
Circular Reference Attributed Grammars -
their Evaluation and Applications

Eva Magnusson 1

Dept of Computer Science
Lund University
Lund, Sweden

Görel Hedin 2

Dept of Computer Science
Lund University
Lund, Sweden

Abstract

This paper presents a combination of Reference Attributed Grammars (RAGs) and
Circular Attribute Grammars (CAGs). While RAGs allow the direct and easy
specification of non-locally dependent information, CAGs allow iterative fixed-point
computations to be expressed directly using recursive (circular) equations. We
demonstrate how the combined formalism, Circular Reference Attributed Grammars
(CRAGs), can take advantage of both these strengths, making it possible to express
solutions to many problems in an easy way. We exemplify with the specification
and computation of the nullable, first, and follow sets used in parser construction,
a problem which is highly recursive and normally programmed by hand using an
iterative algorithm. We also present a general demand-driven evaluation algorithm
for CRAGs and some optimizations of it. The approach has been implemented and
experimental results include computations on a series of grammars including that
of Java 1.2. We also revisit some of the classical examples of CAGs and show how
their solutions are facilitated by CRAGs.

1 Introduction

Attribute grammars (AGs), as introduced by Knuth [19], allow computations
on a syntax tree to be defined declaratively using attributes where each at-

1 Email: eva@cs.lth.se
2 Email: gorel@cs.lth.se

Preprint submitted to Elsevier Preprint 4 August 2004

tribute is defined by a semantic function of other attributes in the tree. An
attribute is either used to propagate information upwards in the tree (syn-
thesized attribute) or downwards in the tree (inherited attribute). In the
original form of AGs, the definition of an attribute may depend directly only
on attributes of neighbor nodes in the tree. Furthermore, the dependencies
between attributes may not be cyclic. The first of these restrictions is lifted
by Reference Attributed Grammars (RAGs) [11] and similar formalisms, e.g.,
[24], [2]. In these formalisms, an attribute may be a reference to an arbitrar-
ily distant node in the tree, and an attribute may be defined in a semantic
function by directly accessing attributes of the reference (remote access). It
has been shown earlier how RAGs support the easy specification and auto-
matic implementation of many practical problems, for example, name- and
type analysis of object-oriented languages [11], execution time prediction [23],
program visualization [22], and design pattern checking [7].

The second of the restrictions mentioned above, circular definitions, is
lifted by Circular Attribute Grammars (CAGs) such as those of Farrow [9] and
Jones [15]. The traditional AG requirement of non circularity is a sufficient but
not necessary condition to guarantee that an AG is well defined in the sense
that all semantic rules can be satisfied. It suffices that all attributes involved
in cyclic dependencies have a fixed point that can be computed with a finite
number of iterations. In CAGs, circular dependencies between attributes are
allowed provided that such a fixed point is available for all possible trees. This
is guaranteed if the values for each attribute on a cycle can be organized in a
lattice of finite height and if all the semantic functions involved in computing
these attributes are monotonic on the respective lattices. Several authors
(e.g., [9], [15], [26]) have shown how the possibility of circular definitions of
attributes allows simple AG specifications for some well-known problems from
different areas. Examples include data-flow analysis, code optimizations, and
properties of circuits in a hierarchical VLSI design system. Farrow [9] also
demonstrates how alternative non-circular specifications in some cases can be
constructed with additional huge complexity, including, e.g., the use of higher-
order functions. The circular specifications, in contrast, are both easy to read
and understand and easy for the AG author to write.

In this paper, we combine Circular Attribute Grammars (CAGs) and
Reference Attributed Grammars (RAGs) into Circular Reference Attributed
Grammars (CRAGs). We demonstrate how CRAGs can take advantage of
both the combined formalisms, making it possible to express many new prob-
lems in a concise and straight-forward way. To exemplify, we show how to
specify the nullable, first, and follow sets used in parser construction. These
sets are traditionally defined using recursive equations and computed impera-
tively by iteration. We demonstrate in this paper how the recursive definitions
can be expressed directly using CRAGs. We also revisit some of the classi-

2

cal examples of CAGs, in particular, constant evaluation and live analysis,
and show how their solutions are facilitated by CRAGs. We have developed
a general recursive evaluation algorithm for CRAGs and implemented it in
our tool JastAdd [12], which is an aspect-oriented compiler construction tool
supporting RAGs. For evaluation, we present some experimental results of
the CRAG evaluation of the nullable, first, and follow problems as compared
to the corresponding handcoded iterative implementation.

There is some previous work on combining RAG-like formalisms with
CAGs. Boyland has implemented a similar combination in his APS system
[2]. Sasaki & Sassa present Circular Remote Attribute Grammars (also abbre-
viated CRAGs), which on the surface is similar to our CRAGs [26]. However,
Sasaki & Sassa assume that the remote links are computed separately outside
the attribute grammar.

The rest of this paper is structured as follows: Section 2 reviews exist-
ing evaluation algorithms for CAGs and RAGs. Section 3 introduces our
demand-driven algorithm for CRAGs. In Section 4 we focus on some example
applications and our experience of using CRAGs for their specifications. Sec-
tion 5 summarizes the contributions and provides some directions for future
work.

2 Existing Evaluation Algorithms

Dependencies between attribute instances in a syntax tree can be modelled as
a directed graph. The vertices of the graph correspond to attribute instances
and if the specification of an attribute a1 uses another attribute a2 there
will be an edge from a2 to a1. If the dependency graph is acyclic for every
possible derivable syntax tree for a certain grammar, the grammar is said to be
noncircular. For noncircular grammars it is always possible to topologically
order the dependency graphs and evaluate the attributes by applying the
semantic functions in that order.

Traditional AGs are required to be noncircular, but, as has been shown
by, e.g., Farrow [9] and Jones [15], grammars with circular dependencies under
certain constraints can be considered well defined in the sense that it is possible
to satisfy all semantic rules for all possible syntax trees. One way to formulate
the constraints is to require that the domain of all attributes involved in
cyclic chains can be arranged in a lattice of finite height and that all semantic
functions for these attributes are monotonic. 3 The evaluation of circularly
defined attributes can be regarded as a special case of solving the equation
X = f(X) for the value of X. By giving X the bottom of the lattice as start
value the iterative process Xi+1 = f(Xi) will converge to a least fixed point

3 More precisely it is sufficient that the domain of the attributes forms a complete partial
order and that the semantic functions satisfy the ascending chain condition.

3

initialize all attributes xi involved in the cycle to a bottom value;
do {

foreach attribute xi in the cycle
xi = fi(...);

} while (some computation changes the value of an attribute);

Fig. 1. Iterative algorithm for computing the least fixed point for attributes on a
cycle.

for which all involved semantic rules are satisfied.

The values of the attributes involved in a cycle can be computed by the
iterative algorithm shown in Fig. 1. The arguments of the semantic functions
fi are to be the values from the previous iteration of all attributes on which
xi depends.

2.1 Detection of circularity

The problems of deciding whether a traditional AG is circular and of iden-
tifying the attributes taking part in cycles have been addressed by several
researchers. In [19] Knuth developed a polynomial algorithm for circularity
testing. The algorithm is conservative, i.e., circularity is always detected but
some noncircular AGs may be reported to be circular. Later [20] Knuth con-
structed an exact algorithm which is exponential in time and space complex-
ity. Rodeh & Sagiv [25] extended these algorithms to deal with the problem
of finding circular attributes. They developed a polynomial approximation
algorithm, i.e., all circular attributes are discovered but some noncircular at-
tributes may be reported to be circular. They also constructed an exact algo-
rithm with exponential time complexity and showed that finding the circular
attributes is a harder problem than testing for circularity. The problem of
testing reference attributed grammars for circularity can be addressed as in
[26] by introducing all possible remote edges with lots of potential cycles in the
dependency graph as a result. Most abstract syntax trees will, however, not
contain any cycles and the iterations performed by the generated evaluator are
unnecessary. In [2] Boyland has defined an extension to traditional AGs called
remote attribute grammars, which supports reference attributes like in RAGs
and also additional features like collection attributes that can be written from
remote locations. In [5] he shows that testing remote attribute grammars for
circularity is undecidable and examines techniques for approximation.

2.2 Evaluation of circular attribute grammars

Jones [15] proposes a dynamic evaluation algorithm derived from the under-
lying attribute dependency graph. Optimal dynamic evaluation for circular
AGs is obtained by analyzing the dependency graph dynamically to identify
its strongly connected components. A strongly connected component is a

4

maximal set of vertices in which there is a path from any one vertex in the
set to any other vertex in the set. All attribute instances belonging to the
same strongly connected component are thus dependent of each other. Each
strongly connected component is contracted into a single node to obtain a
new graph C(G), which is acyclic and can be ordered topologically and evalu-
ation can follow this order. A vertex in C(G) corresponding to more than one
vertex in the original graph represents a set of attribute instances that are
all dependent of each other and they will be evaluated in a single fixed-point
evaluation. The graphs must be constructed initially. When the attribute
grammar is acyclic, Jones’ algorithm reduces to a standard optimal algorithm
for noncircular evaluation. His scheme is not immediately applicable to RAGs
since the reference attributes introduce dependencies that are not known until
they have been evaluated.

Farrow [9] introduced a static evaluation technique based on the one by
Katayama [18], but modified to compute the fixed point for attributes which
potentially have circular dependencies. His scheme is also limited to tradi-
tional AGs without remote references since it depends on deriving the at-
tribute dependencies statically from the productions of the grammar. Sasaki
& Sassa [26] have elaborated on the technique of Farrow in the presence of
remote references. However, these references are not considered to be a part
of the attribute grammar and must be evaluated separately in an initial phase.
They also make the additional assumption that cycles do not appear without
remote references, a constraint that facilitates the check for convergence.

The static evaluation technique used by Farrow and Sasaki & Sassa is real-
ized with a group of mutually recursive functions along the AST. Inefficiency
arises when iterative evaluation of a group of attribute instances includes other
iterative evaluations further down the tree. Fig. 2 illustrates this: Attribute
instances belonging to a strongly connected component with more than one
vertex are indexed, e.g., a1, a2, a3 and a4, and the corresponding component
will be called A. Consider case (I). An iterative evaluation of the four ai

attributes will in each iteration call a function evaluating the bi attributes
belonging to another cyclic component B. A new iterative process will thus
be started bringing B to a fixed point in each iteration of A. Case (II) gives
rise to the same kind of inefficiency.

Sasaki & Sassa have shown how to overcome this shortcoming and avoid
inner loops by using a global variable to keep track of whether the compu-
tation is already within an iterative phase. Iterations will in their case, as a
consequence, take place over a larger number of attribute instances belonging
to more than one strongly connected component of the dependency graph.
For case (I), iterations will span over components A and B, and in case (II)
components A, B, and C will be part of the same iterative process.

The static techniques of Farrow as well as that of Sasaki & Sassa have

5

another shortcoming in that iterative evaluation will include a possibly large
number of noncircular attribute instances below the AST node associated with
the circularly defined attributes that started the iterative process. Case (III)
in Fig. 2 is an example. The noncircular attributes b, c and d will then be
evaluated during each iteration of the evaluation of component A.

a1

a2 a3

a4
b1

b2 b3

(I)

a1

a2 a3

a4
b

c1

c2

c3

(II)

a1

a2 a3

a4
b

c d

(III)

a

b

c

(IV)

Fig. 2. Different cases of dependencies involving strongly connected components.

Non-monotonic intercomponent dependencies

If two strongly connected components are evaluated in topological order, the
dependency between the components does not need to be monotonic. The
inner component will then have received its final value before it is used by the
outer component, and the monotonicity of the intercomponent dependency
is therefore not important. This was pointed out to us by Boyland, who
also reports practical uses of such nonmonotonic dependencies in, e.g., using
inferred types in polymorphic type checking [6].

2.3 Demand-driven evaluation of AGs

We will base the evaluation of CRAGs on a general demand-driven evaluator
for non-circular AGs where each attribute is implemented by a method that
recursively calls the methods implementing other attributes. By caching eval-
uated attribute values in the syntax tree, the evaluator is optimal in that it
evaluates each attribute at most once. (Our experimental system allows the
user to choose which attributes are to be cached. In the rest of this paper we
will, however, assume that all attributes are cached in order to achieve opti-
mality.) Circular dependencies can be checked at evaluation time by keeping
track of which attributes are being evaluated. In principle, this evaluator is
the same as the ones used for traditional AGs by Madsen [21], Jalili [13], and
Jourdan [16], although we use an object-oriented implementation [12]. The
evaluator is dynamic in that dependencies are not analyzed statically. In fact,
the dependencies between attributes need not be analyzed at evaluation time
either since the call structure of the recursive evaluation automatically results
in an evaluation in topological order. Thus, in contrast to other dynamic
evaluation algorithms, no explicit dependency graph is built. The demand-

6

driven dynamic algorithm is sufficiently fast for practical use, also for large
examples. Current experiments with generated Java compilers indicate that
this kind of evaluation method easily performs within a factor of 3 from hand-
written compilers [8]. Our evaluator is implemented in Java which provides
a straight-forward implementation of the algorithm. Fig. 3 shows a fragment
of an AG based on abstract syntax and the corresponding evaluator code in
Java.

AG Evaluator code

abstract class Node {
Node ancestor;

}

Exp {
syn int val;

}

abstract class Exp extends Node {
int val_value;
boolean val_computed = false;
boolean val_visited = false;
abstract int val();

}

AddExp: Exp ::= Exp1 Exp2 {
val = Exp1.val + Exp2.val;

}

class AddExp extends Exp {
Exp exp1, exp2;
int val() {

if (val_computed) return val_value;
if (!val_visited) {

val_visited = true;
val_value = exp1.val() + exp2.val();
val_computed = true;
val_visited = false;
return val_value;

}
else throw new RuntimeException

(”Circular definition of attribute”);
}

}

Fig. 3. Demand-driven evaluator for noncircular AG.

The abstract syntax is translated to classes and fields modelling an abstract
syntax tree (AST). A general class Node models the general aspects of all AST
nodes. For instance, each AST node has an ancestor node. Each nonterminal,
like Exp, is translated to an abstract class, and each of its productions, like
AddExp, is translated to a concrete subclass. A right-hand side is translated
to fields in the production class (e.g., Exp exp1, exp2;).

Each synthesized attribute declaration (e.g., syn int val) is translated
to an abstract method specification (e.g., abstract int val();), a field for
storing the cached value (e.g., val value), and two additional boolean fields
for keeping track of if the attribute is already computed (val computed) and if
it is under computation (val visited). Each equation that defines a synthe-
sized attribute is translated to a corresponding method implementation (e.g.,
int val() {...}). If the value is already computed, the method simply re-

7

turns the cached value. If not, it computes the value, which involves calling
methods corresponding to other attributes (e.g., val value := exp1.val()

+ exp2.val();). The val visited field is used in order to check for circular
dependencies, thereby avoiding endless recursion, and an exception is raised
if a circularity is found.

Inherited attributes are implemented in a similar, although slightly more
involved, manner, making use of the ancestor field to call methods of the
ancestor node. See [12] for details.

2.4 Demand-driven evaluation of RAGs

RAGs can be evaluated using the same demand-driven algorithm as for AGs
with the extension of allowing attributes to be references to other nodes in
the AST [12]. A typical use of reference attributes is in name analysis, where
applied occurrences of identifiers are linked to declared occurrences. Fig. 4
shows fragments of a typical RAG with such links. For example, the IdExp

production contains a reference attribute decl which is a reference to the
appropriate Decl node in the AST. The implementation of the evaluator is
a straight-forward extension of the demand-driven AG evaluator. An access
to a reference attribute is translated to a call to the corresponding method
computing the reference value. For example, the decl() method in IdExp

computes the decl reference value. This is done by first computing the value
of the env attribute (also a reference attribute) and then calling the lookup

method of the env object.

The example also illustrates a number of additional features of RAGs: A
production may occur directly in the right-hand side of another production.
E.g., Decl is used in the right-hand side of Block. General nonterminals
that do not appear on any right-hand side are allowed (e.g., Any). These can
be used to capture attributes and equations applying to many other classes,
e.g., the env attribute. The right hand sides may contain lists (as in Block) or
String tokens (like <ID>). Classes in the RAG may contain ordinary methods
in addition to attributes (like lookup in Block). These methods must be side-
effect free, however.

3 An evaluator for CRAGs

We now turn to CRAGs and their evaluation. The CRAG fragment in Fig. 5
declares a synthesized set-valued attribute s. The attribute is explicitly de-
clared as circular and the bracketed expression encloses the bottom value
(an empty set in this case).

8

RAG Evaluator code

Any {
inh Block env;

}

class Any extends Node {
Block env() {

...
}

}

Block: Any ::= Decl* Stmt* {
Decl lookup(String name) {

...
}

}

class Block extends Any {
List decls;
List stmts;
Decl lookup(String name) {

...
}

}

Decl: Any::= Type <ID> {
}

class Decl extends Any {
Type type;
String ID;

}

Exp: Any {
syn Type tp;

}

class Exp extends Any {
abstract Type tp();

}

IdExp: Exp ::= <ID> {
syn Decl decl =

env.lookup(<ID>);
syn Type tp =

decl != null ? decl.type : null;
}

class IdExp extends Exp {
String ID;
...
Decl decl() {

...
decl_value = env().lookup(ID);
...

}
Type tp() {

...
tp_value =

decl() != null ? decl().type : null;
...

}
}

Fig. 4. Example of RAG and corresponding evaluator.

3.1 Basic algorithm

We will now extend the demand-driven evaluator from Sections 2.3 and 2.4 to
handle CRAGs. Fig. 6 shows a basic evaluation algorithm for the circular at-
tribute s. This algorithm is a straight-forward implementation of the iterative
process shown in Fig. 1.

The algorithm makes use of two global variables: IN CIRCLE keeps track
of whether we are already inside a cyclic evaluation phase. When this is the
case, CHANGE is used to check whether any changes of iterative values of the
attributes on the cycle have taken place during an iteration. The right-hand
sides of the two assignment statements for new s value are the expressions
corresponding to the semantic function for the attribute s. It thus involves

9

CRAG Evaluator code

A {
syn Set s circular [new Set()];

}

abstract class A extends Node {
Set s_value = new Set();
boolean s_computed = false;
boolean s_visited = false;
abstract Set s();

}

B: A ::= ... {
s = f(...)

}

class B extends A {
...
Set s() { ... }

}

Fig. 5. Example of CRAG fragment and corresponding classes.

class B extends A {
...
Set s() {

if (s_computed) return s_value;
if (! IN_CIRCLE) {

IN_CIRCLE = true;
s_visited = true;
do {

CHANGE = false;
Set new_s_value = f(...);
if (! new_s_value.equals(s_value))

CHANGE = true;
s_value = new_s_value;

} while (CHANGE);
s_visited = false;
s_computed = true;
IN_CIRCLE = false;
return s_value;

}
else if (! s_visited) {

s_visited = true;
Set new_s_value = f(...);
if (! new_s_value.equals(s_value))

CHANGE = true;
s_value = new_s_value;
s_visited = false;
return s_value;

}
else

return s_value;
}

}

Fig. 6. Evaluation code for the equation s = f(...) where s is a circular attribute.

calls for evaluation of attributes on which s is dependent, some of which will
be in the same cycle as s.

10

3.2 Comparison of algorithms

In this and the following subsections we will compare our algorithm to existing
algorithms and also present some improvements of the basic algorithm shown
in Fig. 6 in order to avoid certain inefficiencies.

To facilitate the description we will use the following terminology: An
attribute is definitely noncircular if no instance of the attribute can be part
of a cycle in the dependency graph for any derivable AST. An attribute is
potentially circular if some instance can be part of a cycle for some AST. An
instance of a potentially circular attribute in a certain AST is actually circular
if it is on a cycle and otherwise actually noncircular.

All potentially circular attributes are required to be declared circular.
(In Section 3.4 we will discuss how to detect and handle failures of this re-
quirement.) Thus, we have a similar situation as in Farrow’s static evaluator
where potentially circular attributes are detected by analyzing the productions
of the grammar. However, some of the shortcomings of the static technique
mentioned in Section 2.2 are avoided by our basic algorithm and others can
be avoided by small modifications of our demand driven evaluator given the
possibility to cache attribute values.

We will use the different cases of Fig. 2 in the discussion below.

Nested iterative evaluations are avoided

In Farrow’s static method and in the basic method of Sasaki & Sassa, an it-
erative evaluation may recursively include another iterative evaluation. The
number of iterations in the innermost loop becomes an exponential factor of
its nesting level. Sasaki & Sassa improve their evaluator to avoid such nested
behavior by introducing a global variable. In our evaluator the global vari-
able IN CIRCLE achieves the same improvement. However, as a consequence,
iterations might span over more than one strongly connected component of
the dependency graph. This is suboptimal behavior as compared to the dy-
namic algorithm of Jones, where each component is evaluated individually. In
Section 3.3 we will show how this inefficiency can be avoided in some cases.

Iterative evaluation of definitely noncircular attributes is avoided

Recall case (III) of Fig. 2, and assume that b is definitely noncircular. Suppose
that one of the attribute instances of component A is demanded. An iterative
process is then started during which b will be demanded. Since b is cached it
will only be evaluated the first time it is demanded. When a later iteration in
component A demands b again, its computed value will be returned. This dif-
fers from the static evaluation techniques of Farrow and Sasaki & Sassa, where
definitely noncircular attributes might be evaluated during each iteration.

11

3.3 Improving the algorithm

We can avoid some additional inefficiencies by slight modifications to our
demand-driven evaluator.

Avoiding recomputation of potentially circular attributes

The basic algorithm in Fig. 6 computes the value of an attribute s and caches
the intermediate values of the circular attributes involved in the cycle. When
the iterative evaluation has converged, the attribute s has reached its fixed
point and is registered as computed by setting the field s computed. However,
at this point, all other attributes on the cycle have reached their fixed point as
well, but are not registered as computed. For efficiency reasons it is desirable
to register these attributes as computed in order to avoid their recomputation
in case they will be demanded again. By introducing another global variable
READY, that is set to true when the fixed point is reached, it is possible to per-
form one extra iteration during which all involved attribute instances register
themselves as computed.

Evaluating strongly connected components in topological order

Consider case (II) of Fig. 2 and suppose that b is definitely noncircular. When
an attribute of component A is demanded, an iterative process is started and
eventually b will be demanded. b will in turn demand c1. A new strongly con-
nected component is thereby entered, but a new iterative process would not
be started by the basic algorithm shown in Fig. 6 since IN CIRCLE is already
true. The resulting iterative process would thus involve all attributes of com-
ponents A, B, and C just as in the static techniques mentioned in Section 2.2.
It would be more efficient to suspend the iterative process of A temporarily
and start a new iterative process for component C, and thereby avoid unnec-
essary evaluations in A while the attributes in C are being computed. This
scheme can be realized by slightly modifying the algorithm for definitely non-
circular attributes (i.e. the algorithm in Fig. 3). An outline of the modified
algorithm is given in Fig. 7. When the attribute b is demanded, the status of
the iterative process is now stacked (CHANGE flag), b calls its semantic function
and on return, the interrupted cyclic evaluation of component A is resumed.
When b demands the attribute c1 a new cycle is entered, so the component
C will be brought to a fixed point before b gets its value. When b is com-
puted, the suspended iterations of A are resumed. Since all cyclic attributes
are cached after they have been brought to a fixed point, the attributes in
cycle C will only be computed once.

Avoiding iterative evaluation of actually noncircular attributes

For many ASTs there might be many actually noncircular instances of po-
tentially circular attributes. Consider case (IV) in Fig. 2 and suppose a is

12

boolean interrupted_Circle = false;
if (attribute_computed)

return attribute_value;
if (! attribute_visited) {

attribute_visited = true;
if (IN_CIRCLE) {

push value of CHANGE on stack;
IN_CIRCLE = false;
interrupted_Circle = true;

}
attribute_value = f(..);
attribute_computed = true;
if (interrupted_Circle) {

CHANGE = pop from stack;
IN_CIRCLE = true;

}
attribute_visited = false;
return attribute _value;

}
else throw new RuntimeException(“Circular def...”);

Fig. 7. Pseudo-code for improved evaluation of a definitely noncircular attribute.

demanded. If a is potentially circular, an iterative process is started in which
b and c will be demanded. Again, a small modification of the algorithm makes
it possible to detect that no cycle is ever encountered and interrupt the iter-
ative process. Basically, a global variable is used to keep track of if we have
encountered an already visited attribute during an ongoing iterative evaluation
process.

Sasaki & Sassa [26] also have a refined mostly static version of their orig-
inally completely static technique. The basic idea is here to have several
versions of attribute evaluation sequences, one for each possible pattern of
remote dependency edges. The actual pattern for each subtree in the AST
is then computed at runtime and the evaluator selects the proper version. If
there are no actually circular attributes in a subtree, iterations are avoided for
the production at its root, provided cycles are always caused by remote refer-
ences. It is not clear if their algorithm can be generalized to deal with cyclic
behavior that is not caused by remote links. The refinement deals only with
potentially circular attributes that are not actually circular. Their evaluator
will still make unnecessary iterations for definitely noncircular attributes in a
subtree below AST nodes corresponding to productions with actually circular
attributes.

3.4 Robust improved algorithm

So far, we have assumed that the AG author has declared all potentially circu-
lar attributes as circular. As will become evident from examples in Section 4,
it is often apparent to the AG author which attributes are potentially circular.
However, if the AG author has forgotten to declare an attribute as circular,
and it is in fact actually circular, the algorithms in figures 6 and 7 may yield

13

erroneous results. Consider Fig. 8 as an example. There are five attribute
instances of which four (a, b, c, and d) have a circular dependency. Given the
equations to the right in the figure, it is obvious that the set {id} should be
the final value of all attributes after a fixed-point iteration. Suppose that the
AG author has forgotten to declare attribute c as circular and suppose that
attribute a is demanded. An iterative process is started, b is demanded and
then c is demanded. Since c is not declared circular its evaluation code will be
that of Fig. 7 and thus the iterative phase will be temporarily suspended and
d will be demanded. Since d is a circularly declared attribute, a new iterative
process is started. When a is demanded it is already visited, so it will return
its current value (the bottom value). The iterative process started by d will
thus only involve attributes d and a and their values will never change from
the bottom value, i.e, the empty set. Consequently the value of c will also be
the empty set. The interrupted iterative process started by the evaluation of
a is resumed when c has been evaluated. Since c is cached, the iterations will
only span over attributes a and b and the fixed point is reached when their
respective values are {id}. Obviously all semantic rules are not satisfied.

a

b

c
d

e

a = b
b = c.union(e)
c = d
d = a
e = {id}

Fig. 8. Equations for some attributes creating cyclic dependency.

In order to make the algorithm robust to such grammar errors, the al-
gorithm can be modified as follows. Using the information about which at-
tributes are declared circular, it is possible to keep track of which nodes in the
dependency graph might belong to the same strongly connected component.
If a visited node belonging to another component is encountered, then an er-
ror has ocurred. In the case described above the evaluator would consider
attributes a and b to belong to one component and attribute d to another.
When the evaluation of d demands a, a visited node belonging to a different
component is encountered. The scheme of keeping track of components can
be realized by adding vertices of the dependency graph to a set during evalu-
ation, as long as only potentially circular attributes are encountered. This set
will be stacked together with the CHANGE flag when an iteration is temporarily
suspended as in Fig. 7. When a visited node is encountered it can then be
checked if it belongs to the set of the component actually being brought to a
fixed point. Thus, in case of a missing circular declaration, the algorithm will
detect the error, identify the attributes involved, and raise an exception.

14

3.5 Comparison to related work

Our evaluation algorithm uses a pure dynamic demand-driven technique where
no initial dependency analysis is performed. In general, the complete depen-
dency graph for a RAG or a CRAG is not known until after evaluation, since
the dependencies introduced by reference attributes will depend on the refer-
ence values.

Boyland takes a similar approach in his APS system where he has im-
plemented support for evaluation of circular attributes for remote attribute
grammars. His evaluation method is based on demand-driven evaluation and
performs topological evaluation of strongly-connected components, allowing
non-monotonic dependencies between components. However, he provides no
explicit evaluation algorithms [2].

For ordinary attribute grammars, the dependency graph can be computed
from the grammar and constructed before evaluation. The static attribute
evaluation algorithms available for ordinary attribute grammars, like OAGs
[17], rely on this property in order to compute approximations of the de-
pendency graph before evaluation. The same holds for the static evaluation
algorithms for circular attribute grammars, like Farrow’s algorithm [9].

The development of static evaluators for subcategories of RAGs and CRAGs
is a problem that we have not pursued, but there is some other work in this
direction. In [3], [4], [5], Boyland addresses the problem of analyzing (noncir-
cular) non-local dependencies statically. He develops a technique to schedule
evaluation statically and shows how it may be implemented incrementally. The
technique has been applied to variants of name and type analysis including
the static-semantics of a simple object-oriented language.

Sasaki & Sassa [26] allow circular dependencies as well as remote links
between nodes in the AST, but links between nodes are not considered a part
of the AG and must be provided by a separate initial phase that they have
not elaborated further on in their paper. In contrast, our demand-driven
evaluation technique allows reference attributes as well as ordinary attributes
to be evaluated in the same manner. An additional constraint in the scheme of
Sasaki & Sassa is that cycles are assumed to arise only from remote references.

As was discussed in Section 3.2, the static evaluation algorithms of Farrow
and of Sasaki & Sassa have suboptimal behavior for strongly connected com-
ponents of circular attributes, while the dynamic algorithm of Jones [15] is
optimal. Jones algorithm computes the strongly connected components for a
given AST before evaluation, based on the actual attribute dependencies. For
CRAGs, such pre-evaluation computations are not possible in general, since
the reference attributes give rise to attribute dependencies that are not known
until after the evaluation of those reference attributes. For this reason, the
strongly connected components in CRAGs cannot, in general, be computed
before evaluation. Our evaluation algorithm detects strongly connected com-

15

ponents during evaluation, and does not always have sufficient information
to distinguish between two components. In this case, the components will
be evaluated together rather than in topological order, thereby yielding sub-
optimal evaluation. However, in Section 3.3 we showed how to avoid many
of these cases by using cached attribute values. The remaining suboptimal
case is the one where there are two adjacent strongly connected components.
I.e., where an attribute in one component depends directly on the attribute
in another component, like in case (I) of Fig. 2. To handle also these cases,
there would be the need for either more information given by the grammar
author, or for some kind of approximative pre-evaluation analysis. The de-
velopment of such analyses remains an open issue. For non-circular RAGs,
dynamic demand-driven evaluation using caching is optimal (each attribute is
evaluated at most once).

For CRAGs, we rely on the author to declare a potentially circular at-
tribute as circular, which provides the same information as the analysis of
the grammar performed initially in the static methods of Farrow and Sasaki
& Sassa. In both cases the potentially circular attributes are identified and
become known to the evaluator. A less experienced author might forget to
declare some attributes that are potentially part of cyclic dependencies as
circular. Our evaluator will then report an error on inputs where cycles do
appear and it will produce a correct result on cycle-free input.

We find it reasonable to demand of the grammar author to explicitly de-
clare which attributes are potentially circular. The grammar author needs to
be aware of such attributes since they should be given a start value (bottom
of the lattice), and their semantic functions must be monotonic. In principle,
it would be possible to instead regard all attributes as potentially circular,
and use default start values. However, this would imply that attributes that
were mistakenly defined in a circular manner might lead to nonterminating
evaluation, e.g. if the functions were non-monotonic. In our system, such mis-
taken circularities would be flagged as errors at evaluation time. To regard
attributes as potentially circular when they are in fact definitely noncircular,
would also lead to performance degradation. We would not be able to perform
the optimizations described above that make use of knowing which attributes
are definitely noncircular.

Our evaluator presently does not check whether circularly defined at-
tributes take their values from a lattice of finite height or if their defining
semantic functions are monotonic. Thus there is no guarantee that iterations
will converge. Our approach is in this respect similar to that of, e.g., Farrow
[9] and means that we rely on the AG author to ensure that the semantic
functions involved are properly constrained.

16

4 Application Examples

In this section we will discuss three examples which are naturally expressed
using recursion and circular dependencies. Two of them are classical and are
discussed in earlier papers dealing with circular attribute grammars. In these
cases we will focus on a comparison between the solutions proposed earlier and
solutions made possible when reference attributes are available. However, we
start with an example that computes nullable, first, and follow in the context
of parser construction. This is a problem that, to our knowledge, has not
been solved using an attribute grammar approach before. This application is
typical for a large class of problems within compiler construction that deal with
computing various properties of grammars. Other similar problems are the
computation of static dependency graphs in the context of attribute grammars,
computation of visit sequences for ordered attribute grammars, etc. All these
problems are expressed as highly recursive equations and are typically solved
by iterative fixed-point computations.

4.1 Computation of nullable, first and follow

Given a context-free grammar (CFG), a recursive-descent or predictive parser
can be generated if the first terminal symbol of each subexpression provides
enough information to select production. This can be more precisely formu-
lated by introducing the notion of a nonterminal being nullable and by defining
the sets first and follow, informally defined as:

• A nonterminal X is nullable if the empty string can be derived from X.

• first(X) is the set of terminals that can begin strings derived from X.

• follow(X) is the set of terminals that can immediately follow X.

Fig. 9 shows an example context-free grammar and its values for nullable,
first, and follow (grammar 3.12 in Appel [1]).

Nonterminals and their productions nullable first follow

X → Y | a true {a,c} {a,c,d}

Y → c | ε true {c} {a,c,d}

Z → XYZ | d false {a,c,d} ∅

Fig. 9. Example CFG and its values for nullable, first, and follow.

Computation of nullable

The following equations hold for nullable:
(i) Let X be a nonterminal with the productions X → γ1, X → γ2, ... X → γn

17

X is nullable if any of its production right-hand sides is nullable:
nullable(X) == nullable(γ1) ||nullable(γ2), ... ||nullable(γn)

(ii) Let ε be an empty sequence of terminal and nonterminal symbols.
The empty sequence is nullable:

nullable(ε) == true

(iii) Let γ = sδ be a nonempty sequence of terminal and nonterminal symbols
where s is the first symbol and δ is the remaining (possibly empty) sequence.
γ is nullable if both s and δ are nullable:

nullable(γ) == nullable(s)&& nullable(δ)
(iv) A terminal symbol t is not nullable:

nullable(t) == false

These equations are circular which is evident from (i) since X might be iden-
tical to, or derivable from, one of the nonterminal symbols on the right-hand
side of one of the productions. The domain of nullable is a boolean lattice
with the bottom value false. The functions corresponding to the right hand
side of the equations are monotonic with respect to this lattice. Therefore an
iterative process initializing nullable for each symbol of the grammar to false
will compute the least fixed point of the equations.

The above equations can, with trivial adaptions to syntax form, be formu-
lated directly in a CRAG as demonstrated in Fig. 10. The CRAG equations
corresponding to (i) - (iv) above are marked in the CRAG specification. In
the CRAG, we differ between declared and applied occurrences of nonterminal
symbols (NDecl and NUse). Each NUse is bound to the appropriate NDecl by
means of a reference attribute decl which is specified in a similar way as was
sketched in Section 2.4. Their values for nullable are equal as indicated by
equation (v).

Computation of first

The following equations hold for the first set for symbols and symbol se-
quences:

(i) Let X be a nonterminal with the productions X → γ1, X → γ2, ... X → γn

first(X) == first(γ1) ∪ first(γ2)... ∪ first(γn)
(ii) Let ε be an empty sequence of terminal and nonterminal symbols.

first(ε) == ∅
(iii) Let sδ be a nonempty sequence of terminal and nonterminal symbols

where s is the first symbol and δ is the remaining (possibly empty) sequence.
first(sδ) == if (nullable(s)) then first(s) ∪ first(δ) else first(s)

(iv) Let t be a terminal symbol.
first(t) == {t}

The equation system is circular which is evident from (i) since X might be
identical to, or derivable from, one of the nonterminal symbols on the right-
hand side of one of the productions. We can also note that the equations

18

CFG ::= Rule * { }
Rule ::= NDecl ProdList {

NDecl.nullable = ProdList.nullable; (i)
}
NDecl ::= <ID> {

inh boolean nullable circular [false];
}
ProdList, Prod, SymbolList, Symbol {

syn boolean nullable circular [false];
}
EmptyProdList: ProdList ::= {

nullable = false; (i)
}
NonEmptyProdList: ProdList ::= Prod ProdList {

nullable = Prod.nullable || ProdList.nullable; (i)
}
Prod ::= SymbolList {

nullable = SymbolList.nullable; (iii)
}
EmptySymbolList: SymbolList ::= {

nullable = true; (ii)
}
NonEmptySymbolList: SymbolList ::= Symbol SymbolList {

nullable = Symbol.nullable && SymbolList.nullable; (iii)
}
Terminal: Symbol ::= <TERMINAL> {

nullable = false; (iv)
}
NUse: Symbol ::= <ID> {

syn NDecl decl = ...;
nullable = decl.nullable; (v)

}

Fig. 10. A CRAG that computes nullable.

for first relies on the values of nullable. The domain of first is the lattice of
finite subsets of the set of all terminals of the grammar with the empty set
as the bottom value. The expressions of the right hand side of the equations
are monotonic with respect to this lattice. Figure 11 shows the corresponding
CRAG including (i) - (iv) from the equations above. As in the case of nullable,
the first computation relies on the decl reference attribute in NUse to equate
the first values of an NUse and its corresponding NDecl (v).

Computation of follow

The definition and CRAG for follow is similar in style to nullable and first,
but makes additional use of reference attributes: To compute follow for a
nonterminal X we need to locate all the applied occurrences of X and look
at the subsequent symbols. To this end, reference attributes are used for
linking an NDecl to all its NUses. The additions of such cross-referencing
attributes are straight-forward using RAGs, for example by defining a set of
NUse references at each NDecl. These set-valued attributes can easily be de-
fined using parameterized attributes which are analogous to virtual functions,
and which are available in RAGs [11]. In essence, such a function simply tra-

19

CFG ::= Rule * { }
Rule ::= NDecl ProdList {

NDecl.first = ProdList.first; (i)
}
NDecl ::= <ID> {

inh Set first circular [∅];
}
ProdList, Prod, SymbolList, Symbol {

syn Set first circular [∅];
}
EmptyProdList: ProdList ::= {

first = ∅; (i)
}
NonEmptyProdList: ProdList ::= Prod ProdList {

first = Prod.first ∪ ProdList.first; (i)
}
Prod ::= SymbolList {

first = SymbolList.first; (iii)
}
EmptySymbolList: SymbolList ::= {

first = ∅; (ii)
}
NonEmptySymbolList: SymbolList ::= Symbol SymbolList {

first = Symbol.nullable (iii)
? Symbol.first ∪ SymbolList.first
: Symbol.first;

}
Terminal: Symbol ::= <TERMINAL> {

first = { <TERMINAL> }; (iv)
}
NUse: Symbol ::= <ID> {

first = decl.first; (v)
}

Fig. 11. A CRAG that computes first.

verses a suitable portion of the AST to collect the appropriate information.
An example of such a computation is shown in our paper on using RAGs for
visualization computations [22]. The collection attributes of Boyland [2] would
provide a more elegant way of defining such cross-reference information. With
these cross-reference attributes in place, the specification of follow becomes
as straight-forward as for nullable and first, and is also circular.

During evaluation, the computation of nullable, first, and follow, forms
three strongly connected components where the first component depends on
the nullable component, and the follow component depends on both the nul-
lable and first components.

Experimental results

We have implemented the robust improved CRAG evaluation algorithm in
our compiler construction tool JastAdd. In order to test performance, we
developed a CRAG for computing nullable, first, and follow for context-free
grammars. We have compared the generated CRAG evaluator with a typical
hand-coded iterative implementation. We have tried to make the basis for

20

comparison as fair as possible: Both implementations use the same implemen-
tation language (Java), the same underlying AST classes, and the same data
structure classes (for sets etc.). There has been no effort put into optimizing
any data structures or operations. All is implemented in a straight-forward
manner using classes, objects, and methods.

The results are shown in Fig. 12. The grammars Appel 1 and Appel 2
are small example grammars from [1]. Appel 1 is a toy language (the same
as in Fig. 9.) with 3 nonterminals (#N) and 6 productions (#P) and Appel
2 is a grammar for simple arithmetic expressions. Tiny is a grammar for a
small block-structured language. The grammar for Java 1.2 is the largest
and has been taken from the examples distributed with JavaCC [14]. It has
about 160 nonterminals when written in our CFG language. The times given
are average times for 100 executions on a Sun Ultra 80 using the HotSpot
JVM. The results indicate that the evaluator of CRAG performs as well as
the handwritten iterative evaluation code. For a large grammar like Java
the declarative approach even seems to be superior. One explanation could
be that in an imperative style fixed-point iteration, the order in which the
productions are processed is very important. (See, e.g. [1] chapter 17.4.) The
CRAG evaluator, on the other hand, traverses the dependency graph depth
first, i.e., in topological order, and the iterations will thus usually converge
faster.

We can also see that the maximum number of iterations for a single at-
tribute value to converge (#I-A) seems to be almost constant, regardless of
grammar size, whereas the total number of iterations (#I-T) naturally de-
pends on the number of attributes, and thereby on the size of the grammar.

CRAG Handwritten

Language #N #P #I-T #I-A time (ms) time (ms)

Appel 1 3 6 8 4 8 7

Appel 2 6 12 18 4 13 9

Tiny 18 30 35 4 22 15

Java 1.2 157 321 263 5 147 175

Fig. 12. Computation of nullable, first, and follow for some different grammars.

4.2 Using constants before declaration

This is an example described by Farrow in [9] and deals with a language
where constants can be defined in terms of other constants and where use of
a constant before its declaration is legal as in the following example:

21

a = 2*b + c;
b = 2;
c = d - 1;
d = 4;

Farrow shows how a part of an AG for the language can be specified to build
a table mapping constant names to their respective values. The specification
will be circular. In essence, to build a table of constants and their values
you need the value of the expression defining each constant. If an expression
defining a constant uses another constant (as in the definitions of a and c

above) you will need to look them up in the table. The table thus depends
on the constant values which in turn depend on the table. The only case
when cycles will not occur is when no expression defining constants uses other
constants, i.e., have the form of the declarations of b and d above. Had there
not been the requirement to allow use of constants before their declaration,
the AG could be simplified to avoid cycles. Farrow showed that it is possible
to rewrite the AG to be cycle free by introducing complexity involving higher
order functions one of which in essence captures the behavior of the fixed-point
iterations needed for the evaluation in the cyclic version of the grammar.

Farrow’s discussion is based on traditional AGs enhanced with a static
evaluation technique for cyclic dependencies mentioned in Section 2. The
evaluation will produce the table of constants and their values if the constants
are well-defined, i.e., there must be exactly one defining expression for each
constant and the definitions themselves must not be cyclic. The table will
thus be incomplete if the constants, e.g., are defined as in:

a = b + 2;
b = 2*a; // circular definition

Using CRAGs it is easy to specify a non-circular attribute grammar for
the specification of the constant values. Again a name analysis proves useful
linking constant use sites to their declaration sites by a reference attribute
decl as was described in Section 2.4. The value of a constant can then be
modelled as an attribute val of its declaration node class. The val attribute is
specified in terms of the values of the constants used in its defining expression.
These values are in turn specified as the value of the val attribute at their
corresponding declaration sites, using the reference attribute decl.

Fig. 13 shows parts of an abstract grammar for a language with integer
constants. The specification of the val attribute in the ConstUse class checks if
the constant has been declared. If not, it will be assigned the value undefined.
The example demonstrates how reference attributes can simplify a grammar
as compared to previously suggested solutions.

The val attribute will be noncircular exactly when Farrow’s cyclic specifi-
cation produces a complete table of constant values, i.e., when each constant
has a defining expression and no constant is defined in a circular manner.

22

ConstDecl ::= IdDecl Exp { syn Integer val = Exp.val; }
Exp { syn Integer val; }
AddExp : Exp ::= Exp1 Exp2 { val = Exp1.val + Exp2.val; }
...
ConstUse : Exp ::= <ID> {

syn ConstDecl decl = ...;
val = decl != null ? decl.val : undefined;

}
IntExp : Exp ::= <INT> { val = <INT>; }

Fig. 13. CRAG for a language where constants can be used before declaration.

Should some constants be part of circular definitions like in the example above,
this is a programming error that should be caught by the compiler. To use
circular attributes is not an option here since there does not, in general, exist
any fixed-point solution. For the CRAG above, the evaluator will throw an
exception when it discovers the circular dependency. This is, of course, not
an acceptable behavior for a production compiler. An improved CRAG can
instead check explicitly for such erroneous circular definitions by introducing
an attribute wellDefined in class ConstDecl. Its value can be specified in a
noncyclic manner by a recursive function that builds the set of all constants
of which a certain constant is dependent and checks that the constant is not
itself in this set. An alternative way is to introduce a circular boolean at-
tribute wellDefined in ConstDecl and Exp with bottom value false. The
specification of this attribute is straight-forward. A simple integer expression
(IntExp) is well-defined and a compound expression is well-defined if all its
subexpressions are well-defined.

4.3 Live analysis in optimizing compilers

One of the most frequently used examples of cyclic dependencies in AGs is the
performance of live analysis for variables. Farrow [9], Jones [15], and Sasaki
& Sassa [26] all focus on this example in their papers.

A variable v is said to be live on entry to a statement S if there is a control
flow path from S to another point p such that p uses the value of v and v is
not redefined on the path from S to p. The goal of an attribute grammar in
this context is to specify the sets of live variables on entry to each statement
or block in a program.

Farrow and Jones both exemplify with a language with loop-structures like
for- and while-statements. No reference attributes need to be involved here,
but the specifications become cyclic for loop-statements. Sasaki & Sassa use
a smaller language with only assignment statements, label-statements and
goto-statements. Here remote attributes are used to link goto nodes in the
AST to their corresponding label nodes. Cycles can in their simple example
language arise only if a program contains goto-statements. Their evaluation
technique (or rather the technique to check for convergence) requires that

23

cycles always include remote links. This means that the evaluation process
described in [26] would not directly be capable of handling, e.g., a language
with structured loop-statements without adding explicit remote links. Also,
as has been mentioned before, their links between gotos and labels in the
AST are not ordinary attributes, but need to be provided by a separate phase
that takes place before attribute evaluation.

Given the combination of reference attributes and capability of handling
cyclic dependencies makes it easy for us to specify a CRAG for live analysis for
a language containing ordinary loop-structures as well as labels and goto-
statements. A name analysis links goto nodes in the AST to their proper
label nodes. The rest of the attributes needed to perform a live analysis
can be specified following the pattern proposed in earlier papers. In CRAGs,
there is no need for an initial phase for computing reference attributes. The
reference attributes are evaluated by our system when they are demanded just
like any other attributes.

5 Conclusions

In this paper we have presented CRAGs, an extension of traditional AGs
with reference attributes and circularly defined attributes. We have developed
a general demand-driven evaluation technique for CRAGs, implemented it
in Java, and tried it out on several applications, thereby demonstrating the
expressiveness of CRAGs and that they are useful for a number of practical
problems.

Most language analysis problems include name analysis as a subproblem.
It is well known that traditional AGs are not well suited for specifying name
analysis, leading to complex awkward specifications. Reference attributes have
proved useful to overcome this problem and this paper demonstrates how such
name analysis provides a natural basis for further analyses based on circular
recursive equations. In Section 4.2 we demonstrated how reference attributes
in some cases even remove the need for circular specifications.

Many language analysis problems are inherently circular and need to be
computed by iterating to a fixed point. We have demonstrated how CRAGs
allow the recursive definitions to be specified directly in the grammar, and the
fixed point to be computed by an automatically generated evaluator. The use
of reference attributes broadens the potential applications of circular attribute
evaluation to a much wider range. The computation of nullable, first, and
follow, that we have presented here is representative of a large number of
grammar analysis problems that can make use of this technique.

We have compared our demand-driven evaluation algorithm with hand-
written imperative code implementing fixed-point iterations, and the results
indicate that there is little difference in performance.

24

Future work includes further improvements of the evaluator. One idea
we are looking at is how to isolate strongly connected components by mod-
ularizing the grammar. Such modularization is natural to do anyway from
a grammar writing perspective, and can probably be used for improving the
evaluator performance and for allowing non-monotonic dependencies between
components in different modules. We are also looking at techniques for au-
tomatically deciding which attributes to cache to provide best performance
and memory usage. It would be desirable to let the user decide what at-
tributes to save in the AST nodes and let the tool help to decide when to
cache other attributes temporarily to avoid inefficiencies and for check of con-
vergence. One idea could be using a cache like in [26]. We also plan to apply
CRAGs to more problem areas. In [8] a formalism for rewriting abstract
syntax trees is presented. The formalism, Rewritable Reference Attributed
Grammars (ReRAGs), has been implemented in our aspect-oriented compiler
tool JastAdd. We plan to merge this extension of JastAdd with our CRAG
extension. We believe that there are problem areas where this combination
would prove useful.

Acknowledgements

We are grateful to John Boyland and the anonymous reviewers for valuable
feedback and helpful comments.

References

[1] Appel, A. W., “Modern Compiler Implementation in Java”. Cambridge
University Press, 1998.

[2] Boyland, J. T., Descriptional Composition of Compiler Components. Ph.D.
thesis, University of California, Berkeley, California, 1996.

[3] Boyland, J. T., Analyzing Direct Non-Local Dependencies in Attribute
Grammars. In Proceedings of CC´98: International Conference on Compiler
Construction, 31-49. LNCS 1383, Springer-Verlag, 1998.

[4] Boyland, J. T., Incremental evaluators for remote attribute grammars. In
Electronic Notes in Theoretical Computer Science 65(3). June, 2002.

[5] Boyland, J. T., Remote Attribute Grammars. Manuscript, 2003.

[6] Boyland, J. T., Personal communication, 2003.

[7] Cornils, A., and G. Hedin, Tool Support for Design Patterns based on Reference
Attributed Grammars. Proceedings of WAGA´00, Workshop on Attribute
Grammars and Applications. Ponte de Lima, Portugal, July 2000.

25

[8] Ekman, T., and G. Hedin, Rewritable Reference Attributed Grammars. In
Proceedings of ECOOP 2004: 18th European Conference on Object-Oriented
Programming. Oslo, Norway, 2004.

[9] Farrow, R., Automatic generation of fixed-point-finding evaluators for circular,
but well-defined, attribute grammars. Proceedings of the SIGPLAN´86
Symposium on Compiler Construction, 85-98. Palo Alto, California ACM
SIGPLAN Notices 21(7) (1986).

[10] Hedin, G., An object-oriented notation for attribute grammars. ECOOP´89.
BCS Workshop Series, 329-345, Cambridge University Press, 1989.

[11] Hedin, G., Reference Attributed Grammars. Informatica (24) (2000), 301-317.
Slovenia.

[12] Hedin, G., and E. Magnusson, The JastAdd system - an aspect-oriented compiler
construction system. SCP - Science of Computer Programming, 47(1) (2002),
37-58. Elsevier.

[13] Jalili, F., A general linear time evaluator for attribute grammars. ACM
SIGPLAN Notices, 18(9) (1983), 35-44.

[14] JavaCC. URL: http://www.webgain.com/products/java cc/.

[15] Jones, L. G., Efficient evaluation of circular attribute grammars. ACM
Transactions on Programming Languages and Systems, 12(3) (1990), 429-462.

[16] Jourdan, M., An optimal-time recursive evaluator for attribute grammars. In M.
Paul and B. Robinet, editors, International Symposium on Programming, 6th
Colloquium, Lecture Notes in Computer Science 167, (1984), 167-178. Springer-
Verlag.

[17] Kastens, U., Ordered Attributed Grammars. Acta Informatica, 13 (1980), 229-
256.

[18] Katayama, T., Translation of attribute grammars into procedures. ACM
Transactions on Programming Languages and Systems, 6(3), (1984), 345-369.

[19] Knuth, D. E., Semantics of context-free languages. Mathematical Systems
Theory, 2(2), (1968), 127-145.

[20] Knuth, D. E., Semantics of context-free languages (errata). Mathematical
Systems Theory, 5(1), (1971), 95-96.

[21] Madsen, O. L., On defining semantics by means of extended attribute grammars.
Semantics-Directed Compiler Generation, LNCS 94, (1980), 259-299, Springer-
Verlag.

[22] Magnusson, E., and G. Hedin, Program Visualization using Reference Attributed
Grammars. Nordic Journal of Computing 7, (2000), 67-86.

26

http://www.webgain.com/products/javaprotect unhbox voidb@x kern .06emvbox {hrule width.3em}cc/

[23] Persson, P., and G. Hedin, Interactive Execution Time Predictions Using
Reference Attributed Grammars. In WAGA’99, Second Workshop on Attribute
Grammars and their Applications. Amsterdam, The Netherlands, March 1999.

[24] Poetzsch-Heffter, A., Prototyping realistic programming languages based on
formal specifications. Acta Informatica 34 (1997), 737-772.

[25] Rodeh, M., and M. Sagiv, Finding Circular Attributes in Attribute Grammars.
JACM - Journal of the ACM, 46(4) (1999), 556-575.

[26] Sasaki, A., and M. Sassa, Circular Attribute Grammars with Remote Attribute
References. Waga’00, Third Workshop of Attribute Grammars and their
Applications. Ponte de Lima, Portugal, July 2000.

27

	Introduction
	Existing Evaluation Algorithms
	Detection of circularity
	Evaluation of circular attribute grammars
	Demand-driven evaluation of AGs
	Demand-driven evaluation of RAGs

	An evaluator for CRAGs
	Basic algorithm
	Comparison of algorithms
	Improving the algorithm
	Robust improved algorithm
	Comparison to related work

	Application Examples
	Computation of nullable, first and follow
	Using constants before declaration
	Live analysis in optimizing compilers

	Conclusions
	References

