
ETS170 Kravhantering
Tutorial on requirements modelling with reqT
with brief introduction to Scala

reqT home page: http://reqt.org

reqT cheat sheet: http://reqt.org/reqT-cheat-sheet.pdf

(Last update 2024 January 24)

Björn Regnell

http://cs.lth.se/krav/reqt/

Some question for you

• How will you partition your req space?
• How will you synchronize your work?
• What entity id policy will you have?
• How will you manage versions?
• How will you build your document from

requirements fragments?

Which tools are you going to use?

• Office apps e.g. LibreOffice, MS Office
(spreadsheet, wordprocessor, database)

• Latex
• Web publishing
• Configuration management

(git, gitHub, gitLab, ...)
• Prototyping tools, gui-builders
• Issue trackers / ticket managers / trello etc.
• reqT

• Who will be tool responsible?

Which dogmas
do we preach in
requirements
engineering?

The idea behind reqT

• Methodology agnostic: 'bag of concepts'
• Scalable collection data structure, from 1 to 10E4
• Scriptable: the power of Scala and the JDK
• CLI + GUI for power users
• Integrates with git and similar code/text tools
• Constraint solving for integer problems
• Open source, permissible license

Pros and cons of reqT
+ Tailored to the course terminology

+ Entities, attributes and relations

+ Modularization and aggregation

+ Hierarchical decomposition

+ Export – import
 (txt, html, dot, csv, pdf, svg)

+ Plain text combines well with

* configuration mgmt

* latex

+ Requirements => Code

* syntactic and semantic checks

* scriptable models

- still a prototype
- limited to power users
- limited documentation

(but code is king :))
- still on old Scala 2.12

It helps if you are interested
in coding and in learning a
little bit of Scala

RE on planet Earth
in 5-10 years ... ?

Some hypotheses

More continuous build, integration & deployment

Faster release cycles & Faster innovation

More SW eco systems, distributed developer communities,
open source, AI-based coding

=>

More decentralization
and fewer centrally controlled 'Master Plans'

More coders
will do the bulk of requirements engineering

will use AI prompting in natural language

myModel ++ yourModel

Scenario("Coders work in ecosystems
with req+code+test in distributed
git repos. Each stakeholder has its
own, local understanding of ideas,
roadmaps and acceptance criteria.
Code is forked, pushed, pulled and
merged continuously in the
ecosystem. The 'ice berg' of mixed,
semi-formal models is neither
complete nor fully consistent. We
manage local trees of req+code+test
and mine sets of mixed, semi-formal
models with big data technology on
both dev repos and UX data. The
community culture and repo
governance determine success rather
than process control.")

Evolving mix of levels of detail & quality in
continuous requirements engineering

Level of detail, specification quality

JVM

Java

Scala
JaCoP

reqT

reqT/CSP

Platform

Libraries

DSL

Domain Application

reqT architecture

CLI + GUI

Open Source Software
(OSS) in reqT

OSS
• reqT
• Scala libs & compiler
• JaCoP
• jLine
• RSyntaxTextArea
• jFlex
• GraphViz

Licence
• BSD-2-caluse
• similar to BSD-2-caluse
• GNU GPL v2 & v3
• similar to BSD-2-caluse
• similar to BSD-2-caluse
• BSD-2-caluse
• Eclipse Public License

Requirements as graph structures

 val m = Model(
 Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),
 Feature("f1") requires (Feature("f2"), Feature("f3")),
 Stakeholder("s1") requires Feature("f2")
)

 m.toGraph.save("graph.dot")

$ dot -Tpdf graph.dot -o graph.pdf

Download GraphVis:
http://graphviz.org

https://superuser.com/questions/949560/
how-do-i-set-system-environment-variabl
es-in-windows-10

http://graphviz.org/
http://graphviz.org/
https://superuser.com/questions/949560/how-do-i-set-system-environment-variables-in-windows-10
https://superuser.com/questions/949560/how-do-i-set-system-environment-variables-in-windows-10
https://superuser.com/questions/949560/how-do-i-set-system-environment-variables-in-windows-10

The embedded DSL provides a
recursive, tree-like data structure

m.tip

m.top

Requirements Entities
Examples from the reqT metamodel

Product, Interface,
Stakeholder, Idea, Goal,
Feature, Data, Function,
State, Event, Quality,
Design, Scenario, Story,
UseCase, Risk, Release,
Issue, Test, Variant, Req

Tree

Editor

Ctrl+Shift+E
Edit selected tree node

Ctrl+Shift+R
Replace selected tree

node by Model in editor

Ctrl+Enter
Run code to console

Desktop GUI

Some essential requirements entitites
and attributes

Req generic, abstract,
undecided
Feature decision item with
status
Stakeholder
Goal
UserStory, TestCase, Issue
Quality
Function
Data
...

Gist short one-
liner
Spec txt descr
Why
Example
Prio
Cost
Benefit
Status
...

Some essential requirements
relations

• Requirements entities
have relations that turn
the reqts into a graph

Model(
 Req("a") requires Req("b")
)

• has
• requires
• excludes
• helps
• hurts
• ...

Split and merge

val myModel = Model(Req("x") has Spec("a"))

val yourModel = Model(Req("y") has Spec("b"))

val merged = myModel ++ yourModel

merged.toScala.save("newModel.scala")

Model(

 Req("x") has Spec("a"),

 Req("y") has Spec("b")

)

Short about Scala

• Scalable, concise, type safe
• Object-oriented meets functional
• Runs on the java virtual machine
• Can use any java byte code directly
• Statically typed: find bugs at compile time
• Type inference avoids boilerplate and keeps type safety
• Compile with scalac or run as scripts with scala
• The Scala 2.12 Read-Evaluate-Print-Loop (REPL) is

wrapped inside reqT so you can make general programs
in reqT while modeling requirements

• https://www.scala-lang.org/

https://www.scala-lang.org/

Fig 1.6C Recommendation: why + how

Measuring neural response is a bit painful to the
patient. Electrodes must be kept in place . . . So
both hands should be at the patient during a
measurement.

R1: It shall be possible to perform the commands
 start, stop, . . . with both hands at the patient.

Might be done with mini keyboard (wrist keys), foot
pedal, voice recognition, etc.

Domain
- why

Req.

Example
- how

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Why+How+Example

Model(
 Feature("navigate") has (
 Why(

"Measuring neural response is a bit painful to the
patient. Electrodes must be kept in place ... So
both hands should be at the patient during a
measurement."),

 Spec(
"It shall be possible to perform the commands start,

stop, ... with both hands at the patient."),
 Example(

"Might be done with mini keyboard (wrist keys), foot
pedal, voice recognition, etc.")

)
)

reqT Virtual Window example
Model(
 Data("createGuest") has (

Spec(
"The product shall store guest data
according to virtual window 'create
guest data'."),

Image("create-guest-data.png")))

Hotel
system

Guest

Account
system

Fig 3.2 Context diagram

confirmation,
invoice

booking,
checkout,
service note,
. . .

R1:
The product shall
have the following
interfaces:

Hotel
system

Guest

Account
system

Accountant

Waiter

R2 ??:
The reception domain
communicates with the
surroundings in this way:

Reception

Recep-
tionist Telephone

system

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Recep-
tionist

reqT Context Diagram Example
Model(
 Product("HotelApp") has (
 Interface("receptionUI") has
 Actor("Receptionist"),
 Interface("guestUI") has Actor("Guest"),
 Interface("phoneAPI") has System("Telephony"),
 Interface("accountAPI") has System("Accounting")),
 Data("InterfaceIO") has (
 Interface("receptionUI") has (
 Input("booking"), Input("checkOut"),
 Output("serviceNote")),
 Interface("guestUI") has (
 Output("confirmation"), Output("invoice"))))

Fig 2.3 Data dictionary

Class: Guest [Notes a, b ... refer to guidelines]

The guest is the person or company who has to pay the bill. A guest has one or more
stay records. A company may have none [b, c]. “Customer” is a synonym for guest, but
in the database we only use “guest” [a]. The persons staying in the rooms are also
called guests, but are not guests in database terms [a].

Examples
1.A guest who stays one night.
2.A company with employees staying now and then, each of them with his own stay
record where his name is recorded [d].
3.A guest with several rooms within the same stay.

Attributes
name: Text, 50 chars [h]

The name stated by the guest [f]. For companies the official name since
the bill is sent there [g]. Longer names exist, but better truncate at
registration time than at print out time [g, j].
passport: Text, 12 chars [h]
Recorded for guests who are obviously foreigners [f, i]. Used for police
reports in case the guest doesn’t pay [g] . . .

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Data dictionary example

Lau: fig 2.3

Fig 2.2A Data model (E/R-diagram)

R2: The system shall store the following data:

Stay

Room
State

Room

Service
Service

Type

date, #persons,
state (booked|occupied|repair)

name,
address1,
address2,
address3,
passport

room#,
#beds, type
price1, price2

name, price

date, count

Guest

stay#,
paymethod,
employee

Stays

Guests

One-to-many (1:m)

Each guest
connected to
zero or more stays

Each stay
connected to
one guest record

From: Soren Lauesen:
Software Requirements ©
Pearson / Addison-Wesley
2002

Entities and Relationships
Cardinality
of relationshttp://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

reqT Data model example
Model(
 Section("relations") has (
 Class("Guest") relatesTo (Class("Stay") has Min(1)),
 Class("Stay") relatesTo (
 Class("RoomState") has (Class("Service") has Min(1)),
 Class("ServiceType") relatesTo (Class("Service") has Min(1)),
 Class("Room") relatesTo (Class("RoomState") has Min(1))),
 Section("attributes") has (
 Class("Guest") has (
 Member("name"), Member("address1"), Member("address2"),
 Member("address3"), Member("passport")),
 Class("Stay") has (Member("stayId"), Member("paymethod"),
Member("employee")),
 Class("ServiceType") has (Member("name"), Member("price")),
 Class("Service") has (Member("serviceDate"), Member("serviceCount")),
 Class("Room") has (
 Member("roomId"), Member("bedCount"), Member("roomType"),
 Member("price1"), Member("price2")),
 Class("RoomState") has (
 Member("date"), Member("personCount"), Member("state")))))

[Example modified from Lauesen: "Software Requirements – Styles and Techniques"]

What is a ‘feature’?
Some possible definitions:
1. A textual shall-statement requirement
2. A releasable characteristic of a (software-

intensive) product
3. A (high-level, coherent) bundle of

requirements
4. A ‘decision unit’ that can be ‘in’ or ‘out’ of a

release plan depending on:
¨ What it gives (investment return)
¨ What it takes (investment costs)
¨ Politics, Beliefs, Loyalties, Preferences ...

reqT> Feature ?
res1: String = A releasable characteristic of a product. A
(high-level, coherent) bundle of requirements.

Example of attributes of features in a req. database

[MDRE]

[MDRE]

Feature promotion ladder

Status(value: Level)

SPECIFIED

ELICITED

VALIDATED

PLANNED

IMPLEMENTED

TESTED

RELEASED

DROPPED

POSTPONED

up

up

up

up

up

up

FAILED

up

up

up

down

init

up

down

down

down

down

down

down

down

down

down

reqT> val s = Status.start
s: reqT.Status = Status(ELICITED)

reqT> s.up
res1: reqT.Status = Status(SPECIFIED)

reqT> s.down
res2: reqT.Status = Status(DROPPED)

reqT> var m = Model(Feature("x") has Status.init, Feature("y") has Status.init)
m: reqT.Model =
Model(
 Feature("x") has Status(ELICITED),
 Feature("y") has Status(ELICITED)
)

reqT> m.up
res1: reqT.Model =
Model(
 Feature("x") has Status(SPECIFIED),
 Feature("y") has Status(SPECIFIED)
)

reqT> m.up("x")
res2: reqT.Model = Model(
 Feature("x") has Status(SPECIFIED),
 Feature("y") has Status(ELICITED)
)

up and down the salmon ladder

Fig 3.5A Screens & prototypes

R1: The product shall use the screen pictures shown in App. xx.

R2: The menu points and buttons shall work according to the
process description in App. yy.
Error messages shall have texts as in . . .

R3: Novice users shall be able to perform task tt on their own in
mm minutes.

The customer imagines screens like
those in App. xx.

Certificate: The requirements engineer

has usability tested this design according

to the procedures in App. zz.

Makes sense?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.5A Screens & prototypes

R1: The product shall use the screen pictures shown in App. xx.

R2: The menu points and buttons shall work according to the
process description in App. yy.
Error messages shall have texts as in . . .

R3: Novice users shall be able to perform task tt on their own in
mm minutes.

The customer imagines screens like
those in App. xx.

Certificate: The requirements engineer

has usability tested this design according

to the procedures in App. zz.

Makes sense?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Design("screen1") has Image("screen1.png")

Fig 2.5 Virtual Windows

R1: The product
shall store data
corresponding to the
following virtual
windows:

R2: The final
screens shall look like
the virtual windows ??

Rooms 7/8 8/8 9/8 10/8
11 Double Bath 800 600 O B
12 Single Toil 600 O O B B
13 Double Toil 600 500 B B B

Service charges

Breakf. rest.
40
Breakf. room
60
. . .

Stay#: 714
Guest
Name: John Simpson
Address: 456 Orange Grove

Victoria 3745
Payment: Visa

Item #pers
7/8 Room 12, sgl 1

600
8/8 Breakf. rest 1

40
8/8 Room 11, dbl 2

800
9/8 Breakf. room 2

120

9/8 Room 11, dbl 2
800

Breakfast
9/8

In
In

R# rest
room

11
2

12 1
13 1

1

From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

reqT Virtual Window example
Model(
 Data("createGuest") has (

Spec(
"The product shall store guest data
according to virtual window 'create
guest data'."),

Image("create-guest-data.png")))

Hotel
system

Guest

Account
system

Fig 3.2 Context diagram

confirmation,
invoice

booking,
checkout,
service note,
. . .

R1:
The product shall
have the following
interfaces:

Hotel
system

Guest

Account
system

Accountant

Waiter

R2 ??:
The reception domain
communicates with the
surroundings in this way:

Reception

Recep-
tionist Telephone

system

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Recep-
tionist

reqT Context Diagram Example
Model(
 Product("HotelApp") has (
 Interface("receptionUI") has
Actor("Receptionist"),
 Interface("guestUI") has Actor("Guest"),
 Interface("phoneAPI") has System("Telephony"),
 Interface("accountAPI") has
System("Accounting")),
 Data("InterfaceIO") has (
 Interface("receptionUI") has (
 Input("booking"), Input("checkOut"),
 Output("serviceNote")),
 Interface("guestUI") has (
 Output("confirmation"), Output("invoice"))))

Fig 3.6A Task descriptions

Work area: 1. Reception
Service guests - small and
large issues. Normally
standing. Frequent
interrupts. Often alone, e.g.
during night.

Users: Reception experience, IT
novice.

R1: The product shall support
tasks 1.1 to 1.5

Work area: 1. Reception
Service guests - small and
large issues. Normally
standing. Frequent
interrupts. Often alone, e.g.
during night.

Users: Reception experience, IT
novice.

R1: The product shall support
tasks 1.1 to 1.5

Task: 1.1 Booking
Purpose: Reserve room for a guest.

Task: 1.1 Booking
Purpose: Reserve room for a guest.

Task: 1.2 Checkin
Purpose: Give guest a room. Mark it as

occupied. Start account.
Trigger/
Precondition: A guest arrives
Frequency: Average 0.5 checkins/room/day
Critical: Group tour with 50 guests.

Sub-tasks:
1. Find room
2. Record guest as checked in
3. Deliver key

Variants:
1a. Guest has booked in advance
1b. No suitable room
2a. Guest recorded at booking
2b. Regular customer

Task: 1.2 Checkin
Purpose: Give guest a room. Mark it as

occupied. Start account.
Trigger/
Precondition: A guest arrives
Frequency: Average 0.5 checkins/room/day
Critical: Group tour with 50 guests.

Sub-tasks:
1. Find room
2. Record guest as checked in
3. Deliver key

Variants:
1a. Guest has booked in advance
1b. No suitable room
2a. Guest recorded at booking
2b. Regular customer

Task: 1.3 Checkout
Purpose: Release room, invoice guest.
. . .

Task: 1.3 Checkout
Purpose: Release room, invoice guest.
. . .

Missing
sub-task?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

reqT Task description example

Model(
 Task("receptionWork") has (
 Task("booking"),
 Task("checkIn") has (
 Why("Guest wants room."),
 Frequency(3),
 Spec(

"Give guest a room, mark it as occupied and start account.
Frequency scale is median number of check-ins/room/week.
Trigger: A guest arrives.
Critical: Group tour with 50 guests."),

 Task("findRoom"),
 Task("recordGuest") has
 Spec("variants:

a) Guest has booked in advance,
b) No suitable room"),

 Task("deliverKey"))))

Fig 4.4 State diagrams

Rooms have a RoomState for each day in the planning period. The
status shows whether the room is free, occupied, etc. that day.

R12: RoomState shall change as shown in Fig. 12.

Fig. 12. RoomState

free booked

occupied
repair

book

cancel

checkin
changeRoom

checkin

checkout
changeRoom

repair

done

event

create

?
From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

reqT State transition Model

Model(
 Section("roomState") has (
 Title("Room State Model"),
 State("free") has (
 Event("book") precedes State("booked"),
 Event("checkin") precedes State("occupied"),
 Event("changeRoom") precedes State("occupied"),
 Event("repair") precedes State("repairing")),
 State("booked") has (
 Event("checkIn") precedes State("occupied"),
 Event("cancel") precedes State("free")),
 State("occupied") has (
 Event("checkout") precedes State("free"),
 Event("changeRoom") precedes State("free")),
 State("repairing") has (
 Event("done") precedes State("free"))))

Example: variability model
Model(

 Component("apperance") has (

 VariationPoint("color") has (

 Min(0), Max(2),

 Variant("blue"), Variant("red"), Variant("green")),

 VariationPoint("shape") has (

 Min(1), Max(1), Variant("round"), Variant("square")),

 VariationPoint("payment") has (

 Min(1), Max(2), Variant("cash"), Variant("credit")),

 VariationPoint("payment") requires Variant("cash"), /* mandatory */

 Variant("round") excludes Variant("red"),

 Variant("green") requires Variant("square")),

 Component("apperance") requires VariationPoint("shape"), /* mandatory */

 App("free") requires Component("apperance"),

 App("free") binds (

 VariationPoint("shape") binds Variant("round")),

 App("premium") requires Component("apperance"),

 App("premium") binds (/* violating variability constraints */

 VariationPoint("color") binds (Variant("red"), Variant("green")),

 VariationPoint("shape") binds (Variant("round"), Variant("square")),

 VariationPoint("payment") binds Variant("cash")))

Constaint solving

val m = Model(
 Stakeholder("x") has Constraints(
 Var("x") > Var("y"),
 Seq(Var("x"),Var("y"))::{1 to 42}
)
)
m.satisfy

Priorities and benefits

val m = Model(
 Stakeholder("modeler") has (
 Prio(1),
 Req("autoSave") has Benefit(25),
 Req("exportGraph") has Benefit(10),
 Req("exportTable") has Benefit(8),
 Req("autoCompletion") has Benefit(28)),
 Stakeholder("tester") has (
 Prio(2),
 Req("autoSave") has Benefit(3),
 Req("exportGraph") has Benefit(25),
 Req("exportTable") has Benefit(14),
 Req("autoCompletion") has Benefit(2)))

Some Model operations

 // run in reqT:
 m.collect { case s: Stakeholder => s }
 m.collect { case Stakeholder(id) => id }
 m.collect { case Benefit(b) => b }.sum
 m.collect { case e: Entity => e.id }.
 foreach{s => println("hej "+s)}
 m / Stakeholder("modeler").has / Prio
 m.toHtml
 m.toLatex.save("myModel.tex")
 Vector(Feature("x"), Feature("y")).toModel
 m.atoms
 m.flat // same as: m.atoms.toModel
 m.contains(Stakeholder)
 m.restrict(Stakeholder("modeler"))
 m * Stakeholder("modeler")
 m.transform { case Stakeholder(id) => User("Mrs. "+ id) }

Scenario("workInParallell")

// Kalle works on one model and Stina on another
val kalle = rndModel()
kalle.save("k.reqt")
val stina = rndModel()
stina.save("s.reqt")

// another day they want to load and merge
val k = Model.load("k.reqt")
val s = Model.load("s.reqt")
val merged = k ++ s

// check if they are working on common ids (risk of
clash):
kalle.ids.toSet.intersect(stina.ids.toSet)
kalle.ids.toSet & stina.ids.toSet // same as intersect

//create latex fragment for input in main latex file
merged.toLatexBody.save("m.tex")

Some question for you

• How will you partition your req space?
• How will you synchronize your work?
• What entity id policy will you have?
• How will you manage versions?
• How will you build your document from

requirements fragments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

