ETSN15 (2024)
Requirements Engineering

Lecture 6 part a:

Market-Driven Requirements Engineering [MDRE]
Requirements inter-dependencies [INTDEP]
Release Planning [RP]

Preparations for Lab 2

Part 6b in separate pdf:
RE for Open Source Software [OSSRE]

Bjorn Regnell
http://www.cs.lth.se/krav

Product Management and Market-Driven
Requirements Engineering (MDRE)

Book chapter [MDRE] in
compendium

* Market-Driven Requirements Engineering for
Software Products

* Regnell, B., & Brinkkemper, S.

* Engineering and Managing Software
Requirements, Eds. A. Aurum and C. Wohlin,
Springer, ISBN 3-540-25043-3, 2005

RE vs. Product & Project Mgmt

Top-level management

Marketing
Organization

Product Management

Development

Organization Requriements

Engineering

Project Management

The investment cycle

Corporate
strategy

Product
strategy

Release
process

Development
process

Investment
plan

Revenues

Product
Roadmap

Sales &
Services

Product
Requirements

Product
Release

Design

Software
Build

[MDRE]

Different types of products

1. Generic product on the open market

2. Customer-specific product developed based on contract

* The distinction is often blurred:
the same organization combines several types

- e.g., generic + customized

* Sometimes products evolve from customer specific to generic

Table 13.1. Examples of variants of hardware and software products.

Pure Harcdhware

Embedded Svs-
tems (HW+SW)

Pure Software

Generic

Note sticks

Customized

Office fumiture

Mobile phone
Customized car

Customer-
Specific

Portrait painting

Military vehicle

Firewall
Enterprise re-

source planning
systems
Web Site

[MDRE]

Characteristics of MDRE

Success through sales and market share
- (not just customer satisfaction)
Release Planning focus on
— Time-to-market
— Multiple release
Continuous evolution
- (not just maintenance)
Inventing requirements + market analysis
- (not just collecting 1-on-1)
Stakeholders
- Market segments with potential customers

- Competitors (confidentiality often needed)

Continuous inflow of requirements

[MDRE]

Some challenges in MDRE

e Balancing market pull and technology push
 Chasm between marketing and development
* Requirements dependencies

* Cost-value-estimation and release planning
— Over- and under-estimation

* Overloaded requirements management
- Stage gates and triage

[MDRE]

Decisions outcomes in MDRE

selection ratio

Decision
Selected Rejected
A B

< alfa Correct Incorrect
¥ selection ratio selection ratio
SIS
23 1 C . D
% beta ncorrect orrect

selection ratio

Product Quality:

Decision Quality:

0,=A/(A+C)

O/~=(A+D)/(A+B+C+D)

[MDRE]

Finding the golden grains despite
uncertain cost-value estimates

Figure 13.1 (a) Cost-Value Diagram
with alfa-requirements (filled) and
beta-requirements (empty).

Value [$]

Margin

Value [$]
A

Estimated R

(v’.c’) ,"’. Actual
o‘\ (v.c)

Figure 13.1 (b) Estimated values are differ-
ing from actual values causing wrong selec-
tion decision.

>

Cost [$]

[MDRE]

Some Inter-related challenges in MDRE

* Requirements dependency management
* Requirements prioritization
* Release planning

~ Balancing market pull and technology push

— Chasm between marketing and
development

— Cost-value-estimation (over- & under-est.)
— Overloaded requirements management

[INTDEP]

An industrial survey of requirements
interdependencies in software product
release planning

Carlshamre, P., Sandahl, K., Lindvall, M.,
Regnell, B., Natt och Dag, J.

IEEE Int. Conf. on Requirements
Engineering (REO1), Toronto, Canada, pp.
84-91 (2001)

Research Method

survey of five different companies

a manager of a product/project
was asked to identify and classify
iInterdependencies among

20 high priority requirements.

Data collection

1
ss 2 : D & . '
“ 3 |1 3rd party prod interface search d party prod interface
S 4 2 User monitoting Positively
~\ 8 (3 Package monitoring Fositively
L B 4 Protocol (RIWVD) Fositively
. 7 |5 EMS SQL server (MS ACCESS) Pasitively
‘\ 8 6 Local cache Pasitively
“ g9 |7 Interrogate packages Value-= ‘F'nsiti'u'ely
5 10 |8 Nominative attributes Requires-> Positively
N g1 9 Order attributes “alue- > " Positively

Figure 1. The spreadsheet designed for pairwise assessment of 20 requirements.

Different types of interdependencies

Table 2. Preliminary set of interdependencies.

Priority Type Meaning

1 R; AND R, R requires R, to function, and R, requires R; to function.
2 R; REQUIRES R, R requires R» to function, but not vice versa.
3 R; TEMPORAL R, Either R; has to be implemented before R, or vice versa.
4 R, CVALUE R, R, affects the value of R, for a customer. Value can be either positive or negative.
4 R, ICOSTR, R, affects the cost of implementing R,. Value can be either positive or negative.
5 R; ORR, Only one of {R;, R,} needs to be implemented.

Examples:

AND. A printer requires a driver to function, and the driver requires a printer to function.

REQUIRES. Sending an e-mail requires a network connection, but not the opposite.

TEMPORAL. The function Add object should be implemented before Delete object. (This type is doubtful,
which is discussed in section 3.1)

CVALUE. A detailed on-line manual may decrease the customer value of a printed manual.

ICOST. A requirement stating that “no response time should be longer than 1 second” will typically increase
the cost of implementing many other requirements.

OR. In a word processor, the capability to create pictures in a document can either be provided as an
integrated drawing module or by means of a link to an external drawing application.

Not always straight forward ...

“If R2 is completely worthless to the customer without R1,
and we would thus never do R2 without R1, do we classify
the relationship as REQUIRED or just CVALUE?”

REQUIRES sometimes arises from the opposite reasoning:
“If we do R2, then we can do R1 too!”, which implies that
the direction of the relationship could be the opposite;
could e.g. be called “ENABLES” or "HELPS"

Summary of identified interdependencies

Table 2. Summary of identified interdependencies.

7 maost # singular 10%% of the req’s are 20% of the req’s are coupling
dependencies comimon tvpe req’s responsible for responsible for (cf. section 3.5)
Case 1 19 ICOST 79% -+ 47% 79% 10%
(prod.) of distinct interdep’s of distinct interdep’s
Case 2 29 CVALUE 45% 3 55% 76% 15%
(prod.) of distinet interdep’s of distinct interdep’s
Case 3 42 ICOST 86% 3 50% 74% 22%
(prod.) of distinct interdep’s of distinct interdep’s
Case 4 41 AND 41% 3 44% 1% 22%
(besp.) of distinct interdep’s of distinct interdep’s
Case S 24 REQUIRES -+ 42% 67% 13%
0 .- . .- -
(besp.) 19% of distinet interdep’s of distinct interdep’s

nalll

10% of the requirements are responsible for roughly 50% of
the interdependencies
20% of the requirements are responsible for roughly 75% of
all interdependencies
About 20% of the requirements are singular
Customer-specific: more functionality-related ;
Market-driven: more value-related dependencies

Example of dependency structures

Legend

—is prerequisite of —=

ICOST ——=

CVALUE ———=

Darker objects have
\a . \ f 15 , more dependencies

\h,f

Figure 2. Visualization of reqmrements interdependecies for one of the five cases.

Coupling measures

Creq — ! I =#dependencies In survey:
j (R(R —1) /9 R =#requriements 10-22%
Release Crel — £ 1 = #dep. betw. 2 partitions
coupling:]/

Figure 3. Example illustrating the concepts of require-
ments and release coupling.

a R=%
I1=7

T

C;feq—ﬁ

oy = 1

Crel =

Expressing dependencies in reqT

* An AND relation is equivalent to two mutual requires-relations:
Feature("printerX1l") requires Feature("driverX")
Feature("driverX") requires Feature("printerX1l")

* Avrequires relation can be non-mutual :
Feature("sendEmail") requires Feature("networkAccess")

* Temporal relations regarding a preferred implementation order can be expressed using precedes:
Function("add") precedes Function("delete")

* Exclusion (xor) can be expressed by an excludes relation (only one is needed as exclusion is mutual):
Design("centralized") excludes Design("distributed")
Design("distributed") excludes Design("centralized")

* Entities that support or hinder each other can be modeled using hurts and helps relations :
Goal("secure") helps Goal("safe")
Goal("secure") hurts Goal("simple")

[Some examples modified from Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag: "An industrial survey of requirements interdependencies in software product release
planning", J.: Int. Conf. on Requirements Engineering (RE01), Toronto, Canada, pp. 84-91, 2001]

Expressing CVALUE dependencies as
Constraints in reqT

val m = Model(
Req("x") has (Order(1l), Benefit(100)),

Req("y") has Order(l)) // Same release
val ¢ = Constraints(

Req("y")/Benefit :: {0 to 1000},

Sum(Req("x")/Benefit, Req("y")/Benefit) === Var("SumXY"),

Var("SumXY") :: {0 to 2000},

IfThenElse(
Req("x")/0rder === Req("y")/0rder, //If same release
Var("SumXY") === 400, //then more valuable
Var("SumXY") === 200 //else less valuable

))

val m2 = (m + c).satisfy
m2: reqT.Model =
Model (
Req("y") has (Benefit(300), Order(1)),
Req("x") has (Order(1l), Benefit(100)),
Constraints(
Var("SumXY") === 400))

Expressing CVALUE dependencies as
Constraints in reqT

val m = Model(
Req("x") has (Order(1l), Benefit(100)),

Req("y") has Order(2)) // Different releases
val ¢ = Constraints(

Req("y")/Benefit :: {0 to 1000},

Sum(Req("x")/Benefit, Req("y")/Benefit) === Var("SumXY"),

Var("SumXY") :: {0 to 2000},

IfThenElse(
Req("x")/0rder === Req("y")/0rder, //If same release
Var("SumXY") === 400, //then more valuable
Var("SumXY") === 200 //else less valuable

))

val m2 = (m + c).satisfy
m2: reqT.Model =
Model (
Req("y") has (Benefit(100), Order(2)),
Reg("x") has (Order(l), Benefit(100)),
Constraints(
Var("SumxXY") === 200))

Requirements Prioritization
(summary from week 1)

Estimating cost-benefit

25
20 013
F 15| o6
&
e
L1 ol (3
e 10
3 "
3| 20/
[/93 g9 o
0 o7 ; ']d][]
L
n®, %2 . . .
0 5 10 15 20 25
Cost (percent)

Karlsson, Joachim, and Kevin Ryan. "A cost-value approach for prioritizing
requirements." IEEE software 14.5 (1997): 67-74.

Categorization

e.g.: must, ambiguous,
volatile

Partition in groups
without greater-less
relations

Ordinal scale

e.g.. more expensive,
higher risk,
higher value

Ranked list
A>B

Ratio scale

ex: $, h,
% (relative)

Numeric relations:
A=2*B

[PRIO]

Prioritization technigues

* Grouping, numbering assignment (grading)
* Ranking (sorting)

* Top-ten (or Top-n)

* Analytical Hierarchy Process (AHP)

* 100% test

. Combination of techniques

On Lab 1 you used:
- ordinal-scale prio with Ranking (sorting) by pair-wise comparisons and

- ratio-scale prio with the 100$ test

One (simplistic) approach to manage interdependencies:

- grouping

[PRIO]

Release Planning

Paper [RP] iIn compendium

* The art and science of software release planning
* Ruhe, G., & Saliu, M. O.
* |EEE software, 22(6), 47-53. 2005

What is Release Planning?

[RP]

Release Planning involves...

* ...prioritization + scheduling under various
constraints, e.g., resource and precedence
constraints

24 week s

[RP]

Example planning parameters

Requirements priorities (from prioritization)

Available resources
Delivery time

Requirements dependencies
- Precedence, Coupling, Excludes

System architecture
Dependencies to the code base

[RP]

What is a good release plan?

* A good release plan should

~ Provide maximum business value by
* offering the best possible blend of features
* in the right sequence of releases

— satisfy the most important stakeholders
iInvolved

— be feasible with available resources, and

~ take dependencies among features into
account

[RP]

Simplistic Release Planning

* Informal process

* Unclear rationale behind decisions

* No systematic management of dependencies
* Simplistic greedy allocation is no good

* A zillion possibilities already with
20 features and 3 releases:

20 12

4 >1.000.000.000.000 =10 possibilities
[RP]

L

== BEli?S‘E I’lﬂNS

Mw:-j'r -

™ .---I-—--l-—-_ -

Why greedy allocation is bad

val m = Model(def plan(input: Model,
Feature("a") has (Benefit(90), Cost(100)), pickNext: (Model,Release)=>0ption[Feature]): Model =
Feature("b") has (Benefit(85), Cost(90)), var result = input
Feature("c") has (Benefit(80), Cost(25)), releases(input).foreach { r =>
Feature("d") has (Benefit(75), Cost(23)), var next = pickNext(result, r)
Feature("e") has (Benefit(70), Cost(22)), while (next.isDefined) {
Feature("f") has (Benefit(65), Cost(20)), result =_a110cate(resu1t, next.get, r)
Feature("g") has (Benefit(60), Cost(10)), next = pickNext(result, r)
Feature("h") has (Benefit(55), Cost(30)), } }
Feature("i") has (Benefit(50), Cost(30)), result
Feature("j") has (Benefit(45), Cost(30)), }
Release("rl") has Capacity(100),
Release("r2") has Capacity(90)) plan(m, random)
plan(m, greedy)

{

def features(m: Model): Vector[Feature] = m.tip.collect{case f: Feature => f}

def releases(m: Model): Vector[Release] = m.tip.collect{case r: Release => r}

def allocate(m: Model, f: Feature, r: Release): Model = m + (r has f)

def isAllocated(m: Model, f: Feature): Boolean = releases(m).exists(r => (m/r).contains(f))
def allocatedCost(m: Model, r: Release): Int = (m/r).entities.collect{case f => m/f/Cost}.sum

def isRoom(m: Model, f: Feature, r: Release): Boolean = m/r/Capacity >= allocatedCost(m,r) + m/f/Cost

def featuresInGreedyOrder(m: Model): Vector[Feature] = features(m).sortBy(f => m/f/Benefit).reverse

def random(m: Model, r: Release): Option[Feature] = scala.util.Random.shuffle(features(m)).
filter(f => !isAllocated(m,f) && isRoom(m,f,r)).headOption

def greedy(m: Model, r: Release): Option[Feature] =
featuresInGreedyOrder(m).find(f => !'isAllocated(m,f) && isRoom(m,f,r))

https://gist.github.com/bjornregnell/80897de5b109f36c1b7ae29f43e4aa7b

Optimal vs. Greedy

val optimal = Model

(
Feature("a") has (Benefit(90), Cost(100)),
Feature("b") has (Benefit(85), Cost(90)),
Feature("c") has (Benefit(80), Cost(25)),
Feature("d") has (Benefit(75), Cost(23)),
Feature("e") has (Benefit(70), Cost(22)),
Feature("f") has (Benefit(65), Cost(20)),
Feature("g") has (Benefit(60), Cost(10)),
Feature("h") has (Benefit(55), Cost(30)),
Feature("i") has (Benefit(50), Cost(30)),
Feature("j") has (Benefit(45), Cost(30)),
Release("rl") has (Capacity(100), Feature("c"), Feature("d"), Feature("e"), Feature("f"),
Feature("g")),
Release("r2") has (Capacity(90), Feature("h"), Feature("i"), Feature("j")))

def sumAllocatedBenefit(m: Model) =
releases(m).map(r

val beneftitOptimal sumAllocatedBenefit(optimal)
val benefitGreedy sumAllocatedBenefit(plan(m,greedy))
val ratio = benefitGreedy.toDouble / beneftitOptimal

=> (m/r).collect{case f: Feature => m/f/Benefit}.sum).sum

Example from [RP]

Two qualified release plan alternatives, listing
the release to which each feature is assigned and
each weighted average satisfaction

WAS . Release Plan x1 Release Plan x2
Weig hted Feature £(7) x1() WAS(Lk) x2() WAS(.k)

avera g e 1. Cost reduction of transceiver 1 84.0 1 84.0

. . 2. Expand memory on BTS controller 1 281.0] 281.0

satisfaction 3. FCC out-of-band emissions 252.0 0.0

4. Software quality initiative 0.0 233.8

Of Sta kehOIder 5. USEast, feature 1 134.4 0.0

priorities 6. USEast, feature 2 2 516.6 3 0.0

1. China feature 1 2 271.2 1 88.2

8. China feature 2 2 43.2 1 19.6

9. 12-carrier BTS for China 3 0.0 2 12.0

10. Pole-mount packaging B 0.0 3 0.0

11. Next-generation BTS 3 0.0 3 0.0

12. India BTS variant 3 0.0 2 715.6

13. Common feature 01 1 37.8 1 516.6

14. Common feature 02 1 8.4 1 2717.2

15. Common feature 03 2 54.0 2 54.0

Objective function value F(x) 1,694.6 1,708.0
.

TODO!

Skim read before exercise and lab next week:
[AGRE, PROTO1 & 2] for exercise, [MDRE, INTDEP, RP, OSSRE] for lab 2

Exercise this week on prototyping + functional requirements
(Lau: 3-5 from last week)

Hand in Release R1
Book meeting with your supervisor

Next week: note: only one lecture that week; topic: Quality Requirements (QR):

— Watch the QUPER-video (before or after the lecture)
link to video on open course home page:

— Come to the lecture on Tuesday in E:C as usual - any questions on QR are welcome
— Do Exercise 4 where you work on QR in your project
~ Do Lab 2 (preferably in pairs) bring preparations

Lab2 is next week but you need to start preparing this week...
— Two parts: Quality Requirements (QR) and Release Planning (RP)

— Preparations mean a lot of reading + work and take significantly more time
compared to labl

https://cs.lth.se/krav/quality-requirements/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	[INTDEP] in compendium
	Research Method
	Data collection
	Different types of interdependencies
	Not always straight forward …
	Summary of identified interdependencies
	Example of dependency structures
	Coupling measures
	Expressing interdependencies in reqT
	Expressing CVALUE dependencies as Constraints in reqT_clipboard0
	Expressing CVALUE dependencies as Constraints in reqT
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 43
	Slide 44

