
Exjobb: Refining Security Vulnerability Detection

17 december 2018

Wanted: One or two students interested in software security and program analysis. At least one
of you should have taken the Compilers course.

malloc: Mitigate null-byte overflow attacks
* malloc/malloc.c (_int_free): Check for corrupt prev_size vs size.

(malloc_consolidate): Likewise.

Loading branch information

Moritz Eckert authored and committed Aug 17, 2018 1 parent 30a17d8 commit d6db68e66dff25d12c3bc5641b60cbd7fb6ab44f

Showing 2 changed files with 9 additions and 0 deletions.

0 comments on commit d6db68e

Please sign in to comment.

This repository has been archived by the owner. It is now read-only.

lattera / glibc

Browse files

djdelorie

Unified Split

ChangeLog

... ...

1

2

3

4

5

1 6

2 7

3 8

5

@@ -1,3 +1,8 @@

+ 2018-08-16 DJ Delorie <dj@delorie.com>

+

+ * malloc/malloc.c (_int_free): Check for corrupt prev_size vs size.

+ (malloc_consolidate): Likewise.

+

2018-08-16 Pochang Chen <johnchen902@gmail.com>

* malloc/malloc.c (_int_malloc.c): Verify size of top chunk.

malloc/malloc.c

4281 4281

4282 4282

4283 4283

4284

4285

4284 4286

4285 4287

4286 4288

4442 4444

4443 4445

4444 4446

4447

4448

4445 4449

4446 4450

4447 4451

4

 prevsize = prev_size (p);

 size += prevsize;

 p = chunk_at_offset(p, -((long) prevsize));

+ if (__glibc_unlikely (chunksize(p) != prevsize))

+ malloc_printerr ("corrupted size vs. prev_size while consolidating");

unlink(av, p, bck, fwd);

 }

 prevsize = prev_size (p);

 size += prevsize;

 p = chunk_at_offset(p, -((long) prevsize));

+ if (__glibc_unlikely (chunksize(p) != prevsize))

+ malloc_printerr ("corrupted size vs. prev_size in fastbins");

 unlink(av, p, bck, fwd);

}

malloc: Mitigate null-byte overflow attacks · latte... https://github.com/lattera/glibc/commit/d6db68e...

1 of 1 12/14/18, 10:15 AM

Software
Vulnerabilities
Database

Library

Software
Product

dependency

vulnerabilityvulnerability map

Each year, security researchers find tens of thousands of new vulnerabilities in existing software.
Embedded software developers often rely on tools and libraries that are affected by these vulnera-
bilities, but it can be hard for the developers to stay on top of all the latest security developments.
The Seconds project here at LTH has developed a technique that:

• Analyses program build files

• Extracts dependencies and version identifiers

• Compares the dependencies + versions against a vulnerability database

While the project has been commercially successful, it reports some false positives: if a library
has a security vulnerability, it is often only a small part of the library that is affected.

In this project, you will refine the existing solution by applying program analysis techniques:

• Build a tool to analyse which parts of a library were affected by a vulnerability:

– Compute differences between known-insecure and known-fixed versions
– Identify affected functions and their callers
– Build a library vulnerability map

• Build a tool to scan programs with your vulnerability maps

• Evaluate your work with programs that depend on libraries with known vulnerabilities

This is a joint project between EIT (Martin Hell, martin.hell@eit.lth.se), Software Engineering
(Martin Höst, martin.host@cs.lth.se), and Software Development & Environments (Christoph Reichen-
bach, christoph.reichenbach@cs.lth.se). Contact us for details!

