Bioactive compounds in food plants and their impact on human health

Lars Porskjær Christensen

Institute for Chemical Engineering, Biotechnology and Environmental Technology, Faculty of Engineering, University of Southern Denmark
E-mail: lpc@kbm.sdu.dk

Bioactive natural products in plants

Plants produce secondary metabolites mainly for the protection against attack from microorganisms, herbivores etc.

> 200,000 secondary metabolites have so far been isolated from plants. Potential bioactive compounds.

Plants can contain > 1,000 secondary metabolites.

Bioactive secondary metabolites from plants:

- **Fatty acid derivatives** (e.g., glycolipids such as galactolipids, fatty acids, polyacetylenes).

 Origin: Acetate pathway.

- **Terpenoids** and **steroids. Origin**: Build up by isoprene units (C₅).

- **Polyphenols** (e.g., flavonoids, isoflavones, anthocyanins, stilbenes, phenolic acids, lignans).

 Origin: shikimic acid and/or acetate pathway.

- **Alkaloids. Origin**: Derived from amino acids + other pathways

- **Glucosinolates** and **cyanogenic glycosides. Origin**: Derived from amino acids.
Characteristics of bioactive natural products – Mode of action

- **Bioavailability**
 Absorption from the gastrointestinal tract into plasma. **Bioactive compounds** has to be **relative hydrophobic** to be absorbed through the lipophilic cell membrane layers.

- **Binding to specific receptors**
 (i) Size and shape resemblance those of endogen metabolites being able to bind to specific receptors.
 (ii) Induction/inhibition of specific genes/enzymes/metabolites resulting in a physiological response.

- **Inhibition of ion-channels and disruption of cell membranes**

- **Antioxidant activity**
 (i) **Direct antioxidant activity**. Redox active compounds that inactivate reactive oxygen species (ROS). Particular relevant in the prevention of cardiovascular diseases.
 (ii) **Indirect antioxidant activity**. Compounds (not necessarily redox active), which induces the production of cytoprotective proteins (phase 2 enzymes).

- **Covalent binding to biomolecules**
 Apoptosis (programme cell death), inhibition of cell proliferation, inhibition of metabolic processes, immune system stimulation.

Bioactive compounds in food plants – Fatty acid derivatives

Linolenic acid

Linoleic acid

Bioactivity: Essential fatty acids. Precursor for prostaglandins that are important regulators of metabolic processes. **Source**: Rapeseed, soya and flaxseed oil and many other plants.

Monogalactosyldiacylglycerol (galactolipid)

Bioactivity: Anti-inflammatory and anticancer activity in vitro. In vivo activity unknown (bioavailable?). **Source**: Mainly green vegetables.
Bioactive compounds in food plants – Fatty acid derivatives

Falcarinol (= Panaxynol)

Falcarindiol

Panaxydiol

Bioactivity: Anti-inflammatory, anticancer, anti-platelet-aggregatory, anti-bacterial, anti-fungal and more. **Mode of action:** Covalent-binding to biomolecules (strong alkylating agents). **Source:** Food plants of the Apiaceae (Umbelliferae) family.

Bioactive compounds in food plants – Terpenoids

Limonene

(--)-Menthol

Thymol

(--)-α-bisabolol

Lactucin

Carmosolic acid

Carnosol

Steviol

Bioactivity: Anti-inflammatory, anti-bacterial, anti-fungal, and anti-diabetic activity. **Mode of action:** Disruption of membranes, covalent binding to biomolecules, and binding to specific receptors. **Source:** Mainly herbs and spices.
Bioactive compounds in food plants – **Triterpenoids**

Cucurbitacins present in cucumber, melon, and marrow. Bitter tasting, purgative and extremely cytotoxic.

Limonoids present in citrus fruits, seeds, and juice. Bitter tasting and antifeedant activity. Anticancer effect and prevent cardiovascular diseases (reduces LDL cholesterol levels).

Bioactive compounds in food plants – **Tetraterpenes

Carotenoids are widespread in plants and have provitamin A activity, antioxidant capacity, and possible anticancer effect (e.g., lycopene)

Tetraterpenes (Carotenoids, C_{40})
Bioactive compounds in food plants – Flavonoids

- **Quercetin 3-O-rutinoside (rutin, flavonol)**
- **Luteolin 3-O-glucoside (flavone)**
- **Hesperetin 7-O-rutinoside (flavanone)**
- **(+)-Catechin (flavan-3-ol)**

Bioactivity: Antioxidants. Anti-inflammatory, anticancer and immunostimulatory effect and prevention of cardiovascular diseases? **Glycosides low bioavailability.**

Source: Widely distributed in plants.

Bioactive compounds in food plants – Isoflavones

- **Daidzein**
- **Genistein**
- **Daidzein 7-O-glucoside**
- **Genistein 7-O-glucoside**

Bioactivity: Regulates oestrogenic response being able to bind to oestrogen receptors. Prevent the incidence of breast cancer and prostate cancer. Effect against type 2 diabetes?

Source: Legumes (in particular soybeans).
Bioactive compounds in food plants – Anthocyanins

Bioactivity: Antioxidants. Anti-inflammatory and anticancer activity and prevention of cardiovascular diseases. **Source:** Widely distributed in plants and present in high concentrations in berries.

Bioactive compounds in food plants – Stilbenes

Bioactivity: Antioxidant, anti-inflammatory and anticancer activity. Prevent the development of cardiovascular diseases (inhibiting LDL-oxidation and platelet aggregation). **Source:** Grapes, wine, soya and peanut products and in the Itadori plant (roots used to produce tea in Asia).
Bioactive compounds in food plants – Gingerols and Curcuminoids

Bioactivity: Anti-inflammatory, antiulcer and anticancer activity. **Source:** Ginger family (Zingiberaceae)

Bioactive compounds in food plants – Phenolic acids

Bioactivity: Antioxidants. Prevents the development of cardiovascular diseases. Anticancer and immunostimulatory effect? Bioavailable?
Bioactive compounds in food plants – **Alkaloids**

Glycoalkaloids (steroidal alkaloids)

Bioactivity: Toxic to humans in high concentrations. Potential anticancer effect in low concentrations. **Source:** Many plants of the genus *Solanum* (Solanaceae), including potatoes and tomatoes.

Bioactive compounds in food plants – **Glucosinolates**

Anticancer effect
- Potent inducers of detoxification enzymes resulting in excretion of potential carcinogens prior to harmful effects. Removal of xenobiotics.
- Antiproliferative effects on cancer cells (apoptosis).
- Phyto-oestrogenic effect. Prevention of breast/prostate cancer (IC3).
State of the art within the field of bioactive compounds in food plants

- Direct antioxidants (especially glycosides) are not major contributors to the health effects of plant-based foods due to: (i) low bioavailability, (ii) metabolism and absorption in vivo unclear, (iii) general low bioactivity compared to other bioactive compounds etc.

- Health effects of plant-based foods are most likely due to the presence of bioactive compounds with bioactivity unrelated to antioxidant activity.

Hypotheses

Bioactive secondary metabolites with different bioactivities and mode of actions are major contributors to the health promoting effects of plant-based foods.

Future work

(i) Focus on identification of highly bioactive compounds with effects towards specific diseases and their possible mode of action.

(ii) Bioavailability and metabolism of bioactive compounds.

Bioactive compounds in plants: Anticancer effect and other health promoting effects of carrots

Carrots are used for foods all over the world and have been used in centuries in traditional medicine in the West.

Carrot is closely related with food plants and medicinal plants of the Apiaceae and Araliaceae plant families that are known to possess important pharmacological effects such as:

- Anti-inflammatory effect
- Anticancer effect
- Anti-platelet-aggregatory effects
- Anti-diabetic effects
- and many other pharmacological effects
Anticancer effect of carrots

- Epidemiological studies have shown that the intake of vegetables rich in α- and β-carotene, and/or a high level of β-carotene in blood samples, is correlated with a reduced risk of cancer.
- Intake of α- and β-carotene is closely correlated with a high intake of carrots.
- **Human intervention studies**: supplements of β-carotene increased the incidence of cancer!

‘β-Carotene paradox’

Do carrots contain other potential substances with the ability to prevent cancer?

Potential bioactive compounds of carrots

Monoterpenes
- p-Cymene
- Terpinolene
- Limonene
- γ-Terpinene

Sesquiterpenes
- β-Caryophyllene
- (E)-γ-bisabolene

Tetraterpenes
- β-Carotene
Potential bioactive compounds of carrots

- **Cytotoxic**
 - 2-Epilaserine

- **Anti-fungal**
 - 6-Methoxymellein

- **Anti-inflammatory**
 - Gazarin

 + other cyanidin derivatives

 - Cyanidin 3-O-glucoside

- **Antioxidant?**

Potential bioactive compounds of carrots

- **Falcarnol (= Panaxynol)**

- **Falcardinol**

 - Falcardinol 3-acetate

 - Panaxydiol
Bioassay-guided fractionation for identification of potential anticancer principles of carrots

Processing/extraction

Methanol extract

Fractionation and testing

HO
HO

Falcarinol (= Panaxynol)

HO
OH

Falcarindiol

Potential anticancer and anti-inflammatory principles in carrots

Effect of falcarinol and falcarindiol on the proliferation of human colon cancer cells (Caco-2)

Effect of falcarinol and falcarindiol on the proliferation of normal small intestinal cells

Effects of falcarinol on cell proliferation of normal cells and Caco-2 cells

Effects of β-carotene on cell proliferation of normal and Caco-2 cells

![Graph showing the effect of β-carotene on cell proliferation](image)

Bioavailability of polyacetylenes determined by multiple reaction monitoring (MRM) LC-MS/MS

<table>
<thead>
<tr>
<th>Plasma samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins removed by precipitation with acetonitrile</td>
</tr>
</tbody>
</table>

![Plasma samples](image)

![Graph showing the bioavailability of polyacetylenes](image)

Bioavailability studies of falcarinol in humans

Concentration of falcarinol in plasma as function of time after ingestion of a breakfast meal consisting of carrot juice (13 mg/L). n = 14.

![Graph showing concentration of falcarinol in plasma as function of time after ingestion of carrot juice.]

Potential anticancer effect of carrots and polyacetylenes demonstrated in rats induced with colon cancer

ACF (»Aberrant Crypt Foci«) = biomarkers for advanced steps on the progression towards cancer

![ACF images and image of tumours in rat colon.]
Effect of treatments with carrot or falcarinol in physiological relevant concentrations of four types of (pre)cancerous lesions in rat colons

Type and size of lesion

Increasing steps on the progression towards cancer. The trend for reducing the size of lesion was significant ($P = 0.028$)

Falcarnol-type polyacetylenes strong alkylating agents

Falcarnol coupled to biomolecules (e.g., a protein)
Effect of falcarinol and falcarinon on the proliferation of human colon cancer cells (Caco-2)

Health promoting effects of falcarinol-type polyacetylenes probably related to their lipophilic and alkylating properties

- **Immunomodulatory effect**: Enhanced production of T-lymphocytes and macrophages through interaction with proteins, e.g., formation of hapten-protein complexes (antigens).

- **Inactivation of proteins/enzymes**:
 1. Inhibition of enzymes responsible for the proliferation of cancer cells such as COX-2 and nuclear factor κB. **Anti-inflammatory activity!**
 2. Inhibition of COX-1 and COX-2 related to the anti-inflammatory effect of falcarinol-type polyacetylenes, and hence also their possible anti-platelet aggregatory effects. Regulation of prostaglandin production.

- **Apoptosis (programme cell death)**.
 1. DNA damage.
 2. Induction of cell cycle arrest.
 3. Cell damage caused by increased production of macrophages.

.......... and many other possible explanations.
Thank you for your attention!