Reference Attributed Grammars

Gorel Hedin

Dept. of Computer Science

Lund University

Sweden

E-mail: Gorel.Hedin®@cs.l1lth.se

Keywords: Attribute Grammars, Object-Oriented Languages, Reference Attributes, Remote Attribute Access

Edited by:

Received: Revised:

Accepted:

An object-oriented extension to canonical attribute grammars is described, permitting attributes
to be references to arbitrary nodes in the syntax tree, and attributes to be accessed via the
reference attributes. Important practical problems such as name and type analysis for object-
oriented languages can be expressed in a concise and modular manner in these grammars, and an
optimal evaluation algorithm is available. An extensive example is given, capturing all the key
constructs in object-oriented languages including block structure, classes, inheritance, qualified
use, and assignment compatibility in the presence of subtyping. The formalism and algorithm
have been implemented in APPLAB, an interactive language development tool.

1 Introduction

Canonical attribute grammars (AGs), as introduced
by Knuth [26], is an appealing formalism that allows
context-sensitive properties of individual constructs
in a language to be described in a declarative way,
and to be automatically computed for any program in
the language. Important applications include defin-
ing context-sensitive syntax and code generation for a
language.

A major problem with canonical AGs is that the
specifications often become too low-level when deal-
ing with non-local dependencies, i.e., situations where
a property of one syntax tree node is dependent on
properties of nodes far away in the tree. For example,
the type of an identifier use site depends on the type
of the declaration which may be located arbitrarily far
away in the tree.

Many researchers have suggested different exten-
sions to attribute grammars to solve this problem, e.g.
[3, 4, 5, 12, 14, 15, 16, 17, 19, 20, 23, 33, 34, 38]. Our
approach is in the line of our earlier work [12, 14, 15,
16], of Poetzsch-Heffter [33, 34], and of Boyland [4] in
that we propose an extension that permits attributes
to be explicit references denoting nodes arbitrarily far
away in the syntax tree, and attributes of those nodes
to be accessed via such reference attributes. Similar to
Poetzsch-Heffter and Boyland we propose a recursive
evaluation algorithm that allows optimal evaluation
for non-circular AGs with such extensions. The for-
malism we propose, Reference Attributed Grammars
(RAGsS), casts these extensions into an object-oriented
form, allowing advanced static-semantic analysis prob-

lems to be expressed in a concise and modular man-
ner. We give an extensive example of this by provid-
ing a complete specification of PicoJava, a small sub-
set of Java including key constructs found in object-
oriented languages such as block structure, classes, in-
heritance, qualified use, and assignment compatibility
in the presence of subtyping. We have implemented
the formalism and evaluation algorithm in our inter-
active language development tool APPLAB (APPlica-
tion language LABoratory) [6, 7].

The rest of this paper is structured as follows. In
Section 2 a background is given on canonical AGs
and their drawbacks. Section 3 introduces the basic
RAG formalism, discusses the evaluation algorithm,
and compares RAGs to canonical AGs. Section 4 dis-
cusses additional object-oriented features of RAGs, in-
cluding a class hierarchy for nonterminals and sup-
port for virtual function attributes. Section 5 shows
an extensive example of name and type analysis for
an object-oriented language, PicoJava. Section 6 dis-
cusses our tool APPLAB, Section 7 relates to other
work, and Section 8 concludes the paper and suggests
future research.

2 Background

2.1 Canonical attribute grammars

A canonical attribute grammar consists of a context-
free grammar extended with attributes for the nonter-
minals and semantic rules for the productions. The
attributes are characterized as synthesized or inher-
ited, depending on if they are used to transmit in-

formation upwards or downwards in the syntax tree.
Given a production Xg — X;...X,, a semantic rule
is written ag = f(a1,...,a;) and defines ap as the
value of applying the semantic function f to the at-
tributes aq, ..., a,. The attribute ag must be either a
synthesized attribute of Xy or an inherited attribute
of X;,1 < j < n. lLe., a semantic rule defines ei-
ther a synthesized attribute of the left-hand symbol
of the production, or an inherited attribute of one of
the symbols on the right hand side of the production.
A function argument, ax,1 < k < m, must be an at-
tribute of X;,0 < j < n. Le., aruleislocal, depending
only on information available in the attributes of the
symbols of the production.

A grammar is considered to be well-formed if each
attribute in any syntax tree of the grammar has ex-
actly one defining semantic rule. This is obtained by
restricting the start symbol to have synthesized at-
tributes only, and by requiring a production Xy —
X;...X, to have exactly one rule for each synthe-
sized attribute of Xy and one rule for each inherited
attribute of X;,1 <j <n.

The assignment of values to attributes of a syntax
tree is called an attribution. An attribution is called
a solution if all semantic rules are satisfied. A well-
formed grammar is considered to be well-defined if
there exists exactly one solution (or one best solution
according to some criteria) for each syntax tree of the
grammar.

If an attribute a; is used for defining another at-
tribute ag we say that there is a dependency (a1, az). If
the dependency graph for a syntax tree is non-circular,
the attribution can be obtained simply by applying
the semantic functions in topological order, provided
that the semantic functions terminate. If each syn-
tax tree derivable from a grammar will have a non-
circular dependency graph, the grammar is said to be
non-circular. Usually, canonical AGs are required to
be non-circular, but there are also extensions which
allow circular dependencies. The usual requirement
for such grammars is that the values in the domain
of an attribute on a cyclic dependency chain can be
arranged in a lattice of finite height, and that all se-
mantic functions are monotonic with respect to these
lattices. In this case, there will be at least one solu-
tion, and the solution with the ”least” attribute values
is taken to be the best one. For such circular gram-
mars, the attribution can be obtained by iteratively
applying the semantic functions, giving the attributes
on the cycle the lattice bottom values as start values.
See, e.g. [10, 21].

2.2 Problems with canonical attribute
grammars

Canonical AGs are well-suited for description of prob-
lems where the dependencies are local and follow the

syntax tree structure. For example, in type analysis,
the type of an operator may depend on the types of its
operands. Canonical AGs are less suited for descrip-
tion of problems with non-local dependencies, such as
name analysis problems where properties of an identi-
fier use site depends on properties of an identifier dec-
laration site. Typically, the use and declaration sites
can be arbitrarily far away from each other in the tree,
and any information propagated between them needs
to involve all intermediate nodes. There are several
drawbacks with this.

One drawback is that the information about decla-
rations in the syntax tree needs to be replicated in the
attributes: To do static semantic analysis, all declared
names in a scope, together with their appropriate type
information, need to be bundled together into an ag-
gregate attribute, the ”environment”, and distributed
to all potential use sites. At each use site, the appro-
priate information is looked up.

A second drawback is that the aggregate attributes
with information replicated from the syntax tree can
become very complex. The distribution of the aggre-
gate information works well for procedural languages
with Algol-like scope rules (nested scopes), but is sub-
stantially more difficult for languages with more com-
plex scope rules, for example modular languages and
object-oriented languages. For example, the use of
qualified access in a language implies that it is not
sufficient with a single environment attribute at each
use site—it is necessary to provide access to all po-
tentially interesting environments and select the ap-
propriate one depending on the type of the qualifying
identifier. The aggregate attributes thus need to be-
come more complex, and to contain also information
about relations between different declarations. The se-
mantic functions working on these complex attributes
naturally also become more complex. The AG for-
malism does not itself support the description of these
complex attributes and functions.

A third drawback is that it is difficult to extend the
grammar. Suppose we have a grammar with a work-
ing name analysis for extracting types, and we want
to extend it by propagating also the declaration kind,
i.e. information about if the declaration is a constant
or a variable. There are two alternatives for mod-
elling this. Either we introduce an additional environ-
ment attribute which maps names to kinds and is de-
fined analogously to the environment mapping names
to types. Just like the type environment, the definition
of the kind environment needs to involve all intermedi-
ate nodes. A second alternative is to modify the origi-
nal type environment to also include kind information.
None of these alternatives is very attractive since we
cannot describe the extension in a clean concise way.

A fourth drawback with canonical grammars is that
they are not suited for incremental evaluation. This is
partly because there is no mechanism for incremental

updating of the aggregated attributes (environments)
and partly because a change to a declaration typically
affects attributes all over the syntax tree (i.e., the en-
vironments), even though the extracted information
is unchanged. Incremental evaluation based on this
model does thus not scale up.

In this paper we address the first three of these draw-
backs.

3 Reference Attributed
Grammars (RAGs)

3.1 Reference attributes

Canonical attribute grammars assume value semantics
for the attributes. Le., an attribute cannot (concep-
tually) be a reference to an object, or have a value
containing such references. From an implementation
point of view it is possible, and common, to implement
two attributes with the same value as references to the
same object. However, this is merely an implementa-
tional convenience for saving space, and the fact that
these two attributes refer to the same object cannot be
used in the grammar. l.e., the implementation is ref-
erentially transparent, preserving the value semantics
of the grammar.

In our extension to canonical attribute grammars,
attributes are allowed to be references to nodes in
the syntax tree. Thus, we abandon the value seman-
tics and introduce reference semantics. Structured at-
tributes like sets, dictionaries, etc., may also include
reference values. As we will illustrate in Section 5,
the use of reference values makes attribute grammars
well-suited for expressing problems with non-local de-
pendencies that do not necessarily follow the syntax
tree structure.

A reference value denoting a node in the syntax tree
may be dereferenced to access the attributes of that
node. This way, a reference attribute constitutes a
direct link from one node to another node arbitrar-
ily far away in the syntax tree, and information can
be propagated directly from the referred node to the
referring node, without having to involve any of the
other nodes in the syntax tree. We call an attribute
grammar extended with this capability a reference at-
tributed grammar (RAG).

3.2 TINY: an example RAG

Figure 1 shows the RAG specification of TINY, a tiny
language made up to illustrate some central concepts
in RAGs. TINY is so simple that it has only one pos-
sible syntax tree, which is shown with its attribution
in Figure 2.

The example illustrates important aspects of RAGs.
First, by considering the reference attributes in addi-
tion to the tree links, the syntax tree can be viewed

Nonterminal Attributes PI'(-)dMC- Semantic rules
tions
A A—-BC | BrC=C
CrB=B
B lrC:ref(C) | B— B.b=B.rCc
7T b: integer
c LmB:ref(B) | C— Cc=7
Tei
c: integer

Figure 1: RAG specification of TINY

A
tree link tree link
- reference -
B C
Antr. | Value Attr. | Value
reference
local [ﬁ rC B
dep.
Py |7 et |7
non-local dependency

Figure 2: RAG attribution of TINY (non-circular)

as a (syntax) graph. The syntax graph may contain
cycles: the B node contains a reference attribute rC de-
noting the C node which in turn contains a reference
attribute rB referring back to the B node. However,
although the syntax graph contains a cycle, the de-
pendencies between the attributes form a non-circular
graph, and the RAG is thus non-circular. Since all se-
mantic functions terminate, the RAG is well-defined,
and a unique solution has been found for the tree by
evaluating the attributes in topological order, e.g., rB,
c, rC, b.

The value of a reference attribute is the (unique)
identity of the denoted node, drawn as an arrow in
the figure. This value can be computed before the
attributes of the denoted node are evaluated, and does
thus not depend on those attributes. In the example,
the semantic rules defining rC and rB depend only on
constant values (the identities of nonterminals B and
C), and rB and rC do therefore not have any incoming
dependency edges.

In a canonical AG all dependencies are local, i.e.,
they occur because an attribute of a nonterminal X
in a production is defined using an attribute of a non-
terminal X9 in the same production. For any given
syntax tree, it is possible to determine the complete
dependency graph without evaluating any attributes.
In a RAG, there are non-local dependencies in addition
to the local dependencies. A non-local dependency
(a,b) occurs when b is defined by a semantic function

that accesses a via a reference attribute . The depen-
dency (a,b) can be determined only after evaluating
the reference attribute r. In the TINY example, the
non-local dependency from c to b can be determined
only after rC has been given a value.

As will be shown in Section 5, practical grammars
for complex problems, like name analysis for object-
oriented languages, can be written concisely using a
non-circular RAG.

3.3 Attribute evaluation

Similar to a non-circular canonical AG, a non-circular
RAG can be evaluated simply by following the depen-
dencies, evaluating the attributes in topological order.
As noted above, the dependency graph for a RAG can-
not, in contrast to canonical AGs, be completely deter-
mined before evaluation, it has to be determined dur-
ing the evaluation. Algorithms based on static compu-
tation of dependency graphs, such as for OAGs [24] are
therefore not immediately applicable to RAGs. How-
ever, demand-driven algorithms, i.e., where each at-
tribute access is replaced by a call to the corresponding
semantic function, can be directly used for RAGs and
will work for any non-circular RAG, as also noted by
[33] and [4]. By caching an attribute value at the first
access and returning the cached value at subsequent
accesses, this evaluation algorithm becomes optimal.
Setting a flag for attributes under evaluation allows
circularities in the grammar to be found at evalua-
tion time. Several implementations of this algorithm
have been presented for canonical attribute grammars
[27, 18, 22]. In our system (APPLAB), we have imple-
mented the algorithm for RAGs by using techniques
from object-oriented programming, as described for
canonical AGs in [13]. This technique fits well with
the object-oriented extensions we have done to RAGs
(see Section 4) and makes the translation particularly
simple.

3.4 Translation of a RAG to a
canonical AG

To show the relation between a RAG and a canonical
AG we will discuss two different ways a RAG can be
translated into a canonical (but in general circular)
AG: table translation and substitution translation.

3.4.1 Table translation

In table translation, the idea is to model references as
indices into a large table, with one entry per node in
the syntax tree, and where each entry contains the
attributes of the respective node. This table can it-
self be described as an attribute and be made avail-
able throughout the syntax tree so that dereferencing
a reference attribute can be replaced by indexing into
the table. The table translation will lead to a circular

Attributes Semantic rules
T id: integer A—-BC | BrC=_C.d
Tt <> C.rB=B.id
T subCt: array[tuple] Aid=1
T allCt: array[tuple] B.id = A.id+1
C.id = B.maxld+1
Act=<>
A A.subCt =
[Aid = Act] U
B.subCt U
C.subCt
A.allCt = A.subCt
B.allCt = A.allCt
CallCt = A.allCt
L rC: integer B B.b = B.allC{B.rC](2)
T b: integer B.max|d = B.id
! id: integer B.ct = <B.rC, B.b>
B | T maxld: integer B.subCt =
T ct: <integer, integer> [B.id = B.ct]
T subCt: array[tuple]
| allCt: array[tuple]
| rB: integer C— Cc=7
T c: integer C.maxld = C.id
! id: integer C.ct=<C.rB, C.c>
C | T maxid: integer C.subCt =
T ct: <integer, integer> [C.id — C.ct]
T subCt: array[tuple]
{ allCt: array[tuple]

Figure 3: Table-translated specification of TINY (ca-
nonical AG form)

AG, but which may still be well-defined and possible
to evaluate with iterative methods. The detailed steps
of the table translation are as follows.

— For each symbol X in the grammar, an attribute
id is defined in such a way that the id attributes
enumerate the nodes in the syntax tree in a pre-
order traversal. I.e., the root will have id = 1, its
leftmost son id = 2, and so on. To define id, a
help attribute maxId is introduced which contains
the maximum id used in the subtree of X.

— An attribute ct (the ”contents”) is defined for
each symbol X as a tuple {(ai,...,ar) where
ai,...,a, are the original attributes in X. The
7’th field in the tuple can be accessed by the no-
tation ct (7).

— An attribute allCt is defined for each symbol X
as an array of size |T'|, where al1Ct[n.id] = n.ct
for any node n in the syntax tree 7. To define
allCt, array slices are collected bottom up us-
ing a synthesized attribute subCt. The allCt at-
tribute is equal to subCt of the root, and that
value is propagated down to each node using in-
herited allCt attributes.

— Each reference attribute r is replaced by an inte-
ger attribute 7.

allCt =
A 1 - <>,
2 - <3,7>
Attr Val 35 <2,7>
id 1]
ct <>
_ » J
subCt -
(-
| allCt
B C
Attr Val Attr Val
rC 3 rB 2
b 7 iy c 7
id 2 circular id 3 —
dependency A
> ct <3,7> % chain ct <2,7> ﬁ
~ - L
subCt subCt -
allCt » allCt

Figure 4: Attribution of TINY for table-translated specification (circular)

vy v |

B
Attr. Value
rC <rB, 7>
b 7
ct <rC, 7>

circular
dependency
chain

C
At Value
rB <rC, 7>
c 7
ct <rB, 7>

Figure 5: Attribution of TINY for substition-translated specification (circular). Attributes rC and rB have
infinite attribute values

— In semantic rules, an access to a symbol X (used
as a reference value) is replaced by the expression
X .id, i.e. the id attribute of the X node.

— In semantic rules, a dereferencing expression r.a,
where 7 is a reference denoting a node of nonter-
minal X and a is an attribute of the denoted node,
is replaced by the expression allCt[r](i), where a
is the ith attribute of X.

While this translation is straight-forward, it intro-
duces circular attribute dependencies which are not al-
lowed in canonical attribute grammars. In particular,
any attribute a defined using attribute dereferencing
introduces a circular dependency since it depends on
T, and the definition of T" in turn depends on a. How-
ever, although the translated grammar is in general
circular, it is well-defined (provided that the RAG is
non-circular), and possible to evaluate using iterative
algorithms.

Figure 3 shows the specification of TINY, translated
by table translation to canonical AG form. Figure 4
shows the resulting syntax tree and its attribution so-
lution (some values are left out for brevity). The deref-
erencing of the reference attribute rC leads to a circu-
lar dependency chain. However, the grammar is well-
defined: a unique solution has been found for the tree.

3.4.2 The substitution translation

An alternative to the table translation is to translate
RAGs by replacing each reference attribute by the cor-
responding ct attribute, i.e. the tuple containing the
attributes of the denoted syntax node. In this trans-
lation, the allCt attribute is not needed. We refer
to this translation method as the substitution transla-
tion. The problem with this method is that if a ref-
erence attribute is part of a circular data structure, it
will have an infinite value in the translated canonical
AG, and also give rise to a circular dependency chain.
Figure 5 shows the attribution for TINY for such a
translation. We might consider a refinement of this
method where ct would include only the subset of at-
tributes that are accessed via references. For TINY,
such a translation would yield a non-circular canoni-
cal AG. However, there are other non-circular RAGs
for which such a refinement will still produce a circu-
lar AG with infinite attribute values. Consider, e.g.,
extending C with an attribute d = rB.b.

4 Object-oriented features of
RAGs

In this section, we will introduce some features of
RAGs which make specifications more concise. These
features are based on an object-oriented view of at-
tribute grammars, where nonterminals are viewed as

superclasses and productions as subclasses. In par-
ticular, we will discuss the use of virtual function at-
tributes and an extended class hierarchy of nontermi-
nals.

4.1 Virtual function attributes

Canonical AGs have a straight-forward translation to
object-oriented programming [13]. In particular, a
synthesized attribute is equivalent to a parameterless
virtual function: The declaration of a synthesized at-
tribute a of a nonterminal X is modelled by a dec-
laration of a virtual function a() in a class X; and a
semantic rule defining a in a production p is modelled
by a virtual function implementation in a class p which
is a subclass of X.

With this view, it is close at hand to make a gener-
alization: to allow virtual functions with parameters.
However, for a canonical AG, such a generalization is
not necessary. This is because the number of accesses
to an attribute is always bounded, so if parameters are
desired, they can be modelled by inherited attributes.
For RAGs, the situation is different. Because of the
reference attributes, there may be an unbounded num-
ber of accesses to a given attribute. For example, in
a typical RAG an identifier use site has a reference
attribute denoting the appropriate declaration node.
Since a declaration can be used in an unbounded num-
ber of places in the syntax tree, the number of refer-
ences to a given declaration node, and thereby also
the number of accesses to attributes in the declara-
tion node, is not bounded by the grammar. In RAGs,
parameters to virtual functions can therefore not be
modelled by inherited attributes.

We therefore generalize synthesized attributes by
allowing nonterminals to have wvirtual function at-
tributes. A virtual function attribute v(bq,...,bg)
of a nonterminal Xy, is similar to a synthesized at-
tribute in that it must be defined by a semantic
rule of each production Xyo — X;...X,. A seman-
tic rule for wv(by,...,bg) is written v(by,...,b) =
flb1,...;bg,a1,...,am), where a;,1 < i < m, is an
attribute of X;,1 < j < n. From this we see that a
parameterless virtual function attribute w() is equiva-
lent to a synthesized attribute.

It is possible to eliminate virtual function attributes
and replace them by auxiliary functions. Each seman-
tic rule defining the attribute is then replaced by an
auxiliary function, and type case analysis is used at
each call site to call the correct auxiliary function.
This translation is analogous to translating object-
oriented programs to procedural programs. Thus,
virtual function attributes are not strictly necessary.
However, they make the grammar more modular and
easy to extend and change, by allowing the call site
expressions to be written in a polymorphic way (be-
ing able to handle objects of different types without

having to mention these types explicitly).

4.2 Extended class hierarchy

The object-oriented view on attribute grammars gives
a two-level class hierarchy where nonterminals are
viewed as superclasses, i.e. general concepts, and pro-
ductions as subclasses, i.e. specialized concepts. Tak-
ing this view, it is natural to expand the class hierar-
chy into more levels. In doing this we differ between
abstract nonterminals and concrete nonterminals. An
abstract nonterminal differs from a concrete nonter-
minal in that it may not occur in any production and
it may not have a concrete nonterminal as its super-
class. Abstract nonterminals are thus irrelevant for the
context-free part of the grammar. They are introduced
in order to simplify the description of the attribution,
allowing common behavior (in the form of attributes
and semantic rules) to be factored out. They are also
useful as types for reference attributes.

We make use of a rooted single-inheritance class hi-
erarchy, i.e. each nonterminal has exactly one nonter-
minal as its superclass, except for the root nonterminal
ANY which has no superclass. Each node in the syn-
tax tree will thus be an instance of a subclass to ANY
which models the behavior common to all nodes in the
tree. The class hierarchy will thus be a tree rooted at
ANY, with a top region of abstract nonterminals, lower
subtrees of concrete nonterminals, and productions at
the leaves.

Abstract nonterminals are similar to the notion of
symbol inheritance in [25], but makes use of single
rather than multiple inheritance. We have chosen sin-
gle inheritance because we find it conceptually simpler
and because we replace the use of multiple inheritance
by composition, using so called semantic nodes as ex-
plained in Section 5.2.

To be able to refer to each class in the class hierar-
chy, the productions are named. If a nonterminal X
has exactly one production, that production will also
be named X, and both the nonterminal and produc-
tion are mapped to the same class.

As a generalization of associating attributes with
nonterminals and semantic rules with productions, it
is possible to also associate attributes with individual
productions (local attributes) and semantic rules with
nonterminals. A semantic rule in a nonterminal con-
stitutes a default definition that may be overridden
by a semantic rule defining the same attribute in a
subclass (production or other nonterminal). This no-
tion of overriding is analogous to overriding of virtual
functions in object-oriented programming languages.

In order to make sure that the grammar is well-
formed, a production or concrete nonterminal C; that
has a concrete nonterminal Cy as a superclass may
not declare any inherited attributes. All the inherited
attributes of C'; must be declared further up in the

class hierarchy, either in an abstract nonterminal or in
the topmost concrete nonterminal.

5 PicoJava—an example

To illustrate the utility of RAGs we will demonstrate
how name and type analysis can be defined for an
object-oriented language. From the point of view of
this analysis, our demonstration language PicoJava, a
small subset of Java [1], includes the major features
of an object-oriented programming language: classes,
inheritance, variables, qualified access, and reference
assignment. For brevity, methods are omitted but the
language allows nested class definitions [28, 37] and
global variables, in order to show the combination of
block structure and inheritance. The goal of the name
analysis is to define a reference attribute decl of each
identifier use site, which denotes the corresponding
declaration. The goal of the type analysis is to define
an attribute tp modelling the type of each expression.
We also show how type compatibility for assignments
can be specified, in the presence of object-oriented sub-
typing. The example grammar is non-circular and has
been implemented in our language tool APPLAB.

5.1 Context-free grammar

Figure 6 shows the context-free grammar of PicoJava
in RAG form. Some remarks about the notation: A
nonterminal X appearing to the left of the table cell of
another nonterminal or production C' is a superclass
of C. A production p : Xg — X;...X, is written
"p — X;...X,” and appears to the right of the table
cell for Xy. If a nonterminal Xy has only one pro-
duction, the production takes on the same name as
the nonterminal, and is written simply ”— X7 ... X,,”.
ID is a predefined nonterminal modelling an identifier.
The productions for Decls and Stmts make use of a
shorthand for lists. The topmost concrete nontermi-
nal, Program, is the start symbol.

5.2 Semantic nodes

Several of the nonterminals in the context-free gram-
mar have the prefix SEM. This is a convention for mark-
ing so called semantic nonterminals, i.e., nonterminals
that are not motivated from the context-free syntax
point of view, but from an attribution point of view.
Semantic nonterminals always have only one produc-
tion. Thus, by including a semantic nonterminal S on
the right hand side of a production p, a correspond-
ing p-node will get an extra S node as a son, a so
called semantic node. As an example, the produc-
tion ClassDecl has a right hand side starting with
ID SuperOpt Block, as one would expect, modelling
the name of the class, an optional superclass, and a
block consisting of declarations and statements. The

Abstrqct Concrete nonterminals Productions
nonterminals
Proaram — Block SEMGIobalConstants
9 SEMProgramStaticEnv
Block — Decls Stmts
Decls — Decl*
Stmts — Stmt*
SEMGilobalConstants |— SEMEmptyEnv SEMUnknownType
SEMEmptyEnv -
SEMProgramStaticEnv |—
SEMEnv
SEMClassStaticEnv | —
SEMClassClassEnv |—
SEMUnknownType |—
ANY ISEMType DecTvoe RefDeclIType: — UnQualUse
yp IntDeclType: —
SEMMissingDecl -
ClassDecl: — 'class' ID SuperOpt
SEMDecl { Block}
Decl SEMClassStaticEnv
SEMClassClassEnv
VarDecl: — DeclType ID
Stmt AssignStmt: — Use '=' Exp
WhileStmt: — 'while' Exp 'do’ Stmt
Ex Use UnQualUse: — ID
P QualUse: — Use "' UnQualUse
Super: — 'extends' Use
SuperOpt NoSuper: —

Figure 6: Context-free syntax for PicoJava

production continues with two semantic nonterminals:
SEMClassStaticEnv SEMClassClassEnv. These lat-
ter two nonterminals have only one production each,
and a ClassDecl node in the syntax tree will thus al-
ways have two extra sons of type SEMClassStaticEnv
and SEMClassClassEnv, respectively. Rather than lo-
cating all attributes relevant to class declarations di-
rectly in ClassDecl, some attributes with a specific
purpose can be packaged into a separate semantic non-
terminal, e.g. SEMClassStaticEnv. This technique
allows an ordinary node to be provided with several
interfaces. A reference attribute r can be defined to
denote either the ClassDecl node directly, or one of
its semantic nodes, depending on what part of the in-
formation is relevant to the clients of r. This tech-
nique is somewhat similar to the use of part objects
in object-oriented programming [29], where parts of
the behavior of an object are delegated to a separate
object, that nevertheless forms an integral part of the
original object.

5.2.1 Constant semantic nodes

When reference attributes are used, it may be the case
that an appropriate "real” node cannot be found in the
syntax tree. For instance, suppose there is a use of an
identifier x in a PicoJava program, but no correspond-
ing declaration. In this case, there is no Decl node that
the decl attribute of the use site can denote. One so-
lution could be to give the decl attribute the special
value null, denoting no node. However, it is often
a nicer design to avoid null and instead make use of
constant "null objects” [39]. In this case, we introduce
a constant node SEMMissingDecl, modelling a missing
declaration. This allows clients of the decl attribute
to, e.g., access the type of the decl, regardless of if
there is a real declaration or not. The type of a miss-
ing declaration can be modelled by another "null ob-
ject”, the constant node SEMUnknownType, modelling
that the type of the identifier is unknown. An abstract
nonterminal SEMDecl is introduced as a common su-
perclass to Decl and SEMMissingDecl in order to be
used as the type for the decl attribute. The same
pattern is used for SEMUnknownType, where SEMType is

Nofl_ Attributes Semantic rules
terminal
ANY lglobals: ANY* globals =
SEMGlobalConstants globals
Proaram ANY™*.globals =
9 SEMGilobalConstants

Figure 7: Specification of the propagation of a refer-
ence to global constants

introduced as a common superclass of DeclType and
SEMUnknownType.

5.2.2 Global access to constant nodes

In many cases, it is useful to make the constant nodes
globally accessible, i.e., throughout the syntax tree.
This is accomplished by collecting all constant nodes
under a semantic nonterminal SEMGlobalConstants
which is made a semantic node under the start sym-
bol Program. A reference to the SEMGlobalConstants
node is propagated down throughout the syntax tree,
thus giving access to all the constant nodes. Figure 7
shows how this can be done conveniently by defining a
default semantic rule in the abstract nonterminal ANY
which is overridden in Program. The semantic rule in
ANY propagates the value of its inherited globals at-
tribute down to all its son nodes of type ANY. Since
this holds for all nodes (except for the root Program
node which overrides the rule), the reference is prop-
agated down throughout the syntax tree. The over-
riding rule in Program instead defines globals of its
son nodes as denoting the SEMGlobalConstants son
node of the Program node. Note that we permit in-
herited attributes of the start symbol as long as they
are not accessed. In this case, Program has an inher-
ited attribute globals since it is a subclass of ANY,
but this attribute is never accessed for Program nodes
since Program overrides the rule in ANY.

Remarks about the notation. In Figure 7, the
sub/superclass relationships between nonterminals
and productions are not shown. Please refer to Fig-
ure 6 for these relationships. In semantic rules, an
attribute a of the left hand side nonterminal (or the
production) is written without any qualifying name,
i.e. simply "a”, whereas an attribute b of a nonter-
minal X of the right-hand side is written 7 X.0". A
semantic rule X*.b = exp means that the b attribute
of each right-hand side nonterminal of type X is de-
fined to have the value exp. The keyword ref that
we used in Section 3.2 is left out here. Any attribute
declared with a nonterminal type is assumed to be a
reference.

Nonterminals and Attributes and
productions Semantic Rules
Decl Tname: string

ClassDecl name = ID.val
VarDecl name = ID.val
Exp Ttp: SEMType
Use Tdecl: SEMDecl
ClassDecl TisCircular: boolean

Figure 8:
isCircular

Module declaring name, tp, decl, and

5.3 Modularization

In PicoJava, name and type analysis are dependent
on each other. For example, in order to find the type
of a use site, we first need to know its declaration,
and in order to find the declaration of a qualified use
site, we need to first know the type of the qualify-
ing use site. In order to modularize the definition
of this attribution, we first define an interface mod-
ule consisting of the attributes declared in Figure 8.
The Decl.name attribute is simply the name of a Decl
node, and the definition of this attribute is so simple
that it is given directly in the figure. The definitions
of the other three attributes are a bit more complex
and are therefore given in separate modules, making
use of the attributes in the interface module. The
Exp.tp attribute is a reference to the SEMType node
modelling the type for the expression. For expressions
where the type is unknown, e.g. uses of undeclared
names, the constant node SEMUnknownType is used.
The Use.decl attribute is a reference to a SEMDecl
node. For declared names, this will be the correspond-
ing Decl node, and for undeclared or multiply declared
names it will be the constant node SEMMissingDecl.
The ClassDecl.isCircular attribute is a boolean at-
tribute which is true if the ClassDecl is part of a
circularly defined class hierarchy (which is illegal in
PicoJava, but cannot be ruled out by the context-free
syntax), and false otherwise (the normal case). In the
following sections, these attributes are defined.

5.4 Name analysis

The goal of the name analysis module is to define the
Use.decl attribute. The key idea for doing this is
to define data structures, constituting of syntax tree
nodes and reference attributes, to support the scope
rules of PicoJava. For each block-like construct in the
language, an attribute decldict containing a dictio-
nary of references to the Decl nodes for local decla-
rations is defined, excluding references to multiply de-

Nontermi'na s/ Attributes and Semantic Rules
Productions
ANY lenv: SEMEnv
SEMEnv |SEMDecl func lookup(str: string)

Tdecldict: dictionary (string — Decl) =

Decls {(d.name — d) | d € Decl* A

(d.name ¢ {d’.name | d’e Decl* - {d}}) }

SEMDecl func lookup(str: string) =

Block inspect $D := Decls.decldict(str)

when Decl do $D
otherwise globals.SEMMissingDecl

Figure 9: Module declaring env and lookup

clared identifiers. The blocks are connected to each
other so that the declaration of an identifier can be
located by doing lookups in block dictionaries in an
appropriate order. For Algol-like block structure, a
block is connected by a reference attribute to its outer
block. For object-oriented inheritance, a class node
is connected by a reference attribute to its superclass
node. Semantic nodes that are subclasses of the ab-
stract nonterminal SEMEnv encapsulate these connec-
tions and define the function attribute lookup for find-
ing a Decl node for a given identifier. For each node
n in the syntax tree, an attribute env is defined which
refers to a SEMEnv node that connects to the visible
identifiers at the point of n. The declaration for a
Use can be found by calling the lookup function in
Use.env. The attribute env thus represents the en-
vironment of visible identifiers, similar to the com-
mon solution used in canonical attribute grammars,
but here env is a reference to a node, possibly con-
necting to other nodes, rather than a large aggregate
attribute.

Figure 9 shows the declaration of ANY.env, the
lookup function of SEMEnv, and the definition of
decldict. Actually, decldict is an attribute of
the Decls node, but is accessed via the function
lookup in Block which returns the constant node
SEMMissingDecl in case no declaration was found in
decldict.

Remarks about the notation. The definition of
Block.lookup makes use of an inspect-expression
”inspect $V:= exp...”, which is similar to a let-
expression, but in addition performs a type case anal-
ysis. Within each case "when T do exp” the named
value V is guaranteed to have the type T. A catch-all
clause ”otherwise ezp” is needed to make sure there
is always an applicable case.

Figure 10 shows the definition of the SEMEnv con-
nections and the SEMEnv.lookup function. There are
two block constructs in PicoJava: Program containing

Nonterminals/

. Attributes and Semantic Rules
Productions

lookup(str: string) =

SEMEmptyEnv globals. SEMMissingDecl

T blk: Block = parent Program.Block
SEMProgramStaticEnv

lookup(str: string) = blk.lookup(str)
7T blk: Block = parent ClassDecl.Block

T superE: SEMEnv =
if parent ClassDecl.isCircular
then globals.SEMEmptyEnv
else
parent ClassDecl.SuperOpt.classE

SEMClassClassEnv

lookup(str: string) =
inspect $D := blk.lookup(str)
when Decl do $D
otherwise superE.lookup(str)

T thisE: SEMEnv =
parent ClassDecl.SEMClassClassEnv

T outerE: SEMEnv = env

SEMClassStaticEnv lookup(str: string) =

inspect $D := thisE.lookup(str)
when Decl do $D
otherwise outerE.lookup(str)

SuperOpt T classE: SEMEnv

classk =
inspect $D := UnQualUse.decl
when ClassDecl do
$D.SEMClassClassEnv
otherwise globals.SEMEmptyEnv

Super

NoSuper classE = globals.SEMEmptyEnv

Figure 10: Module defining lookup

global declarations, and ClassDecl, containing decla-
rations local to a class. Algol-like block structure is
obtained by nesting a class inside another class. Pro-
gram has a single semantic node SEMProgramStatic-
Env connecting to the Block of the Program (blk).
ClassDecl has two semantic nodes; SEMClassClass-—
Env handles inheritance by connecting to Block of the
class (blk) and to the SEMClassClassEnv of the su-
perclass (superE); and SEMClassStaticEnv combines
inheritance with Algol-like block structure by connect-
ing to the SEMClassClassEnv of the class (thisE) and
to the environment (outerE). Figure 11 shows these
connections for an example PicoJava program. The
lookup function in SEMClassClassEnv is defined to
give preference to local declarations over those in the
superclass (a declaration in the class will shadow decla-
rations of the same name in superclasses). The lookup
function in SEMClassStaticEnv is defined to give pref-
erence to inheritance over block structure (a declara-
tion in a superclass will shadow declarations of the
same name in an outer block).

Remarks about the notation. The expression
"parent T” is a reference denoting the parent node

‘ Program ‘

'

‘Block‘ SPSE |«
blk ‘
ClassDecl ClassDecl
name [“A” name ["B”
I \
' ' ' '
‘ Block ‘ SCCE SCSE ‘ Block ‘ SCCE SCSE
blk — |thisE — blk — |thisE =
superE outerE superE| —+ |outerE | |
} |
ClassDecl
classA{..}; name|"BE
class B extends A {
classBB{ ...}
;) ‘Block‘ SCCE SCSE
blk — |thisE —
superE outerE | ——

Figure 11: Connections between SEMEnv nodes for a small program

which must be of type T. This is a shorthand for using
an inherited attribute parent defined by the parent
node. To assure that this expression is always well
defined, it is only applicable for nonterminals that ap-
pear on the right-hand side of exactly one production.

A PicoJava program may contain an (illegal) circu-
lar class structure. Therefore, care must be taken so
that the recursively defined lookup function does not
lead to endless recursion. To prevent this, a test on the
isCircular attribute (declared in the interface mod-
ule) is performed when defining the connections be-
tween the SEMClassClassEnv nodes. In case the class
hierarchy is cyclic, the attribute superkE is defined as
a reference to the constant node SEMEmptyEnv rather
than to the SEMClassClassEnv of the superclass. This
way, the graph consisting of SEMClassClassEnv nodes
and superE attributes can never be cyclic, and their
lookup functions will therefore terminate.

Figure 12 shows the definition of env. For most
nodes, the environment is the same as for the enclos-
ing node, as defined by the default semantic rule in
ANY. This default behavior is overridden in three pro-

ductions. In Program and ClassDecl, the environ-
ment for the Block is defined as a reference to the
SEMProgramStaticEnv and SEMClassStaticEnv, re-
spectively. In the QualUse production, the environ-
ment of the second operand depends on the type of
the first operand which should be a reference variable.

The definition of the decl attribute is now simple,
as shown in Figure 13.

5.5 Check of circular class hierarchy

Figure 14 shows the definition of the isCircular at-
tribute declared in Figure 8 which says if a class is
circularly defined or not. The idea is to use a help
function circularClass(s) which is called recursively
for each ClassDecl in the superclass chain. The argu-
ment s contains the set of references to already visited
ClassDecl nodes. The recursion is terminated either
when the top of the class hierarchy is reached (the
normal case), or when a ClassNode is reached that is
already in s (a cycle is found in the hierarchy).
Remark on the notation. The construct ”"self” in a
rule means a reference to the left-hand nonterminal of

Nonterminals/

, Attributes and Semantic Rules
Productions

ANY ANY*.env = env
Program Block.env = SEMProgramStaticEnv
ClassDecl Block.env = SEMClassStaticEnv
UnQualUse.env =
inspect $T := Use.tp
when RefDeclType do
QualUse inspect $D := $T.UnQualUse.decl

when ClassDecl do
$D.SEMClassClassEnv
otherwise globals.SEMEmptyEnv
otherwise globals.SEMEmptyEnv

Figure 12: Module defining env

Nomermz.n als/ Attributes and Semantic Rules
Productions
UnQualUse decl = env.lookup(ID.val)
QualUse decl = UnQualUse.decl

Figure 13: Module defining decl

the production. E.g., in Figure 14, self refers to the
ClassDecl node.

5.6 Type analysis

Figure 15 shows the definition of the tp attribute de-
clared in Figure 8. For illegal uses of identifiers, e.g.
where the declaration is missing, the constant node
SEMUnknownType is used.

The tp attribute can be used to perform type check-
ing, e.g., checking that the types of the left and right
hand side of an assignment are compatible. For an
object-oriented language, this check is rather more
involved than for procedural languages, due to the
subtype compatibility rules. For a reference assign-
ment Use = FEzxp in PicoJava, the class of Ezp must
be the same or a subclass of the class of Use. To
further show the expressiveness of RAGs, Figure 16
shows how a boolean attribute typesCompatible can
be defined for Assignment, taking into account both
ordinary types and reference types with subtyping.
The typesCompatible attribute is true if the as-
signment statement is type correct. A help func-
tion assignableTo is defined in SEMType such that
T1.assignableTo(T2) is true if it is legal to assign a
value of type T1 to a variable of type T2. For refer-

Nonterminals/

. Attributes and Semantic Rules
Productions

isCircular = SuperOpt.circularClass({self})

boolean func circularClass (s: set of ClassDecl) =
ifselfe s
then true
else SuperOpt.CircularClass(s U {self})

ClassDecl

SuperOpt |boolean func circularClass (s: set of ClassDecl)

NoSuper circularClass(s: set of ClassDecl) = false

circularClass(s: set of ClassDecl) =
inspect $D := UnQualUse.decl
when ClassDecl do $D.circularClass(s)
otherwise false

Super

Figure 14: Module defining isCircular

Nonterminals/

. Attributes and Semantic Rules
Productions

tp=
inspect $D := decl
when VarDecl do

Use $D.DeclType
otherwise
globals.SEMUnknownType
QualUse tp = UnQualUse.tp

Figure 15: Module defining tp

ence types (RefDeclType), this function checks if the
class of T1 is a subclass of that of T2. To perform this
check, the class hierarchy is traversed using a recur-
sive function recSubclass0f in ClassDecl. However,
in order to make sure that this function terminates,
even in the case of an illegal circular class hierarchy,
the attribute isCircular is checked before calling the
recursive function (in ClassDecl.subclassOf).

6 Experimental system

We have implemented RAGs in our language tool AP-
PLAB and used RAGs to specify a number of lan-
guages, including an extended version of PicoJava de-
scribed in Section 5 (the extended version includes also
methods and some additional basic types, operators,
and statements). We are also working with specifi-
cation of worst-case execution time analysis [31, 32],
robot languages [7], state transition languages [11], vi-
sualization [30], design patterns [8, 9], and the RAG
formalism itself.

The APPLAB system is an interactive language tool
where both programs and grammars for the program-

Nonterminals/

. Attributes and Semantic Rules
Productions

SEMType boolean func assignableTo(T: SEMType)

SEMUnknownType | assignableTo(T: SEMType) = false

assignableTo(T: SEMType) =
T in IntDeclType

assignableTo(T: SEMType) =
inspect $T =T
when RefDeclType do
inspect $D := UnQualUse.decl
when ClassDecl do
inspect $DT := $T.UnQualUse.decl
when ClassDecl do
$D.subclassOf($DT)
otherwise false
otherwise false
otherwise false

IntDeclType

RefDeclType

boolean func subclassOf(C: ClassDecl) =
if isCircular
then false
else recSubclassOf(C)

boolean func recSubclassOf(C: ClassDecl) =

if C = self

then true

else
inspect $Super := SuperOpt.superClass
when ClassDecl do

$Super.recSubclassOf(C)

otherwise false

ClassDecl

TtypesCompatible: boolean =

AssignStmt Exp.tp.assignableTo(Use.tp)

SuperOpt TsuperClass: ClassDecl

NoSuper superClass = null

superClass =
inspect $D := SimpleUse.decl
when ClassDecl do $D
otherwise null

Super

Figure 16: Module defining typesCompatible

ming language can be edited at the same time, result-
ing in a highly flexible and interactive environment
for language design. Changes to the grammars, e.g.
changes to the context-free syntax or changes to the
attributes and semantic functions, are immediately re-
flected in the language-based program editor, allowing
the user to get immediate feedback on the effects of
changes to the grammar specification. The details of
APPLAB are covered in [6, 7] (although these papers
do not focus on reference attributes which is a later
addition).

Figure 17 shows a screendump from the APPLAB
system, showing the editing of an example program in
PicoJava, and parts of the grammar specification. In
the ExampleProgram window, the user has selected the
statement g=rB in class BB, where BB is an inner class
of B which in turn is a subclass of A. The example illus-
trates both block structure (g is declared globally, i.e.

two levels outside of BB) and combined block structure
and inheritance (rB is declared one level outside of BB
in a superclass of B). The assignment is type correct
(the value of typesCompatible is TRUE) since B (the
class of rB) is a subclass of A (the class of g). The value
of the attribute is shown in a separate attribute win-
dow at the user’s request (after selecting the attribute
in a popup-menu). The subsequent assignment rB=g
is not type correct since A (the class of g) is not equal
to or a subclass of B (the class of rB), and a request
for the typesCompatible attribute of that statement
would display a corresponding attribute window show-
ing that typesCompatible has the value FALSE.

7 Related work

The idea to support non-local dependencies has been
suggested in a number of systems in various ways.
Early approaches provided special support for nested
scopes (supporting Algol-like block structure) such as
[19, 20, 3, 23, 17, 2], but fail to handle more complex
scope combinations such as inheritance or qualified ac-
cess of identifiers. Later approaches support explicit
reference attributes and remote attribute access, in a
similar way as described here, and allows scope mech-
anisms to be defined without being restricted to pre-
defined combinations. In particular:

— In our previous work on Door Attribute Gram-
mars [14, 15, 16] dereferencing of reference at-
tributes is supported, but must be delegated to
special nonterminals called doors. This way, the
non-local dependencies are encapsulated in a so
called door package. Door AGs also support re-
mote definition where collection values can be de-
fined remotely via references. Door AGs sup-
port efficient incremental attribute evaluation,
but the implementation is not fully automatic be-
cause the door package needs to be implemented
manually. Door AGs allows object-oriented lan-
guages to be specified in a way very similar to for
RAGs, using similar techniques for connecting en-
vironments and traversing inheritance graphs, but
RAGs are considerably more compact because the
non-locally accessed information does not need to
be propagated to door nonterminals, but can be
accessed directly, thus avoiding replication of in-
formation. RAGs offer fully automatic evaluation,
but not (currently) incremental attribute evalua-
tion.

— The MAX system by Poetzsch-Heffter [33, 34]
supports reference attributes and remote access,
and develops an extension to term algebras called
occurrence algebras to formalize the approach. A
demand-based evaluation technique is used, and
in addition an approximate static dependency

4, 005L-G1obalConstants)
 00SL-CircularCheck|
o m&—cm:kﬂssigﬂmnt[-unﬂyﬂs—]nokm]

addto RefDec1Type
{ imp) assignableTo
inzpect §T
when Refleci1Type do
inspect $0 := a_Simplelse.dec
when ClassDec] do
inspect $DT := §T.a_Simplelse.dec

otherwise falze
otherwize false
atherwizse false

addto ClassDec]
{ s=yn thisClassDec]:
eq thisClassDec]
this Classhec!;
syubclass0f: func boolean
{C: ref ClassDec)
if isCircular
then false
else thisClassDecl.recSubclass0f(C };
recsubclass0f: func boolean
{C: ref ClassDec])
{* Call only when not isCircular *):=
if C=this Classhec]
then true
else
inspect $Super

ref ClassDec] -

otherwize falsze

};

addto Assignstmt

{ s=yn typesCompatible:
eq typesCompatible

a_Exp.tp.assignableTol a_Use.tp)

hoolean ;

when ClassDec] do $0.subclassOf($0T)

1= a_SyperQpt.superClass
when ClassDec] do $Super.recSubclassOf] C Il

o, ExanmaPm-granl
Ag;

clags 4 {
L rl;

|
class B extends & {
class BB {
g =rk;

»

]

: . theluterEny
Print attribute l310pa1s

Check static-semapn.,
Explain error _|FopesConpatiblal
Explain next Brflarror

Check Grammar |lerrorMsg

— errorl
error

| typesﬁmpatmte]
TRUE

Figure 17: Screendump from APPLAB. The attribute typesCompatible is shown for the current focus in the

ExampleProgram window (the assignment statement g =

B in class BB)

analysis is developed which allows many function
calls to be eliminated and thereby speed up the
evaluation [34].

— Boyland also developed a system supporting both
remote access and remote definition, and mak-
ing use of a demand-algorithm for attribute eval-
uation [4]. He has also addressed the problem
of computing static evaluation schemes for gram-
mars with both remote access and remote defi-
nition via reference attributes in order to apply
visit-oriented evaluation algorithms. However,
the scope of this latter technique is unclear. It
has been applied only for simple example gram-
mars and does not seem to be implemented [5].

— Sasaki and Sassa have developed a static evalua-
tion scheme for circular grammars with reference
attributes and remote access [36]. Their motivat-
ing example is liveness analysis in the presence of
gotos where the goto links are modelled by ref-
erence attributes in the AST. In their evaluation
scheme remote dependencies are added conserva-
tively, causing cycles in the production depen-
dency graphs that correspond to real or poten-
tial cycles in an actual tree. Cycles are evaluated
iteratively.

The underlying principles of remote access and at-
tribute evaluation are the same in RAGs as in MAX
and in Boylands system. However, the RAG formula-
tion is radically different, expressing the specification
using object-oriented concepts like inheritance and vir-
tuals.

Other related approaches include the following:

— The Synthesizer Generator supports syntactic ref-
erences, i.e., an attribute may be a reference to
a syntax tree node [35]. However, attributes of
the referenced node may not be accessed via the
reference attribute. l.e., the syntactic references
are considered to stand for unattributed subtrees.
There are certain similarities to RAGs in that the
syntax tree can itself be used as e.g. symbol ta-
bles, rather than having to construct such infor-
mation in a separate attribute domain. However,
RAG reference attributes are much more power-
ful than syntactic references in that the attributes
of the referenced nodes may be accessed, allowing
attribute information to be propagated along non-
locally paths. The Synthesizer Generator also al-
lows attributes to be defined as references to other
attributes. This is used to define cyclic graphs in
code generation, e.g. for linking the last instruc-
tion of a while statement back to the first instruc-
tion. However, for the purpose of the attribute
evaluation, these references are just treated as
constants and may not be dereferenced. Deref-

erencing can only be done after the attribution is
complete, by an interpreter written directly in C.

— The Elegant system [2] also supports the construc-
tion of a cyclic program construct graph which is
essentially the syntax tree extended with edges
from use sites to declaration sites. However, the
additional edges cannot be dereferenced in order
to define other attributes. They may, however, be
dereferenced after the attribution is complete, in
order to check context conditions. The resulting
program construct graph can also be processed by
a special-purpose code generation formalism.

— Vorthmann has developed a graphical technique
called wvisibility networks for describing name
analysis and use-declaration bindings in program-
ming languages, and exemplified the technique for
Ada [38]. The focus is on providing efficient incre-
mental evaluation. This technique might be inter-
esting to integrate with RAGs in order to provide
support for incremental attribute evaluation for
certain classes of RAGs.

8 Conclusions

We have presented Reference Attributed Grammars
(RAGs) and showed how they can be applied to an
advanced problem: name and type analysis for an
object-oriented language, yielding a simple and con-
cise non-circular specification. Figures 6-10 and 12-16
constitute a complete static-semantic specification of
PicoJava, a language with all the key object-oriented
constructs: block structure, classes (including inner or
nested classes), inheritance, qualified use, and assign-
ment compatibility in the presence of subtyping.

The use of reference attributes allows cyclic struc-
tures to be constructed on top of the syntax tree sub-
strate. We have demonstrated how attributes can
be used to check for such cyclic structures to ensure
that semantic functions terminate, thus allowing the
RAG to remain non-circular, although it works on
cyclic structures. (See the definition and use of the
ClassDecl.isCircular attribute in Section 5.)

We have implemented the RAG formalism and an
evaluation algorithm that can handle any non-circular
RAG. In our tool for language experimentation, AP-
PLAB, it is possible to experiment with RAG specifi-
cations and immediately try out changes to the attri-
bution rules, e.g. by asking for the values of attributes
in an example program.

We have demonstrated advantages of RAGs over
canonical AGs. First, there is no need in RAGs to
replicate the information available in the syntax tree
into attributes. By using reference attributes the syn-
tax tree itself can be used as the information source.
The syntax nodes can be connected using reference

attributes to form suitable data structures, also cyclic
ones, without the need for introducing data structures
and functions in auxiliary languages. Second, the se-
mantic functions working on a complex data structure
can be split into smaller functions, delegated to the
different syntax nodes making up the data structure,
and specified completely within the RAG formalism.
Third, it is easy to extend an existing grammar with
additional functionality. This was shown in the Pico-
Java example where the test for type compatibility of
assignments was added in a very concise way, although
it included advanced rules for subtype compatibility.

In our experience, RAGs are of immediate practical
use and we have a number of current projects concern-
ing language specification using this technique. There
are many interesting areas for further research, includ-
ing the following.

— Efficient incremental evaluation of RAGs is an
open problem. However, RAGs are a much bet-
ter starting point for incremental evaluation than
canonical AGs since large aggregate attributes are
not needed in RAGs, and the number of affected
attributes after a change is much lower than for a
canonical AG.

— It would be useful to develop algorithms for de-
ciding statically if a RAG is non-circular. This is
an open problem. The APPLAB system currently
tests circularity dynamically and reports circular
dependencies at evaluation time.

— It would be useful to develop algorithms for de-
ciding if a RAG contains nonterminating seman-
tic functions. In the PicoJava example there are
two cases where special care is taken in order
to make sure that the semantic functions ter-
minate, namely when using recursive functions
that traverse the class hierarchy. The attribute
isCircular was introduced in order to be able
to terminate the recursion in case of a cyclic
class hierarchy. During grammar development it
would be useful if potential circular structures and
nonterminating functions could be automatically
spotted by the system.

— The formalism should be extended so that seman-
tic nonterminals and nodes can be added in ex-
tension modules, i.e. without having to modify
the context-free syntax. We expect this to be
straight-forward, making use of object-oriented
concepts like part objects and inner (anonymous)
classes as available in BETA and recently also in
Java [28, 29, 37].

— Since RAGs allow arbitrary data structures to be
built using syntax tree nodes and references it
should be interesting to extend the technique to
allow graph-based grammars, working on syntax

graphs rather than trees. This would be relevant
for building language-based editors for, e.g., UML
class diagrams or state-transition diagrams.

Acknowledgements

This work was supported by NUTEK, the Swedish
National Board for Industrial and Technical Develop-
ment. Elizabeth Bjarnason implemented the major
parts of the APPLAB system, making it easy to add
the support for reference attributes.

References

[1] K. Arnold and J. Gosling. The Java Programming
Language. Addison-Wesley. 1996.

[2] L. Augusteijn. The Elegant Compiler Generator
System. In Attribute Grammars and their Appli-
cations, pp 238-254, LNCS 461, Springer-Verlag,
September 1990.

[3] G. M. Beshers and R. H. Campbell. Maintained
and constructor attributes. In Proceedings of the
SIGPLAN 85 Symposium on Language Issues in

Programming Environments, pp 34-42, Seattle,
Wa., 1985. ACM SIGPLAN Notices, 20(7).

[4] J. T. Boyland. Descriptional Composition of
Compiler Components. PhD thesis, Report No.
UCB//CSD-96-916, Computer Science Division
(EECS), University of California, Berkeley, Cali-
fornia, September 1996.

[5] J. Boyland. Analyzing Direct Non-Local Depen-
dencies in Attribute Grammars. In Proceedings of
CC 798: International Conference on Compiler
Construction, pp 31-49, LNCS 1383, Springer-
Verlag, 1998.

[6] E. Bjarnason. Interactive Tool Support for Do-
main-Specific Languages. Licentiate thesis. Dept.
of Computer Science, Lund University, December
1997.

[7] E. Bjarnason, G. Hedin, K. Nilsson. Interactive
Language Development for Embedded Systems.
Nordic Journal of Computing 6(1999), 36-55.

[8] A. Cornils and G. Hedin. Statically Checked Doc-
umentation with Design Patterns. In Proceedings
of the 33rd International Conference on Technol-
ogy of Object-Oriented Languages (TOOLS Eu-
rope 2000), St. Malo, France, June 2000. IEEE.

[9] A. Cornils and G. Hedin. Tool Support for De-
sign Patterns using Reference Attributed Gram-
mars. In D. Parigot and M. Mernik, editors, Third

[11]

[13]

[15]

[16]

Workshop on Attribute Grammars and their Ap-
plications, WAGA’2000, Ponte de Lima, Portu-
gal, July 2000.

R. Farrow. Automatic generation of fixed-point-
finding evaluators for circular, but well-defined,
attribute grammars. In Proceedings of the SIG-
PLAN ’86 Symposium on Compiler Construction,
pages 85—98, Palo Alto, Ca., July 1986. ACM
SIGPLAN Notices, 21(7).

S. Gestegard. Emulation Software for FEzxecutable
Specifications. Master’s thesis. LU-CS-EX:99-6.
Dept. of Computer Science, Lund University,
Sweden, April 1999.

G. Hedin. Incremental Attribute Evaluation with
Side-effects. In D. Hammer, editor, Compiler
Compilers and High Speed Compilation (2nd
CCHSC Workshop), pp 175-189, Berlin, GDR,
October 1988, LNCS 371, Springer-Verlag.

G. Hedin. An object-oriented notation for at-
tribute grammars. ECOOP’89. BCS Workshop
Series, pp 329-345, Cambridge University Press.
1989.

G. Hedin. Incremental static-semantic analysis for
object-oriented languages using Door attribute
grammars. In H. Alblas and B. Melichar, editors,
Proceedings of the International Summer School
on Attribute Grammars, Applications and Sys-
tems, pp 374-379, Prague, June 1991, LNCS 545,
Springer-Verlag.

G. Hedin. Incremental Semantic Analysis. PhD
thesis, Department of Computer Science, Lund
University, Sweden, March 1992.

G. Hedin. An overview of door attribute gram-
mars. International Conference on Compiler Con-
struction (CC’94). LNCS 786, Springer Verlag.
1994.

R. Hoover. Incremental Graph Evaluation. PhD
thesis, Cornell University, Ithaca, N.Y., May
1987. Tech. Rep. 87-836.

F. Jalili. A general linear time evaluator for at-
tribute grammars. ACM SIGPLAN Notices, Vol
18(9):35-44, September 1983.

G. F. Johnson and C. N. Fischer. Non-syntactic
attribute flow in language based editors. In Proc.
9th POPL, pp 185-195, Albuquerque, N.M., Jan-
uary 1982. ACM.

G. F. Johnson and C. N. Fischer. A meta-lan-
guage and system for nonlocal incremental at-
tribute evaluation in language-based editors. In
Proc. 12th POPL, pp 141-151, New Orleans, La.,
January 1985. ACM.

[21]

[22]

28]

[31]

L. G. Jones. Efficient evaluation of circular at-
tribute grammars. ACM TOPLAS, 12(3):429—
462, 1990.

M. Jourdan. An optimal-time recursive evalu-
ator for attribute grammars. In M. Paul and
B. Robinet, editors, International Symposium on
Programming, 6th Colloquium, LNCS 167, pages
167-178. Springer-Verlag, 1984.

G. Kaiser. Semantics for Structure Editing En-
vironments. PhD thesis, Carnegie-Mellon Univer-
sity, Pittsburgh, Pa., May 1985. CMU-CS-85-131.

U. Kastens. Ordered attributed grammars. Acta
Informatica, 13:229-256, 1980.

U. Kastens and W. M. Waite. Modularity and
Reusability in Attribute Grammars. Acta Infor-
matica, 31:601-627, 1994.

D. E. Knuth. Semantics of context-free languages.
Mathematical Systems Theory, 2(2), 127-145,
June 1968.

O. L. Madsen. On defining semantics by means of
extended attribute grammars. In Semantics-Dir-
ected Compiler Generation, pp 259-299, LNCS
94, Springer-Verlag, January 1980.

O. L. Madsen. Block structure and object-orient-
ed languages. In B. Shriver and P. Wegner, edi-
tors, Research Directions in Object-Oriented Pro-
gramming. The MIT Press, 1987.

O. L. Madsen and B. Mgller-Pedersen. Part ob-
jects and their location. Proceedings of the 7th In-
ternational Conference on Technology of Object-
Oriented Languages and Systems (TOOLS 7).
Dortmund, 1992. Prentice Hall.

E. Magnusson and G. Hedin. Program visualiza-
tion using reference attributed grammars. In Pro-
ceedings of NWPER’2000, the 9th Nordic Work-
shop on Programming and Software Development
Environment Research, Bergen, Norway, 2000.

P. Persson and G. Hedin. Interactive Execu-
tion Time Predictions Using Reference Attributed
Grammars. In D. Parigot and M. Mernik, edi-
tors, Second Workshop on Attribute Grammars
and their Applications, WAGA’99, pp 173-184,
Amsterdam, The Netherlands, March 1999.

P. Persson and G. Hedin. An Interactive Envi-
ronment for Real-Time Software Development.
In Proceedings of the 33rd International Confer-
ence on Technology of Object-Oriented Languages
(TOOLS Europe 2000), St. Malo, France, June
2000. IEEE.

[33]

A. Poetzsch-Heffter. Programming language spec-
ification and prototyping using the MAX Sys-
tem. In M. Bruynooghe, J. Penjam, editors, Pro-
gramming Language Implementation and Logic
Programming, pp 137-150. LNCS 714, Springer-
Verlag, 1993.

A. Poetzsch-Heffter. Prototyping realistic pro-
gramming languages based on formal specifica-
tions. Acta Informatica 34, 737772 (1997).

T. W. Reps and T. Teitelbaum. The Synthesizer
Generator. A system for constructing language-
based editors. Springer Verlag. 1989.

A. Sasaki and M. Sassa. Circular attribute gram-
mars with remote attribute references. In D.
Parigot and M. Mernik, editors, Third Workshop
on Attribute Grammars and their Applications,
WAGA 2000, Ponte de Lima, Portugal, July 2000.

Sun Microsystems. Inner Classes Specification.
1996. URL: http://java.sun.com/products/-
jdk/1.1/docs/guide/innerclasses

S. A. Vorthmann. Modelling and Specifying Name
Visibility and Binding Semantics. CMU-CS-93-
158. Carnegie Mellon University, Pittsburgh, Pa.,
July 1993.

B. Woolf. Null Object. In R. Martin et al. (eds),
Pattern Languages of Program Design 3, pp 518,
Addison Wesley, 1998.

