 r t 

v r i m s  k 

Fig. 11. Reference attributes are indicated with a small dot beside the name. An arrow
from a dot to a node illustrates the value of the reference attribute: E.r refers to E,
due to the equation r=this in E.

11 (see also exercise 6). The example shows several possibilities for equations to
access nodes and attributes, e.g.,

– this, meaning a reference to the node itself
– k.v, accessing the v attribute of the node referred to by k
– i.G.t, accessing the t attribute of the G child of the node referred to by i

Exercise 6. Draw the remaining reference attribute values in Figure 11. In what
way is the graph cyclic? What are the values of the ordinary (non-reference)
attributes? Give an example of non-local dependencies.

3.3 Parameterized attributes

A second generalization in JastAdd is that attributes may have parameters.
A parameterized attribute will have an unbounded number of values, one for
each possible combination of parameter values. For example, we may define
an attribute lookup(String) whose values are references to declarations, typi-
cally different for different parameter values. Conceptually, there is one value of
lookup for each possible String value. In practice, only a few of these lookup
values will actually be computed, because attribute evaluation is performed on
demand (see Section 3.8).

By accessing a parameterized attribute via a reference attribute, complex
computations can easily be delegated from one node to another. This is useful
in, e.g., name analysis, where lookup can be delegated from a method to its



An Introductory Tutorial on JastAdd Attribute Grammars 13

enclosing class, and further on to superclasses, following the scope rules of the
language.

3.4 Thinking declaratively

When writing an attribute grammar, you should try to think declaratively, rather
than to think about in which order things need to be computed. Think first
what properties you would like the nodes to have to solve a particular problem.
In the case of type checking, it would be useful if each expression node had a
type attribute. The next step is to write equations defining these attributes. In
doing so, you will need to solve subproblems that call for the addition of more
attributes, and so on.

For example, to define the type attribute of an identifier expression, it would
be useful to have an attribute decl that refers to the appropriate declaration
node. You could then simply define the identifier’s type as equal to the type
of its declaration. The next problem is now to define the decl attribute. This
problem would be easy to solve if all identifiers had a parameterized attribute
lookup(String), which returns a reference to the appropriate declaration node
when supplied with the name of the identifier. The next problem is now in
defining lookup(String), and so on.

In adding a new attribute, you need to decide if it should be synthesized or
inherited, i.e., if the node itself should define the attribute, or if the definition
is delegated to an ancestor. If all the information needed is available inside the
subtree rooted by the node, the attribute should be synthesized. If all the in-
formation is instead available outside this subtree, make the attribute inherited.
Finally, if both information inside and outside are needed, make the attribute
synthesized, and introduce one or more inherited attributes to capture the in-
formation needed from outside.

As an example, consider the type attribute for expressions. Since the type
will depend on what kind of expression it is, e.g., an identifier or an add node, the
attribute should be synthesized. Similarly, the decl attribute should be synthe-
sized since it depends on the identifier’s name. The lookup(String) attribute,
on the other hand, should be inherited since there is no information in the iden-
tifier node that is relevant for the definition of this attribute. The definition is
in this case delegated to an ancestor node.

3.5 Integration with Java

The JastAdd specification language builds on top of Java. In using attributes,
with or without parameters, we can view them as methods of AST nodes. At-
tributes are similar to abstract methods, and equations are similar to method
implementations. In fact, when accessing attributes, we will use Java method
call syntax, e.g., a(), and when we write an equation, the right-hand side is
written either as a Java expression or as a Java method body.

Although ordinary Java code is used for the right-hand side of an equation,
an important requirement is that it must not introduce any externally visible
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side effects such as changing fields of AST nodes or changing global data. I.e., its
effect should be equivalent to the evaluation of a side-effect-free expression. The
reason for this restriction is that equations represent definitions of values, and
not effects of execution. As soon as an AST has been created, all its attributes
automatically contain the correct values, according to their defining equations.
The underlying attribute evaluator that accomplishes this will run the equation
code, but the user does not have any explicit control over in what order the
equations are run, or how many times they are run. For efficiency, the underlying
machinery may memoize the values, i.e., run an equation just once, and store
the value for subsequent accesses. And if a particular attribute is not accessed,
its equation might not be run at all. Therefore, introducing externally visible
side effects within the equations will not have a well-defined behavior, and may
lead to very subtle bugs. The current JastAdd version (R20100416) does not
check for side-effects in equations, but leaves this responsibility to the user. In
principle, a number of static checks for this could be added, but this is an area
of future work.

3.6 Example: Name analysis for state labels

In section 2 we discussed an attribute target for Transition objects, that
should point to the appropriate target State object. This can be seen as a name
analysis problem: We can view the states as declarations and the transitions as
uses of those declarations. In addition to the target attribute we will define
an analogous source attribute which points to the appropriate source State
object. We start by declaring target and source as synthesized attributes of
Transition. This definition would be easy if we had a parameterized attribute
State lookup(String label) that would somehow find the appropriate State
object for a certain label. Since we don’t have enough information in Transition
to define lookup, we make it an inherited attribute. In fact, we will declare
lookup as an attribute of the superclass Declaration, since it might be useful
also to the State subclass, as we will see in exercise 8. By looking at the ab-
stract grammar, we see that the StateMachine node can have children of type
Declaration, so it is the responsibility of StateMachine to define lookup. (In
this case, StateMachine will be the root of the AST, so there are no further
ancestors to which the definition can be delegated.)

In StateMachine, we can define lookup simply by traversing the declara-
tions, locating the appropriate state. To do this we will introduce a synthesized
attribute State localLookup(String label) for Declarations. Fig. 12 shows
the resulting grammar. We use a JastAdd aspect to introduce the attributes and
equations using inter-type declarations.

There are a few things to note about the notation used:

syn, inh, eq The keywords syn and inh indicate declarations of synthesized
and inherited attributes. The keyword eq indicates an equation defining the
value of an attribute.
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aspect NameAnalysis {

syn State Transition.source() = lookup(getSourceLabel()); // R1

syn State Transition.target() = lookup(getTargetLabel()); // R2

inh State Declaration.lookup(String label); // R3

eq StateMachine.getDeclaration(int i).lookup(String label) { // R4

for (Declaration d : getDeclarationList()) {

State match = d.localLookup(label);

if (match != null) return match;

}

return null;

}

syn State Declaration.localLookup(String label) = null; // R5

eq State.localLookup(String label) = // R6

(label.equals(getLabel())) ? this : null;

}

Fig. 12. An aspect binding each Transition to its source and target States.

in-line equations Rules R4 and R6 define equations using the eq keyword. But
equations can also be given in-line as part of the declaration of a synthesized
attribute. This is the case in rules R1, R2, and R5.

equation syntax Equations may be written either using value syntax as in R1,
R2, R5, and R6:

attr = expr,
or using method syntax as in R4:

attr { ... return expr;}
In both cases, full Java can be used to define the attribute value. However,
as mentioned in Section 3.5, there must be no external side-effects resulting
from the execution of that Java code. Even if R4 uses the method body
syntax with a loop and an assignment, it is easy to see that there are no
external side-effects: only the local variables d and match are modified.

equations for inherited attributes R4 is an example of an equation defining
an inherited attribute. The left-hand side of such an equation has the general
form

A.getC().attr()

meaning that it is an equation in A which defines the attr attribute in the
subtree rooted at the child C of the A node. If C is a list, the general form
includes an argument int i:

A.getC(int i).attr()

meaning that the equation applies to the ith child of the list. The right-
hand side of the equation is within the scope of A, allowing the API of
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A to be accessed directly. For example, in R4, the AST traversal method
getDeclarationList() is accessed. The argument i is not used in this
equation, since all the Declaration children should have the same value
for lookup.

default and overriding equations Default equations can be supplied in su-
perclasses and overridden in subclasses. R5 is an example of a default equa-
tion, applying to all Declaration nodes, unless overridden in a subclass. R6
is an example of overriding this equation for the State subclass.

Exercise 7. Consider the following state machine:

state S1;
trans a: S1 -> S2;
state S2;

Draw a picture similar to Fig. 10, but for this state machine, i.e., indicating the
location of all attributes and equations, according to the grammar in Fig. 12.
Draw also the reference values of the source and target attributes. Check that
these values agree with the equations.

Exercise 8. In a well-formed state machine AST, all State objects should have
unique labels. Define a boolean attribute alreadyDeclared for State objects,
which is true if there is a preceding State object of the same name.

Exercise 9. If there are two states with the same name, the first one will have
alreadyDeclared = false, whereas the second one will have alreadyDeclared
= true. Define another boolean attribute multiplyDeclared which will be true
for both state objects, but false for uniquely named state objects.

3.7 More advanced name analysis

The name analysis for the state machine language is extremely simple, since
there is only one global name space for state labels. However, it illustrates the
typical solution for name analysis in JastAdd: using inherited lookup attributes,
and delegation to other attributes, like localLookup. This solution scales up to
full programming languages. For example, to deal with block-structured scopes,
the lookup attribute of a block can be defined to first look among the local dec-
larations, and, if not found there, to delegate to the context, using the inherited
lookup attribute of the block node itself. Similarly, object-oriented inheritance
can be handled by delegating to a lookup attribute in the superclass. This general
technique, using lookup attributes and delegation, is used in the implementation
of the JastAddJ Java compiler. See [EH06] for details.

3.8 Attribute evaluation and caching

As mentioned earlier, the JastAdd user does not have to worry about in which
order attributes are given values. The evaluation is carried out automatically.
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Given a well-defined attribute grammar, once the AST is built, all equations will
hold, i.e., each attribute will have the value given by the right-hand side of its
defining equation. From a performance or debugging perspective, it is, however,
useful to know how the evaluation is carried out.

The evaluation algorithm is a very simple dynamic recursive algorithm, first
suggested for Knuth-style AGs [Jou84], but which works also in the presence
of reference attributes. The basic idea is that equation right-hand sides are im-
plemented as recursive functions, and when an attribute is called, its defining
equation is run. The function call stack takes care of evaluating the attributes
in the right order.

The use of object-orientation, as in JastAdd, makes the implementation of
the algorithm especially simple, representing both attributes and equations as
methods: For synthesized attributes, ordinary object-oriented dispatch takes care
of selecting the appropriate equation method. For inherited attributes, there is
some additional administration for looking up the appropriate equation method
in the parent, or further up in the AST.

Two additional issues are taken care of during evaluation. First, attribute
values can be cached for efficiency. If the attribute is cached, its value is stored
the first time it is accessed. Subsequent accesses will return the value directly,
rather than calling the equation method. In JastAdd, attributes can be explicitly
declared to be cached by adding the modifier lazy to their declaration. It is
also possible to cache all attributes by using an option to the JastAdd system.
Attributes that involve heavy computations and are accessed more than once
(with the same arguments, if parameterized) are the best candidates for caching.
For the example in Fig. 12 we could define source and target as cached if we
expect them to be used more than once by an application:

...
syn lazy State Transition.source() = ...
syn lazy State Transition.target() = ...
...

The second issue is dealing with circularities. In a well-defined attribute gram-
mar, ordinary attributes must not depend on themselves, directly or indirectly.
If they do, the evaluation would end up in an endless recursion. Therefore, the
evaluator keeps track of attributes under evaluation, and raises an exception at
runtime if a circularity is found. Due to the use of reference attributes, there is
no general algorithm for finding circularities by analyzing the attribute grammar
statically [Boy05].

4 Composite attributes

It is often useful to work with composite attribute values like sets, lists, maps,
etc. In JastAdd, these composed values are often sets of node references. An
example is the transitions attribute of State, discussed in Section 2. It is
possible to define composite attributes using normal synthesized and inherited
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attributes. However, often it is simpler to use collection attributes. Collection
attributes allow the definition of a composite attribute to be spread out in several
different places in an AST, each contributing to the complete composite value.
Collection attributes can be used also for scalar values like integers and booleans,
see Exercise 13, but using them for composite values, especially sets, is more
common.

4.1 Representing composite attributes by immutable objects

We will use objects to represent composite attribute values like sets. When ac-
cessing these attributes, great care must be taken to treat them as immutable
objects, i.e., to only use their non-mutating operations. However, during the
construction of the value, it is fine to use mutating operations. For example, an
equation can construct a set value by successively adding elements to a freshly
created set object. Figure 13 shows a simplified2 part of the API of the Java
class HashSet.

class HashSet<E> implements Set{

public HashSet(); // Constructor, returns a new empty set.

// Mutating operations

public void add(E e); // Adds the element e to this object.

public void addAll(Set<E> s); // Adds all elements in s to this object.

// Non-mutating operations

public boolean contains(T e); // Returns true if this set contains e.

public boolean equals(Set<E> s); // Returns true if this set has the

// same elements as s.

}

Fig. 13. Simplified API for the Java class HashSet

4.2 A collection attribute: transitions

A collection attribute [Boy96,MEH09] has a composite value that is defined as
a combination of contributions. The contributions can be located anywhere in
the AST. If we would use ordinary equations, we would need to define attributes
that in effect traverse the AST to find the contributions. With collection at-
tributes, the responsibility is turned around: each contributing node declares its
contribution to the appropriate collection attribute.

Fig. 14 shows how to define the transitions attribute as a collection.
2 The actual API for HashSet has more general types for some parameters and returns

booleans instead of void for some operations, and has many additional operations.
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coll Set<Transition> State.transitions() // R1

[new HashSet<Transition>()] with add;

Transition contributes this // R2

when source() != null

to State.transitions()

for source();

Fig. 14. Defining transitions as a collection attribute.

Rule R1 declares that State objects have a collection attribute transitions
of type Set<Transition>. Its initial value (enclosed by square brackets) is new
HashSet<Transition>(), and contributions will be added with the method add.

Rule R2 declares that Transition objects contribute themselves (this) to
the transitions collection attribute of the State object source(), but only
when source() is not equal to null.

We can note that the definition of transitions involves only the two node
classes State and Transition. If we had instead used ordinary synthesized and
inherited attributes to define transitions, we would have had to propagate
information through StateMachine, using additional attributes. The collection
attribute solution thus leads to a simpler solution, as well as less coupling be-
tween syntax node classes.

Exercise 10. Define an attribute altTransitions that is equivalent to transi-
tions, but that uses ordinary synthesized and inherited attributes instead of
collection attributes. Compare the definitions.

Via the transitions attribute, we can easily find the successor states of a
given state. To obtain direct access to this information, we define an attribute
successors. Figure 15 shows the definition of successors as an ordinary syn-
thesized attribute, making use of transitions. An alternative definition would
have been to define successors independently of transitions, using a collec-
tion attribute.

syn Set<State> State.successors() {

Set<State> result = new HashSet<State>();

for (Transition t : transitions()) {

if (t.target() != null) result.add(t.target());

}

return result;

}

Fig. 15. Defining successors, by using transitions.
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Exercise 11. Define an attribute altSuccessors that is equivalent to successors,
but that uses a collection attribute. Compare the definitions.

4.3 Collection attribute syntax

Figure 16 shows the syntax used for declaring collection attributes and contribu-
tions. For the collection-attribute-declaration, the initial-object should be a Java
expression that creates a fresh object of type type. The contributing-method
should be a one-argument method that mutates the initial-object. It must be
commutative, i.e., the order of calls should be irrelevant and result in the same
final value of the collection attribute. Optionally, a rootclass can be supplied,
limiting the contributions to occur in the AST subtree rooted at the closest
rootclass object above or at the nodeclass object in the AST. If no rootclass is
supplied, contributions can be located anywhere in the AST.

In the contribution-declaration, the expr should be a Java expression that
has the type of the argument of the contributing-method, as declared in the cor-
responding collection declaration (the one for collection-nodeclass.attr()). In the
example, there is an add method in Set<Transition> which has the argument
type Transition, so this condition is fulfilled. There can be one or more such
contributions, separated by commas, and optionally they may be conditional,
as specified in a when clause. The expression ref-expr should be a reference to
a collection-nodeclass object. Optionally, the contribution can be added to a
whole set of collection attributes by using the each keyword, in which case ref-
expr should be a set of collection-nodeclass objects, or more precisely, it should
be an object implementing Java’s interface Iterable, and contain objects of
type collection-nodeclass.

collection-attribute-declaration ::=
′coll′ type nodeclass ′.′ attr ′()′

′[′ initial-object ′]′

′with′ contributing-method
[ ′root′ rootclass ]

contribution-declaration ::=
contributing-nodeclass ′contributes′

( expr [ ′when′ cond ] , ′,′ )+
′to′ collection-nodeclass ′.′ attr ′()′

′for′ [ ′each′ ] ref-expr

Fig. 16. Syntax for collection attributes and contributions

Exercise 12. Given the successors attribute, define a predecessors attribute
for State, using a collection attribute. Hint: use the for each construct in the
contribution.
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Exercise 13. Collection attributes can be used not only for sets, but also for
other composite types, like maps and bags, and also for scalar types like integers.
Primitive types, like int and boolean in Java, need, however, to be wrapped in
objects. Define a collection attribute numberOfTransitions that computes the
number of transitions in a state machine.

Exercise 14. Define a collection attribute errors for StateMachine, to which
different nodes in the AST can contribute strings describing static-semantic er-
rors. Transitions referring to missing source and target states are obvious errors.
What other kinds of errors are there? Write a collection declaration and suitable
contributions to define the value of errors.

For more examples of collection attributes, see the metrics example, available
at jastadd.org. This example implements Chidamber and Kemerer’s metrics for
object-oriented programs [CK94]. The implementation is done as an extension
to the JastAddJ Java compiler, and makes heavy use of collection attributes for
computing the different metrics. Collection attributes are also used in the flow
analysis example at jastadd.org, as described in [NNEHM09]. Here, predeces-
sors in control-flow graphs, and def and use sets in dataflow, are defined using
collection attributes.

4.4 Evaluation of collection attributes

When accessing a collection attribute, JastAdd automatically computes its value,
based on the existing contribution declarations. In general, this involves a com-
plete traversal of the AST to find the contributions, unless the scope of the
collection is restricted, using a root clause in the collection declaration. To im-
prove performance, several collection attributes can be computed in the same
traversal, either completely or partially. Given that a particular instance ci of a
collection attribute c is accessed, the default behavior of JastAdd is to partially
compute all instances of c, so that further traversal of the AST is unneces-
sary when additional instances of c are accessed. The algorithm used is called
two-phase joint evaluation [MEH09]. It is sometimes possible to achieve further
performance improvements by using other algorithm variants. For example, the
evaluation of several different collection attributes can be grouped, provided that
they do not depend on each other. See [MEH09] for more details.

5 Circular attributes

Sometimes, the definition of a property is circular, i.e., depending ultimately on
itself: When we write down a defining equation for the property, we find that
we need the same property to appear at the right-hand side of the equation, or
in equations for attributes used by the first equation. In this case, the equations
cannot be solved by simple substitution, as for normal synthesized and inherited
attributes, but a fixed-point iteration is needed. The variables of the equations



22 Görel Hedin

are then initialized to some value, and assigned new values in an iterative process
until a solution to the equation system is found, i.e., a fixed point.

The reachable attribute of State is an example of such a circularly defined
property. In this section we will first look at how this property can be formulated
and solved mathematically, and then how it can be programmed using JastAdd.

5.1 Circularly defined properties

To define reachability for states mathematically, suppose first that the state
machine contains n states, s1..sn. Let succk denote the set of states that can be
reached from sk through one transition. The set of reachable states for sk, i.e.,
the set of states that can be reached via any number of transitions from sk, can
then be expressed as follows:

reachablek = succk ∪
⋃

sj∈succk

reachablej

We will have one such equation for each state sk, 1≤k≤n. If there is a cycle in
the state machine, the equation system will be cyclic, i.e., there will be some
reachable set that (transitively) depends on itself. We can compute a solution to
the equation system using a least fixed-point iteration. I.e., we use one reachable
variable for each state, to which we initially assign the empty set. Then we
interpret the equations as assignments, and iterate these assignments until no
reachable variable changes value. We have then found a solution to the equation
system. The iteration is guaranteed to terminate if we can place all possible
values in a lattice of finite height, and if all the assignments are monotonic, i.e.,
if they never decrease the value of any reachable variable.

{S1, S2, S3} 

Ø 

{S1, S2} {S1, S3} {S2, S3} 

{S1} {S2} {S3} 

Fig. 17. The sets of states for the state machine of Fig. 3 are arranged in a lattice.

In this case, the values are sets of states, and they can be arranged in a
lattice with the empty set at the bottom and the set of all states in the state
machine at the top. Fig. 17 shows the lattice for the state machine of Fig. 3.
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The lattice will be of finite height since the number of states in any given state
machine is finite. The assignments will be monotonic since the union operator
can only lead to increasing values in the lattice. Because we start at the bottom
(the empty set), we are furthermore guaranteed to find the least fixed point, i.e.,
the variables will stay at the lowest possible points in the lattice. If we have a
cycle in the state machine, there may be additional uninteresting fixed points,
for example by assigning the full set of states to reachable for all states on the
cycle.

Exercise 15. For the state machine of Fig. 3, write down all the equations for
reachable. Which are the variables of the equation system?

Exercise 16. What is the (least) solution to this equation system? Are there any
more (uninteresting) solutions?

Exercise 17. Construct a state machine for which there is more than one solution
to the equation system. What would be the least solution? What would be
another (uninteresting) solution?

5.2 Circular attributes

In JastAdd, we can program circular properties like reachable by explicitly
declaring the attribute as circular. and stating what initial value to use. The
attribute will then automatically be evaluated using fixed-point iteration. Fig.
18 shows the definition of the attribute reachable for states.

syn Set<State> State.reachable() circular [new HashSet<State>()]; // R1

eq State.reachable() { // R2

HashSet<State> result = new HashSet<State>();

for (State s : successors()) {

result.add(s);

result.addAll(s.reachable());

}

return result;

}

Fig. 18. Defining reachable as a circular attribute.

Things to note:

syntax Synthesized, inherited and collection attributes can be declared as cir-
cular by adding the keyword circular after the attribute name. For syn-
thesized and inherited attributes, an initial value also needs to be supplied,
surrounded by square brackets as shown in the example above. For collection
attributes, the initial object is used as the initial value.
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caching Circular attributes are automatically cached, so adding the keyword
lazy has no effect.

equals method The types used for circular attributes must have a Java equals
method that tests for equality between two attribute values.

value semantics As usual, it is necessary to treat any accessed attributes as
values, and to not change their contents. In the example, we set result to
a freshly created object, and it is therefore fine to mutate result inside
the equation. Note that if we instead had initialized result to the set of
successors, we would have had to be careful to set result to a fresh clone
of the successors object.3

termination For attributes declared as circular, it would be nice to have static
checks for the requirements of equation monotonicity and finite-height lat-
tices. Currently, JastAdd does not support any such checks, but leaves this
as a responsibility of the user. This means that if these requirements are
not met, it may result in erroneous evaluation or non-termination during
attribute evaluation. Boyland’s APS system provides some support in this
direction by requiring circular attributes to have predefined lattice types, like
union and intersection lattices for sets, and and and or lattices for booleans
[Boy96]. Similar support for JastAdd is part of future work.
Attributes that are not declared as circular, but which nevertheless happen
to be defined circularly, are considered erroneous. To statically check for the
existence of such attributes is, in general, an undecidable problem in the
presence of reference attributes [Boy05]. In JastAdd, such circularities are
detected dynamically, raising an exception at evaluation time.

Exercise 18. Define an attribute altReachable that is equivalent to reachable,
but that uses a circular collection attribute. Hint: make use of the predecessors
attribute defined in exercise 12.

For more examples of JastAdd’s circular attributes, you may look at the
flow analysis example at jastadd.org where intraprocedural control flow and
dataflow is defined as an extension to the JastAddJ Java compiler, as described
in [NNEHM09]. Here, the in set is defined as a circular attribute, and the out
set as a circular collection attribute. In [MH07], there are examples of defining
the properties nullable, first, and follow for nonterminals in context-free gram-
mars, using JastAdd circular attributes. The nullable property is defined using
a boolean circular attribute, and the two others as set-valued circular attributes.
A variant of follow is defined in [MEH09] using circular collection attributes.

3 In order to avoid having to explicitly create fresh objects each time a new set value
is computed, we could define an alternative Java class for sets with a larger nonmu-
tating API, e.g., including a union function that automatically returns a new object
if necessary. Such an implementation could make use of persistent data structures
[DSST86], to efficiently represent different values.
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6 Conclusions and outlook

In this tutorial we have covered central attribution mechanisms in JastAdd, in-
cluding synthesized, inherited, reference, parameterized, collection, and circular
attributes. With these mechanisms you can address many advanced problems in
compilers and other language tools. There are some additional mechanisms in
JastAdd that are planned to be covered in a sequel of this tutorial:

Rewrites [EH04], allow sub ASTs to be replaced conditionally, depending on
attribute values. This is useful when the AST constructed by the parser is
not specific enough, or in order to normalize language constructs to make
further compilation easier.

Nonterminal attributes [VSK89] allow the AST to be extended dynamically,
defining new AST nodes using equations. This is useful for macro expansion
and transformation problems. In the JastAddJ Java compiler, nonterminal
attributes are used for adding nodes representing instances of generic types
[EH07b].

Inter-AST references [ÅEH10] allow nodes in a new AST to be connected to
nodes in an existing AST. This is useful when creating transformed ASTs:
nodes in the transformed AST can have references back to suitable locations
in the source AST, giving access to information there.

Interfaces. Attributes and equations can be defined in interfaces, rather than
in AST classes, allowing reuse of language independent computations, and
supporting connection to language independent tools.

Refine. Equations in existing aspects can be refined in new aspects. This is
similar to object-oriented overriding, but without having to declare new
subclasses. Refines are useful for adjusting the behavior of an aspect when
reusing it for a new language or tool.

The declarative construction of an object-oriented model is central when
programming in JastAdd. The basic structure is always the abstract syntax tree
(AST), but through the reference attributes, graphs can be superimposed. In this
tutorial we have seen this through the addition of the source and target edges,
and the transitions, successors, and reachable sets. Similar techniques are
used to implement compilers for programming languages like Java. Here, each
use of an identifier can be linked to its declaration, each class declaration to its
superclass declaration, and edges can be added to build control-flow and dataflow
graphs. Once these graphs have been defined, further attribute definitions are
often made in terms of those graph structures rather than in terms of the tree
structure of the AST. An example was defining transitions in terms of source.

An important design advice is to focus on thinking declaratively when pro-
gramming in JastAdd. Think first about what attributes you would like the AST
to have. Then, in defining these attributes, think of what other attributes that
would be useful, in order to make your equations simple. This will lead to the
addition of new attributes. In this tutorial, we have mostly worked in the other
direction, in order to present simple mechanisms before more complex ones. For
a real situation, where you already know about the JastAdd mechanisms, you
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might have started out with the reachable attribute instead. In order to de-
fine it, it would have been useful to have the successors attribute. To define
the successors attribute, you find that you need the transitions and target
attributes, and so on.

The use of Java as the host language for writing equations is very power-
ful, allowing existing Java classes to be used for data types, and for connecting
the attributed AST to imperatively implemented tools. At the same time, it is
extremely important to understand the declarative semantics of the attribute
grammars, and to watch out to not introduce any external side-effects in the
equations. In particular, when dealing with composite values that are imple-
mented using objects, it is very important to distinguish between their mutating
and non-mutating operations, so that accessed attributes are not mutated by
mistake.

As for normal object-oriented programming, naming is essential. Try to pick
good descriptive names of both your AST classes and your attributes, so that
the code you write is readable, and the APIs that the attributes produce will be
simple and natural to use. For each attribute that you implement, you can write
test cases that build up some example ASTs and test that the attributes get the
intended values in different situations, so that you are confident that you have
got your equations right.

JastAdd has been used for implementing both simple small languages and
advanced programming languages. The implementation of our extensible Java
compiler, JastAddJ, has been driving the development of JastAdd, and has mo-
tivated the introduction of many of the different mechanisms and made it pos-
sible to benchmark them on large programs [EH04,MH07,MEH09,NNEHM09].
Other advanced languages are being implemented as well, most notably an on-
going open-source implementation of the language Modelica which is used for
describing physical models using differential equations [Mod10,JMo09,ÅEH10].
For more information about JastAdd, see jastadd.org.
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A Solutions to exercices

Exercise 1

State 
S1 

State 
S2 

State 
S3 

Transition 
a:S1->S2 

Transition 
b:S2->S1 

Transition 
a:S2->S3 

Exercise 2

Here is an aspect defining a method printInfoAboutCycles for StateMachine:

aspect PrintInfoAboutCycles {
public void StateMachine.printInfoAboutCycles() {
for (Declaration d : getDeclarationList()) {
d.printInfoAboutCycles();

}
}

public void Declaration.printInfoAboutCycles() {}

public void State.printInfoAboutCycles() {
System.out.print("State "+getLabel()+" is ");
if (!reachable().contains(this)) {
System.out.print("not ");

}
System.out.println("on a cycle.");

}
}

The main program parses an inputfile, then calls the printInfoAboutCycles
method:

package exampleprogs;
import AST.*;
import java.io.*;

public class Compiler {
public static void main(String[] args) {
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String filename = getFilename(args);

// Construct the AST
StateMachine m = parse(filename);

// Print info about what states are on cycles
m.printInfoAboutCycles();

}

public static String getFilename(String[] args) { ... }

public static StateMachine parse(String filename) { ... }
}

Running the ”compiler” on the input program of Fig. 3, gives the following
output:

State S1 is on a cycle.
State S2 is on a cycle.
State S3 is not on a cycle.

Exercise 3

C.v = 18
C.i = 7
E.s = 26
E.i = 18
F.t = 3
G.u = 5

Exercise 4

B, D, F, and G.

Exercise 5

There are many possible algorithms for computing attribute values in an AST.
Here are some alternatives:

Dynamic, with explicit depedency graph Add dependency edges between
all attributes in an AST according to the equations. For example, for an
equation a = f(b, c), the two edges (b, a) and (c, a) are added. Then run all
the equations as assignments in topological order, starting with equations
with no incoming edges. This kind of algorithm is called a dynamic algorithm
because we use the dependencies of an actual AST, rather than only static
dependencies that we can derive from the grammar.
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Static Compute a conservative approximation of a dependency graph, based on
the attribute grammar alone, so that the graph holds for any possible AST.
Then compute a scheduling for in what order to evaluate the attributes based
on this graph. This kind of algorithm is called a static algorithm, since it
only takes the grammar into account, and not the actual AST. It might be
more efficient than the dynamic algorithm since the actual dependencies in
an AST do not need to be analyzed. On the other hand, it will be less general
because of the approximation. There are many different algorithms that use
this general approach. They differ in how they do the approximation, and
thereby in how general they are.

Dynamic, with implicit dependency graph Represent each attribute by a
function, corresponding to the right-hand side of its defining equation. To
evaluate an attribute, simply call its function. Recursive calls to other at-
tributes will automatically make sure the attributes are evaluated in topo-
logical order. This algorithm is also dynamic, but does not require building
an explicit dependency graph.

The JastAdd system uses this latter algorithm, see Section 3.8 for details.
The other two alternatives are not powerful enough to handle arbitrary reference
attributes.

Exercise 6

A 

G 

t 

H 

u 

F 

eq t=3 eq u=5 

eq s=this 
eq m=H.u+k.v 

eq D.k=C.r 
eq C.i=D.t 

C eq t=F.s eq r=E.r D 

B 

eq r=this 
eq v=i.G.t E 

 r t 

v r i m s  k 

E and F are on a cycle via their attributes i and k.
Values of non-reference attributes:

E.v = 3
F.m = 8
G.t = 3
H.u = 5
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Examples of non-local dependencies: the value of E.v depends directly on the
value of G.t, and F.m depends directly on E.v.

Exercise 7

R4 

State 
S1 

StateMachine 

State 
S2 

Transition 
a:S1->S2 

source 

target 

lookup 

localLookup localLookup localLookup 

R1 
R2 
R5 

R6 R6 

lookup lookup 

Exercise 8

syn boolean State.alreadyDeclared() =
lookup(this.getLabel()) != this;

Exercise 9

A state is multiply declared if it either is declared already, or if it has a later
namesake. To find out if it has a later namesake, we define a new attribute
lookupForward that only traverses declarations after the state. Note that the
equation for this attribute makes use of the argument i to start traversing at
the appropriate position in the list.

syn boolean State.multiplyDeclared() =
alreadyDeclared() || hasLaterNamesake();

syn boolean State.hasLaterNamesake() =
lookupForward(getLabel()) != null;

inh State Declaration.lookupForward(String label);

eq StateMachine.getDeclaration(int i).lookupForward(String label) {
for (int k = i+1; k<getNumDeclaration(); k++) {
Declaration d = getDeclaration(k);
State match = d.localLookup(label);
if (match != null) return match;

}
return null;

}
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Exercise 10

syn Set<Transition> State.altTransitions() = transitionsOf(this);
inh Set<Transition> State.transitionsOf(State s);

eq StateMachine.getDeclaration(int i).transitionsOf(State s) {
HashSet<Transition> result = new HashSet<Transition>();
for (Declaration d : getDeclarationList()) {
Transition t = d.transitionOf(s);
if (t != null) result.add(t);

}
return result;

}

syn Transition Declaration.transitionOf(State s) = null;
eq Transition.transitionOf(State s) {
if (source() == s)
return this;

else
return null;

}

We see that the definition of altTransitions is more complex than that of
transitions: two help attributes are needed: the inherited transitionsOf
and the synthesized transitionOf. Furthermore, we see that the definition of
altTransitions is more coupled in that it relies on both the existence of the
StateMachine nodeclass, and on its child structure.

Exercise 11

coll Set<State> State.altSuccessors()
[new HashSet<State>()] with add;

Transition contributes target()
when target() != null && source() != null
to State.altSuccessors()
for source();

In this case, the definitions using ordinary attributes and collection attributes
have about the same complexity and coupling.

Exercise 12

coll Set<State> State.predecessors()
[new HashSet<State>()] with add;
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State contributes this
to State.predecessors()
for each successors();

Exercise 13

To define the collection, we introduce a class Counter that works as a wrapper for
Java integers. To give Transitions access to their enclosing state machine node,
in order to contribute the value 1 to the collection, we introduce an inherited
attribute theMachine. Finally, the synthesized attribute numberOfTransitions
simply accesses the value of the Counter.

syn int StateMachine.numberOfTransitions() =
numberOfTransitionsColl().value();

coll Counter StateMachine.numberOfTransitionsColl()
[new Counter()] with add;

Transition contributes 1
to StateMachine.numberOfTransitionsColl()
for theMachine();

inh StateMachine Declaration.theMachine();
eq StateMachine.getDeclaration(int i).theMachine() = this;

class Counter {
private int value;
public Counter() { value = 0; }
public void add(int value) { this.value += value; }
public int value() { return value; }

}

Exercise 14

Here we have simply used a set of strings to represent the error messages. In
addition to missing declarations of states, error messages are added for states
that are declared more than once.

coll Set<String> StateMachine.errors()
[new HashSet<String>()] with add;

State contributes getLabel()+" is already declared"
when alreadyDeclared()
to StateMachine.errors()
for theMachine();

Transition contributes "Missing declaration of "+getSourceLabel()
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when source() == null
to StateMachine.errors()
for theMachine();

Transition contributes "Missing declaration of "+getTargetLabel()
when target() == null
to StateMachine.errors()
for theMachine();

Exercise 15

reachable1 = {S2} ∪ reachable2

reachable2 = {S1, S3} ∪ reachable1 ∪ reachable2

reachable3 = Ø

Exercise 16

The least (and desired) solution is

reachable1 = {S1, S2, S3}
reachable2 = {S1, S2, S3}
reachable3 = Ø

There are no additional solutions since the attributes that are circular (reachable1

and reachable2) have the top value in the lattice (the set of all states).

Exercise 17

This state machine has more than one solution for reachable.

S1 S2 S3 

The equation system is:

reachable1 = {S2} ∪ reachable2

reachable2 = {S3} ∪ reachable3

reachable3 = {S2} ∪ reachable2
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The least (and desired) solution is:

reachable1 = {S2, S3}
reachable2 = {S2, S3}
reachable3 = {S2, S3}

An additional (and uninteresting) solution also includes S1:

reachable1 = {S1, S2, S3}
reachable2 = {S1, S2, S3}
reachable3 = {S1, S2, S3}

Exercise 18

coll Set<State> State.altReachable() circular
[new HashSet<State>()] with addAll;

State contributes union(asSet(this),altReachable())
to State.altReachable()
for each predecessors();

In the above solution we have made use of two auxiliary functions: asSet and
union. It would have been nice if these functions had already been part of the
Java Set interface, but since they are not, we define them as functions in ASTNode
as shown below, making them available to all AST nodes. (The class ASTNode is
a superclass of all node classes.) A nicer solution can be achieved by designing
new alternative Java classes and interfaces for sets.

Set<State> ASTNode.asSet(State o) {
HashSet<State> result = new HashSet<State>();
result.add(o);
return result;

}

Set<State> ASTNode.union(Set<State> s1, Set<State> s2) {
HashSet<State> result = new HashSet<State>();
for (State s: s1) result.add(s);
for (State s: s2) result.add(s);
return result;

}


