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Abstract. This paper presents an object-oriented technique for rewriting abstract
syntax trees in order to simplify compilation. The technique, Rewritable Ref-
erence Attributed Grammars (ReRAGs), is completely declarative and supports
both rewrites and computations by means of attributes. We have implemented
ReRAGs in our aspect-oriented compiler compiler tool JastAdd II. Our largest ap-
plication is a complete static-semantic analyzer for Java 1.4. ReRAGs uses three
synergistic mechanisms for supporting separation of concerns: inheritance for
model modularization, aspects for cross-cutting concerns, and rewrites that allow
computations to be expressed on the most suitable model. This allows compilers
to be written in a high-level declarative and modular fashion, supporting language
extensibility as well as reuse of modules for different compiler-related tools. We
present the ReRAG formalism, its evaluation algorithm, and examples of its use.
Initial measurements using a subset of the Java class library as our benchmarks
indicate that our generated compiler is only a few times slower than the standard
compiler, javac, in J2SE 1.4.2 SDK. This shows that ReRAGs are already useful
for large-scale practical applications, despite that optimization has not been our
primary concern so far.

1 Introduction

Reference Attributed Grammars (RAGs) have proven useful in describing and imple-
menting static-semantic checking of object-oriented languages [1]. These grammars
make use ofreference attributesto capture non-local tree dependences like variable
decl-use, superclass-subclass, etc., in a natural, yet declarative, way.

The RAG formalism is itself object-oriented, viewing the grammar as a class hier-
archy and the abstract syntax tree (AST) nodes as instances of these classes. Behavior
common to a group of language constructs can be specified in superclasses, and can be
further specialized or overridden for specific constructs in the corresponding subclasses.

In plain RAGs, the complete AST is built prior to attribute evaluation. While this
works well for most language constructs, there are several cases where the most ap-
propriate tree structure can be decided onlyafter evaluation of some of the attributes.
I.e., the context-free syntax is not sufficient for building the desired tree, but contextual
information is needed as well. By providing means for rewriting the AST based on a
partial attribution, the specification of the remaining attribution can be expressed in a
simpler and more natural way.

This paper presents ReRAGs, Rewritable Reference Attributed Grammars, which
extend RAGs with the capability to rewrite the AST dynamically, during attribute eval-
uation, yet specified in a declarative way. ReRAGs form a conditional rewrite system



where conditions and rewrite rules may use contextual information through the use of
attributes. We have implemented a static-semantics analyzer for Java using this tech-
nique. Based on this experience we exemplify typical cases where rewriting the AST is
useful in practice.

ReRAGs are closely related to Higher-ordered Attribute Grammars (HAGs) [2], [3]
and to the technique of forwarding in HAGs [4]. A major difference lies in the object-
oriented basis of ReRAGs, where reference attributes are kept as explicit links in the tree
and subtrees are rewritten in place. HAGs, in contrast, have a functional programming
basis, viewing the AST as well as its attributes as structured values without identity.

ReRAGs also have similarities to tree transformation systems like Stratego [5],
ASF+SDF [6], and TXL[7], but improves data acquisition support through the use of
RAGs instead of embedding contextual data in rewrite rules. Rewrite application strate-
gies differ in that ReRAGs only support the above described declarative approach while
the above mentioned systems support user defined strategies. In Stratego and AST+SDF
the rewrite application strategy is specified through explicit traversal strategies and in
TXL the rewrite application order is implicitly defined as part of the functional decom-
position of the transformation ruleset.

The plain RAG evaluation scheme is demand driven, evaluating an attribute only
when its value is read. The ReRAG evaluation scheme extends this basic approach by
rewriting parts of the AST as needed during the evaluation. We have designed differ-
ent caching strategies to achieve performance optimization and evaluated the approach
using a subset of the J2SDK 1.4.2 class library as our benchmark suite.

ReRAGs are implemented in our tool JastAdd II, a successor to our previous tool
JastAdd that supported plain RAGs [8]. Several grammars have been developed for
JastAdd II, the largest one being our Java grammar that implements static-semantics
checking as specified in the Java Language Specification [9].

In addition to RAG/ReRAG support, the JastAdd systems support static aspect-
oriented specification and integration with imperative Java code. Specifications are
aspect-oriented in that sets of attributes and equations concerning a particular aspect,
such as name analysis, type checking, code generation, etc., can be specified in mod-
ules separate from the AST classes. This is similar to the static introduction feature
of AspectJ [10] where fields, methods, and interface implementation clauses may be
specified in modules separate from the original classes.

Integration with imperative Java code is achieved by simply allowing ordinary Java
code to read attribute values. This is useful for many problems that are more readily
formulated imperatively than declaratively. For example, a code emission module may
be written as ordinary Java code that reads attribute values from the name and type
analysis in order to emit the appropriate code. These modules are also specified as static
introduction-like aspects that add declarations to the existing AST classes. The ReRAG
examples given in this paper are taken from our experience with the Java grammar and
utilize the separation of concerns given by the aspect-oriented formulation, as well as
the possibility to integrate declarative and imperative modules.

The rest of this paper is structured as follows. Section 2 introduces some typical
examples of when AST rewriting is useful. Section 3 gives background information on
RAGs and ASTs. Section 4 introduces ReRAG rewriting rules. Section 5 discusses how



ReRAGs are evaluated. Section 6 describes the algorithms implemented in JastAdd II.
Section 7 discusses ReRAGs from both an application and a performance perspective.
Section 8 compares with related work, and Section 9 concludes the paper.

2 Typical examples of AST rewriting

From our experience with writing a static-semantics analyzer for Java, we have found
many cases where it is useful to rewrite parts of the AST in order to simplify the com-
piler implementation. Below, we exemplify three typical situations.

2.1 Semantic specialization

In many cases the same context-free syntax will be used for language constructs that
carry different meaning depending on context. One example is names in Java, likea.b,
c.d, a.b.c, etc. These names all have the same general syntactic form, but can be
resolved to a range of different things, e.g., variables, types, or packages, depending on
in what context they occur. During name resolution we might find out thata is a class
and subsequently thatb is a static field. From a context-free grammar we can only build
genericName nodes that must capture all cases. The attribution rules need to handle all
these cases and therefore become complex. To avoid this complexity, we would like to
do semantic specialization. I.e., we would like to replace the generalName nodes with
more specialized nodes, likeClassName andFieldName, as shown in Figure 1. Other
computations, like type checking, optimization, and code generation, can benefit from
this rewrite by specifying different behavior (attributes, equations, fields and methods)
in the different specialized classes, rather than having to deal with all the cases in the
generalName class.

Fig. 1.Semantic specialization of name references.



2.2 Make implicit behavior explicit

A language construct sometimes hasimplicit behaviorthat does not need to be writ-
ten out by the programmer explicitly. An example is the implicit constructors of Java
classes. If a class in Java has no constructors, this corresponds to an implicit constructor
taking no arguments. The implicit behavior can be made explicit by rewriting the AST,
see Figure 2. This simplifies other computations, like code generation, which do not
have to take the special implicit cases into account.

Fig. 2.The implicit constructor in class “A” is made explicit.

2.3 Eliminate shorthands

Some language constructs are shorthands for specific combinations of other, more basic,
constructs. For example, string concatenation in Java can be written using the binary
addition operator (e.g.,a+b), but is actually implemented as an invocation of theconcat
method in theString class (e.g.,a.concat(b)). The AST can be rewritten to eliminate
such shorthands, as shown in Figure 3. The AST now reflects the semantics rather than
the concrete syntax, which simplifies other computations like optimizations and code
generation.

Fig. 3.Eliminate shorthand and reflect the semantic meaning instead.



3 Background

3.1 AGs and RAGs

ReRAGs are based on Reference Attributed Grammars (RAGs) which is an object-
oriented extension to Attribute Grammars (AGs) [11]. In plain AGs each node in the
AST has a number ofattributes, each defined by anequation. The right-hand side of
the equation is an expression over other attribute values and defines the value of the
left-hand side attribute. In a consistently attributed tree, all equations hold, i.e., each
attribute has the same value as the right-hand side expression of its defining equation.

Attributes can besynthesizedor inherited. The equation for a synthesized attribute
resides in the node itself, whereas for an inherited attribute, the equation resides in the
parent node. From an OO perspective we may think of attributes as fields and of equa-
tions as methods for computing the fields. However, they need not necessarily be im-
plemented that way. Note that the terminherited attributerefers to an attribute defined
in the parent node, and is thus a concept unrelated to the inheritance of OO languages.
In this article we will use the terminherited attributein its AG meaning.

Inherited attributes are used for propagating information downwards in the tree
(e.g., propagating information about declarations down to use sites) whereas synthe-
sized attributes can be accessed from the parent and used for propagating information
upwards in the tree (e.g. propagating type information up from an operand to its enclos-
ing expression).

RAGs extend AGs by allowing attributes to have reference values, i.e., they may be
object references to AST nodes. AGs, in contrast, only allow attributes to have primitive
or structured algebraic values. This extension allows very simple and natural specifica-
tions, e.g., connecting a use of a variable directly to its declaration, or a class directly
to its superclass. Plain AGs connect only through the AST hierarchy, which is very
limiting.

3.2 The AST class hierarchy

The nodes in an AST are viewed as instances of Java classes arranged in a subtype
hierarchy. An AST class correponds to a nonterminal or a production (or a combination
thereof) and may define a number of children and their declared types, corresponding to
a production right-hand side. In an actual AST, each node must betype consistentwith
its parent according to the normal type-checking rules of Java. I.e., the node must be
an instance of a class that is the same or a subtype of the corresponding type declared
in the parent. Shorthands for lists, optionals, and lexical items are also provided. An
example definition of some AST classes in a Java-like syntax is shown below.

// Expr corresponds to a nonterminal
ast Expr;
// Add corresponds to an Expr production
ast Add extends Expr ::= Expr leftOp , Expr rightOp;
// Id corresponds to an Expr production, id is a token
ast Id extends Expr ::= <String id>;



Aspects can be specified that define attributes, equations, and ordinary Java methods
of the AST classes. An example is the following aspect for very simple type-checking.

// Declaration of an inherited attribute env of Expr nodes
inh Env Expr.env();
// Declaration of a synthesized attribute type of Expr nodes
// and its default equation
syn Type Expr.type() = TypeSystem.UNKNOWN;
// Overriding the default equation for Add nodes
eq Add.type() = TypeSystem.INT;
// Overriding the default equation for Id nodes
eq Id.type() = env().lookup(id()).type();

The corresponding Java API is shown in the following UML diagram. It includes
methods for accessing child nodes likeleftOp andrightOp, tokens likeid and user-
defined attributes likeenv andtype. This API can be used freely in the right-hand sides
of equations, as well as by ordinary Java code.

4 Rewrite rules

ReRAGs extend RAGs by allowing rewrite rules to be written that automatically and
transparently rewrite nodes. The rewriting of a node is triggered by the first access to
it. Such an access could occur either in an equation in the parent node, or in some
imperative code traversing the AST. In either case, the access will be captured and
a reference to the final rewritten tree will be the result of the access. This way, the
rewriting process is transparent to any code accessing the AST. The first access to the
node will always go via the reference to it in the parent node. Subsequent accesses may
go via reference attributes that refer directly to the node, but at this point, the node will
already be rewritten to its final form.

A rewrite step is specified by a rewrite rule that defines the conditions when the
rewrite is applicable, as well as the resulting tree. For a given node, there may be several
rewrite rules that apply, which are then applied in a certain order. It may also be the case
that after the application of one rewrite rule, more rewrite rules become applicable. This
allows complex rewrites to be broken down into a series of simple small rewrite steps.

A rewrite rule for nodes of classN has the following general form:

rewrite N {
when (cond)
to R result;

}



This specifies that a node of typeN may be replaced by another node of typeR as
specified in the result expressionresult. The rule is applicable if the (optional) boolean
conditioncondholds and will be applied if there are no other applicable rewrite rules of
higher priority (priorites will be discussed later). Furthermore, all rewrite rules must be
type consistent in that the replacement will result in a type consistent AST regardless of
the context of the node, as will be discussed in Section 4.2. In a consistently attributed
tree, all equations hold and all rewrite conditions are false.

4.1 A simple example

As an example, consider replacing anAdd node with aStringAdd node in case both
operands are strings1. This can be done as follows.

ast StringAdd extends Expr ::= Expr leftOp , Expr rightOp;
rewrite Add {

when (childType().equals(TypeSystem.STRING))
to StringAdd new StringAdd(leftOp(), rightOp());

}
syn Type Add.childType() = ...;

Note that in the creation of the new right-hand side, the previous childrenleftOp()
andrightOp() are used. These accesses might trigger rewrites of these nodes in turn.

Avoiding repeated applications. StringAdd nodes might have much in common
with Add nodes, and an alternative way of handling this rewrite would be to define
StringAdd as a subclass ofAdd, rather than as a sibling class. In this case, the rewrite
should apply to allAdd nodes, except those that are alreadyStringAdd nodes, and can
be specified as follows.

ast StringAdd extends Add;
rewrite Add {

when (childType().equals(TypeSystem.STRING)
and !(this instanceOf StringAdd))

to StringAdd new StringAdd(leftOp(), rightOp());
}
syn Type Add.childType() = ...;

Note that the condition includes a type test to make sure that the rule is not applied
to nodes that are already of type StringAdd. This is necessary since the rule would
otherwise still be applicable after the rewrite, resulting in repeated applications of the
same rule and thereby nontermination. In general, whenever the rewrite results in the
same type or a subtype, it is advicable to reflect over if the condition might hold also
after the rewrite and in that case if the condition should be tightened in order to avoid
nontermination.

1 In Section 4.4 we will instead rewrite addition of strings as method calls.



Solutions that refactor the AST class hierarchy.A third alternative solution could be
to keepAdd andStringAdd as sibling classes and to factor out the common parts into
a superclass as follows.

ast Expr:
ast GeneralAdd extends Expr ::= Expr leftOp , Expr rightOp;
ast Add extends GeneralAdd;
ast StringAdd extends GeneralAdd;

This solution avoids the type test in the rewrite condition. However, it requires that
the grammar writer has access to the original AST definition ofAdd so that it can be
refactored.

4.2 Type consistency

As mentioned above, rules must betype consistent, i.e., the replacing node must al-
ways be type consistent with any possible context. This is checked statically by the
JastAdd II system. Consider the rewrite rule that replaces anAdd node by a sibling
StringAdd node using the grammar described above. The expected child type for all
possible contexts forAdd nodes isExpr. Since bothAdd andStringAdd are subclasses
of Expr the rule is type consistent. However, consider the addition of the following AST
class.

ast A ::= Add:

In this case the rewrite rule would not be type consistent since the rewrite could re-
sult in anA node having aStringAdd node as a child although anAdd node is expected.
Similarly, in the second rewrite example in Section 4.1 whereStringAdd is a subclass
of Add, that rewrite rule would not be type consistent if the following classes were part
of the AST grammar.

ast B ::= C:
ast C extends Add;

In this case, the rewrite rule could result in aB node having aStringAdd node as a
child which would not be type consistent.

Theorem 1. A rule rewriteA...toB... is type consistent if the following conditions
hold: Let C be the first common superclass of A and B. Furthermore, letD be the set
of classes that occur on the right-hand side of any production class. The rule is type
consistent as long as there is no class D inD that is a subclass of C, i.e., D6< C.

Proof. The rewritten node will always be in a context where its declared typeD is either
the same asC, or a supertype thereof, i.e.C≤ D. The resulting node will be of a type
R≤ B, and sinceB≤C, then consequentlyR≤ D, i.e., the resulting tree will be type
consistent. ut



4.3 Rewriting descendent nodes

The tree resulting from a rewrite is specified as an expression which may freely access
any of the current node’s attributes and descendents. Imperative code is permitted, using
the syntax of a Java method body that returns the resulting tree. This imperative code
may reuse existing parts in the old subtree in order to build the new subtree, but may
have no other externally visible side effects. This can be used to rewrite descendent
nodes, returning an updated version of the node itself as the result.

As an example, consider a Java class declarationclass A { ... }. Here,A is
given no explicit superclass which is equivalent to giving it the superclassObject. In
order to simplify further attribution (type checking, etc.), we would like to change the
AST and insert the superclass as an explicit node. This can be done by the following
rewrite rule:

ast ClassDecl extends Decl ::=
<String classId >, [ TypeRef superClass ], Body body;

rewrite ClassDecl {
when (!hasSuperClass() && !name().equals("Object"))
to ClassDecl {

setSuperClass(new TypeRef("Object"));
return this ;

}
}

Note that the rewrite rule updates a descendent node and returns itself, as illustrated
in the figure below.

As seen from the specification above, the condition for doing this rewrite is that the
class has no explicit superclass already, and that it is another class than the root class
Object. The result type is the same as the rewritten type, which means we should reflect
on possible nontermination due to repeated applications of the same rule. However, it
is clear that the rewrite will not be applicable a second time since the rewrite will result
in a node where the condition is no longer met.

4.4 Combining rules

It is often useful to rewrite a subtree in several steps. Consider the following Java-like
expression

a+"x"

Supposing thata is a reference to an non-nullObject subclass instance, the seman-
tic meaning of the expression is to converta into a string, convert the string literal"x"
into a string object, and to concatenate the two strings by the methodconcat. It can
thus be seen as a shorthand for the following expression.



a.toString().concat(new String(new char [ ] {’x’} ))

To simplify code generation we would like to eliminate the shorthand notation by
rewriting the AST. This can be accomplished by a number of rewrite rules, each taking
care of a single subproblem:

1. replace the right operand of an Add node by a call totoString if the left operand
is a string, but the right is not

2. replace the left operand of an Add node by a call totoString if the right operand
is a string, but the left is not

3. replace an Add node by a method call toconcat if both operands are strings
4. replace a string literal by an expression creating a new string object

Suppose the originalAdd node is accessed from its parent. This will cause the AST
to be rewritten in the following steps. First, it will be checked which rules are applicable
for Add. This will involve accessing its left and right operands, which triggers the rewrite
of these nodes in turn. In this case, the right operand will be rewritten according to rule
4. It is now found that rule 2 is applicable forAdd, and it is applied, replacing the left
operand by aMethodCall. This causes rule 3 to become applicable forAdd, replacing
it too by aMethodCall. Now, no more rules are applicable for the node and a reference
is returned to the parent. Figure 4 illustrates the steps applied in the rewrite.

Rule priority. In general, it is possible that more than one rule applies to a node. Typ-
ically, this happens when there are two rewrite rules in a node, each rewriting different
parts of the substructure of the node. For example, in a class declaration there may
be one rewrite rule that takes care of making an implicit constructor explicit, and an-
other rule making an implicit superclass explicit. Both these rules can be placed in the
ClassDecl AST class, and may be applicable at the same time. In this particular case,
the rules areconfluent, i.e., they can be applied in any order, yielding the same result-
ing tree. So far, we have not found the practical use for nonconfluent rules, i.e., where
the order of application matters. However, in principle they can occur, and in order to
obtain a predictable result also in this case, the rules are prioritized: Rules in a subclass
have priority over rules in superclasses. For rules in the same class, the lexical order is
used as priority.

5 ReRAG evaluation

5.1 RAG evaluation

An attribute evaluator computes the attribute values so that the tree becomes consis-
tently attributed, i.e., all the equations hold. JastAdd uses a demand-driven evaluation
mechanism for RAGs, i.e., the value of an attribute is not computed until it is read [8].
The implementation of this mechanism is straight-forward in an object-oriented lan-
guage [12]. Attributes are implemented as methods in the AST classes where they are
declared. Accessing an attribute is done simply by calling the corresponding method.
Also equations are translated to methods, and are called as appropriate by the attribute



Initial AST for thea + “x” expression

Rule 4: Replace the“x” string literal by a new string instance expression
new String(new char[] {’x’}).

Rule 2: Make the implicit Object to String type conversion explicit by adding a“toString”
method call.

Rule 3: Replace add by a method call to“concat”.

Fig. 4. Combine several rules to eliminate the shorthand for String addition and literals in a Java
like language.



methods: The method implementing an inherited attribute will call an equation method
in the parent node. The method implementing a synthesized attribute calls an equation
method in the node itself. JastAdd checks statically that all attributes in the grammar
have a defining equation, i.e., that the grammar is well-formed. For efficiency, the value
of an attribute is cached in the tree the first time it is computed. All tree nodes inherit
generic accessor methods to its parent and possible children through a common super-
class. As a simple example, consider the following RAG fragment:

ast Expr;
ast Id extends Expr ::= <String id>;
inh Env Expr.env();
syn Type Expr.type();
eq Id.type() = env().lookup(id()).type();

This is translated to the following Java code:

class Expr extends ASTNode { // inherit generic node access
Env env_value = null ; // cached attribute value
boolean env_cached = false ; // flag true when cached
Env env() { // method for inherited attribute

if (!env_cached) {
env_value = ((HasExprSon)parent()).env_eq(this );
env_cached = true ; }

return env_value; }
Type type_value = null ; // cached attribute value
boolean type_cached = false ; // flag true when cached
Type type() { // method for synthesized attribute

if (!type_cached) {
type_value = type_eq();
type_cached = true ; }

return type_value; }
abstract Type type_eq(); }

interface HasExprSon {
Env env_eq(Expr son); }

class Id extends Expr {
String id() { ... }
Type type_eq() { // method for equation defining

return env().lookup(id()).type() // synthesized attribute
} }

This demand-driven evaluation scheme implicitly results in topological-order evalu-
ation (evaluation order according to the attribute dependences). See [1] for more details.

Attribute evaluation using this scheme will often follow complex tree traversal pat-
terns, often visiting the same node multiple times in order to evaluate all the attributes
that a specific attribute depends on. For example, consider the evaluation of the at-
tributeId.typeabove. This involves finding the declaration of the identifier, then finding
the declaration of the type of the identifier, and during this process, possibly finding the
declarations of classes in the superclass chain where these declarations may be located.
In this process, the same block nodes and declaration nodes may well be visited several
times. However, once a certain attribute is evaluated, e.g., the reference from a class to



its superclass, that computation does not need to be redone since the attribute value is
cached. The traversals do therefore not always follow the tree structure, but can also
follow reference attributes directly, e.g., from subclass to superclass or from variable to
declaration.

5.2 Basic rewrite strategy

To handle ReRAGs, the evaluator is extended to rewrite trees in addition to evaluating
attributes, resulting in a consistently attributed tree where all equations hold and all
rewrite conditions are false. A demand-driven rewriting strategy is used. When a tree
node is visited, the node is rewritten iteratively. In each iteration, the rule conditions
are evaluated in priority order, and the first applicable rule will be applied, replacing
the node (or parts of the subtree rooted at the node). The next iteration is applied to the
root of the new subtree. The iteration stops when none of the rules are applicable (all
the conditions are false), and a reference to the resulting subtree is then returned to the
visiting node. The subtree may thus be rewritten in several steps before the new subtree
is returned to the visiting node. Since the rewrites are applied implicitly when visiting
a node, the rewrite is transparent from a node traversal point of view.

The figure below shows how the child nodeB of A is accessed for the first time
and iteratively rewritten into the resulting nodeD that is returned to the parentA. The
subscriptv indicates that a node has been visited andr that a rewrite is currently being
evaluated. WhenB is visited a rewrite is triggered and the node is rewritten to aC node
that in turn is rewritten to aD node. No rewrite conditions for theD node are true, and
the node is returned to the parentA that need not be aware of the performed rewrite.

5.3 Nested and multi-level rewrites

When evaluating a condition or a result expression in a rewrite rule, attributes may be
read that trigger a visit to another node. That visit may in turn trigger a second rewrite
that is executed before the first may continue its evaluation. This nesting of rewrites
results in several rewrites being active at the same time. Since attributes may reference
distant subtrees, the visited nodes could be anywhere in the AST, not necessarily in the
subtree of the rewritten tree.

The following figure shows an example of nested rewrites. The subscriptv indicates
that a node has been visited andr that a rewrite is currently being evaluated. The rewrites
are numbered in the order they started.



An initial rewrite, r1, is triggered whenA visits its childB in stageI. A visit to C,
that is caused by accessing a synthesized attribute during rewrite condition checking,
triggers a second rewriter2 in stageII . That rewrite triggers a visit to a distant nodeD
by reading an inherited attribute and initiates a third rewriter3 in stageIII . When no
conditions inD are true the result of the inherited attribute is calculated and returned to
C in stageIV. The synthesized attribute is calculated and returned toB in stageV. The
resulting nodeB is finally returned toA in stageVI. Notice that the rewrites terminate
in the opposite order that they were initiated.

As discussed in Section 5.1, most non-trivial attribute grammars are multi-visit in
that a node may have to be visited multiple times to evaluate an attribute. A common
situation is when a child node has an inherited attribute, and the equation in the parent
node depends on a synthesized attribute that visits the child node again. The situation
is illustrated in the figure below.A visits B and a rewrite is initiated in stageI. During
condition evaluation the inherited attributey() is read andA is visited to evaluate its
equation in stageII . That equation contains the synthesized attributex() that in turn
depends onz() in B and a second visit is initiated in stageIII .

ast A ::= B child;
inh Type B.y();
eq A.child().y() = x();
syn Type A.x() = child().z();
syn Type B.z() = ... ;

Such multi-visits complicate the rewrite and attribute evaluation process somewhat.
Should the second visit to a node that is being rewritten start a second rewrite? No. The
attributes read in a node that is being rewritten should reflect the current tree structure.
Otherwise, the definition of rewrites would be circular and evaluation would turn into
an endless loop. Therefore, when visiting a node that is already being rewritten, the
current node is returned and no new rewrite is triggered.

Note that attribute values that depend on nodes that are being rewritten, might have
different values during the rewrite than they will have in the final tree. Therefore, such



attributes will not be cached until all the nodes they depend on have reached their final
form. We will return to this issue in Section 6.3.

Note also that a node may well be rewritten several times, provided that the previous
rewrite has completed. This can happen if the rewrites are triggered by the rewriting of
another node. For example, suppose we are rewriting a nodeA. During this process, we
visit its son nodeSwhich is then rewritten toS′. After this rewrite ofS, the conditions of
S′ are all false (the rewrite of S completes). We then complete one iteration of rewriting
A, replacing it with a new nodeA′(but keeping the sonS′). In the next iteration of
rewriting A′, it may be found thatS′ needs to be rewritten again since the conditions of
S′ may give other results after replacingA by A′. This will also be discussed more in
Section 6.2.

6 Implementation algorithm

6.1 Basic algorithm

As discussed in Section 3.2, a Java class is generated for each node type in the AST. All
classes in the class hierarchy descend from the same superclass,ASTNode, providing
generic traversal of the AST by the genericparent()andchild(int index)methods. These
methods are used in the implementation of attribute and equation methods, as discussed
in Section 5.1.

We have implemented our rewriting algorithm by extending the existing JastAdd
RAG evaluator as an AspectJ [10] aspect. In particular, thechild method is extended
to trigger rewrites when appropriate. To start with, we consider the case when no RAG
attributes are cached. The handling of cached attributes in combination with rewriting
is treated in Section 6.3.

Rewrite rules for each node type are translated into a corresponding Java method,
rewriteTo(), that checks rewrite rule conditions and returns the possibly rewritten tree.
This method is iteratively invoked until no conditions are true. If all conditions in one
node’s rewriteTo() method are false, then rewriteTo() in the node’s superclass is in-
voked. The generated Java method for the first example in Section 4 is shown below.

ASTNode Add.rewriteTo() {
if (childType().equals(TypeSystem.STRING))

return new StringAdd(leftOp(), rightOp())
return super .rewriteTo();

}

To determine when no conditions are true and iteration should stop, a flag is set
when the rewriteTo() method in ASTNode is reached, indicating that no overriding
rewriteTo method has calculated a result tree. A flag is used since a simple comparison
of the returned node is not sufficient because the rewrite may have rewritten descendent
nodes only. In order to handle nested rewrites, a stack of flags is used.

Figure 5 shows an AspectJ aspect implementing the above described behaviour:

(1) The stack used to determine when no conditions are true
(2) Iteratively apply rewrite until no conditions are true



(3) Pushfalseon the stack to guess that a rewrite will occur
(4) Bind the rewritten tree as a child to the parent node.
(5) Set top value on stack totrue when rewriteTo in ASTNode is reached (no rewrite

occurred)
(6) Define a pointcut when the child method is called.
(7) Each call to child is extended to also call rewrite.

public aspect Rewrite {
(1) protected static Stack noRewrite = new Stack();
(2) ASTNode rewrite (ASTNode parent , ASTNode child , int index) {

do {
(3) noRewrite.push(Boolean.FALSE);

child = child.rewriteTo();
(4) parent.setChild(index , child);

} while (noRewrite.pop() == Boolean.FALSE);
return child; }

(5) ASTNode ASTNode.rewriteTo() {
noRewrite.pop();
noRewrite.push(Boolean.TRUE);
return this ; }

(6) pointcut child(int index , ASTNode parent) :
call (ASTNode ASTNode.child(int )) &&
args (index) && target (parent);

(7) ASTNode around (int index , ASTNode parent) :
child(index , parent) {

ASTNode child = proceed (index , parent):
return rewrite (parent , child , index); }

}

Fig. 5.Aspect Rewrite: Iteratively rewrite each visited tree node

As discussed in Section 5.3 a tree node currently in rewrite may be visited again
during that rewrite when reading attributes. When a node that is in rewrite is visited, the
current tree state should be returned instead of initiating a new rewrite. That behaviour
is implemented in the aspect shown in Figure 6:

(1) A flag, inRewrite, is added to each node to indicate whether the node is in rewrite
or not.

(2) Add advice around each call to the rewriteTo method.
(3) The flag is set when a rewrite is initiated.
(4) The flag is reset when a rewrite is finished.
(5) Add advice around the rewrite loop in the previous aspect.
(6) When a node is in rewrite then the current tree is returned instead of initiating a

new rewrite.



public aspect ReVisit {
(1) boolean ASTNode.inRewrite = false ;
(2) ASTNode around (ASTNode child)

: execution (ASTNode ASTNode+.rewriteTo()) && target (child) {
(3) child.inRewrite = true ;

ASTNode newChild = proceed (child);
(4) child.inRewrite = false ;

return newChild; }
(5) ASTNode around (ASTNode child)

: execution (ASTNode Rewrite.rewrite (ASTNode , ASTNode , int )
&& args (*, child , *) {

(6) if (child.inRewrite)
return child;

return proceed (child);
}

Fig. 6.Aspect ReVisit: Pass through re-visit to a node already in rewrite

6.2 Optimization of final nodes

As mentioned, a node may be rewritten several times. We are interested in detecting
when no further rewriting of it is possible so we know that it has reached its final iden-
tity. By detecting final nodes, we can avoid the needless checking of their rewrite con-
ditions (since they will all be false). This performance improvement can be significant
for nodes with expensive conditions, e.g., when extracting a property by visiting all the
children of the node. We can also use the concept of final nodes to cache attributes, as
will be discussed in Section 6.3.

Definition 1. A node is said to befinal when i) all its rewrite conditions evaluate to
false, and ii) future evaluations of its rewrite conditions cannot yield other values, and
iii) it cannot be rewritten by any other node.

Clearly, no further rewriting of final nodes is possible: i) and ii) guarantee that the
node itself cannot trigger any rewriting of it, and iii) that it cannot be rewritten by any
other node.

To find out when a node is final, we first recall (from Section 4) which nodes may
be changed by a rewrite rule. Consider a nodeN which is the root of a subtreeT. The
rewrite rule will result in replacingT by T ′, whereT ′ consists of a combination of newly
created nodes and old nodes fromT. I.e., the rewrite may not change nodes outsideT.
From this follows that a node can only be rewritten by rules in the node itself or rules
in nodes on the path to the AST root node.

This allows us to state that

Lemma 1. If a node is final, all its ancestor nodes are final.

Proof. Otherwise the node may be rewritten by an ancestor node, in which case it is not
final.



From Lemma 1 follows that at any point during evaluation, the final nodes of the
AST will constitute a connected region that includes a path to the root, thefinal region.
Initially, the evaluator visits only nodes in the final region, and is said to be innormal
mode. But as soon as a non-final node is accessed from normal mode, the evaluator
entersrewritemode and that non-final node is said to be acandidate. When the iterative
rewriting of the candidate has finished it turns out that it is final (see Theorem 2, and
the evaluator returns to normal mode, completing the rewrite session. This way the final
region is successively expanded. During a rewrite session, other non-final nodes may
be visited and rewritten, but these are not considered candidates and will not become
final during that rewrite session. There is only one candidate per rewrite session.

Note that during a rewrite session, the evaluator may well visit non-final nodes out-
side of the candidate subtree, and non-final nodes may be visited several times, the
candidate included. For example, let us say we are rewriting a class String to add an
explicit superclass reference to class Object. This means we will visit and trigger a
rewrite of class Object. The rewrite of Object includes adding an explicit constructor.
This involves searching through the methods of Object for a constructor. Suppose there
is a method String toString() in Object. When this method is traversed, this will trigger
rewriting of the identifier String to a type reference that directly refers to the String
class. This in turn will involve a second visit to the String class (which was the candi-
date).

Theorem 2. At the end of a rewrite session, the candidate c is final.

Proof. At the end of the rewrite session, all rewrite conditions ofc have just been eval-
uated to false. Furthermore, all ancestors ofc are final, so no other node can rewritec.
What remains to be shown (see Definition 1) is that future evaluations of the rewrite
conditions cannot yield other values. To see this we must consider the set of all other
non-final nodesN that were visited in order to evaluate the rewrite conditions ofc. This
has involved evaluating all the rewrites conditions of these nodes in turn, also yielding
false for all these conditions, and without triggering any rewrites of those nodes. Other-
wise, another iteration of rewrite ofc would have been triggered and we would not be
at the end of the rewriting session. Since all these conditions evaluate to false, and there
is no other node that can rewrite any of the nodes inN (since their ancestors outside
N are final), none of these conditions can change value, and not onlyc, but in fact all
nodes inN are final. ut

In keeping track of which nodes are final, we add a flag isFinal to each node. In
principle, we could mark bothc and all the nodes inN as final at the end of the rewriting
session. However, it is sufficient to markc since any subsequent visits to a node inN
will immediately mark that node as final, since all its rewrite conditions are false. An
aspect introducing the isFinal flag is implemented in the aspect shown in Figure 7:

(1) A flag, isFinal, is added to each node to indicate whether the node is final or not.
(2) Add advice around the rewrite loop in the Rewrite aspect.
(3) When a node is final no rule condition checking is necessary and the node is re-

turned immediately.



(4) When a node is entered during normal mode it becomes the next node to be final
and we enter rewrite mode. On condition checking completion the node is final and
we enter normal mode.

(5) A rewrite during rewrite mode continues as normal.

public aspect FinalNodes {
(1) boolean ASTNode.isFinal = false ;
(2) boolean normalMode = true ;
(2) ASTNode around (ASTNode parent , ASTNode child)

: execution (ASTNode Rewrite.rewrite (ASTNode , ASTNode , int ))
&& args (parent , child , *) {

(3) if (child.isFinal)
return child;

(4) if (normalMode) {
normalMode = false ;
child = proceed (parent , child);
child.isFinal = true ;
normalMode = true ;
return child; }

(5) return proceed (parent , child); }
}

Fig. 7.Aspect FinalNodes: Detect final nodes and skip condition evaluation

6.3 Caching attributes in the context of rewrites

In plain RAGs, attribute caching can be used to increase performance by ensuring that
each attribute is evaluated only once. When introducing rewrites the same simple tech-
nique cannot be used. A rewrite that changes the tree structure may affect the value
of an already cached attribute that must then be re-evaluated. There are two principle
approaches to ensure that these attributes have consistent values. One is to analyze at-
tribute dependences dynamically in order to find out which attributes need to be reeval-
uated due to rewriting. Another approach is to cache only those attributes that cannot
be affected by later rewrites. In order to avoid extensive run-time dependency analysis,
we have chosen the second approach.

We say that an attribute issafely cachablewhen its value cannot be affected by later
rewrites. Because final nodes cannot be further rewritten, an attribute will be safely
cachable if all nodes visited during its evaluation are final.

A simple solution is to only cache attributes whose evaluation is started when the
evaluator is in normal mode, i.e., not in a rewriting session. These attributes will be
safely cachable. To see this, we can note that

i) the node where the evaluation starts is final (since the evaluator is in normal mode)



ii) any node visited during evaluation will be in its final form before its attributes are
accessed, since any non-final node encountered will cause the evaluator to enter rewrite
mode, returning the final node after completing that rewriting session.

It is possible to cache certain attributes during rewriting, by keeping track dynam-
ically of if all visited nodes are final. However, this optimization has not yet been im-
plemented.

As mentioned earlier, the ReRAG implementation is implemented as aspects on top
of the plain RAG implementation. The RAG implementation caches attributes, so we
need to disable the caching whenever not in normal mode in order to handle ReRAGs.
This is done simply by advice on the call that sets the cached-flag. Figure 8 shows how
this is done.

public aspect DisableCache {
Object around () : set (boolean ASTNode+.*_cached) {

if (!FinalNodes.normalMode)
return false ;

return proceed (); }
}

Fig. 8.Aspect DisableCache: Disable caching of attributes when not in normal mode

7 Implementation evaluation

7.1 Applicability

We have implemented ReRAGs in our tool JastAdd II and performed a number of case
studies in order to evaluate their applicability.

Full Java static-semantics checkerOur largest application is a complete static-semantic
analyzer for Java 1.4. The grammar is a highly modular specification that follows
the Java Language Specificaton, second edition[9], with modules like name bind-
ing, resolving ambiguous names, type binding, type checking, type conversions,
inheritance, access control, arrays, exception handling, definite assignment and un-
reachable statements.
An LALR(1) parser using a slightly modified grammar from the Java Language
Specification [9], is used to build the initial abstract syntax tree. The AST is rewrit-
ten during the analysis to better capture the semantics of the program and simplify
later computations. Some examples where rewrites were useful are:

– for resolving ambiguous names and for using semantic specialization for bound
name references.

– for making implicit constructs explict by adding (as appropriate) empty con-
structors, supertype constructor accesses, type conversions and promotions,
and inheritance fromjava.lang.Object.



– for eliminating shorthands such as splitting compound declarations of fields
and variables to a list of single declarations.

Java to C compiler Our collegue, Anders Nilsson, has implemented a Java to C com-
piler in ReRAGs [13], based on an older version of the Java checker. The generated
C code is designed to run with a set of special C runtime systems that support real-
time garbage collection, and is interfaced to through a set of C macros. ReRAGs
are used in the back end for adapting the AST to simplify the generation of code
suitable for these runtime systems. For example, all operations on references are
broken down to steps of only one indirection, generating the macro calls to the
runtime system. ReRAGs are also used for optimizing the generated code size by
eliminating unused classes, methods, and variables. They are also used for elimi-
nating shorthands, for example to deal with all the variants of loops in Java.

Worst-case execution time analyzerThe Java checker was extended to also compute
worst-case execution times using an annotation mechanism. The extension could
be done in a purely modular fashion.

Automation Language The automation languageStructured Textin IEC-61131-3 has
been modeled in ReRAGs and extended with an object-oriented type system and
instance references. The extended language is translated to the base language by
flattening the class hierarchies using iterative rewriting. Details will appear in a
forthcoming paper.

7.2 Performance

We have implemented ReRAGs in our aspect-oriented compiler compiler tool JastAdd
II. To give some initial performance measurements we benchmark our largest applica-
tion, a complete static-semantic analyzer for Java 1.4. After parsing and static-semantic
analysis the checked tree is pretty printed to file. Since code generation targeted for
the Java virtual machine, [14], is fairly straight forward once static-semantic analysis
is performed we believe that the work done by our analyzer is comparable to the work
done by a java to byte-code compiler. We therefore compare the execution time of our
analyzer to the standard java compiler, javac, in J2SE JDK.

Two types of optimizations to the basic evaluation algorithm were discussed in Sec-
tion 6.2 and Section 6.3. The first disables condition checking for nodes that are final
and the second caches attribute values that only depend on attributes in final nodes.
To verify that these optimizations improve performance we benchmark our analyzer
with and without optimizations. The execution times when analysing a few files of the
java.langpackage are shown in Figure 9. These measurements show that both attribute
caching and condition checking disabling provide drastic performance improvements
when applied individually and even better when combined. Clearly, both optimizations
should be used to get reasonable execution times.

The execution times do not include parsing that took 3262ms without attribute
caching and slightly more, 3644ms, when caching attributes. We believe the increase is
due to the larger tree nodes used when caching attributes.

To verify that the ReRAG implementation scales reasonably we compare execution
times with a traditional Java compiler, javac, see Figure 10. We are using a subset of
the Java class library, thejava.lang, java.util, java.iopackages, as our benchmarks.



condition checkingno condition checking
no attribute caching546323 ms 61882 ms
attribute caching 21216 ms 2016 ms

Fig. 9.Comparison of analysis execution time with and without optimizations

Roughly 100.000 lines of java source code from J2SE JDK 1.4.2 are compiled, and the
ReRAG-based compiler uses both the optimizations mentioned above. The comparison
is not completely fair because javac generates byte code whereas the ReRAG compiler
only performs static-semantic analysis and then pretty-prints the program. However,
generating byte code from an analyzed AST is very straight-forward and should be
roughly comparable to pretty-printing. The comparison shows that the ReRAG-based
compiler is only a few times slower than javac. Considering that the ReRAG-based
compiler is generated from a declarative specification, we find this highly encouraging.
This shows that ReRAGs are already useful for large-scale practical applications.

total JVM init parsinganalysis and prettyprinting
ReRAG compiler22801ms 600ms 7251ms 14950ms
javac 6112ms

Fig. 10.Compile time for thejava.lang, java.util, java.iopackages using the ReRAG-based com-
piler and javac.

8 Related work

Higher-ordered Attribute Grammars ReRAGs are closely related to Higher-ordered
Attribute Grammars (HAGs) [2], [3] where an attribute can behigher-order, in that
it has the structure of an AST and can itself have attributes. Such an attribute is
also called anATtributable Attribute(ATA). Typically, there will be one equation
defining the bare AST (without attributes) of the ATA, and other equations that
define or use attributes of the ATA, and which depend on the evaluation of the ATA
equation.
In ReRAGs each node in the AST is considered to be the root of arewritable at-
tribute of its parent node and may be rewritten to an alternative subtree during
attribute evaluation. The rewriting is done conditionally, in place (replacing the
original subtree during evaluation), and may be done in several steps, each de-
scribed by an individual rewrite rule. This is contrast to the ATAs of HAGs which
are constructed unconditionally, in one step, and where the evaluation does not
change previously existing parts of the AST (the new tree is stored as a previously
unevaluated attribute).
A major difference lies in the object-oriented basis of ReRAGs, where reference
attributes are kept as explicit links in the tree and subtrees are rewritten in place.



HAGs, in contrast, have a functional programming basis, viewing the AST as well
as its attributes as structured values without identity. This is in our view less intu-
itive where, for instance, cross references in the AST have to be viewed as infinite
values.

HAGs + Forwarding Forwarding [4] is an attribute grammar technique used to for-
ward attribute equations in one node to an equation in another node. This is trans-
parent to other attribute equations and when combined with ATAs that use contex-
tual information it allows later computations to be expressed on a more suitable
model in a way similar to ReRAGs. To simulate a nested and multi-level rewrite
there would, however, conceptually have to be a new tree for each step in the
rewrite.

Visitors The Visitor pattern is often used in compiler construction for separation of
concerns when using object-oriented languages. Visitors can only separate cross-
cutting methods while the weaving technique used in JastAdd can be used for fields
as well. This is superior to the Visitor pattern in that there is no need to rely on a
generic delegation mechanism resulting in a cleaner more intuative implementa-
tion and also provide type-safe parameter passing during tree traversal. ReRAGs
also differ in that traversal strategies need not be specified explicitly since they are
implicitly defined by attribute dependences. The use of attributes provide better
separation of concerns in that contextual information need not be included in the
traversal pattern but can be declared separately.

Rewrite SystemsReRAGs also have similarities to tree transformation systems like
Stratego[5], ASF+SDF [6], and TXL [7] but improves data acquisition support
through the use of RAGs instead of embedding contextual data in rewrite rules or
as global variables.Strategouses Dynamic Rewrite Rules [15] to separate contex-
tual data acquisition from rewrite rules. A rule can be generated at run-time and
include data from the context where it originates. That way contextual data is in-
cluded in the rewrite rule and need not be propagated explicitly by rules in the
grammar. ReRAGs provide an even cleaner separation of rewrite rule and contex-
tual information by the use of RAGs that also are superior in modeling complex
non-local dependences. The rewrite application order differs in that ReRAGs only
support the described declarative approach while the other systems support user
defined strategies. InStrategoandASF+SDFthe user can define explicit traversal
strategies that control rewrite application order. Transformation rules inTXL are
specified through a pattern to be matched and a replacement to substitute for it.
The pattern to be matched may be guarded by conditional rules and the replace-
ment may be a defined as a function of the matched pattern. A function used in a
transformation rule may in turn be a composed from other functions. The rewrite
application strategy inTXL is thus implicitly defined as part of the functional de-
composition of the transformation ruleset, which controls how and in which order
subrules are applied. Dora [16] supports attributes and rewrite rules that are de-
fined using pattern matching to select tree nodes for attribute definitions, equation,
and as rewrite targets. Attribute equations and rewrite results are defined through
Lisp expressions. Composition rules are used to define how to combine and repeat
rewrites and the order the tree is traversed. The approach is similar to ReRAGs in
that attribute dependences are computed dynamically at run-time but there is no



support for remote attributes and it is not clear how attributes read during rewriting
are handled.

Dynamic reclassification of objectsSemantic specialization is similar to dynamic re-
classification of objects, e.g. Wide Classes, Predicate Classes, FickleII, and Gilgul.
All of these approaches except Gilgul differ from ReRAGs in that they may only
specialize a single object compared to our rewritten sub-trees.Wide Classes[17]
demonstrates the use of dynamic reclassification of objects to create a more suitable
model for compiler computations. The run-time type of an object can be changed
into a super- or a sub-type by explicitly passing a message to that object. That way,
instance variables can be dynamically added to objects when needed by a specific
compiler stage, e.g., code optimization. Their approach differs from ours in that it
requires run-time system support and the reclassification is explicitly invoked and
not statically type-safe. InPredicate Classes[18], an object is reclassified when a
predicate is true, similar to our rewrite conditions. The reclassification is dynamic
and lazy and thus similar to our demand-driven rewriting. The approach is, how-
ever, not statically type-safe.FickleII [19] has strong typing and puts restrictions
on when an object may be reclassified to a super type by using specific state classes
that may not be types of fields. This is similar to our restriction on rewriting nodes
to supertypes as long as they are not used in the right hand side of a production
rule as discussed in Section 4.2. The reclassification is, however, explicitly invoked
compared to our declarative style.Gilgul [20] is an extension to Java that allows
dynamic object replacement. A new type of classes, implementation-only classes,
that can not be used as types are introduced. Implementation-only instance may not
only be replaced by subclass instances but also by instances of any class that has
the same least non implementation-only superclass. Object replacement in Gilgul
is similar to our appraoch in that no support from the run-time system is needed.
Gilgul uses an indirection scheme to be able to simultaneously update all object ref-
erences through a single pointer re-assignment. The ReRAGs implementation uses
a different approach and ensures that all references to the replaced object structure
are recalculated dynamically on demand.

9 Conclusions and Future Work

We have introduced a technique for declarative rewriting of attributed ASTs, support-
ing conditional and context-dependent rewrites during attribution. The generation of
a full Java static-semantic analyzer demonstrates the practical use of this technique.
The grammar is highly modular, utilizing all three dimensions of separation of con-
cerns: inheritance for separating the description of general from specific behavior of
the language constructs (e.g., general declarations from specialized declarations like
fields and methods); aspects for separating different computations from each other (e.g.,
type checking from name analysis); and rewriting for allowing the computations to be
expressed on suitable forms of the tree. This results in a specification that is easy to
understand and to extend. The technique has been implemented in a general system that
generates compilers from a declarative specification. Attribute evaluation and tree trans-
formation are performed automatically according to the specification.The running times



are sufficiently low for practical use. For example, parsing, analyzing, and prettyprint-
ing roughly 100.000 lines of Java code took approximately 23 seconds as compared to
6 seconds for the javac compiler on the same platform.

We have identified several typical ways of transforming an AST that are useful
in practice: Semantic Specialization, Make Implicit Behavior Explicit, and Eliminate
Shorthands. The use of these transformations has substantially simplified our Java im-
plementation as compared to having to program this by hand, or having to use a plain
RAG on the initial AST constructed by the parser.

Our work is related to many other transformational approaches, but differs in im-
portant ways, most notably by being declarative, yet based on an object-oriented AST
model with explicit references beween different parts. This gives, in our opinion, a very
natural and direct way to think about the program representation and to describe com-
putations.

Many other transformational systems apply transformations in a predefined sequence,
making the application of transformations imperative. In contrast, the ReRAG transfor-
mations are applied based on conditions that may read the current tree, resulting in a
declarative specification.

There are many interesting ways to continue this research.

Optimization The caching strategies currently used can probably be improved in a
variety of ways, allowing more attributes to be cached, resulting in better perfor-
mance.

Termination Our current implementation does not deal with possible non-termination
of rewriting rules (i.e., the possibility that the conditions never become false). In our
experience, it can easily be seen (by a human) that the rules will terminate, so this is
usually not a problem in practice. However, techniques for detecting possible non-
termination, either statically from the grammar or dynamically, during evaluation,
could be useful for debugging.

Circular ReRAGs We plan to combine earlier work on Circular RAGs [21] with our
work on ReRAGs. We hope this can be used for running various fixed-point com-
putations on ReRAGs, with applications in static analysis.

Language extensionsOur current studies on generics indicate that the basic problems
in GJ [22] can be solved using ReRAGs. Extending our Java 1.4 to handle new
features in Java 1.5 like generics, autoboxing, static imports, and type safe enums
is a natural next step. This will also further illustrate how language extensions can
be modularized using ReRAGs.
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