
Exjobb: Refining Security Vulnerability Detection

17 december 2018

Wanted: One or two students interested in software security and program analysis. At least one
of you should have taken the Compilers course.

malloc: Mitigate null-byte overflow attacks
* malloc/malloc.c (_int_free): Check for corrupt prev_size vs size.

(malloc_consolidate): Likewise.
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@@ -1,3 +1,8 @@

+ 2018-08-16  DJ Delorie  <dj@delorie.com>

+ 

+ * malloc/malloc.c (_int_free): Check for corrupt prev_size vs size.

+ (malloc_consolidate): Likewise.

+ 

2018-08-16  Pochang Chen  <johnchen902@gmail.com>

* malloc/malloc.c (_int_malloc.c): Verify size of top chunk.

malloc/malloc.c
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      prevsize = prev_size (p);

      size += prevsize;

      p = chunk_at_offset(p, -((long) prevsize));

+ if (__glibc_unlikely (chunksize(p) != prevsize))

+ malloc_printerr ("corrupted size vs. prev_size while consolidating");

unlink(av, p, bck, fwd);

    }

  prevsize = prev_size (p);

  size += prevsize;

  p = chunk_at_offset(p, -((long) prevsize));

+   if (__glibc_unlikely (chunksize(p) != prevsize))

+     malloc_printerr ("corrupted size vs. prev_size in fastbins");

  unlink(av, p, bck, fwd);

}
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Each year, security researchers find tens of thousands of new vulnerabilities in existing software.
Embedded software developers often rely on tools and libraries that are affected by these vulnera-
bilities, but it can be hard for the developers to stay on top of all the latest security developments.
The Seconds project here at LTH has developed a technique that:

• Analyses program build files

• Extracts dependencies and version identifiers

• Compares the dependencies + versions against a vulnerability database

While the project has been commercially successful, it reports some false positives: if a library
has a security vulnerability, it is often only a small part of the library that is affected.

In this project, you will refine the existing solution by applying program analysis techniques:

• Build a tool to analyse which parts of a library were affected by a vulnerability:

– Compute differences between known-insecure and known-fixed versions
– Identify affected functions and their callers
– Build a library vulnerability map

• Build a tool to scan programs with your vulnerability maps

• Evaluate your work with programs that depend on libraries with known vulnerabilities

This is a joint project between EIT (Martin Hell, martin.hell@eit.lth.se), Software Engineering
(Martin Höst, martin.host@cs.lth.se), and Software Development & Environments (Christoph Reichen-
bach, christoph.reichenbach@cs.lth.se). Contact us for details!


