
0 7 4 0 - 7 4 5 9 / 2 4 © 2 0 2 4 I E E E NOVEMBER/DECEMBER 2024 | IEEE SOFTWARE 17

Editor: Markus Borg
CodeScene
markus.borg@codescene.com

REQUIREMENTS

FORTY YEARS IS a fascinating
time span. For me, Markus (MB),
it’s roughly the time since my birth.
As a racket sports player, turning 40
means I can now compete in the se-
nior category. Were I a car, I would
qualify for historic vehicle registra-
tion in several countries. As a human,
however, I start receiving invitations
to regular health screenings.

Traditionally, 40 years marks the
typical length of a professional career.

The period is lengthy enough to en-
compass many significant events. Yet,
it remains comprehensible enough for
reflection—making it an ideal mo-
ment to do so!

The Formative Years
MB: Kristian, you’ve been involved
in the requirements engineering (RE)
discipline since its inception. Please
tell us about the very early days.

KRISTIAN SANDAHL (KS): My plea-
sure. During the 1970s and 1980s—
when the term RE was coined—the

focus was on creating and maintain-
ing functional, written, paper-based
specifications. At that time, templates
for specifications were cutting-edge. A
textbook featuring usable templates
was at least twice as expensive as other
software engineering books.

I vividly remember when the first
edition of the IEEE Guide for Soft-
ware Requirements Specifications (IEEE
830) was approved by the board in Sep-
tember 1983. Around the same period,
large U.S. Government agencies began
transitioning to electronic documenta-
tion with SGML, a precursor of XML.

The Magazine at 40:
Viewing Requirements
Engineering Through
a Ruby Lens
Kristian Sandahl , Björn Regnell , and Markus Borg

Digital Object Identifier 10.1109/MS.2024.3429774
Date of current version: 10 October 2024

From the Editor

In this final issue of the year, we mark a milestone: IEEE Software’s 40th anniver-

sary—a ruby jubilee! While this column still awaits the silver achievement badge

(25 years)—Suzanne Robertsson founded it in the early millennium—I’m pleased

to present a discussion with two seasoned professors of requirements engineer-

ing. They will share their personal reflections on the discipline over the past four

decades. I’m particularly pleased to feature a retrospective by the new retiree,

Prof. Sandahl. Naturally, we conclude with an outlook on what is to come. Long

live the new quadragenarian!—Markus Borg

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on January 29,2025 at 15:11:47 UTC from IEEE Xplore. Restrictions apply.

mailto:markus.borg@codescene.com
https://orcid.org/0000-0002-3052-5604
https://orcid.org/0000-0002-9380-6120
https://orcid.org/0000-0001-7879-4371

REQUIREMENTS

18 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

MB: The time of strong belief in
structure, right?

KS: Absolutely. However, the field pro-
gressed from templates and structured
text to more expressive models. The
late 1980s witnessed the advent of the
use case approach within Objectory,
which evolved into the Unified Mod-
eling Language (UML). The ideal
of that time was a seamless design
starting from use cases and then
 identifying classes. Finally, more de-
tailed sequence diagrams, and per-
haps state-machine diagrams for
detailed behavior.

The intent was to enable iterative re-
finement into design and implementa-
tion models. Thus, ensuring traceability
from requirements to implementation.
Traceability had, up until then, been
awkwardly handled by large matrices
linking requirements with design ele-
ments. The introduction of use cases
was often helpful, particularly because
they were understandable by many
stakeholders, not just IT specialists.
Still, in many cases, a huge semantic
gap remained between analysis models
and design, especially when the design
involved reusing existing software.

The RE Heydays
MB: This was still before the aca-
demic conferences?

KS: True, but then the very inter-
esting 1990s followed. We saw the
inauguration of the three confer-
ences RE, ICRE, and REFSQ. This
triggered an exciting influx of ideas
from various fields.

MB: Which other fields do you think
influenced RE the most in this period?

KS: I would highlight three areas.
First, information systems (IS) experts
had been analyzing and designing
organizational business processes
since the 1960s. Their job was to
provide requirements and a system
architecture which the programmers
then implemented. The IS influ-
ence also contributed more qualita-
tive research methods into RE. On
the other hand, software engineer-
ing professionals traditionally began
with the requirements and worked
toward designing the engineering pro-
cesses. It is interesting to note that
these two professions happily met in
the requirements.

Second, we experienced an increase
in adopting techniques from artificial
intelligence in the 1990s. In contrast
to today’s hype, this was caused by
that decade’s AI winter. Some AI re-
searchers specializing in knowledge
acquisition found themselves useful
in enhancing requirements elicitation.
For instance, Hudlicka discussed the
common challenges in both knowl-
edge and requirements elicitation
when interviewees struggle to articu-
late their thoughts clearly.1 and Nat-
ural language processing emerged as
another AI application to help ana-
lyze textual requirements, improve
traceability, and automatically clas-
sify requirements.

Third, formal methods became
computationally tractable and gained
popularity in safety-critical applica-
tions. Through logical inference, they
could ensure consistency and goal
fulfillment. As software inspections
became widespread in the industry,
these methods were increasingly
used as knowledge-based methods
for requirements validation.

MB: How did you share this growing
body of knowledge with students?

KS: As the field matured, books ap-
peared that I used in university teach-
ing. The Sommerville and Sawyer
textbook from 1997 summarized the
state of practice.2 A single book can-
not cover everything, but this came
close. I like how it discussed the pros
and cons of various RE practices to
guide the engineers. Requirement
management with different tech-
niques for prioritization and classifi-
cation became prominent.

Another seminal book was Non-
functional Requirements (NFR) in
Software Engineering by Chung et
al.3 NFRs had really been an under-
appreciated area of RE but became

DISCUSSANTS

KRISTIAN SANDAHL. Professor of software engineering and head of the
Programming Environments Laboratory at Linköping University, Sweden. Just
announced his retirement—an ideal time for a retrospective! Affiliated with
Ericsson Research from 1995–2001, during which time he mentored a young
Ph.D. degree student (Björn) during an internship.

BJÖRN REGNELL. Professor of software engineering at Lund University, Swe-
den. Over 30 years of experience in software engineering with a focus on em-
pirical research in requirements engineering. Steering Committee Chair of the
International Working Conference on Requirements Engineering: Foundation
for Software Quality (REFSQ) 2013–2017.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on January 29,2025 at 15:11:47 UTC from IEEE Xplore. Restrictions apply.

REQUIREMENTS

 NOVEMBER/DECEMBER 2024 | IEEE SOFTWARE 19

a central topic during the early
2000s. The book was a landmark,
exploring tradeoffs among differ-
ent system quality factors. It was
also instrumental in integrating in-
put from usability engineering and
other quality-focused disciplines into
requirements specifications. Other
fields then saw RE as the vehicle to
make a change—with explicit re-
quirements, the programmers could
not ignore them in subsequent steps.
At the same time, requirements re-
use for quality, for example security,
emerged as an interesting market.

The Agile Transformation
MB: What about agile? This must
have disrupted the RE community too.

KS: Iterative methods to gradually
reach the project target slowly became
a standard, even in large-scale systems
development. This introduced chal-
lenges regarding which requirements
to schedule for each release. Addition-
ally, we understood that organiza-
tions need to balance investment in
detailing requirements against the risk
of them being scrapped or changed
during release planning.

I believe RE practice in the first
15 years of the new millennium was
quite fragmented. On one side were
the enthusiastic proponents of ag-
ile methods, that defied planning in
advantage of implementation. Short
user stories came into fashion for
handling prioritization, scheduling,
and different stakeholder interests
simultaneously. A list of backlog
items posed the requirements speci-
fication. Unfortunately, this ap-
proach often resulted in the loss of
an overview, dependencies, and non-
functional properties of the system.
Trivializing requirements sometimes
worked, but sadly, our understand-
ing of how to express and work with

the desired capabilities and quali-
ties of the system under development
didn’t progress.

BJÖRN REGNELL (BR): I can’t help
but weigh in here. Agile was a back-
lash for RE in many organizations,
with Scrum new-speak essentially
renaming all concepts. But things
have luckily improved. In fact, after
agile, DevOps, and cross-functional
CI teams, the RE work is often more
decentralized to the developers. A
flat organization may not have the
CTO staff to do centralized RE, and
it is pushed out to the platform, ser-
vice, and app teams. Now developers
must do more core RE work.

MB: And we all know the challenges
of scaling agile. What else can you
share about RE in large enterprises?

KS: Large companies have invested in
different requirements tools to man-
age the vast amounts of informa-
tion. Defining increasingly complex
systems at different abstraction lev-
els is no walk in the park. Tools like
DOORS excel at generating parts of
the requirements specifications and
facilitating follow-ups. But for this
to work, practitioners must spend
the effort to make the requirements
atomic—which means sacrificing sight
of their dependencies. Traceability re-
mains an issue and will be for long.
Automated methods can help find ap-
proximate traces, but precise model-
ing is necessary to fully understand
the dependencies involved.

In parallel, modeling got a new
boom with the standardization of
UML 2.x and later SysML in 2006.
Interestingly, SysML even recognizes
a requirement as its own model ele-
ment. This enabled a clearer depiction
of dependencies between requirements
and other artifacts like tests. Yet,

visualizing more than 100 require-
ments on a screen remains difficult.
Some have turned to graphical da-
tabases to store models and gener-
ate needed queries, though these
databases can be too slow for some
needs. But sometimes SysML can
provide substantial value in RE—for
example using it to build simulation
models of cyberphysical systems to
identify failed requirements.

MB: Any comments about the last
10 years?

KS: Data-driven approaches have
been very intriguing over the past
decade. Analyzing operational data
can provide insights for new or ad-
justed requirements. Some DevOps
advocates even push to automate this
feedback loop from operation back
to requirements definition.

Additionally, I must mention the
recent surge in large language mod-
els. It has sparked hope in generat-
ing requirements neatly from diverse
and unstructured information. An
interesting challenge for the future is
to make the generated requirements
interpretable by human decision-
makers so that they can coexist with
traditionally developed requirements.

FIGURE 1. Viewing requirements

engineering through a ruby lens.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on January 29,2025 at 15:11:47 UTC from IEEE Xplore. Restrictions apply.

REQUIREMENTS

20 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

The Current Landscape
MB: Björn, what are your thoughts
on the current AI hype that seems
to have touched every aspect of
technology?

BR: I think, with the AI-boosted
software engineering, we’re finally
on the verge of a significant shift.
We’re moving away from the te-
dious, nitty-gritty coding tasks to
focus more on the real engineering
work—eliciting intentions, focusing
on creativity and imagination, and

carving down relevant priorities.
Also the really hard thing: quality
requirement tradeoffs and interpret-
ing user feedback.

All of these tasks are part of core
RE. A software engineer in dialog
with a reliable large language model
can soon be much more effective in
creating feasible technical descrip-
tions that actually correspond to our
real intentions. Hopefully leaving
subpar IT systems behind. Ideally,
we can finally concentrate on the
essential complexity of the domain
and get support in focusing on our
dialectic interaction between imagi-
nation and implementation with our
goals in mind.

However, this doesn’t imply that
deep coding knowledge is becom-
ing obsolete. Programmers will
still need to develop innovative

and complex business logic and
critically review the sometimes
delusional AI-generated code—an
opaque result of training on yester-
day’s code.

Honestly, we didn’t see this AI capa-
bility coming when we did a similar re-
flection4 and crystal ball outlook5 when
REFSQ had its 10-year anniversary. We
largely missed the current AI boom.

Squinting at the Contours
MB: What surprises and key trends
in RE have stood out to you?

BR: I remember being astonished
by the complexity of real-world RE
during my internship with Kristian.
That complexity still astounds me,
but I’m excited to see the new tools
that are up for beating this challenge.

When I squint at the history
of RE, I see three major evolution
steps, or “eras” if you like:

1. the narrow focus on the mono-
lithic specification

2. the broader perspective: empiri-
cal studies of, and solutions for,
the messy real world

3. smart, open, post-agile RE

Let me unsquint my eyes and
elaborate on this. My reflection is
that RE has evolved through the eras
as the result of seven focus shifts. We
have gone from the following:

• Complete ➔ Economical
Initially, the RE field naïvely

emphasized complete, upfront re-
quirements, which often proved
cost-ineffective. Spending too much
of the scarce RE resources on sim-
ple, low-risk requirements simply
isn’t feasible. Today, good RE prac-
tice balances analysis efforts in
relation to the benefits of gained do-
main knowledge and reduced risk of
requirements misinterpretation.

• Specification ➔ Prioritization
Over the years, we’ve realized that

focusing solely on monolithic specifi-
cations with “shall” statements is far
from enough. Requirements need to
include rationale and priorities while
capturing the viewpoints of many
stakeholders. Contemporary RE fo-
cuses on facilitating decision-making
and navigating complex tradeoffs. Ad-
ditionally, we have shifted from a sole
functional specification focus to doing
the hard job of eliciting quality require-
ments and finding balanced quality
targets on slippery quality scales.

• Analytical ➔ Empirical
In the early 1990s, many RE pa-

pers presented solutions based on an-
alytical arguments, often without any
empirical evidence whatsoever. Later,
the RE field became a center point of
gravity for the empirical revolution of
software engineering research meth-
odology. Today, all major academic
RE forums enforce mature criteria
for reviewing empirical papers.

• Toy examples ➔ Industrial cases
In line with the shift from ana-

lytical to empirical methods, RE
research has also shifted from toy
examples to real-world, large-scale
industrial cases. Many academic RE
researchers have realized that the
most interesting research questions

Short user stories came into fashion
for handling prioritization, scheduling,

and different stakeholder interests
simultaneously.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on January 29,2025 at 15:11:47 UTC from IEEE Xplore. Restrictions apply.

REQUIREMENTS

 NOVEMBER/DECEMBER 2024 | IEEE SOFTWARE 21

require close collaboration with in-
dustrial partners.

• Proactive ➔ Reactive
The agile overtake was, in many

respects, a backlash to RE practice.
A crude interpretation of agile is that
requirements are not needed, promot-
ing immediate coding to see what
emerges. But a purely reactive mode
lands in a step-wise walk out in the
desert of technical debt and irrelevant
products. Time and again, it has been
proven that understanding the under-
lying intentions is absolutely key to
the development of useful and valu-
able software. Nowadays, successful
companies recognize this and use pro-
totyping, A/B-testing, and feedback
from users as inputs to continuous
learning in a proactive manner.

• Closed ➔ Open
Looking back to the early days of

RE, most software was bespoke, and
most requirements were part of con-
tracted closed-source development.
Since then, open source software has
revolutionized how we share the plan-
et’s software engineering brains and
infrastructure. Now, democratic and
meritocratic governance of software
commons is essential for much of our
critical software infrastructure.

• Manual ➔ Smart
Already in the late 1990s, we

started to realize that effective RE
work needs smart tooling. Natural
language processing was put into
work in RE tasks such as finding
similar requirements or detecting
ambiguities. Now, with AI-enhanced
RE and large language models, we
are arriving at the potential of very
effective RE bots that can support
us in improving RE models, under-
standing users’ needs, and assessing
the implications of quality tradeoffs.

The Road Ahead
MB: Based on the current discus-
sion, we must surely speculate about
what the RE future might hold.

KS: It has been a privilege to be part
of RE’s development over the years.
RE, both in research and practice, is
the natural meeting point for many
stakeholders and will play a crucial
role in developing sustainable sys-
tems for the future. I call for more
interdisciplinarity going forward.
RE has been driven by IT-related
communities. We need way more
contributions from domain experts
in other disciplines, such as chemis-
try or social science.

BR: On that note, I believe in open-
ing RE activities to the user com-
munities. They are often the real

experts. Many organizations now
dare to communicate transparently
with user communities, involving us-
ers as a valuable resource in RE.

Of course, there is also the con-
tinued AIfication of RE. This will
enable smart and rapid RE. And,
vice versa, we need more work on
RE for future AI systems. And re-
search on RE for future AI-boosted
software engineering.

KS: Yes, the data-driven solutions we
will build into future software prod-
ucts are indeed promising. The un-
derlying data quality will become the
new arena for product realization.
Still, we cannot overdo data manipu-
lation. If we start spending too much
time fiddling with the data, we’ll
find ourselves back at programming,
but in the language of data.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

KRISTIAN SANDAHL is a professor at the Department of

Computer and Information Science, Linköping University, 583 30

Linköping, Sweden. Contact him at kristian.sandahl@liu.se.

BJÖRN REGNELL is a professor at the Department of Computer

Science, Lund University, 223 63 Lund. Sweden. Contact him at

bjorn.regnell@cs.lth.se.

MARKUS BORG is a principal researcher at CodeScene, 215 32

Malmö, Sweden, and an adjunct associate professor at the Depart-

ment of Computer Science, Lund University, Sweden. Contact him at

markus.borg@codescene.com.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on January 29,2025 at 15:11:47 UTC from IEEE Xplore. Restrictions apply.

mailto:kristian.sandahl@liu.se
mailto:bjorn.regnell@cs.lth.se
mailto:markus.borg@codescene.com

REQUIREMENTS

22 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

It surprises me that formal meth-
ods haven’t been more widely ad-
opted, despite the prevalent education
in relevant mathematical and theoreti-
cal concepts among today’s students.

Practically, the choice of repre-
sentation should suit the recipients
of the requirements, whether they
are directly developing the system,
overseeing its development, or auto-
mating its generation.

MB: Wow, that was quite the re-
flection. On behalf of the readers
of the Requirements column, I say
thank you very much! I’ll encour-
age those interested to reach out to

you directly if they want to continue
the discussion. Let’s hope the RE
dialogue continues until IEEE Soft-
ware’s golden jubilee in 2034!

References
 1. E. Hudlicka, “Requirements

elicitation with indirect knowledge

elicitation techniques: Compari-

son of three methods,” in Proc.

2nd Int. Conf. Requirements

Eng., Colorado Springs, CO, USA,

1996, pp. 4–11, doi: 10.1109/

ICRE.1996.491424.

 2. I. Sommerville and P. Sawyer, Require-

ments Engineering: A Good Practice

Guide. Hoboken, NJ, USA: Wiley, 1997.

 3. L. Chung, B. A. Nixon, E. Yu, and

J. Mylopoulos, Non-Functional Re-

quirements in Software Engineering.

Berlin, Germany: Springer-Verlag,

2000.

 4. V. Gervasi, E. Kamsties, B. Regnell,

and C. B. Achour-Salinesi, “Ten years

of REFSQ: A quantitative analysis,” in

Proc. 10th Int. Workshop Require-

ments Eng. Found. Softw. Qual.,

2004, pp. 55–72.

 5. A. L. Opdahl, E. Dubois, and

K. Pohl, “Ten years of REFSQ:

Outcomes and outlooks,” in Proc.

10th Int. Workshop Requirements

Eng. Found. Softw. Qual., 2004,

pp. 73–93.

For more information on paper submission, featured articles, calls for
papers, and subscription links visit: www.computer.org/tsusc

SSUUBBSSCCRRIIBBEE AANNDD SSUUBBMMIITT

IEEE TRANSACTIONS ON

SUSTAINABLE COMPUTING
SUBMIT
TODAY

Digital Object Identifier 10.1109/MS.2024.3459128

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on January 29,2025 at 15:11:47 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/ICRE.1996.491424
http://dx.doi.org/10.1109/ICRE.1996.491424

	017_41ms06-requirements-3429774

