Jast Add—an aspect-oriented compiler
construction system

Gorel Hedin * Eva Magnusson

Department of Computer Science, Lund University, Sweden

Abstract

We describe JastAdd, a Java-based system for compiler construction. JastAdd is
centered around an object-oriented representation of the abstract syntax tree where
reference variables can be used to link together different parts of the tree. JastAdd
supports the combination of declarative techniques (using Reference Attributed
Grammars) and imperative techniques (using ordinary Java code) in implement-
ing the compiler. The behavior can be modularized into different aspects, e.g. name
analysis, type checking, code generation, etc., that are woven together into classes
using aspect-oriented programming techniques, providing a safer and more power-
ful alternative to the Visitor pattern. The JastAdd system is independent of the
underlying parsing technology and supports any non-circular dependencies between
computations, thereby allowing general multi-pass compilation. The attribute eval-
uator (optimal recursive evaluation) is implemented very conveniently using Java
classes, interfaces, and virtual methods.

Key words: reference attributed grammars, aspect-oriented programming,
compiler construction, visitor pattern, Java

1 Introduction

Many existing parser generators have only rudimentary support for further
compilation. Often, the support is limited to simple semantic actions and tree
building during parsing. Systems supporting more advanced processing are
usually based on dedicated formalisms like attribute grammars and algebraic
specifications. These systems often have their own specification language and

* Corresponding author

Email addresses: gorel.hedin@cs.1th.se (Gorel Hedin),
eva.magnusson@cs.1lth.se (Eva Magnusson).

Preprint submitted to Elsevier Science 29 May 2002

can be difficult to integrate with handwritten code, in particular when it is
desired to take full advantage of state-of-the-art object-oriented languages like
Java. In this paper we describe JastAdd, a simple yet flexible system which
allows compiler behavior to be implemented conveniently based on an object-
oriented abstract syntax tree. The behavior can be modularized into different
aspects, e.g., name analysis, type checking, code generation, etc., that are
combined into the classes of the abstract syntax tree. This technique is similar
to the introduction feature of aspect-oriented programming in AspectJ [15].
A common alternative modularization technique is to use the Visitor design
pattern [6], [24]. However, the aspect-oriented technique has many advantages
over the Visitor pattern, including full type checking of method parameters
and return values, and the ability to associate not only methods but also fields
to classes.

When implementing a compiler, it is often desirable to use a combination
of declarative and imperative code, allowing results computed by declarative
modules to be accessed by imperative modules and vice versa. For example, an
imperative module implementing a print-out of compile-time errors can access
the error attributes computed by a declarative module. In JastAdd, impera-
tive code is written in aspect-oriented Java code modules. For declarative
code, JastAdd supports Reference Attributed Grammars (RAGs) [9]. This is
an extension to attribute grammars that allows attributes to be references to
abstract syntax tree nodes, and attributes can be accessed remotely via such
references. RAGs allow name analysis to be specified in a simple way also for
languages with complex scope mechanisms like inheritance in object-oriented
languages. The formalism makes it possible to use the Abstract Syntax Tree
(AST) itself as a symbol table, and to establish direct connections between
identifier use sites and declaration sites by means of reference attributes. Fur-
ther behavior, whether declarative or imperative, can be specified easily by
making use of such connections. The RAG modules are specified in an exten-
sion to Java and are translated to ordinary Java code by the system.

Our current version of the JastAdd system is built on top of the LL parser gen-
erator JavaCC [11]. However, its design is not specifically tied to JavaCC: the
parser generator is used only to parse the program and to build the abstract
syntax tree. The definition of the abstract syntax tree and the behavior mod-
ules are completely independent of JavaCC and the system could as well have
been based on any other parser generator for Java such as the LALR-based
system CUP [4] or the LL-based system ANTLR [1].

The JavaCC system includes tree building support by means of a preprocessor
called JJTree. JJTree allows easy specification of what AST nodes to generate
during parsing, and also supports automatic generation of AST classes. How-
ever, there is no mechanism in JJTree to update AST classes once they have
been generated, so if the AST classes need more functionality than is gener-

ated, it is up to the programmer to modify the generated classes by hand and
to update the classes after changes in the grammar. In JastAdd, this tedious
and error-prone procedure is completely avoided by allowing handwritten and
generated code to be kept in separate modules. JastAdd uses the JJTree fa-
cility for annotating the parser specification with tree-building actions, but
the AST classes are generated directly by JastAdd, rather than relying on
the JJTree facility for this. SableCC [5] and JTB [12] are other Java-based
systems that have a similar distinction between generated and handwritten
modules. While both SableCC and JTB support the Visitor pattern for adding
behavior, neither one supports aspect-oriented programming nor declarative
specification of behavior like attribute grammars.

The attribute evaluator used in JastAdd is an optimal recursive evaluator
that can handle arbitrary acyclic attribute dependencies. If the dependencies
contain cycles, these are detected at attribute evaluation time. The evaluation
technique is in principle the same as the one used by many earlier systems
such as Madsen [20], Jalili [10], and Jourdan [13]: an access to an attribute
value is replaced by a function call which computes the appropriate semantic
function for the value and then caches the computed value for future accesses
to the same attribute. A cache flag is used to keep track of whether the value
has been computed before and is cached. A cycle flag is used to keep track
of attributes involved in an evaluation so that cyclic dependencies can be
detected at evaluation time. While these earlier systems used this evaluation
algorithm for traditional attribute grammars, it turns out that this algorithm
is also applicable to reference attribute grammars [9]. Our implementation
in JastAdd differs from earlier implementations in its use of object-oriented
programming for convenient coding of the algorithm.

The rest of the paper is outlined as follows. Section 2 describes the object-
oriented ASTs used in JastAdd. Section 3 describes how imperative code can
be modularized according to different aspects of compilation and woven to-
gether into complete classes. Section 4 describes how RAGs can be used in
JastAdd and Section 5 how they are translated to Java. Section 6 discusses
related work and Section 7 concludes the paper.

2 Object-oriented abstract syntax trees

2.1 Connection between abstract and parsing grammars

The basis for specification in JastAdd is an abstract context-free grammar. An
abstract grammar describes the programs of a language as typed trees rather
than as strings. Usually, an abstract grammar is essentially a simplification

of a parsing grammar, leaving out the extra nonterminals and productions
that resolve parsing ambiguities (e.g., terms and factors) and leaving out to-
kens that do not carry semantic values. In addition, it is often useful to have
fairly different structure in the abstract and parsing grammars for certain
language constructs. For example, expressions can be conveniently expressed
using EBNF rules in the parser, but are more adequately described as binary
trees in the abstract grammar. Also, parsing-specific grammar transforma-
tions like left factorization and elimination of left recursion for LL parsers are
undesirable in the abstract grammar.

Most parsing systems that support ASTs make use of various automatic rules
and annotations in order to support abstraction of the parsing grammar. In
JastAdd, the abstract grammar is independent of the underlying parsing sys-
tem. The parser is simply a front end whose responsibility it is to produce
abstract syntax trees that follow the abstract grammar specification.

2.2 Object-oriented abstract grammar

When using an object-oriented language like Java, the most natural way of
representing an AST is to model the language constructs as a class hierarchy
with general abstract classes like Statement and Expression, and specialized
concrete classes like Assignment and AddExpression. Methods and fields can
then be attached to the classes in order to implement compilation or interpre-
tation. This design pattern is obvious to any experienced programmer, and
documented as the Interpreter pattern in [6].

Essentially, this object-oriented implementation of ASTs can be achieved by
viewing nonterminals as abstract superclasses and productions as concrete
subclasses. However, this two-level hierarchy is usually insufficient from the
modelling point of view where it is desirable to make use of more levels in
the class hierarchy. For this reason, JastAdd makes use of an explicit object-
oriented notation for the abstract grammar, similar to [8], rather than the
usual nonterminal /production-based notation. This allows nonterminals with
a single production to be modelled by a single class. It also allows additional
superclasses to be added that would have no representation in a normal nonter-
minal /production grammar, but are useful for factoring out common behavior
or common subcomponents. Such additional superclasses would be unnatural
to derive from a parsing grammar, which is yet another reason for supplying
a separate specification of the abstract grammar.

The abstract grammar is a class hierarchy augmented with subcomponent
information corresponding to production right-hand sides. For example, a class
Assignment typically has two subcomponents: an Identifier and an Expression.

Tiny.ast

Program ::= Block;

Block ::= Decl Stmt;

abstract Stmt;

BlockStmt : Stmt ::= Block;

IfStmt : Stmt ::= Exp Stmt OptStmt;
OptStmt ::= [Stmt];

AssignStmt : Stmt ::= IdUse Exp;
CompoundStmt : Stmt ::= Stmtx*;

9 abstract Decl;

10 BoolDecl: Decl ::
11 IntDecl : Decl ::
12 abstract Exp;

13 IdUse : Exp ::= <ID>;
14 Add : Exp ::= Exp Exp;

0 ~NO U WN =

<ID>;
<ID>;

Fig. 1. Abstract grammar for Tiny

Depending on what kind of subcomponents a class has, it is categorized as one
of the following typical kinds (similar to many other systems):

list The class has a list of components of the same type.

optional The class has a single component which is optional.

token The class has a semantic value extracted from a token.

aggregate The class has a set of components which can be of different types.

The subcomponent information is used for generating suitable access methods
that allow type safe access to methods and fields of subcomponents.

2.8 An example: Tiny

We will use a small toy block-structured language, Tiny, as a running example
throughout this paper. Blocks in Tiny consist of a single variable declaration
and a single statement. A statement can be a compound statement, an if
statement, an assignment statement, or a new block.

Figure 1 shows the object-oriented abstract grammar for Tiny. (The line num-
bers are not part of the actual specification.) All the different kinds of classes
are exemplified: An aggregate class IfStmt (line 5), a list class CompoundStmt
(line 8), an optional class OptStmt (line 6), and a token class BoolDecl (line
10). The classes are ordered in a single-inheritance class hierarchy. For exam-
ple, BlockStmt, IfStmt, AssignStmt, and CompoundStmt (lines 4, 5, 7, and
8) are all subclasses to the abstract superclass Stmt (line 3).

From this abstract grammar, the JastAdd system generates a set of Java
classes with access methods to their subcomponents. Figure 2 shows some of
the generated classes to exemplify the different kinds of access interfaces to
different kinds of classes. Note that for an aggregate class with more than one

abstract class ASTStmt {

}

class ASTIfStmt extends ASTStmt {
ASTExp getExp() { ... }
ASTStmt getStmt() { ... }
ASTOptStmt getOptStmt() { ... }

}

class ASTOptStmt {
boolean hasStmt() { ... }
ASTStmt getStmt() { ... }

}

class ASTCompoundStmt extends ASTStmt {
int getNumStmt() { ... }
ASTStmt getStmt(int k) { ... }

}

class ASTBoolDecl extends ASTDecl {
String getID() { ... }

}

class ASTAdd extends ASTExp {
ASTExp getExp1() { ... }
ASTExp getExp2() { ... }

}

Fig. 2. Access interface for some of the generated AST classes

subcomponent of the same type, the components are automatically numbered,
as for the class ASTAdd.

Behavior can be added to the generated classes in separate aspect-oriented
modules. Imperative behavior is added in Jadd modules that contain methods
and fields as described in Section 3. Declarative behavior is added in Jrag
modules that contain equations and attributes as described in Section 4. Figure
3 shows the Jastadd system architecture. The jadd tool generates AST classes
from the abstract grammar and weaves in the imperative behavior defined in
Jadd modules. The jrag tool translates the declarative Jrag modules into
an imperative Jadd module, forming one of the inputs to the jadd tool. This
translation is described in more detail in Section 5.

abstract grammar

Tiny.ast
Jrag modules AST classes

r— - - - - - = il

nameanalysis.jrag I ASTProgram.java |
L - - _— _— _ _ —

r—— - - - - = "

I ASTBlock.java |

L - - _— _— _ _ —

r—- - - | r— - - - - - = A

\ jrag.jadd \
L -

typechecker.jadd

unparser.jadd

|:| [] handwritten file

Jadd modules T generatedfile

Fig. 3. Architecture of the JastAdd system

Any
A\
[I | I
‘Program‘ ‘ Block ‘ ‘ Stmt ‘ ‘OptStmt‘ ‘ ‘

I]
‘BIockStmt‘ ‘IfStmt‘ ‘ ‘

Fig. 4. Class Diagram after adding the superclass Any

2.4 Superclasses and interfaces

When adding behavior it is often found that certain behavior is relevant for
several classes although the classes are unrelated from a parsing point of view.
For example, both Stmt and Exp nodes may have use for an env attribute that
models the environment of visible identifiers. In Java, such sharing of behavior
can be supported either by letting the involved classes inherit from a common
superclass or by letting them implement a common interface. JastAdd sup-
ports both ways. Common superclasses are specified in the abstract grammar.
Typically, it is useful to introduce a superclass Any that is the superclass of all
other AST classes. For the example in Figure 1, this would be done by adding
a new class "abstract Any;" into the abstract grammar and adding it as a
superclass to all other classes that do not already have a superclass. Figure 4
shows the corresponding class diagram.

Such common superclasses allows common default behavior to be specified
and to be overridden in suitable subclasses. For example, default behavior for
all nodes might be to declare an attribute env and to by default copy the env
value from each node to its components by adding an equation to Any. AST
classes that introduce new scopes, e.g. Block, can then override this behavior
by supplying a different equation.

Java interfaces are more restricted in that they can include only method in-
terfaces and no fields or default implementations. On the other hand, they
are also more flexible, allowing, e.g., selected AST classes to share a specific
interface orthogonally to the class hierarchy. Such selected interface implemen-
tation is specified as desired in the behavior modules and will be discussed in
Section 3.4.

2.5 Connection to the parser generator

Building the tree

JastAdd relies on an underlying parsing system for parsing and tree-building.
The abstract grammar is not tied to any specific parsing grammar or parsing

algorithm and there is thus normally a gap between these grammars that
must be bridged. To aid the compiler writer, the JastAdd system generates
a method syntaxCheck() which can be called to check that the built tree
actually follows the abstract grammar.

Currently, JastAdd uses JavaCC/JJTree as its underlying parsing and tree-
building system. JJTree allows easy specification of what AST nodes to gen-
erate during parsing. A stack is used to give the programmer control over the
order in which to insert the individual nodes, so that the structure of the con-
structed AST does not have to match the structure of the parse. For example,
expressions that are parsed as a list can easily be built as a binary AST. In
this way, JJTree allows the gap between the parsing and abstract grammars
to be bridged fairly easily.

Token semantic values

When building the AST, information about the semantic values of tokens
needs to be included. To support this, JastAdd generates a set-method as
well as a get-method for each token class. For example, for the token class
BoolDecl in Figure 1, a method void setID(String s) is generated. This
method can be called as an action during parsing in order to transmit the
semantic value to the AST.

3 Adding imperative behavior

Object-oriented languages lend themselves very nicely to the implementation
of compilers. It is natural to model an abstract syntax tree using a class hierar-
chy where nonterminals are modelled as abstract superclasses and productions
as specialized concrete subclasses, as discussed in Section 2. Behavior can be
implemented easily by introducing abstract methods on nonterminal classes
and implementing them in subclasses. However, a problem is that to make use
of the object-oriented mechanisms, the class hierarchy imposes a modular-
ization based on language constructs whereas the compiler writer also wants
to modularize based on aspects in the compiler, such as name analysis, type
checking, error reporting, code generation, and so on. Each AST class needs to
include the code related to all of the aspects and in traditional object-oriented
languages it is not possible to provide a separate module for each of the as-
pects. This is a classical problem that has been discussed since the origins of
object-oriented programming.

3.1 The Visitor pattern

The Visitor design pattern is one (partial) solution to this problem [6]. It
allows a given method that is common to all AST nodes to be factored out
into a helper class called a Visitor containing an abstract visit(C) method
for each AST class C. To support this programming technique, all AST classes
are equipped with a generic method accept (Visitor) which delegates to the
appropriate visit (C) method in the Visitor object. For example, a Visitor
subclass TypeCheckingVisitor can implement type checking in its visit
methods. Type checking of a program is started by calling accept on the root
node with the TypeCheckingVisitor as a parameter.

There are several limitations to the Visitor pattern, however. One is that only
methods can be factored out; fields must still be declared directly in the classes,
or be handled by a separate mechanism. For example, in type checking it is
useful to associate a field type with each applied identifier, and this cannot
be handled by the Visitor pattern. Another drawback of the Visitor pattern
is that the parameter and return types can not be tailored to the different
visitors — they must all share the same interface for the visit methods. For
example, for type checking expressions, a desired interface could be

Type typecheck(Type expectedType)

where expectedType contains the type expected from the context and the
typecheck method returns the actual type of the expression. Using the Visitor
pattern, this would have to be modelled into visit methods

Object visit(C node, Object arg)

to conform to the generic visit method interface.

3.2 Aspect-oriented programming

A more powerful alternative to the Visitor pattern is to introduce an explicit
modularization mechanism for aspects. This is the approach used in JastAdd.
Our technique is similar to the introduction feature of the aspect-oriented
programming system AspectJ [15].

For each aspect, the appropriate fields and methods for the AST classes are
written in a separate file, a Jadd module. The JastAdd system is a class weaver:
it reads all the Jadd modules and weaves the fields and methods into the
appropriate classes during the generation of the AST classes. This approach
does currently not support separate compilation of individual Jadd modules,
but, on the other hand, it allows a suitable modularization of the code and

typechecker.jadd unparser.jadd

. import Display;
class IfStmt {

void typeCheck() { class Stmt {
getExp() . typeCheck("Boolean") ; abstract void unparse (Display d);
getStmt () .typeCheck () ; }
getOptStmt () . typeCheck () ; class Exp {
} abstract void unparse (Display d);
} }
class Exp { class Add {
abstract void typeCheck(String expectedType) ; void unparse (Display d) {
} ce.
class Add { if (typeError)
boolean typeError; d.showError("type mismatch");
void typeCheck(String expectedType) { }
getExp1() .typeCheck("int"); }
getExp2() . typeCheck("int") ;
typeError = expectedType != "int";
}

}

Fig. 5. Jadd modules for typechecking and unparsing.

does not have the limitations of the Visitor pattern.

The Jadd modules use normal Java syntax. Each module simply consists of a
list of class declarations. For each class matching one of the AST classes, the
corresponding fields and methods are inserted into the generated AST class.
It is not necessary to state the superclass of the classes since that informa-
tion is supplied by the abstract grammar. Figure 5 shows an example. The
typechecker. jadd module performs type checking for expressions and com-
putes the boolean field typeError. The unparser.jadd module implements
an unparser which makes use ot the field typeError to report type-checking
errors.

The Jadd modules may use fields and methods in each other. This is illustrated
by the unparser module which uses the typeError field computed by the type
checking module. The Jadd modules may freely use other Java classes. This
is illustrated by the unparsing module which imports a class Display. The
import clause is transmitted to all the generated AST classes. Note also that
the Jadd modules use the generated AST access interface described in Section
2. An example of a complete AST class generated by the JastAdd system is
shown in Figure 6. In the current JastAdd system, the names of the generated
classes are by default prefixed by the string “AST” as in the JavaCC/JJTree
system.

3.8 Using the AST as a symbol table

In traditional compiler writing it is common to build symbol tables as large
data structures, separate from the parse tree. The use of object-oriented AST's

10

ASTAdd.java

class ASTAdd extends ASTExp {

// Access interface

ASTExp getExp1() { ... }

ASTExp getExp2() { ...}

// From typechecker.jadd

boolean typeError;

void typeCheck(String expectedType) {
getExp1() .typeCheck("int");
getExp2() . typeCheck("int");
typeError = expectedType != "int";

}

// From unparser.jadd

void unparse(Display d) {

if (typeError)
d.showError("type mismatch");

Fig. 6. Woven complete AST class

makes it convenient to use another approach where the AST itself is used as a
symbol table, connecting each AST node that serves as an applied identifier to
the corresponding AST node that serves as the declaration. This technique is
particularly powerful in combination with aspect-oriented programming. Each
part of the compiler that computes a certain part of the ”symbol table” can
be separated into a specific aspect, imperative or declarative.

Consider the language Tiny in Figure 1. Name analysis involves connecting
each applied identifier (IdUse node) to its corresponding declared identifier
(Decl node). For example, taking an imperative approach, this can be im-
plemented by declaring a field Decl myDecl in class IdUse and by writing
methods that traverse the AST and set each such field to the appropriate
Decl node. Typically, this computation will make use of some efficient repre-
sentation of the declarative environment, e.g. a hash table of references to the
visible Decl nodes. But once the myDecl fields are computed, the hash table
is no longer needed.

Other aspects can add fields and methods to the Decl nodes and access that
information from the IdUse nodes via the myDecl field. For example, a type
analysis aspect can add a type field to each Decl node and access that field
from each IdUse node during type checking. A code generation aspect can add
a field for the activation record offset to each Decl node and access that field
from each IdUse node for generating code.

More complex type information such as structured and recursive types, class
hierarchies, etc. is available more or less directly through the myDecl fields.
For example, a class declaration node will contain a subnode that is an applied
identifier referring to the superclass declaration node. More direct access to
the superclass can easily be added as an extra field or method of the class

11

declaration nodes. In this way, once the myDecl fields are computed, the AST
itself serves as the symboltable.

The different compiler aspects can be implemented as either imperative or
declarative aspect modules. Section 4 describes how to implement the name
analysis declaratively, defining myDecl as a synthesized attribute rather than
as a field and specifying its value using equations rather than computing it
with imperative methods.

3.4 Adding interface implementations to classes

As mentioned in Section 2.4, aspect modules may add interface implementa-
tions to the AST classes. One use of this is to relate AST classes that are
syntactically unrelated. As an example, consider implementing name analy-
sis for a language which has many different block-like constructs, e.g. class,
method, compound-statement, etc. Each of these block-like constructs should
have a method lookup which looks up a name among its local declarations, and
if not found there, delegates the call to some outer block-like construct. This
can be implemented in a name analysis aspect by introducing an interface Env
with the abstract method lookup and adding this interface implementation
to each of the involved AST classes.

Another use of interfaces is to relate AST classes to other externally defined
classes. One use of this is in order to apply the Null pattern for references
within the AST. The Null pattern recommends that null references are re-
placed by references to real (but usually empty) objects, thereby removing
the need for specific handling of null references in the code [25]. For example,
in the case of an undeclared identifier, the myDecl field could refer to a special
object of type NotDeclared, rather than being null. This can be implemented
in a name analysis aspect by introducing an interface Declaration whose
implementation is added both to the class NotDeclared and to the involved
AST classes. Naturally, the type of myDecl should in this case be changed to
Declaration as well.

3.5 Combining wisitors with aspect-oriented programming

Visitors have serious limitations compared to aspect-oriented programming as
discussed earlier. They support modularization only of methods and not of
fields, and they do not support type-checking of the method arguments and
return values. However, there are certain applications where visitors actually
may be slightly simpler to use than Jadd modules, namely when the compu-
tation can be formulated as a regular traversal and when the untyped method

12

visitor — ErrorChecker.java

class ErrorChecker extends DefaultTraversingVisitor {
ErrorCollector errs = new ErrorCollector();

void visit(IdUse node) {
if (node.myDecl==null) errs.add(node, "Missing declaration");

}

void visit(...

}

Jadd module — errorchecker.jadd

class Any {
void errorCheck(ErrorCollector errs) {
for (int k=0;k<getNumChildren() ;k++)
getChild (k) .errorCheck(errs) ;
}
}

class IdUse {
void errorCheck(ErrorCollector errs) {
if (myDecl==null) errs.add(this, "Missing declaration");
}
}

class ...

Fig. 7. Two alternative implementations of error checking

arguments can be replaced by typed visitor instance variables. This is illus-
trated in Figure 7 where the visitor implementation is slightly simpler than
the corresponding Jadd module. In the visitor implementation, the traversal
method has been factored out into a superclass DefaultTraversingVisitor
which can be reused for other visitors. Furthermore, the ErrorCollector object
which is used by all visit methods is declared directly in the visitor, rather
than supplied as an argument as in the Jadd module.

Visitors and aspect-oriented programming can be freely combined so that
each subproblem is solved by the most suitable implementation technique.
For example, the visit (IdUse) method in the visitor in Figure 7 accesses the
field myDecl that can be supplied by a Jadd (or Jrag) module.

JastAdd stays backward compatible with JavaCC/JJTree by generating the
same visitor support as JJTree (the same "accept" methods), thereby al-
lowing existing JJTree projects to be more easily migrated to JastAdd. The
visitor support has also been useful for bootstrapping the JastAdd system.

13

4 Adding declarative behavior

In addition to imperative modules it is valuable to be able to state computa-
tions declaratively, both in order to achieve a clearer specification and to avoid
explicit ordering of the computations, thereby avoiding a source of errors that
are often difficult to debug.

JastAdd supports the declarative formalism Reference Attributed Grammars
(RAGs) which fits nicely with object-oriented ASTs. In attribute grammars,
computations are defined declaratively by means of attributes and equations.
Each attribute is defined by an equation and can be either synthesized (for
propagating information upwards in the AST) or inherited (for propagating
information downwards in the AST). An equation defines either a synthesized
attribute in the same object, or an inherited attribute in a child object. An
attribute can be thought of as a read-only field whose value is equal to the
right-hand side of its defining equation.

The important extension in RAGs (as compared to traditional attribute gram-
mars) is the support for reference attributes. The value of such an attribute
is a reference to an object. In particular, a node ¢ can contain a reference
attribute referring to another node r, arbitrarily far away from ¢ in the AST.
This way arbitrary connections between nodes can be established, and equa-
tions in ¢ can access attributes in r via the reference attribute. Typically, this
is used for connecting applied identifiers to their declarations.

In a Java-based RAG system, the type of a reference attribute can be either a
class or an interface. The interface mechanism gives a high degree of flexibility.
For example, to implement name analysis, the environment of visible declara-
tions can be represented by a reference attribute env of an interface type Env.
Each language construct that introduces a new declarative environment, e.g.,
Block, Method, Class, and so on, can implement the Env interface, providing
a suitable implementation of a function lookup for looking up declarations.

RAGs are specified in separate files called Jrag modules. The Jrag language is
a slightly extended and modified version of Java. A Jrag module consists of a
list of class declarations, but instead of fields and methods, each class contains
attributes and equations. Ordinary methods may be declared as well and used
in the equations. However, in order to preserve the declarative semantics of
attribute grammars, these methods should in effect be functions, containing
no side effects that are visible outside the method.

The syntax for attributes and equations is similar to Java. Attribute declara-
tions are written like field declarations, but with an additional modifier "syn"
or "inh" to indicate if the attribute is synthesized or inherited. Java method
call syntax is used for accessing attributes, e.g., a() means access the value of

14

nameanalysis.jrag

1 class Program { 25 class Decl {

2 getBlock() .env = null; 26 syn String name;

3 } 27 }

4 class Block { 28 class Exp {

5 inh Block env; 29 inh Block env;

6 getStmt () .env = this; 30 }

7 ASTDecl lookup(String name) { 31 class Add {

8 return 32 getExpl().env = env();
9 (getDecl() .name() .equals(name)) 33 getExp2().env = env();
10 ? getDecl() 34 }

11 : (env() == null) ? null 35 class IdUse {

12 : env().lookup(name) ; 36 inh Block env;

13} 37 syn Decl myDecl= env().lookup(name());
14 } 38 syn String name = getIDQ);
156 class Stmt { 39 }

16 inh Block env; 40 class IntDecl {

17 } 41 name = getID();

18 class BlockStmt { 42 }

19 getBlock().env = env(); 43 class BoolDecl {

20 } 44 name = getID();

21 class AssignStmt { 45 }

22 getIdUse().env = env();
23 getExp().env = env();
24 }

Fig. 8. A Jrag module for name analysis.

the attribute a. Equations are written like Java assignment statements. Equa-
tions for synthesized attributes can be written directly as part of the attribute
declaration (using the syntax of variable initialization in Java). For access to
components, the generated access methods for ASTs is used, e.g., getStmt ()
for accessing the Stmt component of a node.

Jrag modules are aspect-oriented in a similar way as Jadd modules: they add
attributes and equations to AST classes analogously to how Jadd modules
add fields and methods. The JastAdd system translates the Jrag modules to
Java and combines them into a Jadd module before weaving. This translation
is described in Section 5.

4.1 An example: name analysis and type checking

Figure 8 shows an example of a Jrag module for name analysis of the lan-
guage Tiny. (Line numbers are not part of the actual specification.) All blocks,
statements, and expressions have an inherited attribute env representing the
environment of visible declarations. The env attribute is a reference to the
closest enclosing Block node, except for the outermost Block node whose env
is null, see the equations on lines 2 and 6. All other env definitions are trivial
copy equations, e.g., on lines 22 and 23.

The goal of the name analysis is to define a connection from each IdUse node
to the appropriate Decl node (or to null if there is no such declaration). This

15

typechecker.jrag

class Decl { syn String type; }
class BoolDecl { type = "boolean"; };
class IntDecl { type = "int"; };
class Exp { syn String type; };
class IdUse {
type = (myDecl()==null)
? null : myDecl().type()

0 ~NO U WN =

1

9 class Stmt { syn boolean typeError; };

10 class AssignStmt {

11 typeError = !getIdUse().type().equals(getExp().type());
12 };

Fig. 9. A Jrag module for type checking.

is done by a synthesized reference attribute myDecl declared and defined at
line 37. Usual block structure with name shadowing is implemented by the
method lookup on Block (lines 7-13). It is first checked if the identifier is
declared locally, and if not, the enclosing blocks are searched by recursive
calls to 1lookup.

The lookup method is an ordinary Java method, but has been coded as a func-
tion, containing only a return statement and no other imperative code. As an
alternative, it is possible to code it imperatively using ordinary if-statements.
However, it is good practice to stay with function-oriented code as far as pos-
sible, using only a few idioms for simulating, e.g., let-expressions. Arbitrary
imperative code can be used as well, but then it is up to the programmer to
make sure the code has no externally visible side effects.

Figure 9 shows a type checking module that uses the myDecl attribute com-
puted by the name analysis. This is a typical example of how convenient it is
to use the AST itself as a symbol table and to extend the elements as needed
in separate modules. The type checking module extends Decl with a new syn-
thesized attribute type (line 1). This new attribute is accessed in IdUse in
order to define its type attribute (lines 6-7). The types of expressions are then
used as usual to do type checking as shown for the AssignStmt (line 11).

The examples are written to be self-contained and straight-forward to under-
stand. For a realistic language several changes would typically be done. The
copy equations for env would be factored out into a common superclass Any,
thereby making the specification substantially more concise. The type for env
attributes would typically also be generalized. In the example we simply used
the class Block from the abstract grammar as the type of the env attribute.
For a more complex language with several different kinds of block-like con-
structs, an interface Env can be introduced to serve as the type for env. Each
different block-like construct (procedure, class, etc.) can then implement the
Env interface in a suitable way. The Null pattern could be applied, both for the
env and the myDecl attributes, in order to avoid null tests such as on line 11 in

16

Figure 8 and on line 6 in Figure 9. A more realistic language would also allow
several declarations per block, rather than a single one as in Tiny. Typically,
each block would be extended with a hash table or some other fast dictionary
data type to support fast lookup of declarations. Types would be represented
as objects rather than as strings, and the type checker would support better
error handling, e.g., not considering the use of undeclared identifiers as type
checking errors.

It is illustrative to compare the Jrag type checker in Figure 9 with the impera-
tive one sketched in Figure 5. By not having to code the order of computation
the specification becomes much more concise and simpler to read than the
imperative type checker.

4.2 Combining declarative and imperative aspects

An important strength of the JastAdd system is the ease with which impera-
tive Jadd aspects and declarative Jrag aspects can be combined. A compiler
can be divided into many small subproblems and each be solved declaratively
or imperatively depending on which paradigm is most suitable. For exam-
ple, the name analysis and type analysis can be solved by declarative aspects
that define the myDecl and type attributes. Code generation can be split into
a declarative aspect that defines block levels and offsets and an imperative
aspect that generates the actual code.

It is always safe for an imperative aspect to use attributes defined in a declar-
ative aspect. Usually, this is the natural way to structure a compiler problem:
a core of declarative aspects defines an attribution which is used by a number
of imperative aspects to accomplish various tasks such as code generation,
unparsing, etc.

In principle, it is also possible to let a declarative aspect use fields computed
by an imperative aspect. However, for this to be safe it has to be manually
ensured that these fields behave as constants with respect to the declarative
aspect, i.e., that the computation of them is completed before any access of
them is triggered. For example, it would be possible to write an imperative
name analysis module that computes myDecl fields and let a declarative type
checking module access those fields, provided that the name analysis compu-
tation is completed before any other computations start that might trigger
accesses from the type checking module.

In some attribute-grammar systems, equations are allowed to call methods in
order to trigger desired side-effects, e.g., code generation. This technique is
used in systems with evaluation schemes that evaluate all attributes exactly
once and where the order of evaluation can be predicted. In JastAdd, this

17

technique is not applicable because of the demand evaluation scheme used
which will delay the computation of an attribute until its value is needed.
This results in an order of evaluation which is not always possible to predict
statically and which does not necessarily evaluate all attributes.

5 Translating declarative modules

The JastAdd system translates Jrag modules to ordinary Java code, weaving
together the code of all Jrag modules and producing a Jadd module. Attribute
evaluation is implemented simply by realizing all attributes as functions and
letting them return the right hand side of their defining equations, caching
the value after it has been computed the first time, and checking for circulari-
ties during evaluation. This implementation is particularly convenient in Java
where methods, overriding, and interfaces are used for the realization. In the
following we show the core parts of the translation, namely how to translate
synthesized and inherited attributes and their defining equations for abstract
and aggregate AST classes.

5.1 Synthesized attributes

Synthesized attributes correspond exactly to Java methods. A declaration of
a synthesized attribute is translated to an abstract method declaration with
the same name. For example, recall the declaration of the type attribute in
class Decl of Figure 9

class Decl { syn String type; }
This attribute declaration is translated to

class Decl { abstract String type(); 1}

Equations defining the attribute are translated to implementations of the ab-
stract method. For example, recall the equations defining the type attribute
in IntDecl and BoolDecl of Figure 9.

class IntDecl { type = "int"; }

class BoolDecl { type = "boolean"; }
These equations are translated as follows.

class IntDecl {

String type() { return "int"; }

18

}
class BoolDecl {

String type() { return "boolean"; }
}

5.2 Inherited attributes

An inherited attribute is defined by an equation in the parent node. Suppose
a class X has an inherited attribute ia of type T. This is implemented by
introducing an interface Parent0fX with an abstract method T X_ia(X). Any
class which has components of type X must implement this interface. If a
class has several components of type X with different equations for their ia
attributes, the X parameter can be used to determine which equation should
be applied in implementing the X_ia method. To simplify accesses of the ia
attribute (e.g. from imperative Jadd modules), a method T ia() is added to
X which simply calls the X_ia method of the parent node with itself as the
parameter.

For example, recall the declaration of the inherited attribute env in class Stmt
in Figure 8. Both Block and IfStmt have Stmt components and define the
env attribute of those components:

class Stmt {
inh Block env;

}

class Block {
getStmt () .env = this;

}

class IfStmt {
getStmt () .env = env();

b

Since Stmt contains declarations of inherited attributes, an interface is gener-
ated as follows:

interface Parent0fStmt {
ASTBlock Stmt_env(ASTStmt theStmt);
}

The Block and IfStmt classes must implement this interface. The implemen-
tation should evaluate the right-hand side of the appropriate equation and
return that value. The translated code looks as follows.

class Block implements Parent0fStmt {
ASTBlock Stmt_env(ASTStmt theStmt) {
return this;

19

X
}
class IfStmt implements ParentOfStmt {
ASTBlock Stmt_env(ASTStmt theStmt) {
return env();

}

The parameter theStmt was not needed in this case, since both these classes
have only a single component of type Stmt. However, in general, an aggregate
class may have more than one component of the same type and equations
defining the inherited attributes of those components in different ways. For
example, an aggregate class Example ::= Stmt Stmt could have the following
equations:

class Example {
getStmt1() .env
getStmt2() .env

env();
null;

The translation of Example needs to take the parameter into account to handle
both equations:

class Example implements Parent0fStmt{
ASTBlock Stmt_env(ASTStmt theStmt) {
if (theStmt==getStmt1())
return env();
else
return null;

Finally, a method env() is added to Stmt to give access to the attribute
value. The method getParent () returns a reference to the parent node. The
cast is safe since all AST nodes with Stmt components must implement the
Parent0fStmt interface (this is checked by the JastAdd system).

class Stmt {
ASTBlock env() {
return ((Parent0fStmt) getParent()).Stmt_env(this);
}

20

5.8 Generalizations

The translation described above can be easily generalized to handle lists and
optionals. It is also simple to add caching of computed values (to achieve
optimal evaluation) and circularity checks (to detect cyclic attribute depen-
dencies and thereby avoid endless recursion) using the same ideas as in other
implementations of this algorithm [10,13,20].

6 Related work

Recent developments in aspect-oriented programming [14] include the work on
AspectJ [15], subject-oriented programming [7], and adaptive programming
[19].

AspectJ covers both static aspects through its introduction feature and dy-
namic aspects through its notion of joinpoints. The introduction feature allows
fields, methods, and interface implementations to be added to classes in sep-
arate aspect modules, similar to how our Jadd modules work. Now that a
stable release of AspectJ is available and seems to gain wide-spread use it
would be attractive to build JastAdd on top of AspectJ rather than using our
own mechanism. The focus in AspectJ is, however, on the dynamic aspects
rather than the static aspects. The joinpoint model in AspectJ allows code
written in aspects to be inserted at dynamically selected execution points. We
do not employ such dynamic aspects in JastAdd, but it is a very interesting
area of future work to investigate their benefits in compiler construction.

Subject-oriented programming supports static aspects called subjects where
each subject provides a (possibly incomplete) perspective on a set of classes.
There is a strong focus on how to merge subjects that are developed indepen-
dently. Explicit composition code is used to specify how to merge subjects,
allowing, e.g., different subjects to use different names for the same program
entity. This approach is powerful, but also more heavy-weight than the tech-
nique used in JastAdd.

Adaptive programming focuses on factoring out traversal code and making it
robust to structural changes in the class hierarchy. This separation is similar to
what can be accomplished by visitors where default traversal strategies can be
factored out in superclasses (as in our example in Figure 7). However, adaptive
programming goes beyond visitors in several ways. In particular, they do not
require the classes involved to be related in a class hierarchy, and they employ
generative techniques to generate traversal code from high-level descriptions.

21

The fragment system is a technique for aspect-oriented modularization which
predates the above approaches [18] [16]. It provides a general approach to
static aspect modularization based on the syntax of the supported language.
By using this mechanism for entities in imperative code, dynamic aspect mod-
ularization is also supported to a certain extent. The BETA language uses the
fragment system as its modularization mechanism.

There are many compiler tools that generate object-oriented ASTs. An early
example was the BETA meta programming system (MPS) [21] which also
supported aspect modularization to a certain extent via the fragment system
mentioned above. However, due to limitations of the separate compilation
mechanism it was only possible to factor out methods and not fields.

The Visitor pattern is supported by many recent compiler tools including
JJTree [11], SableCC [5], Java Tree Builder [12], and JJForester [17]. These
systems generate AST classes and abstract visitor classes that support various
traversal schemes.

There are a few other experimental systems for reference attributed grammars
or similar formalisms: the MAX system by Poetzsch-Heffter [23], Boyland’s
prototype system for the compiler description language APS [3], and our own
predecessing system Applab [2]. Similar to JastAdd, these systems stress the
modularity with which specifications can be written. In contrast to JastAdd,
they all have their own formal languages for specification and do not easily
integrate with imperative object-oriented programming in standard languages.

7 Conclusion

We have presented JastAdd, a simple yet flexible and safe system for con-
structing compilers in Java. Its main features are

object-oriented ASTs (decoupled from parsing grammars)

e typed access methods for traversing the AST

e aspect modularization for imperative code in the form of fields, methods,
and interface implementations

e aspect modularization for declarative code in the form of RAG attributes
and equations

e seamless combination of imperative and declarative code

We find this combination very useful for writing practical translators in an easy
way. The use of object-oriented ASTs with typed access methods is a natural
way of modelling the program. The aspect-modularization is easy to use and
makes it easy to change and extend the compiler. We have found it very useful

22

to be able to combine the declarative and imperative techniques for coding a
compiler, making it possible to select the most appropriate technique for each
individual subproblem. While subsets of these features exist in other systems
we are not aware of other systems that combine them all. In particular, we have
not found other Java-based compiler tools that are based on aspect-oriented
programming or reference attributed grammars.

We have quite substantial experience from using JastAdd in research and
education, and also from bootstrapping the system in itself.

Research projects using JastAdd include a Java-to-C compiler and a tool for
integrating Java with automation languages. As a part of these projects a
general name analyzer for Java has been developed as a Jrag component. Ad-
ditional ongoing projects using Jast Add involve translators for robot languages
and support for extensible languages.

The JastAdd system is used in our department’s undergraduate course on
compiler construction. The students work in pairs and use JastAdd to im-
plement a compiler for a small procedural language of their own design and
producing SPARC assembly code as output. The course has covered both vis-
itors and aspect-oriented programming using Jadd modules, but not Jrags or
attribute grammars.

JastAdd is being bootstrapped in itself. This process has proceeded in several
steps. Our starting point was the JavaCC/JJTree system which generates AST
classes with untyped access methods and a simple default visitor. The first step
was to implement the generation of AST classes with typed access methods to
allow us to use visitors in a safer way. This step was itself bootstrapped by
starting with hand coding the would-be generated AST classes for the abstract
grammar formalism (a small amount of code), allowing us right away to use
the typed access methods when analyzing abstract grammars. The next step
was to use this platform (JJTree-generated visitors and our own generated
AST classes with typed access methods) to implement the class weaving of
Jadd modules. Once this was implemented we started to use Jadd modules
for further implementation, adding the translator for Jrag modules (which
generates a Jadd module), and improving the system in general. We are now
continuing to improve the system and are also gradually refactoring it to use
Jadd and Jrag modules instead of visitors.

The implementation of the JastAdd system is working successfully but we have
many improvements planned such as generation of various convenience code,
better error reporting, and extensions of the abstract grammar formalism.

There are several interesting ways to continue this research. One is to support
modularization not only along phases, but also along the syntax. IL.e., it would
be interesting to develop the system so that it is possible to supply several

23

abstract grammar modules that can be composed. Another interesting topic is
to explore how dynamic aspect-modularization, for example using joinpoints
in AspectJ, can be exploited in compiler construction. Yet another interesting
direction is to investigate how emerging aspect-oriented techniques can be
applied to achieve language-independent compiler aspects, e.g., name analysis
and type analysis modules that can be parameterized and applied to many
different abstract grammars. Work in this direction has been done by de Moor
et al. for attribute grammars within a functional language framework [22]. We
also plan to continue the development of reference attributed grammars and
to applying them to new problem areas.

Acknowledgements

We are grateful to Anders Ive and to the anonymous reviewers for their con-
structive comments. Torbjorn Ekman and Anders Nilsson implemented the
Java name analyzer. Many thanks also to the compiler construction students
who provided valuable feedback on the system.

References

[1] ANTLR Translator Generator, http://www.ANTLR. org/

[2] Bjarnason, E., G. Hedin, K. Nilsson. Interactive Language Development for
Embedded Systems. Nordic Journal of Computing 6(1):36-54 (1999).

[3] Boyland, J. T. Descriptional Composition of Compiler Components. Ph.D.
thesis. University of California, Berkeley, 1996.

[4] CUP, LALR Parser Generator for Java,
http://www.cs.princeton.edu/ appel/modern/java/CUP/

[5] Gagnon, E. M., L. J. Hendren, SableCC, an Object-Oriented Compiler
Framework. In Proceedings of Tools 26-USA’98. IEEE Computer Society,
(1998).

[6] Gamma, E. et al., Design Patterns, Addison Wesley, 1995.

[7] Harrison, W., H. Ossher, Subject-Oriented Programming (A Critique of Pure
Objects), OOPSLA 1993 Conference Proceedings, ACM SIGPLAN Notices,
ACM Press, 28(10) (1993), 411-428.

[8] Hedin, G., An object-oriented notation for attribute grammars, ECOOP’89.
BCS Workshop Series, Cambridge University Press (1989), 329-345.

24

[9] Hedin, G., Reference Attributed Grammars, Informatica (Slovenia) 24(3):
(2000).

[10] Jalili, F., A general linear time evaluator for attribute grammars, ACM
SIGPLAN Notices, ACM Press, 18(9) (1983), 35-44.

[11] JavaCC, The Java Parser Generator, http://www.metamata. com/
[12] JTB, Java Tree Builder, http://www.cs.purdue.edu/jtb/

[13] Jourdan, M., An optimal-time recursive evaluator for attribute grammars. In
M. Paul and B. Robinet, editors, International Symposium on Programming,
6th Colloquium, LNCS 167 (1984), 167-178. Springer Verlag.

[14] Kiczales, G., et al. Aspect-Oriented Programming, ECOOP’97, LNCS 1241
(1997), 220-242. Springer Verlag.

[15] Kiczales, G., et al. An Overview of AspectJ. In J. L. Knudsen, ed., Proceedings
of ECOOP 2001, 327-353, Budapest, June 2001. LNCS 2072. Springer-Verlag.

[16] Knudsen. J. L. Aspect-Oriented Programming in BETA using the Fragment
System. In Proceedings of the Aspect-Oriented Programming Workshop at
ECOOP’99.

[17] Kuipers T., Visser J. Object-oriented tree traversal with JJForester. In
Proceedings of LDTA’01. Genova, Italy, April 2001. Electronic Notes of
Theoretical Computer Science, Elsevier.

[18] Kristensen, B. B., et al. Syntax-Directed Program Modularization. In P.
Degano, E. Sandewall (eds.): Integrated Interactive Computing Systems, North-
Holland Publishing Company, 1983.

[19] Lieberherr, K., “Adaptive Object-Oriented Software”, PWS Publishing
Company, 1996.

[20] Madsen, O. L. On defining semantics by means of extended attribute grammars.
In Semantics-Directed Compiler Generation, LNCS 94 (1980), 259-299.
Springer Verlag.

[21] Madsen, O. L., C. Ngrgaard. An Object-Oriented Metaprogramming System. In
proceedings of Hawaii International Conference on System Sciences 21, (1988).

[22] de Moor, O., S. Peyton-Jones, E. van Wyk. Aspect-Oriented Compilers. In
Generative and Component-Based Software Engineering, First International
Symposium. LNCS 1799, (1999), 121-133. Springer Verlag.

[23] Poetzsch-Heffter, A. Prototyping Realistic Programming Languages Based on
Formal Specifications. Acta Informatica 34(10):737-772 (1997).

[24] Watt, D. A., D. F. Brown. Programming Language Processors in Java, Prentice
Hall, 2000.

[25] Woolf, B. The Null Object Pattern. In R. Martin et al. (eds.): Pattern Languages
of Program Design, Addison-Wesley, 1997.

25

