Chemoenzymatic Synthesis of Structured Phosphatidylcholine Positionally Labelled with Pure EPA and DHA

Gudmundur G. Haraldsson
Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland

Objectives
To synthesize positionally labelled structured PC comprised of MCFA and n-3 PUFA
Structured Lipids

Lipids that have a predetermined composition and distribution of fatty acids at the glycerol backbone
Structured Acylglycerols

Acylglycerols containing one type of fatty acids (MCFA) at the end-position(s) and a different type (PUFA) at the mid-position of the glycerol backbone.

Structured Triacylglycerols Comprising EPA and DHA

![Chemical Structures](image-url)
Structured Triacylglycerols

Chemoenzymatic Synthesis of MLM Type Structured TAG by Lipase

MCFA = C5H11 (a), C7H15 (b), C9H19 (c), C11H23 (d)

1. PUFA = EPA
2. PUFA = DHA
3. PUFA = DHA
Reaction Conditions

Enzymatic Reaction

- *Candida antarctica* lipase
- Vinyl esters of MCFA (25% excess)
- Solvent: Dichloromethane
- Temperature: 0 - 4 °C
- Reaction time: 3 - 5 hours
- Purification: Crystallization (Hexane)
- Yields: Excellent (>90%)

Coupling Reaction

- EDCI (20% excess); DMAP (0.4 eq.)
- Stoichiometric amount of EPA or DHA
- Solvent: Dichloromethane
- Room temperature
- Reaction time: 4 - 5 hours
- Purification: Silica gel chromatography
- Yields: Excellent (>90%)
EDCI and DCC Coupling Agents

EDCI

DCC

Glyceryl Ethers
Major Constituents in Shark Liver Oil

Selachyl alcohol (C_{18:1} (S)-6

Batyl alcohol (C_{18:0} (S)-5

Chimyl alcohol (C_{16:0} (S)-4

Selachyl alcohol (C_{18:1}) (S)-6

Batyl alcohol (C_{18:0}) (S)-5

Chimyl alcohol (C_{16:0}) (S)-4
Structured Ether Lipids

1-O-Alkyl-2,3-Diacyl-\textit{sn}-glycerols

\[
\text{R} \left(\begin{array}{c}
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O}
\end{array}\right) \begin{array}{c}
\text{EPA} \\
\text{MCFA} \\
\text{MCFA} \\
\text{DHA} \\
\text{MCFA} \\
\text{MCFA}
\end{array}
\]

Synthesis of Structured TAG and EL

\textit{Enzymatic Step}

- \textit{Candida antarctica} lipase: the perfect catalyst
- MCFA as Vinyl Esters
- Reaction temperature: 0 - 4 °C
- Reaction time: 3 - 5 hours
Enantiopure Structured PC

Enantiopure Structured PC
Chemoenzymatic Synthesis of Structured PC by Lipase

Synthesis of Asymmetrically Structured PC
Main Challenges

- Enantiocontrol
- Regiocontrol and regiopurity
- Lipase activity towards GPC
- Acyl migration
- Analytical aspects
- Purification and full characterization
Chemoenzymatic Synthesis of Structured PC

Starting material

\[\text{sn-Glycerol-3-phosphatidylcholine, GPC}\]

Synthesis of Structured PC

Enzymatic Step

* Candida antarctica* lipase

- Excellent regioselectivity
- Slow: 90% Conversion after 96 hours
- High yields
Lipase Investigation
Enzymatic Step (C_{12}; \text{CH}_2\text{Cl}_2; 24 \text{ h})

<table>
<thead>
<tr>
<th>Lipase</th>
<th>Conversion (%)</th>
<th>Regio-selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizomucor miehei</td>
<td>94</td>
<td>Excellent</td>
</tr>
<tr>
<td>Thermomyces lanuginosa</td>
<td>92</td>
<td>2% migration</td>
</tr>
<tr>
<td>Candida antarctica</td>
<td>54</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Conversion of RML (C_8 in CH_2Cl_2)

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>82</td>
</tr>
<tr>
<td>18</td>
<td>91</td>
</tr>
<tr>
<td>24</td>
<td>98</td>
</tr>
</tbody>
</table>
Chemoenzymatic Synthesis of Structured PC

Enzymatic Step

\[
\text{GPC} + \text{MCFA} \rightarrow \text{RML}
\]
Chemoenzymatic Synthesis of Structured PC

Enzymatic Step

\[
\text{GPC} \stackrel{\text{MCFA}}{\xrightarrow{\text{RML}}} \text{2-LPC}
\]

Coupling Step

\[
\text{GPC} \stackrel{\text{MCFA}}{\xrightarrow{\text{RML}}} \text{2-LPC}
\]

PUFA

DCC

DMAP
Chemoenzymatic Synthesis of Structured PC

Coupling Step

GPC + MCFA \rightarrow 2-LPC

PUFA + DCC DMAP \rightarrow PC

Chemoenzymatic Synthesis of Structured PC by Lipase

GPC + MCFA \rightarrow 2-LPC

PC + PUFA + DCC DMAP

MCFA = C_{5}H_{11} (a), C_{7}H_{15} (b), C_{9}H_{19} (c), C_{11}H_{23} (d)

2: PUFA = EPA
3: PUFA = DHA
Synthesis of Structured PC

Enzymatic Step

- *Rhizomucor miehei* lipase: excellent regioselectivity
- Excellent yields
- MCFA as Vinyl Esters
- Solvent: Dichloromethane
- Room temperature
- Reaction time: 24 hours

Results of Enzyme Reaction

<table>
<thead>
<tr>
<th>Compound</th>
<th>MCFA</th>
<th>Conv. (%)</th>
<th>Yields (%)</th>
<th>$[\alpha]_D^{1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)-1a</td>
<td>-C3H${11}$</td>
<td>98</td>
<td>90</td>
<td>+3.1</td>
</tr>
<tr>
<td>(R)-1b</td>
<td>-C7H${15}$</td>
<td>98</td>
<td>97</td>
<td>+2.4</td>
</tr>
<tr>
<td>(R)-1c</td>
<td>-C9H${19}$</td>
<td>92</td>
<td>91</td>
<td>+2.5</td>
</tr>
<tr>
<td>(R)-1d</td>
<td>-C${11}$H${23}$</td>
<td>90</td>
<td>88</td>
<td>+3.7</td>
</tr>
</tbody>
</table>

$^{1)}$ c = 1, CH$_3$OH
PC Reaction Conditions

Coupling Reaction

- DCC (2-fold excess); DMAP (1 eq.)
- EPA: 2-fold excess
- Solvent: Chloroform
- Room temperature
- Reaction time: 24 hours
- Purification: Silica gel chromatography
- Yields: High to excellent (73 - 91%)

Results of Coupling Reaction

<table>
<thead>
<tr>
<th>Compound</th>
<th>MCFA</th>
<th>PUFA</th>
<th>Yields (%)</th>
<th>([\alpha]^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)-2a</td>
<td>-C_6H_{11}</td>
<td>EPA</td>
<td>84</td>
<td>+9.0</td>
</tr>
<tr>
<td>(R)-2b</td>
<td>-C_7H_{15}</td>
<td>EPA</td>
<td>91</td>
<td>+8.8</td>
</tr>
<tr>
<td>(R)-2c</td>
<td>-C_9H_{19}</td>
<td>EPA</td>
<td>88</td>
<td>+9.4</td>
</tr>
<tr>
<td>(R)-2d</td>
<td>-C_{11}H_{23}</td>
<td>EPA</td>
<td>88</td>
<td>+8.8</td>
</tr>
</tbody>
</table>

\(^1\) c = 1, CHCl_3/CH_3OH (1:1)
Results of Coupling Reaction

![Diagram of coupling reaction]

<table>
<thead>
<tr>
<th>Compound</th>
<th>MCFA</th>
<th>PUFA</th>
<th>Yields (%)</th>
<th>$[\alpha]_D^{1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)-2a</td>
<td>-C₂H₇</td>
<td>DHA</td>
<td>87</td>
<td>+4.3</td>
</tr>
<tr>
<td>(R)-2b</td>
<td>-C₇H₁₉</td>
<td>DHA</td>
<td>94</td>
<td>+5.1</td>
</tr>
<tr>
<td>(R)-2c</td>
<td>-C₉H₂₁</td>
<td>DHA</td>
<td>85</td>
<td>+3.9</td>
</tr>
<tr>
<td>(R)-2d</td>
<td>-C₁₁H₂₃</td>
<td>DHA</td>
<td>73</td>
<td>+4.4</td>
</tr>
</tbody>
</table>

$^{1)} c = 1, \text{CHCl}_3/\text{CH}_3\text{OH} (1:1)$

Summary

- Enantiopure structured PC
- *Rhizomucor miehei* lipase: The best catalyst
- Outstanding regioselectivity of the lipase
- Acyl migration eliminated by mild conditions
- Very high to excellent yields in all cases
- Only two steps
- Full characterization by ^1H, ^{13}C and ^{31}P NMR
Application

• Clinical research
• Individual fatty acid investigations
• Pure compounds useful as standards
• Isotopically labelled fatty acids
• Liposomes

Acknowledgements

• Björn Kristinsson and Carlos D. Magnusson
• Dr. Sigridur Jonsdottir for NMR analysis
• Dr. Sigurdur Smarason for High Resolution MS
• Icelandic Research Fund for financial support
• Avanti Polar Lipids for Pure GPC
• Pronova Biocare in Norway for pure EPA and DHA and Novozyme in Denmark for the lipase
Thank you!