
ETS170, TFRG55 (2025)
Requirements Engineering

Week 2, Lectures 3+4:

Specification of functionality:
 Data reqts: Lau:2,
 Funtional reqts part 1: Lau:3.1-3.5

 Lau:3.6 – 3.16, 4

Tutorial on a tool called reqT used at Lab1 & Lab2.

Björn Regnell

http://cs.lth.se/krav

http://cs.lth.se/krav

Specifying functional
requirements

Data requirements:

(a kind of functional reqs)

describes data formats of

 input & output

describes what data

 the system should store

(Other) Functional reqs:

describes the mapping between

 input & output

describes how information

 should be processed

[Lau:2-5]

Overview of techniques for functional
requirements (Swedish terms)
Datakravstilar:
Datamodell
(=E/R-diagr.)
Dataordlista
Reguljära uttryck
Virtuella fönster

Funktionella kravstilar:
 Kontextdiagram
 Händelse- &

Funktionslistor
 Produktegenskapskrav
 Skärmbilder & Prototyper
 Uppgiftsbeskrivningar
 Egenskaper från uppgifter
 Uppgifter och stöd
 (Levande) Scenarier
 Högnivåuppgifter
 Användningsfall
 Uppgifter med data
 Dataflödesdiagram
 Standardkrav
 Krav på

utvecklingsprocessen

Funktionella detaljer:
 Enkla och sammansatta

funktioner
 Tabeller & Beslutstabeller
 Textuella processbeskrivningar
 Tillståndsdiagram
 Övergångsmatriser
 Aktivitetsdiagram
 Klassdiagram
 Samarbetsdiagram
 Sekvensdiagram

 Speciella gränssnitt
 Rapporter
 Plattformskrav
 Produktintegration
 Tekniska gränssnitt

First read the ”gray
box” of all styles
so that you
understand what
they are about and
their pros and
cons. Then read in
depth as needed.

All techniques have + and -
depending on the context

When is a specific style good?

The answer depends on…
 abstraction level
 project type
 the stakeholders
 tool support
 the amount of requirements
 …

Use a well-balanced combination!
…but how do you know that it all fits together?
-> checking consistency is an important part of validation!

Data requirements

Examples:
 Mobile Subscriber data (roaming data, phone book items,)
 Image data (date, resolution, name, category),
 Music data (album, artist, genre, name, frequency played, rating), ...

Techniques for modelling data in [Lauesen]:
 Data model (e.g. E/R-diagrams)
 Data dictionary
 Data expressions
 Virtual windows

Data requirements techniques – Summary
 Data model (E/R-diagr.)

¨ Block diagram describing data inside and outside the product
¨ Precise and insensitive to abstraction level
¨ Excellent for experts – difficult for users; takes time to learn
¨ Easy to verify by experts that the data is handled by the product
¨ Difficult to decide how much detail should be included in the model

 Data dictionary
¨ Textual description of data inside and outside the product
¨ Structured and systematic descriptions using verbal text
¨ Very expressive, can be used for all levels of detail and special cases
¨ Easy to validate by experts and non-experts
¨ Takes long time to write; when is it good enough? (Start with difficult parts!!)

 Data expressions (regular expressions)
¨ Compact formulas for describing data sequences
¨ Useful for composite data and message protocolls
¨ Excellent for experts, acceptable for many users
¨ No visual overview

 Virtual windows
¨ Simplified screens with graphics and realistic data, but no buttons and menues
¨ Excellent for both experts and users
¨ Easy to validate and verify
¨ Risk of overdoing it and start designing the user interface

passport number = letter + {digit}*8
room state = { free | booked | occupied | repair }
account data = transfer + {account record}* + done

Fig 2.1 The hotel system

Task list
Book guest
Checkin
Checkout
Change room
Breakfast list &
other services

Data about
Guests
Rooms
Services

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 2.3 Data dictionary

Class: Guest [Notes a, b ... refer to guidelines]

The guest is the person or company who has to pay the bill. A guest has one or more
stay records. A company may have none [b, c]. “Customer” is a synonym for guest, but
in the database we only use “guest” [a]. The persons staying in the rooms are also
called guests, but are not guests in database terms [a].

Examples
1. A guest who stays one night.
2. A company with employees staying now and then, each of them with his own stay

record where his name is recorded [d].
3. A guest with several rooms within the same stay.

Attributes
name: Text, 50 chars [h]

The name stated by the guest [f]. For companies the official name since
the bill is sent there [g]. Longer names exist, but better truncate at
registration time than at print out time [g, j].
passport: Text, 12 chars [h]
Recorded for guests who are obviously foreigners [f, i]. Used for police
reports in case the guest doesn’t pay [g] . . .

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 2.2A Data model (E/R-diagram)

R2: The system shall store the following data:

Stay

Room
State

Room

Service
Service

Type

date, #persons,
state (booked|occupied|repair)

name,
address1,
address2,
address3,
passport

room#,
#beds, type
price1, price2

name, price

date, count

Guest

stay#,
paymethod,
employee

Stays

Guests

One-to-many (1:m)

Each guest
connected to
zero or more stays

Each stay
connected to
one guest record

From: Soren Lauesen:
Software Requirements ©
Pearson / Addison-Wesley
2002

Entities and Relationships
Cardinality
of relationshttp://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

Fig 2.4A Data expressions

Notation with plus as concatenator

booking request = guest data + period + room type

guest data = guest name + address + paymethod
+ [passport number]

passport number = letter + {digit}*8

room state = { free | booked | occupied | repair }

account data = transfer + {account record}* + done

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 2.5 Virtual Windows

R1: The product shall
store data
corresponding to the
following virtual
windows:

R2: The final screens
shall look like the virtual
windows ??

Rooms 7/8 8/8 9/8 10/8
11 Double Bath 800 600 O B
12 Single Toil 600 O O B B
13 Double Toil 600 500 B B B

Service charges

Breakf. rest. 40
Breakf. room 60
. . .

Stay#: 714
Guest
Name: John Simpson
Address: 456 Orange Grove

Victoria 3745
Payment: Visa

Item #pers
7/8 Room 12, sgl 1 600
8/8 Breakf. rest 1 40
8/8 Room 11, dbl 2 800
9/8 Breakf. room 2 120

9/8 Room 11, dbl 2 800

Breakfast 9/8

In In
R# rest room
11 2
12 1
13 1 1

From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

Functional Requirements Part 1 Summary
 Context Diagram

¨ Diagram of product and its surrounding
¨ Defining product scope
¨ Very useful!

 Event- and function lists
¨ Lists of events and functions

 Domain or product level
¨ Good as checklists at verification
¨ Validation at product level?

 Feature requirements
¨ Textual requirement: ”the product shall …”
¨ High expressive power
¨ Acceptable to most stakheolders
¨ Can lead to false sense of security

 How to ensure that goal-level covered?

 Screens and Prototypes
¨ Screen pictures + what buttons do
¨ Excellent as design-level requirements

if carefully tested
¨ Not good when for COTS-based systems

Hotel
system

Guest

Account
system

confirmation,
invoice

booking,
checkout,
service note,
. . .

Recep-
tionist

Telephone
system

R1: The product shall support the following business
events / user activities / tasks:

R1.1 Guest books
R1.2 Guest checks in
R1.3 …

R1: The product shall be able to
record that a room is
occupied for repair in a
specified period.

R2: The product shall ….

R3: The product shall ….

Fig 3.1 Human-computer - who does what?

guest’s
wishes

Rooms

guest name

User Product

choice

period+room type

FindFreeRoom

free rooms

chosen
room#

FindFree
Room

guest’s
wishes

Roomsguest name
+ chosen room#

Physical model:
work split

Domain model:
parties joined

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Hotel
system

Guest

Account
system

Fig 3.2 Context diagram

confirmation,
invoice

booking,
checkout,
service note,
. . .

R1:
The product shall
have the following
interfaces:

Hotel
system

Guest

Account
system

Accountant

Waiter

R2 ??:
The reception domain
communicates with the
surroundings in this way:

Reception

Recep-
tionist Telephone

system

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Recep-
tionist

Fig 3.3 Event list & function list

R1: The product shall support
the following business
events / user activities / tasks:

R1.1 Guest books
R1.2 Guest checks in
R1.3 Guest checks out
R1.4 Change room
R1.5 Service note arrives

. . .

Product eventsDomain events
(business events)

Domain-product:
many-to-many

R2: The product shall handle the
following events / The product shall
provide the following functions:

User interface:
R2.1 Find free room
R2.2 Record guest
R2.3 Find guest
R2.4 Record booking
R2.5 Print confirmation
R2.6 Record checkin
R2.7 Checkout
R2.8 Record service

Accounting interface:
R2.9 Periodic transfer of account

data
. . .

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.4 Feature requirements

R1: The product shall be able to record that a room is occupied for
repair in a specified period.

R2: The product shall be able to show and print a suggestion for
staffing during the next two weeks based on historical room
occupation. The supplier shall specify the calculation details.

R3: The product shall be able to run in a mode where rooms are not
booked by room number, but only by room type. Actual room
allocation is not done until checkin.

R4: The product shall be able to print out a sheet with room
allocation for each room booked under one stay.

In order to handle group tours with several
guests, it is convenient to prepare for
arrival by printing out a sheet per guest for
the guest to fill in.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Feature =
product function +
related data

What is a ‘feature’?

Some possible definitions:
1. A textual shall-statement requirement
2. A releasable characteristic of a

(software-intensive) product
3. A (high-level, coherent) bundle of

requirements
4. A ‘decision unit’ that can be ‘in’ or ‘out’ of

a release plan depending on:
¨What it gives (investment return)
¨What it takes (investment costs)
¨ Politics, Beliefs, Loyalties, Preferences ...

Fig 3.5A Screens & prototypes

R1: The product shall use the screen pictures shown in App. xx.

R2: The menu points and buttons shall work according to the
process description in App. yy.
Error messages shall have texts as in . . .

R3: Novice users shall be able to perform task tt on their own in
mm minutes.

The customer imagines screens like
those in App. xx.

Certificate: The requirements engineer

has usability tested this design according

to the procedures in App. zz.

Makes sense?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Appendix xx. Required screensAppendix xx. Required screens

Fig 3.5B Screens & prototypes

Appendix yy. Required
functions

Stay window
Book:
. . .
Checkin:
If stay is booked, record the

booked rooms as occupied.
If stay is not recorded,

Check selected rooms free
and guest information
complete.
Record guest and stay.
Record selected rooms as
occupied.

If stay is checked in, . . .

Appendix yy. Required
functions

Stay window
Book:
. . .
Checkin:
If stay is booked, record the

booked rooms as occupied.
If stay is not recorded,

Check selected rooms free
and guest information
complete.
Record guest and stay.
Record selected rooms as
occupied.

If stay is checked in, . . .

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Overview of styles for specifying functional
requirements (Swedish terminology)

Datakravstilar:
Datamodell
(=E/R-diagr.)
Dataordlista
Reguljära uttryck
Virtuella fönster

Funktionella kravstilar:
Kontextdiagram
Händelse- & Funktionslistor
Produktegenskapskrav
Skärmbilder & Prototyper
Uppgiftsbeskrivningar
Egenskaper från uppgifter
Uppgifter och stöd
(Levande) Scenarier
Högnivåuppgifter
Användningsfall
Uppgifter med data
Dataflödesdiagram
Standardkrav
Krav på
utvecklingsprocessen

Funktionella detaljer:
Enkla och sammansatta
funktioner
Tabeller & Beslutstabeller
Textuella processbeskrivningar
Tillståndsdiagram
Övergångsmatriser
Aktivitetsdiagram
Klassdiagram
Samarbetsdiagram
Sekvensdiagram

 Speciella gränssnitt
Rapporter
Plattformskrav
Produktintegration
Tekniska gränssnitt

Different types of
requirements
abstraction
• Hierarchical decomposition

(nested bundling)
• Level of detail

(degree of completeness)
• Goal-design scale

¨ goal: why: intentional level
¨ domain: who: context level
¨ product: what: functions+data
¨ design: how: "inside" product

Complete
requirements?

 In practice you cannot specify
everything to the last detail!

 What is good enough?
-> Depends on the context

 Tip: Focus on the reqs that have
the largest risk of…
¨ misinterpretation by stakeholders
¨ misfit of the final system

 Do not spend large efforts on the
“easy” requirements that
everybody already knows much
about

 Do pre-studies: conceptual and
feasibility studies, prototypes etc.
to ...
¨ ... reduce risks
¨ “jump” between abstraction levels

Terminology confusion:
Scenario, Task, Use Case, User Story
(sv: scenario, uppgift, användningsfall, användarberättelse)

Scenario =

(1) A general term for all types of example-based
dynamic descriptions of system usage (Usability
Engieering ’Tasks’, UML ’Use cases’, Scrum ’User
Stories’, etc.

(2) A specific realisation (instance) of a use case

(3) A detailed narrative describing an experience of a
user, also known as ”vivid scenario”

(4) Future scenaries, possible future events /outcomes,
in e.g. risk managament

…
In addition there are many variants of Use Cases,
Tasks, etc (Jacobson, Cockburn, Lauesen, …)

A brief history of
scenarios-based requirements

• Scenario-based requirements have been around for a while:
¨ Task descriptions from Usability Engineering,

e.g. J.F. Allen ‘80ies, J.M. Carroll ‘90ies

¨ Scenario-based RE. e.g. J.W. Hooper, P. Hsia (1982), Potts (1995), Suttcliffe (1998)

¨ Message Sequence Charts within Telecom, SDL’87

• 1992: Ivar Jacobson coined the term ”use case” in his book ”OOSE”

• Mid 1990ies: ”three amigos” (Booch, Rumbaugh, Jacobson) at Rational (later IBM) -> UML, RUP

• 2001: Beck starts agile movement with ”user stories”
As a <user> I want <action> so that <purpose>

• 2011: Lauesen publishes study on use cases vs tasks; use cases are questioned...

Grady
Booch

James
Rumbaugh

Ivar
Jacobson

Kent
Beck

Colin
Potts

Alistair
Sutcliffe

John M.
Carroll

Søren
Lauesen

Användningsfall - begrepp
Use case - concepts

Aktör
– en kategori av användare, roll

Användningsfall
– måluppfyllande användningssituation

Scenario (används i flera andra betydelser)
– en specifik realisering

Exempel:

• Bankomat: “Ta ut pengar”
(stoppa in kort, knappa in kod ...)

• Ordbehandling: “Kontrollera stavning”
(välj stycke, välj ordlista ...)

Bra till vadå?

Actor
– a category of users, a user role

Use case
– fulfills a goal in a usage context

Scenario (several different other meanings)
– a specific realization of a use case

Examples:

• ATM machine: “Withdraw money”
(enter card, enter code...)

• Word processor: “Check spelling”
(select paragraph, select dictionary...)

Good for what?

Some advantages with (example-based)
dynamic models of system usage

• Easy to understand by non-engineers
(if not too abstract)

• Gives a dynamic perspective on requirements
• Can relate requirements at different abstraction

levels
• Can provide a structure for requirements
• Good for modeling functional requirements
• Can support traceability
• Can be a good basis for test cases

Traps and pitfalls with
scenario-based requirements

• Too much details – ”over specification”
• Too few details – ”under specification”
• Fragmentations
• Premature design
• Non-uniform specifications
¨ Structure, content, level of abstr., terminology, ...

• Inconsistent specification
¨ Mutually contradictory specifications

• Incomplete specifications
• Functional decomposition -> bad OO design

Fig 3.6A Task descriptions

Work area: 1. Reception
Service guests - small and
large issues. Normally
standing. Frequent
interrupts. Often alone, e.g.
during night.

Users: Reception experience, IT
novice.

R1: The product shall support
tasks 1.1 to 1.5

Work area: 1. Reception
Service guests - small and
large issues. Normally
standing. Frequent
interrupts. Often alone, e.g.
during night.

Users: Reception experience, IT
novice.

R1: The product shall support
tasks 1.1 to 1.5

Task: 1.1 Booking
Purpose: Reserve room for a guest.

Task: 1.1 Booking
Purpose: Reserve room for a guest.

Task: 1.2 Checkin
Purpose: Give guest a room. Mark it as

occupied. Start account.
Trigger/
Precondition: A guest arrives
Frequency: Average 0.5 checkins/room/day
Critical: Group tour with 50 guests.

Sub-tasks:
1. Find room
2. Record guest as checked in
3. Deliver key

Variants:
1a. Guest has booked in advance
1b. No suitable room
2a. Guest recorded at booking
2b. Regular customer

Task: 1.2 Checkin
Purpose: Give guest a room. Mark it as

occupied. Start account.
Trigger/
Precondition: A guest arrives
Frequency: Average 0.5 checkins/room/day
Critical: Group tour with 50 guests.

Sub-tasks:
1. Find room
2. Record guest as checked in
3. Deliver key

Variants:
1a. Guest has booked in advance
1b. No suitable room
2a. Guest recorded at booking
2b. Regular customer

Task: 1.3 Checkout
Purpose: Release room, invoice guest.
. . .

Task: 1.3 Checkout
Purpose: Release room, invoice guest.
. . .

Missing
sub-task?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.6B Triggers, options, preconditions

Task: Change booking
Purpose: . . .
Precondition: Guest has booked?
Trigger: Guest calls
. . .

Sub-tasks:
1. Find booking
2. Modify guest data, e.g. address (optional)
3. Modify room data, e.g. two rooms (optional)
4. Cancel booking (optional)

Makes
sense?

Task: Look at your new e-mails
Purpose: Reply, file, forward, delete,

handle later.
Trigger: A mail arrives.

- Someone asks you to look.
- You have been in a meeting and

are curious about new mail.
Frequency: . . .

From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

Sub-tasks:

1. Find room.
Problem: Guest wants neighbor
rooms; price bargain.

2. Record guest as checked in.

3. Deliver key.
Problem: Guest forgets to return the
key; guest wants two keys.

Variants:

1a. Guest has booked in advance.
Problem: Guest identification fuzzy.

Example solution:

System shows free rooms on floor
maps. System shows bargain prices,
time and day dependent.

(Standard data entry)

System prints electronic keys. New
key for each customer.

System uses closest match
algorithm.

Fig 3.8A Tasks & Support

Task: 1.2 Checkin
Purpose: Give guest a room. Mark it . . .
Frequency: . . .

Future:
Computer part

Past:
Problems

Domain
level

From: Soren Lauesen: Software Requirements. © Pearson / Addison-Wesley 2002

Fig 3.9 Vivid scenario

Scenario: The evening duty

Doug Larsson had studied all afternoon and was a bit exhausted when arriving 6
pm to start his turn in the reception. The first task was to prepare the arrival of
the bus of tourists expected 7 pm. He printed out all the checkin sheets and put
them on the desk with the appropriate room key on each sheet.

In the middle of that a family arrived asking for rooms. They tried to bargain and
Doug always felt uneasy about that. Should he give them a discount?
Fortunately Jane came out from the back office and told them with her
persuading smile that she could offer 10% discount on the children’s room. They
accepted, and Doug was left to assign them their rooms. They wanted an
adjoining room for the kids, and as usual he couldn’t remember which rooms
were neighbors.

Around 10 pm, everything was quiet, and he tried to do some of his homework,
but immediately became sleepy. Too bad - he wasn’t allowed to sleep at work
until 1 AM. Fortunately the office computer allowed him to surf the net. That kept
him awake and even helped him with some of his homework.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.10 Good tasks

Good tasks:
• Closed: goal reached, pleasant feeling
• Session: Small, related tasks in one description
• Don’t program

Examples:
1 Manage rooms?
2 Book a guest?
3 Enter guest name?
4 Check in a bus of tourists
5 Stay at the hotel?
6 Change the guest’s address etc?
7 Change booking?
8 Cancel entire booking?

Frequent
mistake

Got them all?
• All events covered?
• Critical tasks covered?
• At least as good as before?
• CRUD check

How to deal
with that?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.11 High-level tasks

Sub-tasks:

1. Select a hotel.
Problem: We aren’t visible enough.

2. Booking.
Problem: Language and time zones.
Guest wants two neighbor rooms

3. Check in.
Problem: Guests want two keys

4. Receive service

5. Check out
Problem: Long queue in the morning

6. Reimburse expenses
Problem: Private services on the bill

Example solution:

?

Web-booking.
Choose rooms on web at a fee.

Electronic keys.

Use electronic key for self-
checkout.

Split into two invoices, e.g.
through room TV.

Task: 1. A stay at the hotel
Actor: The guest
Purpose: . . .

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.12A Use cases vs. tasks

Hotel system

Booking

Checkin

Checkout
Receptionist

Hotel system

Booking

Account
system

UML use case
diagram:

. . .

Transferactor

actor

Task descriptions. Split postponed:

Account
system

Transfer

Human and computer separated:

Hotel system

. . .

Booking

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.12B Human and/or computer

Human and computer separated

Use case: Check in a booked guest

User action System action
Enter booking number

Show guest and booking details
Edit details (optional)

Store modifications
Push checkin

Allocate free room(s)
Display room number(s)

Give guest key(s)

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Computer-centric use case

Use case: Check in a booked guest

Trigger: Receptionist selects check in

Read booking number
Display guest and booking details
Read and store modifications
Wait for checkin command
Select free room(s)
Mark them as occupied
Add them to guest details
Display room number(s)

End use case

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.15 Standards as requirements

R1: Data transfer to the account package shall be done through a file
with the format described in WonderAccount Interface Guide
xx.yy. The account numbers shall be . . .

R2: The user interface shall follow MS Windows Style Guide, xx.yy.
The MS Word user interface should be used as a model where
appropriate.

R3: Shall run under MS-Windows release xx.yy. Supplier shall port
product to new releases within ______ months.

R4: Shall follow good accounting practice. The supplier shall obtain
the necessary certification.

R5: The supplier shall update the payroll computations in accordance
with new union agreements within one month after release of the
agreement.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.16 Development process as requirement

R1: System development shall use iterative development based on
prototypes as described in App. xx.

R2: Supplier shall deliver additional screens with a complexity like screen
S3 at a price of $____ per screen.

R3: All developers shall spend at least two days working with the users on
their daily tasks.

R4: A special review shall be conducted at the end of each development
activity to verify that all requirements and system goals are duly
considered. The customer’s representative shall participate in the
review.

R5: Customer and supplier shall meet at least two hours bi-weekly to
review requests for change and decide what to do, based on
cost/benefit estimates of the changes.

Generates new

requirements?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Functional Requirements – Summary

 Context Diagram
¨ Diagram of product and its surrounding
¨ Defining product scope
¨ Very useful!

 Event- and function lists
¨ Lists of events and functions

 Domain or product level
¨ Good as checklists at verification
¨ Validation at product level?

 Feature requirements
¨ Textual requirement: ”the product shall …”
¨ High expressive power
¨ Acceptable to most stakheolders
¨ Can lead to false sense of security

 How to ensure that goal-level covered?
 Task descriptions

¨ Structured text describing user tasks
¨ Easy to understand and verify
¨ Good at domain level

 (Vivid) Scenarios
¨ Rich descriptions of specific cases
¨ Improves developer intuition and imagination
¨ Products of elicitation but not “real” requirements

 High-level tasks
¨ Client view of goal-related tasks
¨ Independent of existing domain-level tasks
¨ Good for business process re-engineering

 Use Cases
¨ Widely used in many styles and variants
¨ Some styles are good for design level (UI)
¨ Can be used at different levels
¨ Risk of pre-mature desin

 Standards as requirements
¨ Textual requirement:

“the product shall follow standard xxx”
¨ Transfer the problem to the supplier
¨ Sometimes lead to false sense of security

 Development process requirements
¨ A requirement to follow a certain procedure

 Use prototypes
 Use specific reviews at certain points
 Test in a specific way
 Max number of simultaneous change reports
 …etc

¨ Validation? Difficult to say how process quality
relates to product quality

Functional details
Lau:4

 Skim read so that you know what is in
there and see if anything is relevant for
your project

 If you have studied UML you already
know some of it, BUT it is very important
to consider at which level to use the
diagrams (domain, product, or design)…

Functional details &
Special interfaces

Complex & simple functions
Tables & decision tables
Textual process descr.
State diagrams
State-transition matrices
Activity diagrams
Class diagrams
Collaboration diagrams
Sequence diagrams

Reports
Platform requirements
Product integration
Technical interfaces

Fig 4.4 State diagrams

Rooms have a RoomState for each day in the planning period. The
status shows whether the room is free, occupied, etc. that day.

R12: RoomState shall change as shown in Fig. 12.

Fig. 12. RoomState

free booked

occupied
repair

book

cancel

ch
ec

ki
n

ch
an

g
eR

o
o

m

checkin
ch

ec
ko

u
t

ch
an

g
eR

o
o

m repair

done

event

create

?
From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

Fig 4.7A UML Class Diagram

Stay
stay#
paymethod
checkout
recordService
printConfirm

Room State
date
#persons
state
setState
getState
set . . .

Room
. . .

Service
date
count
set . . .
get . . .

ServiceType
name
price
set . . .

Guest
name
address
passport
book . . .

1

0..*

1

0..* 0..* 1

0..1
1..*

0..* 1

Program:
curRoomState.setState(occupied)

Class name

Operations Association
= relationship

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 4.9 Sequence diagram

Product Account system

OK
Transfer

OK

OK

Data 1

Data 2

Done

Event + message + reply

Message + reply

Message + reply

Asynchronous message

User Product

free rooms
FindRooms

SelectRoom

Event + message + reply

Event +
asynchronous message

From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

Functional details Summary
State diagrams

¨ Diagram showing how something
changes from one state to another

¨ Good for finding missing functions
¨ Both on domain and product level
¨ Can sometimes be very complex

and difficult to read
Class diagrams

¨ A data model with operations on
data

¨ Harder to understand than E/R-
diagrams

¨ Widely used even when not good
¨ Not good for higher levels

Sequence diagram
¨ Time diagram for how objects

communicate
¨ Good for describing (simple)

communication protocols
¨ Useful at design-level

Activity Diagram…
Collaboration diagrams …

reqT tutorial and lab prep

Getting started with reqT:
• Check out https://reqT.github.io

• Download the Desktop app in reqT.jar

• Run with java -jar reqT.jar

• Investigate the GUI, check out the Templates and Tools

• Start the repl with java -jar reqT.jar repl
● Try some simple Models to see test how it works

m"* Feature: hi has Spec: hello"

Model(Feature("hi").has(Spec("hello")))

https://reqT.github.io/

Evolving mix of levels of detail & quality in
continuous requirements engineering

Level of detail, specification quality

The reqT tool supports evolving requirements
based on a modeling language with essential
RE concepts suitable for teaching & learning.

The idea behind reqT

• Be methodology agnostic: 'bag of concepts'

• Graphical UI and Terminal UI for power users

• Turn requirements into code by a
scalable data structure, from 1 to 10E4 reqts

• Scriptable to the power of Scala and the JDK

• Integrate with git and similar code/text tools

• Solve requirements constraints problems

• Open source: https://github.com/reqT

Research papers on reqT:
 https://reqt.org/documentation.html#pub

https://github.com/reqT
https://reqt.org/documentation.html#pub

• New in reqT v4:
Simple syntax based on markdown bullet lists

• Especially developed for this course
• Essential Requirements Engineering concepts from literature
• Generates visualizations using Graphviz
• Generates documents via export to html, latex, pdf

• Discuss in your project if/how you want to use reqT

https://reqT.github.io

https://reqT.github.io/

Screenshot of reqT

See terminal help:
java -jar reqT.jar help

Tree pane Editor pane Log pane

Requirements Entities
Examples from the reqT metamodel

Product, Interface,
Stakeholder, Idea, Goal,
Feature, Data, Function,
State, Event, Quality,
Design, Scenario, Story,
UseCase, Risk, Release,
Issue, Test, Variant, Req

The goal-design scale in reqT

* Goal: accuracy has
 * Spec: Our pre-calculations shall hit within 5%

* Feature: quotation has
 * Spec: Product shall support cost recording
 and quotation with experience data

* Function: experienceData has
 * Spec: Product shall have recording and
 retrieval functions for experience data

* Design: screenX has
 * Spec: System shall have screen pictures
 as shown in Fig. X

Shipyard example [Lau]

* Product: reqT has
 * Feature: toHtml

The reqT metamodel

A Model is a sequence of elements.

An element can be a node or a relation.

A node can be an entity or an attribute.

An entity has a type and an id.

An attribute has a type and a value.

An attribute can be
a string attribute or
an integer attribute.

A relation connects an entity
to a sub-model via a relation type.

Three views of a reqT Model

● Markdown bullets

* Feature hi: has
 * Spec: hello

● Scala constructors

Model(
 Feature("hi").has(
 Spec("hello")))

● Underlying Scala classes of the reqT metamodel

Model(
 Rel(Ent(Feature,"hi"),Has,
 Model(StrAttr(Spec,"hello"))))

The reqT Tools menu

● The tools operate on the Editor pane. Example workflow scenario:
1. load the things you want to apply a tool to in the Editor pane
2. select a tool from the menu
3. the Editor pane is updated
4. transfer what you want to keep to the Tree pane and save the Tree

● What the tools do:
– Format model: standardized reqT markdown pretty-print
– Distinct model: remove duplicates on all levels
– Keep distinct entities: filter Ent instances, remove duplicates
– Entity ordering: append Order relations, in order of apperance
– $100 normalized votes: weighted total priorities and benefits, assumes that

your model has same shape as Template -> Prioritization: 100$ test
– Id pairs as comparison constraints: append all pairs of ids in Constraints
– Solve Comparison Constraint Problem: try to satisfy Constraints by searching

for a solution that fulfills all comparisons; relaxed by allowing deviations if
needed

Automate model merging, analysis, doc building, ...

Download hello-reqt.scala from
https://github.com/reqT/reqT.github.io/blob/master/src/hello-reqt.scala
and run with: scala run . -M hello

//> using scala 3.6.3
//> using dep "reqt:reqt:4.4.2,url=https://github.com/reqT/reqT/releases/download/v4.4.2/reqT-4.4.2.jar"

import reqt.*

val m = Model(
 Feature("helloWorld").has(
 Spec("Print a nice greeting."),
 Why("First step to get started."),
)
)

@main def hello = println(m.toMarkdown)

https://github.com/reqT/reqT.github.io/blob/master/src/hello-reqt.scala

Some things you can do with reqt.Model in Scala
try below in Scala repl: java -jar reqT.jar repl
var m1 = Model() // an empty Model
val id = "hello" // an immutable reference to a String

val m2 = m"* Feature: $id has Spec: print greeting" // reqT special String interpolator m
 // parses String and returns a Model
m1 = m""" // multi-line String after """
 * Feature $id has
 * Spec: print greeting"""
m1.show // pretty-print model
m1.toMarkdown // generate Markdown from a Model
m1.toHtml // generate Html from a Model, also
toHtmlBody

Sys.loadLines("mymodel.md") // parse markdown model from file
Sys.saveTo(m1.toMarkdown)("mymodel-2.md") // save markdown to file

m1 = m1.append(Model(Feature("y").has(Spec("more stuff")))) // append two models also :++
m1 = m1.distinctElemsDeep // remove duplicates

m1.elems // a sequence of elems, type is immutable Vector[Elem]

for e <- m1.elems yield // iterate over all elems e in m1
 e match // match on e of type Elem
 case Ent(id, t) => id // pattern-match on Ent, yield the id
 case StrAttr(t, value) => value
 case Rel(e, t, sub) => e.id
 case _ => "or else this string"

Some questions for you

• How will you partition your reqts space?
• How will you synchronize your work?
• What entity id policy will you have?
• How will you manage versions?
• How will you build your document from

requirements fragments?

Which tools are you going to use?

• Office apps e.g. Google Docs, LibreOffice, MS Office
(spreadsheet, wordprocessor, database)

• Latex
• Web publishing
• Configuration management

(git, GitHub, GitLab, Bitbucket...)
• Prototyping tools, gui-builders
• Issue trackers / ticket managers / Trello etc.
• reqT

• Who will be tool responsible?

Kommersiella verktyg för kravhantering
https://en.wikipedia.org/wiki/Requirements_engineering_tools

Några verktygsexempel:

● Siemens Polarion

● Atlassian Jira

● Github (using issues+labels)

● IBM Doors/Doors Next/Jazz

● IBM Focal Point
https://public.dhe.ibm.com/softw
are/pdf/fi/IBM-Rational-Focal-Poi
nt.pdf

https://public.dhe.ibm.com/software/pdf/fi/IBM-Rational-Focal-Point.pdf
https://public.dhe.ibm.com/software/pdf/fi/IBM-Rational-Focal-Point.pdf
https://public.dhe.ibm.com/software/pdf/fi/IBM-Rational-Focal-Point.pdf

To do…
 Read these chapters in the textbook by Lauesen: 2, 3, 4, 5

First read all gray boxes, then prioritize things from lectures

 Exercise E2: Elicitation, really important for your project work, based on
Lauesen Chaper 8 (see previous lecture L2)

 Lab 1: Context, Features and Priorities reqT.github.io
 Work in pairs (or individually), book your slot in Canvas

 Get java -jar reqT.jar running in terminal

 Complete all preparations before the lab: https://cs.lth.se/krav/labs/

 Read paper on prioritization [PRIO] (see previous lecture L2)

 Work in the project:
 Book meeting with supervisor to discuss Project Mission v2

 Project Mission v2 handed in via Canvas, deadline: see https://cs.lth.se/krav/proj/

 Lectures next week:
 L5: Tuesday 15-17: Prototyping, Agile RE

 L6: Wednesday 15-17: Open Source RE, Release planning + help to prepare lab 2

https://cs.lth.se/krav/labs/
https://cs.lth.se/krav/proj/

	Slide 1
	Specifying functional requirements
	Slide 3
	All techniques have + and - depending on the context
	Data requirements
	Data requirements techniques – Summary
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Functional Requirements Part 1 Summary
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	What is a ‘feature’?
	Slide 18
	Slide 19
	Slide 26
	Different types of requirements abstraction
	Complete requirements?
	Slide 29
	Short history of scenarios-based requirements
	Användningsfall - begrepp Use case - concepts
	Slide 32
	Traps and pitfalls with scenario-based requirements
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 45
	Slide 46
	Functional Requirements – Summary
	Functional details Lau:4
	Functional details & Special interfaces
	Slide 50
	Slide 51
	Slide 52
	Functional details Summary
	Slide 54
	reqT+Scala Tutorial
	Slide 56
	Slide 57
	
	Slide 59
	Requirements Entities Examples from the reqT metamodel
	The goal-design scale in reqT
	Product("reqT") has Feature("toHtml")
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	To do…

