
ETSN15 2024
Requirements Engineering

Lecture 5+6:
Help you to focus your reading of 6 papers:
Prototyping [PROTO]
Agile RE [AGRE]
Market-drive RE [MDRE]
Reqts interdependencies [INTDEP]
Release Planning [RP]
RE and Open Source [OSSRE]

Björn Regnell

http://www.cs.lth.se/krav

Requirements change...

- ...constantly! Sometimes very quickly!

- Why?
- We learn (the whole point of RE...)
- Changed needs and priorities
- Disruptive new technology
- Fierce competition
- ...

- What to do about it?

- reduce uncertainty: do prototyping

- live with it: try to be reasonably agile

The Practice of Prototyping
[PROTO]

 Communicate
 Validate
 Elicit

requirements, goals, ideas, priorities, …

PURPOSE, SCOPE, USE, STRATEGY

Prototyping
use of a prototype to explore, communicate, and evaluate potential solutions

Prototype
early sample, model, or release, which simulates aspects of the final product and
enables cost effective testing with real users

Prototyping: major risk

● Prototype code forced into production code
– “We need it now – just release it!”
– “...but it was developed for another purpose :(“

● Prototype code is not production grade quality
=> will lead to technical debt

PURPOSE of Prototyping
[PROTO]

PURPOSE

Exploration & learning

Communication: sales, alignment

Incremental development

Quality improvement

Validation & Testing

- Fit: Problem-solution, Product-market
- Technical feasibility
- Usability testing

Advice:
- Consider your purposes with prototyping

and for each prototyping instance
- Select scope, media, and use of prototype

to match purpose

SCOPE & MEDIA of Prototype
[PROTO]

SCOPE

Breadth of functionality

Functional refinement

Visual appearance

Interactive & haptic behaviour

Data realism

Advice:
- Consider which functional breadth and refinement, visual appearance

and interactive behaviour that is needed for your purposes
- Balance the costs of prototype building (affected by Scope and Media)

against possible benefits

MEDIA

Sketch: paper or computer-based

Wireframe: paper or computer-based

Mock-up: paper or computer-based

Source-code software

Other: video, interview

USE of Prototype [PROTO]
USE of prototype

Reviewers: internal, FFF (family-foes-friends), external

Prototype interaction: yes, no (demo)

Review approach: scenario-based, free

Usage environment

Advice:
- Select reviewers that represent stakeholders and user categories that can

provide feedback needed for chosen purposes
- Design review approach and interaction to align with purpose and focus

of prototyping
- Select usage environment to match purpose

Exploration STRATEGY [PROTO]

Single vs Parallel exploration

[Tronvoll et al. 2017]

Advice
- Consider the size of potential solution space and select suitable type of

exploration and iteration size
- In early stages, consider parallel exploration, when more certain, switch to

single exploration
- Match prototype scope, media and use to the iteration focus, and align

with purpose

Iteration focus: Business, product, feature, optimization
Decide on lagom iteration size

PURPOSE of Prototyping
Exploration & learning
Communication: sales, alignment
Incremental development
Quality improvement

Validation & Testing
problem-solution / product-market fit,
technical feasibility, usability testing

SCOPE of Prototype
Breadth of functionality
Functional refinement

Visual appearance
Interactive & haptic behaviour
Data realism

Prototype MEDIA
Sketch: paper or computer-based
Wireframe: paper or computer-based
Mock-up: paper of computer-based
Source-code software
Other: video, interview

USE of prototype
Reviewers: internal, FFF, external
Prototype interaction: yes, no (demo)
Review approach: scenario-based free
Usage environment

Exploration STRATEGY
Single vs parallel exploration
Iteration focus: Business, product, feature, optimisation
Iteration size

Summary of Prototyping Aspects [PROTO]

This Photo by Unknown Author is licensed under CC BY-
ND

https://hakanozan.net/2020/the-innovation-process-dismantled-part-4/
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/

Optional Video on Prototyping in practice from 2022:
Available in Canvas.

Hampus Jakobsson
Angel investor in > 100 companies

Now: Pale Blue Dot, $100m climate-tech fund

Previous: LTH, built & scaled 2 startups

Wrong! Exactly all projects need & have
requirements ==

ideas/decisions of what the product should do

In Agile projects, some requirements are documented
• as traditional requirements
• as user stories & acceptance criteria
• as backlog entries
• as test cases
• combo of “requirements” and other artifacts

Many requirements are NOT documented (can be risky)

”We don’t do requirements. We are agile.”

Underlying assumptions → agile RE

Requirements change...
 ...because of evolution in technology, business, customer needs, ...
 Therefore, do not spend much time on details in initial requirements elicitation.

Instead, requirements emerge during the development process.

Extensive specification is costly & time consuming
 Developing extensive documentation and models may be counterproductive.
 Therefore, do not document requirements in detail upfront.

The Customer (representative) can tell us
 The customer is available for frequent interaction with the developers.
 Therefore, rely on customer interactions to elicit and validate requirements and

don't spend time on extensive specifications.

Cheaper (overall) to manage change gradually
 The cost of making changes to big systems increases dramatically over time.
 Therefore, do RE by frequent iterations in small increments, and refactor

continuously to reduce cost of change.

The Agile Manifesto, http://agilemanifesto.org/, 2001

http://agilemanifesto.org/

RE in Agile Projects [AGRE]

Level of detail at dev start

Traditional project

Agile project

Practices
• Iterative RE: Gradual detailing
• Work order

• Extreme prioritization: Just-in-time
• Constant planning

• Integrated RE:
 Dev roles more involved in RE
– Face-to-face communication
– Reviews & tests
– Prototyping
– Test-driven development

[AGRE]

Agile Requirements Engineering Practices:
An Empirical Study

Balasubramaniam Ramesh and Lan Cao

IEEE Software, pp. 60-67, January/February 2008

Agile RE practices in 16 companies

Reqts Design Impl Testing

Reqts Design Impl Testing

Reqts Design Impl Testing

Reqts Design Impl Testing

• Same activities, different sizing and timing

→ Different principles and management approach

→ Different people detailing requirements

→ Different documentation formats

Traditional Development Process

Agile Development Process – Integrated RE

+ a pre-study phase:
High-level requirements

User story & Acceptance Criteria
User story:

As a passenger, I can cancel a flight reservation

Acceptance criteria / test cases
• Verify that a premium member can cancel the same day without a fee
• Verify that a non-premium member is charged 10% for a same-day

cancellation
• Verify that an email confirmation is sent
• Verify that the hotel is notified of any cancellation

Specification with user stories
1. Product Owner/Customer defines & prioritizes

Epics/User stories in product backlog

2. Team defines details for each user story in sprint backlog

1. Tasks

2. Acceptance criteria & test cases

Backlogs
Story cards

1
2

http://www.google.se/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=jPqOmzwtJ4EYzM&tbnid=-H7fHX3SbmM10M:&ved=0CAUQjRw&url=http://www.dalehumby.com/2012/05/our-kanban-story-card.html&ei=A8A-U_KeBKSNyQPn1YDQCA&psig=AFQjCNF-jmcqO-dkksoa4xjCaejFZibvFA&ust=1396707645812855
http://www.google.se/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=jPqOmzwtJ4EYzM&tbnid=-H7fHX3SbmM10M:&ved=0CAUQjRw&url=http://www.dalehumby.com/2012/05/our-kanban-story-card.html&ei=A8A-U_KeBKSNyQPn1YDQCA&psig=AFQjCNF-jmcqO-dkksoa4xjCaejFZibvFA&ust=1396707645812855

Face-to-face
communication

Direct communication between customer and development

 Techniques
User Stories == high-level requirements spec

Complemented by other artifacts, e.g. "backlog"
 Prerequisites

Active involvement of (knowledgeable) customers

Customers can steer project

Avoids time-consuming documentation

Risk of inadequate requirements

On-site customer rep is challenging

Handling more than one customer

Relies on trust rather than agreed requirements

Iterative RE

Good customer relationship

Clearer and understandable requirements
due to direct customer interaction

Accurate cost and scheduling of project

Neglect of quality requirements

Lack of documentation beyond dev team

Requirements emerge during development based
on initial high-level requirements

 Techniques
Requirements analysis and detailing for each development cycle

Requirements intertwined with design

Extreme Prioritization
& Constant Planning

Customer provides business prio

Re-prioritization supported by dev process

Early validation minimizes need & cost for
major changes

Other criteria suffer, e.g. quality

Instability in dev work

Inadequate architecture and
increased costs

Refactoring requires time and experience

Aim to deliver most valuable features first

Responsive to changes in customer demands

 Techniques
¨ Work on most valuable features first
¨ Continuously revise prioritisation & planning (for each iteration)
¨ Constant feedback from customer

Prototyping &
Reviews & Acc Test

Efficient validation

Assess project status

Trust: Customer, Mgmt

Early problem identification

Risks with evolving prototypes in production

Unrealistic expections regarding leadtime

Weak formal validation, consistency checks

Dev of acc tests require access to customers

Communicate through prototypes and frequent review meetings

Involves customers, developers and testers

Requirements validation and refinement through feedback

 Techniques
End-of-sprint sign-off meeting

Test-Driven
Development

Tests capture complete requirements

Traces to production code facility reqts
changes

Requires competence in testing,

requirements understanding and
customer collaboration

Most organizations fail to implement this practice

Developers create test before writing new code

Tests specify expected behaviour of code

Summary of Benefits & Challenges of Agile RE
Practices Benefits Challenges

Face-to-face
communication

• Customers can steer the project
• No time-consuming documentation

• If no intensive interaction, then bad reqts.
• On-site customer representation is difficult

Iterative RE • Better relationship with the customer
• More understandable reqts

• Cost & Schedule Estimation
• Lack of documentation
• Neglect of non-functional requirements

Extreme
prioritization

• Customers provide business reasons
• Opportunities for reprioritization.

• Business value not enough
• May lead to instability

Constant
planning

• Minimizes the need for major changes
• Cost of addressing a change decreases

• Early architecture becomes inadequate
• Refactoring isn’t always obvious

Prototyping • Help communicate with customers to
validate and refine requirements

• Risky to deploy prototypes into production
• Create unrealistic expectations

Test-driven
development

• Gives traceability that make changes
easier

• Developers unused to test before coding
• Requires a thorough understanding of

reqts and extensive collaboration between
the developer and the customer

Reviews &
acceptance
tests

• Help to know if project is on target
• Increase customer trust and confidence
• Identify problems early
• Obtain management support

• No formal model or verification of reqts
• Consistency checking or formal

inspections seldom occur.
• Difficult if lacking customer access

Pros & Cons of Agile Development

Strengths
• quickly delivers

working increments
• avoids unnecessary

overhead
• short communication

paths
• feedback from early

stages used in
developing latter
stages

Weaknesses
• weak long-term and

overall perspective
• weak / missing

documentation
• weaker specialist

competence
• less

structure/guidance for
weaker engineers

Product Management and Market-Driven
Requirements Engineering (MDRE)

[MDRE]

Market-Driven Requirements Engineering
for Software Products

Regnell, B., & Brinkkemper, S.
Book chapter in Engineering and Managing Software Requirements,
Eds. A. Aurum and C. Wohlin, Springer, ISBN 3-540-25043-3, 2005

RE vs. Product & Project Mgmt

Marketing
Organization

Development
Organization

Product Management

Project Management

Top-level management

Business Stra
tegy

Portfolio Mgmt

Requriements
Engineering

The investment cycle

[MDRE]

Different types of products

1. Generic product on the open market

2. Customer-specific product developed based on contract
● The distinction is often blurred:

the same organization combines several types
– e.g., generic + customized

● Sometimes products evolve from customer specific to generic

[MDRE]

Characteristics of MDRE
● Success through sales and market share

– (not just customer satisfaction)
● Release Planning focus on

– Time-to-market
– Multiple release

● Continuous evolution
– (not just maintenance)

● Inventing requirements + market analysis
– (not just collecting 1-on-1)

● Stakeholders
– Market segments with potential customers
– Competitors (confidentiality often needed)

● Continuous inflow of requirements
[MDRE]

Some challenges in MDRE

● Balancing market pull and technology push
● Chasm between marketing and development
● Requirements dependencies
● Cost-value-estimation and release planning

– Over- and under-estimation
● Overloaded requirements management

– Stage gates and triage

[MDRE]

Decisions outcomes in MDRE

[MDRE]

Product Quality:

Decision Quality:

Finding the golden grains
despite uncertain cost-value
estimates

[MDRE]

Some inter-related challenges in
MDRE

● Requirements dependency management
● Requirements prioritization
● Release planning

– Balancing market pull and technology
push

– Chasm between marketing and
development

– Cost-value-estimation (over- & under-
est.)

– Overloaded requirements management

[INTDEP]

An industrial survey of requirements
interdependencies in software
product release planning

Carlshamre, P., Sandahl, K., Lindvall,
M., Regnell, B., Natt och Dag, J.

IEEE Int. Conf. on Requirements Engineering (RE01),
Toronto, Canada, pp. 84–91 (2001)

Research Method

• survey of five different companies
• a manager of a product/project

was asked to identify and classify
interdependencies among
20 high priority requirements.

Data collection

Different types of interdependencies

Examples:
AND. A printer requires a driver to function, and the driver requires a printer to function.
REQUIRES. Sending an e-mail requires a network connection, but not the opposite.
TEMPORAL. The function Add object should be implemented before Delete object. (This type is

doubtful, which is discussed in section 3.1)
CVALUE. A detailed on-line manual may decrease the customer value of a printed manual.
ICOST. A requirement stating that “no response time should be longer than 1 second” will typically

increase the cost of implementing many other requirements.
OR. In a word processor, the capability to create pictures in a document can either be provided as

an integrated drawing module or by means of a link to an external drawing application.

Not always straight forward …
• “if R2 is completely worthless to the customer without

R1, and we would thus never do R2 without R1, do
we classify the relationship as REQUIRED or just
CVALUE?”

• REQUIRES sometimes arises from the opposite
reasoning: “If we do R2, then we can do R1 too!”,
which implies that the direction of the relationship
could be the opposite;
could e.g. be called “ENABLES” or "HELPS"

Summary of identified interdependencies [INTDEP]

1. 10% of the requirements are responsible for roughly
50% of the interdependencies

2. 20% of the requirements are responsible for roughly
75% of all interdependencies

3. About 20% of the requirements are singular
4. Customer-specific: more functionality-related ;

Market-driven: more value-related dependencies

Example of dependency structures

Coupling measures

I =#dependencies
R =#requriements

i = #dep. betw. 2 partitionsRelease
coupling:

In survey:
10-22%

Expressing dependencies in reqT
• An AND relation is equivalent to two mutual requires-relations:
Feature("printerX1") requires Feature("driverX")
Feature("driverX") requires Feature("printerX1")

• A requires relation can be non-mutual :
Feature("sendEmail") requires Feature("networkAccess")

• Temporal relations regarding a preferred implementation order can be expressed using
precedes:

Function("add") precedes Function("delete")

• Exclusion (xor) can be expressed by an excludes relation (only one is needed as exclusion is
mutual):

Design("centralized") excludes Design("distributed")
Design("distributed") excludes Design("centralized")

• Entities that support or hinder each other can be modeled using hurts and helps relations :
Goal("secure") helps Goal("safe")
Goal("secure") hurts Goal("simple")

[Some examples modified from Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag: "An industrial survey of requirements interdependencies in software
product release planning", J.: Int. Conf. on Requirements Engineering (RE01), Toronto, Canada, pp. 84–91, 2001]

Requirements Prioritization
(summary from week 1)

Prioritization techniques
● Direct numerical assignment (grading) [Lau 7.4]

– Can be done using any scale (categorical, ordinal, ratio) depending
on what the number actually means.

– Quick & easy; but
● a risk is that all reqs are deemed highly important as they are not

challenged against each other
● may be misinterpreted as ratio scale (even if ”4” not necessarily

is "twice as much" as ”2” when using an ordinal scale).
● Ratio scale 100$-test

– Ratio scale, quick and easy, risk of shrewd tactics (listigt taktikspel)
● Ordinal scale Ranking

– sorting (easy, quick) or pairwise comparison (show consistency)
● Top-ten (or Top-n)

– Ordinal scale if the top list is ranked or Categorical scale if grouping
is not ranked;

– very quick and simple, gives a rough estimate on a limited set of req

[PRIO]

Prioritization scales

[PRIO]

Ratio scale

ex: $, h,

% (relative)

Numeric relations:
A=2*B

Categorization

e.g.: must,
ambiguous, volatile

Partition in groups
without greater-less
relations

Ordinal scale

e.g.: more
expensive,
higher risk,
higher value

Ranked list
A>B

Combine and visualize two criteria
Example: Cost-Benefit diagram

Karlsson, Joachim, and Kevin Ryan. "A cost-value approach for prioritizing
requirements." IEEE software 14.5 (1997): 67-74.

Release Planning

[RP]

The art and science of software release planning
Ruhe, G., & Saliu, M. O.

IEEE software, 22(6), 47-53. 2005

What is Release Planning?

[RP]

Release Planning involves...

● ...prioritization + scheduling under various
constraints, e.g., resource and precedence
constraints

[RP]

Example planning parameters

● Requirements priorities (from prioritization)
● Available resources
● Delivery time
● Requirements dependencies

– Precedence, Coupling, Excludes
● System architecture
● Dependencies to the code base

[RP]

What is a good release plan?

● A good release plan should
– Provide maximum business value by

● offering the best possible blend of features
● in the right sequence of releases

– satisfy the most important stakeholders involved
– be feasible with available resources, and
– take dependencies among features into account

[RP]

Simplistic Release Planning

● Informal process
● Unclear rationale behind decisions
● No systematic management of dependencies
● Simplistic greedy allocation is no good
● A zillion possibilities already with

20 features and 3 releases:

4
20

 > 1.000.000.000.000 = 10
12

 possibilities

[RP]

Why greedy allocation may be really bad...

val input = Model(
 Feature("a") has (Benefit(90), Cost(100)),
 Feature("b") has (Benefit(85), Cost(90)),
 Feature("c") has (Benefit(80), Cost(25)),
 Feature("d") has (Benefit(75), Cost(23)),
 Feature("e") has (Benefit(70), Cost(22)),
 Feature("f") has (Benefit(65), Cost(20)),
 Feature("g") has (Benefit(60), Cost(10)),
 Feature("h") has (Benefit(55), Cost(30)),
 Feature("i") has (Benefit(50), Cost(30)),
 Feature("j") has (Benefit(45), Cost(30)),
 Release("r1") has Capacity(100),
 Release("r2") has Capacity(90),
)

Run code in below gist to compare random and greedy release planning:
https://gist.github.com/bjornregnell/780b86285d8aff9830b7749bf7688ae1

https://gist.github.com/bjornregnell/780b86285d8aff9830b7749bf7688ae1

Example from [RP]

WAS:
weighted
average
satisfaction
of
stakeholder
priorities

Example (Part 2)

The release planning part of Lab 2

● Paper [RP] use mathematical optimization based on
integer linear programming

● During Lab 2 you will use reqT to instead do release planning based on
integer constraint satisfaction

● reqT includes a DSL for constraint satisfaction problems that can be solved
using the JaCoP solver

● Before lab2: create a small RP problem for your project:

– 3 features and 2 stakeholders

– estimate relative benefit for each feature from the viewpoint of each
stakeholder

– estimates of relative cost for each feature from development and test
perspectives

– use fictitious estimates if necessary but aim to be realistic if possible

● During lab 2 task 2 you will use reqT to solve your RP problem.

To do …
 Read papers: [PROTO], [AGRE], [MDRE], [INTDEP], [RP] [OSSRE]

– Many pages to read: make a plan to read some pages every day...

– Focus your reading based on lecture slides

 Guest lecture L6b on open source: Dr. Johan Linåker (Tue 4pm in E:C)
 Attend Exercise 3 on Functional requirements [Lau:3-5]
 Hand in Release R1 in Canvas
 Book meeting with supervisor in Canvas: reply to announcement by Matthias
 Start preparing for Lab2 (week 5)

– Quality requirements (QR) & Release Planning (RP)

– Preparations include reading + working,
prep. will take significantly more time compared to lab1

• Next week...

• Attend Lecture L7 on Quality Requirements [QUPER, Lau:6-7]:
• Watch video on Quper before or after the lecture:

 https://cs.lth.se/krav/quality-requirements/
• Attend Exercise 4 where you work on QR in your project

• Extra Seminar Feb. 11th at 3pm in E:C (not part of exam):
AI4RE and RE4AI, Guest: Matthias Wagner, prepared questions welcome!

https://cs.lth.se/krav/quality-requirements/

	ETSN15 Requirements Engineering
	Requirements change
	The Practice of Prototyping [PROTO1 & 2]
	Slide 4
	PURPOSE of Prototyping [PROTO1]
	SCOPE & MEDIA of Prototype [PROTO1]
	USE of Prototype [PROTO1]
	Exploration STRATEGY [PROTO1]
	Slide 9
	Optional Video on Prototyping in practice from 2022: https://ca
	Slide 11
	Underlying assumptions → agile RE
	RE in Agile Projects [AGRE]
	Paper [AGRE]
	Agile RE practices in 16 companies
	Slide 16
	Slide 17
	Specification of user stories
	Face-to-face communication
	Iterative RE
	Extreme Prioritization & Constant Planning
	Prototyping & Reviews & Acc Test
	Test-Driven Development
	Summary of Benefits & Challenges of Agile RE
	Pros & Cons of Agile Development
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	[INTDEP] in compendium
	Research Method
	Data collection
	Different types of interdependencies
	Not always straight forward …
	Summary of identified interdependencies
	Example of dependency structures
	Coupling measures
	Expressing interdependencies in reqT
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	To do …

