ETS3170, TFRG55 (2025)
wvesy RE@CUIrements Engineering

i
S

P
Z 3 Week 2, Lectures 3+4:
KM& Specification of functionality:
Data reqts: Lau:2,

Funtional reqts part 1: Lau:3.1-3.5
Lau:3.6 — 3.16, 4

Tutorial on a tool called reqT used at Lab1 & Lab2.

Bjorn Regnell
http://cs.lth.se/krav

http://cs.lth.se/krav

_ Spcifying tl.m:i:ﬁioal
requiremen

Overview of techniques for functional
requirements (Swedish terms)

Datakravstilar:
Datamodell

(=E/R-diagr.)
Dataordlista
Reguljara uttryck
Virtuella fonster

Funktionella kravstilar:

First read the "gray
box” of all styles

So that you
understand what
they are about and
their pros and
cons. Then read in
depth as needed.

Kontextdiagram

Handelse- &
Funktionslistor

Produktegenskapskrav
Skarmbilder & Prototyper
Uppgiftsbeskrivningar
Egenskaper fran uppgifter
Uppagifter och stod
(Levande) Scenarier
Hognivauppgifter
Anvandningsfall
Uppgifter med data
Dataflodesdiagram
Standardkrav

Krav pa
utvecklingsprocessen

Funktionella detaljer:

Enkla och sammansatta
funktioner

Tabeller & Beslutstabeller
Textuella processbeskrivningar
Tillstandsdiagram
Overgangsmatriser
Aktivitetsdiagram
Klassdiagram
Samarbetsdiagram
Sekvensdiagram

Speciella granssnitt

Rapporter
Plattformskrav
Produktintegration
Tekniska granssnitt

All techniques have + and -
depending on the context

When is a specific style good?

The answer depends on...
abstraction level
project type
the stakeholders
tool support
the amount of requirements

Use a well-balanced combination!
...but how do you know that it all fits together?
-> checking consistency is an important part of validation!

Data requirements

Examples:

Mobile Subscriber data (roaming data, phone book items,)
Image data (date, resolution, name, category),

Music data (album, artist, genre, name, frequency played, rating), ...

Techniques for modelling data in [Lauesen]:
Data model (e.g. E/R-diagrams)
Data dictionary
Data expressions
Virtual windows

Data requirements techniques - Summary

Data model (E/R-diagr.) Guest
¢ Block diagram describing data inside and outside the product
¢ Precise and insensitive to abstraction level s: ;y
¢ Excellent for experts — difficult for users; takes time to learn v
¢+ Easy to verify by experts that the data is handled by the product
¢ Difficult to decide how much detail should be included in the model RA
oom

Data dictionary

¢
¢
¢
¢
¢

Data expressions (regular expressions)

¢

* o

¢

*

Textual description of data inside and outside the product

Structured and systematic descriptions using verbal text

Very expressive, can be used for all levels of detail and special cases

Easy to validate by experts and non-experts

Takes long time to write; when is it good enough? (Start with difficult parts!!)

Compact formulas for describing data sequences

Class: Guest [Notes a, b ... refer to guidel

The guest is the person or company who has to
stay records. A company may have none [b, ¢].
in the database we only use “guest” [a]. The per:
called guests, but are not guests in database ter

Examples

1. A guest who stays one night.

2. A company with employees staying now anc
record where his name is recorded [d].

3. A guest with several rooms within the same

Attributes
name: Text, 50 chars [h]
The name stated by the guest [f]. F
the bill is sent there [g]. Longer nar
registration time than at print out tin
passport: Text, 12 chars [h]
Recorded for guests who are obviol
reports in case the guest doesn’t pe

Useful for composite data and message protocolls

Excellent for experts, acceptable for many users room state = { free

passport number = letter + {digit}*8

| booked | occupied | repair }

No visual overview account data = transfer + {account record}* + done
Virtual windows

Simplified screens with graphics and realistic data, but no buttons and menues
Excellent for both experts and users

Easy to validate and verify

Risk of overdoing it and start designing the user interface

Stay#: 714
Guest
Name: John Simpson
Address: |456 Orange Grove
Victoria 3745
Payment: [Visa v]

Iltem #pers

7/8 Room 12, sgl 600
8/8 Breakf. rest 40
8/8 Room 11, dbl 800
9/8 Breakf. room 120

9/8 Room 11, dbl 800| K
\.\-—__-—__—.—I—l—.

Fig 2.1 The hotel system

e A
e ~mﬁ§@
' ¥ o JE

Task list Data about
Book guest Guests
Checkin Rooms
Checkout Services
Change room _/'

Breakfast list &
other services

-

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 2.3 Data dictionary

Class: Guest [Notes a, b ... refer to guidelines]

The guest is the person or company who has to pay the bill. A guest has one or more
stay records. A company may have none [b, c]. “Customer” is a synonym for guest, but
in the database we only use “guest” [a]. The persons staying in the rooms are also
called guests, but are not guests in database terms [a].

Examples

1. A guest who stays one night.

2. A company with employees staying now and then, each of them with his own stay
record where his name is recorded [d].

3. A guest with several rooms within the same stay.

Attributes

name: Text, 50 chars [h]
The name stated by the guest [f]. For companies the official name since
the bill is sent there [g]. Longer names exist, but better truncate at
registration time than at print out time [g, .
passport: Text, 12 chars [h]
Recorded for guests who are obviously foreigners [f, i]. Used for police
reports in case the guest doesn’t pay [q] . . -

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 2.2A Data model (E/R-diagram)

R2: The system shall store the following data:

name,
address1,’—\

address2, Guest
address3, name, price
passport

AN

- Service
Stay |—<|ServicePp——
e Y '

Type
stay#, /L \
paymethod, date, count

employee Room
State | —~

date, #persons,
state (booked|occupied|repair)

room#, Room From: Soren Lauesen:

Software Requirements ©
#b.eds, tyPe Pearson / Addison-Wesley
price1, price2 2002

Entities and Relationships

http://en.wikipedia.org/wiki/Entity% E2%80%93relationship model

One-to-many (1:m)

Each guest
connected to
zero or more stays

Guests

00004
/\/\\

fo85D08 0

Stays

Each stay
connected to
one guest record

Cardinality
of relations

http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

Fig 2.4A Data expressions

Notation with plus as concatenator
booking request = guest data + period + room type

guest data = guest name + address + paymethod
+ [passport number]

passport number = letter + {digit}*8

room state = { free | booked | occupied | repair }

account data = transfer + {account record}* + done

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 2.5 Virtual Windows

R1: The product shall
store data
corresponding to the
following virtual
windows:

R2: The final screens
shall look like the virtual
windows ?7?

From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

7/8 Room 12, sgl | 1 600
8/8 Breakf. rest |1
8/8 Room 11, dbl |2 800
9/8 Breakf. room |2

Stay#: 714 Breakfast 9/8
Guest
: : In In
Name: |John Simpson R# t
Address: [456 Orange Grove restjroom
Victoria 3745 11 2]
Payment: |Visa v 12 | |1
13 | |1 1 q
Item #pers ~_ 1] N

Service charges

-------------------- Breakf. rest. 40
9/8 Room 11, dbl [2] 800\ H |Breakf room B0
S —

Rooms 7/8 8/8 9/8 10/8

11 Double Bath 800 600
12 Single Toil 600
13 Double Toil 600 500

O B
O O B B
B B B

Functional Requirements Part 1 Summary

Context Diagram

¢ Diagram of product and its surroundin -
gram of p J — s
¢ Defining product scope

booking,
checkout,
¢ Ve ry u Ser I ! _S_eTVice note. 1 conﬁrmatiox

invoice

Recep- Telephone

tionist system
% Guest
Event- and function lists
¢ Lists of events and functions
. R1: The product shall support the following business
* Domain or prOdUCt level events / user activities / tasks:
¢ Good as checklists at verification R1.1 Guest books
. . R1.2 Guest checks i
¢ Validation at product level? R1.3 peeese
Feature requ"e_rnents ., ., R1: The product shall be able to
¢ Textual requirement: "the product shall ... record that a room is
. : : occupied for repair in a
High expressive power specified period.
¢ Acceptable to most stakheolders
. R2: The product shall
¢ Can lead to false sense of security
* How to ensure that goal-level covered? R3: The product shall
— /-
Y Guestnamefon Smpon | Sta [719
Address ,W Book F3
,W Frint confim F4
Screens and Prototypes S — T
. Paymethed [Cosh =] Cancel stay F§
¢ Screen pictures + what buttons do Foa Oz
¢ Excellent as design-level requirements) —
if carefully tested e
¢ Not good when for COTS-based systems

Fig 3.1 Human-computer - who does what?

guest’s Domain model:
parties joined

wishes

FindFree
Room

guest name

+ chosen room# Rooms

Physical model:
work split

FindFreeRoom
period+room type

—

-
«

guest’s
wishes

Product

free rooms

choice
guest name

Rooms

room#

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.2 Context diagram

R1:) ‘ Account
The product shall %) booking, | system system

have the following checkout,

interfaces: Recep- Servicenote, confirmation,
: : Tt Invoice
tionist Telephone
system
Guest
R222: . Recep- -~~~ Reception --"\\
The reception domain tionist ~.
. . , .
communllcate.s Wlt!‘l the | ’ Hotel Account]
surroundings in this way: \ — system system)

)\)\ Accountant
From: Soren Lauesen: Software Requirements Waiter Guest

© Pearson / Addison-Wesley 2002

Fig 3.3 Event list & function list

Domain events Product events

(business events)

R2: The product shall handle the

R1: The product shall support following events / The product shall
the following business provide the following functions:
events / user activities / tasks: User interface:

R1.1 Guest books ~ R2.1 Find free room

R1.2 Guest checks in R2.2 Record guest

R1.3 Guest checks out R2.3 Find guest

R1.4 Change room ——— | R2.4 Record booking

R1.5 Service note arrives R2.5 Print confirmation

. R2.6 Record checkin
~— / R2.7 Checkout

_] R2.8 Record service

Domain-product

many-to-many Accounting interface:

R2.9 Periodic transfer of account
data

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.4 Feature requirements

R1: The product shall be able to record that a room is occupied for
repair in a specified period.

R2: The product shall be able to show and print a suggestion for
staffing during the next two weeks based on historical room
occupation. The supplier shall specify the calculation details.

R3: The product shall be able to run in a mode where rooms are not
booked by room number, but only by room type. Actual room
allocation is not done until checkin.

R4: The product shall be able to print out a sheet with room
allocation for each room booked under one stay.

e —

Feature = (In order_tq handle group tours with several
duct f £ + guests, it is convenient to prepare for

product function arrival by printing out a sheet per guest for
related data the guest to fill in. y

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

What is a ‘feature’?

Some possible definitions:
A textual shall-statement requirement

A releasable characteristic of a
(software-intensive) product

A (high-level, coherent) bundle of
requirements

A ‘decision unit’ that can be ‘in’ or ‘out’ of
a release plan depending on:
¢+ What it gives (investment return)

¢ What it takes (investment costs)
¢ Politics, Beliefs, Loyalties, Preferences ...

Fig 3.5A Screens & prototypes

R1: The product shall use the screen pictures shown in App. xx.

R2: The menu points and buttons shall work according to the
process description in App. yy.
Error messages shall have tex

R3: Novice users shall be able to perform task tt on their own in
mm minutes.

The customer imagines screens like

those in App. xx.

—_— Makes sense?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.5B __Screens & prototypes

Appendix xx. Required screens

B Hooms
First day: I 0&-08-01 K.ind: Iu:II:-I, hath 'I Fird |
of daps: I 2
08]11.08]12.08[13
4 Guest namel!]u:uhn Simpzon Stapit | 714 Appendix yy_ Required
Address |4?E El.range Grove Book F3 - fu nctions
Imcmna 3745 Print confirm F4 .
[2U Checkin__F5 Stay window
Phane [4533333366 Checkout FE Book:
Papmethod |Cazh -
I —I Cancel stay FEl - e]
Passport |.-'-‘-.1 02103512 ~1 Checkin:
If stay is booked, record the
[rate HPerzons Amount .
017-08-98 [Foom 12. sal I booked rooms as occupied.
18-03-98 |Breakf. rest 1 40 .
080898 |Foom 11, bl 2| sog | Lektelne Del If stay is not recorded,
090598 |Break, 1oom 2| 720 | LhngsroomF3 Check selected rooms free
09-08-93 |Foam 11, dbl 2 aoo Addline F10 and gueSt information
complete.
Record guest and stay.
~ Record selected rooms as

occupied.

If stay is checked in, . ..

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Overview of styles for specifying functional
requirements (Swedish terminology)

Datakravstilar:

Datamodell

(=E/R-diagr.)
Dataordlista
Reguljara uttryck
Virtuella fonster

Funktionella kravstilar:

Kontextdiagram

Funktionella detaljer:

Enkla och sammansatta

Handelse- & Funktionslistor funktioner

Produktegenskapskrav

Skarmbilder & Prototyper
Uppgiftsbeskrivningar
Egenskaper fran uppgifter
Uppgifter och stod
(Levande) Scenarier
Hognivauppgifter
Anvandningsfall
Uppgifter med data
Dataflodesdiagram
Standardkrav

Krav pa
utvecklingsprocessen

Tabeller & Beslutstabeller
Textuella processbeskrivningar
Tillstandsdiagram
Overgangsmatriser
Aktivitetsdiagram
Klassdiagram
Samarbetsdiagram
Sekvensdiagram

Speciella granssnitt

Rapporter
Plattformskrav
Produktintegration
Tekniska granssnitt

Different types of
requirements
abstraction

* Hierarchical decomposition
(nested bundling)

* Level of detall
(degree of completeness)
* (Goal-design scale
¢ goal: why: intentional level
¢ domain: who: context level
¢ product: what: functions+data
¢ design: how: "inside" product

Complete
requirements?

In practice you cannot specify
everything to the last detail!

What is good enough?
-> Depends on the context

Tip: Focus on the regs that have
the largest risk of...

¢ misinterpretation by stakeholders
¢ misfit of the final system

Do not spend large efforts on the
“‘easy” requirements that
everybody already knows much
about

Do pre-studies: conceptual and
feasibility studies, prototypes etc.
to ...

¢ ... reduce risks
¢ “jump” between abstraction levels

Terminology confusion:

Scenario, Task, Use Case, User Story
(sv: scenario, uppgift, anvandningsfall, anvandarberattelse)

Scenario =

(1) A general term for all types of example-based
dynamic descriptions of system usage (Usability
Engieering "Tasks’, UML 'Use cases’, Scrum 'User
Stories’, etc.

(2) A specific realisation (instance) of a use case

(3) A detailed narrative describing an experience of a
user, also known as "vivid scenario”

(4) Future scenaries, possible future events /outcomes,
In e.g. risk managament

In addition there are many variants of Use Cases,
Tasks, etc (Jacobson, Cockburn, Lauesen, ...)

A brief history of
scenarios-based requirements

Scenario-based requirements have been around for a while:

¢ Task descriptions from Usability Engineering,
e.g. J.F. Allen ‘80ies, J.M. Carroll ‘90ies

¢ Scenario-based RE. e.g. J.W. Hooper, P. Hsia (1982), Potts (1995), Suttcliffe (1998)
¢ Message Sequence Charts within Telecom, SDL'87
1992: lvar Jacobson coined the term "use case” in his book "OOSE”
Mid 1990ies: "three amigos” (Booch, Rumbaugh, Jacobson) at Rational (later IBM) -> UML, RUP

2001: Beck starts agile movement with "user stories”
As a <user> | want <action> so that <purpose>

2011: Lauesen publishes study on use cases vs tasks; use cases are questioned...

John M. Grady Colin Alistair Kent Saren

Carroll James Ivar
Booch Rumbaugh Jacobson Potts Sutcliffe Beck Lauesen

Anvandningsfall - begrepp
Use case - concepts

Actor
— a category of users, a user role
Use case
— fulfills a goal in a usage context
Scenario (several different other meanings)
— a specific realization of a use case

Examples:

ATM machine: “Withdraw money”
(enter card, enter code...)

Word processor: “Check spelling”
(select paragraph, select dictionary...)

Good for what?

Aktor

— en kategori av anvandare, roll
Anvandningsfall

— maluppfyllande anvandningssituation
Scenario (anvénds i flera andra betydelser)

— en specifik realisering

Exempel.

Bankomat: “Ta ut pengar”
(stoppa in kort, knappa in kod ...)

Ordbehandling: “Kontrollera stavning”
(valj stycke, valj ordlista ...)

Bra till vada?

Some advantages with (example-based)
dynamic models of system usage

Easy to understand by non-engineers
(if not too abstract)

Gives a dynamic perspective on requirements

Can relate requirements at different abstraction
levels

Can provide a structure for requirements
Good for modeling functional requirements
Can support traceability

Can be a good basis for test cases

Traps and pitfalls with
scenario-based requirements

Too much details — "over specification”
Too few details — "under specification”
Fragmentations
Premature design
Non-uniform specifications

¢ Structure, content, level of abstr., terminology, ...
Inconsistent specification

¢ Mutually contradictory specifications
Incomplete specifications
Functional decomposition -> bad OO design

Fig 3.6A Task descriptions

Work area: 1. Reception
Service guests - small and
large issues. Normally
standing. Frequent
interrupts. Often alone, e.g.
during night.

Users: Reception experience, IT
novice.

R1: The product shall support
tasks 1.1t0 1.5

Task: 1.1 Booking
Purpose: Reserve room for a guest.

Task: 1.2 Checkin

Purpose: Give guest a room. Mark it as
occupied. Start account.

Trigger/

Precondition: A guest arrives

Frequency: Average 0.5 checkins/room/day

Critical: Group tour with 50 guests.

Sub-tasks:

1. Find room

Missing
sub-task?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

2. Record guest as checked in
3. Deliver key

Variants:
1a. Guest has booked in advance

1b. No suitable room
2a. Guest recorded at booking
2b. Regular customer

Task: 1.3 Checkout
Purpose: Release room, invoice guest.

Fig 3.6B__Triggers, options, preconditions

Task: Look at your new e-mails
Purpose: Reply, file, forward, delete,
handle later.
Trigger: A mail arrives.
- Someone asks you to look.
- You have been in a meeting and
are curious about new mail.
Frequency:

Task: Change booking
Purpose:

Precondition: Guest has booked?
Trigger: Guest calls

Sub-tasks:

1. Find booking

2. Modify guest data, e.g. address (optional)
3. Modify room data, e.g. two rooms (optional)
4.

Cancel booking (optional)

Makes
Lsense?

From: Soren Lauesen:
Software Requirements

© Pearson / Addison-Wesley 2002

Fig 3.8A Tasks & Support

Task: 1.2 Checkin

Purpose: Give guest a room. Mark it . . .

Frequency:

Sub-tasks: Example solution:

1. Find room. System shows free rooms on floor

Problem: Guest wants neighbor
rooms; price bargain.

maps. System shows bargain prices,
time and day dependent.

2. Record guest as checked in.

(Standard data entry)

3. Deliver key.
Problem: Guest forgets to return the
key; guest wants two keys.

System prints electronic keys. New
key for each customer.

Variants:

1a. Guest has booked in advance.

Problem: Guest identify
I\

System uses closest match
algorithm.

Past:
Problems

From: Soren Lauesen: Software Requirements. © Pearson / Addison-Wesley 2002

Future:
Computer part

[

Fig 3.9 Vivid scenario

Scenario: The evening duty

Doug Larsson had studied all afternoon and was a bit exhausted when arriving 6
pm to start his turn in the reception. The first task was to prepare the arrival of
the bus of tourists expected 7 pm. He printed out all the checkin sheets and put
them on the desk with the appropriate room key on each sheet.

In the middle of that a family arrived asking for rooms. They tried to bargain and
Doug always felt uneasy about that. Should he give them a discount?
Fortunately Jane came out from the back office and told them with her
persuading smile that she could offer 10% discount on the children’s room. They
accepted, and Doug was left to assign them their rooms. They wanted an
adjoining room for the kids, and as usual he couldn’t remember which rooms
were neighbors.

Around 10 pm, everything was quiet, and he tried to do some of his homework,
but immediately became sleepy. Too bad - he wasn’t allowed to sleep at work
until 1 AM. Fortunately the office computer allowed him to surf the net. That kept
him awake and even helped him with some of his homework.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.10 Good tasks

Good tasks:
Closed: goal reached, pleasant feeling
Session: Small, related tasks in one description

Don’t program

Examples:

ONOO OV WDN -

Frequent
mistake

Manage rooms?
Book a guest?
Enter guest name?
Check in a bus of tourists

Stay at the hotel?

Change the guest’s address etc?
Change booking?

Cancel entire booking?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Got them all?

« All events covered?

Critical tasks covered?

« Atleast as good as before?
* CRUD check

/ L

How to deal
with that?

Fig 3.11 High-level tasks

Task: 1. A stay at the hotel
Actor: The guest
Purpose:
Sub-tasks: Example solution:
1. Select a hotel.
Problem: We aren’t visible enough. ?
2. Booking.
Problem: Language and time zones. | Web-booking.
Guest wants two neighbor rooms Choose rooms on web at a fee.
3. Checkin.
Problem: Guests want two keys Electronic keys.
4. Receive service
5. Check out Use electronic key for self-
Problem: Long queue in the morning | checkout.
6. Reimburse expenses Split into two invoices, e.g.
Problem: Private services on the bill | through room TV.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.12A Use cases vs. tasks

UML use case
diagram:

%/

Receptionx

(actor

_~(_Booking

é

Hotel system

0t

actor)

A t
// s(;/g?eu r:

Human and computer separated:

Hotel system

%@okinD .

Hotel system

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

X

Task descriptions. Split postponed:

Bookin
QC 9) Tran@r?’a‘ccou nt

system

Fig 3.12B Human and/or computer

Human and computer separated
Use case: Check in a booked guest

User action System action
Enter booking number
Show guest and booking details
Edit details (optional)
Store modifications
Push checkin
Allocate free room(s)
Display room number(s)
Give guest key(s)

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Computer-centric use case
Use case: Check in a booked guest
Trigger: Receptionist selects check in

Read booking number
Display guest and booking details
Read and store modifications
Wait for checkin command
Select free room(s)
Mark them as occupied
Add them to guest details
Display room number(s)

End use case

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.15 Standards as requirements

R1:

R2:

R3:

R4:

R5:

Data transfer to the account package shall be done through a file
with the format described in WonderAccount Interface Guide
xX.yy. The account numbers shall be . . .

The user interface shall follow MS Windows Style Guide, xx.yy.
The MS Word user interface should be used as a model where
appropriate.

Shall run under MS-Windows release xx.yy. Supplier shall port
product to new releases within months.

Shall follow good accounting practice. The supplier shall obtain
the necessary certification.

The supplier shall update the payroll computations in accordance
with new union agreements within one month after release of the
agreement.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 3.16 _Development process as requirement

R1:

R2:

R3:

R4:

R5:

System development shall use iterative development based on
prototypes as described in App. xx.

Supplier shall deliver additional screens with a complexity like screen
S3 at a price of $ per screen.

All developers shall spend at least two days working with the users on
their daily tasks.

A special review shall be conducted at the end of each development
activity to verify that all requirements and system goals are duly
considered. The customer’s representative shall participate in the
review.

Customer and supplier shall meet at least two hours bi-weekly to
review requests for change and decide what to do, based on
cost/benefit estimates of the changes.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Functional Requirements - Summary

Context Diagram
¢ Diagram of product and its surrounding
¢ Defining product scope
¢ Very useful!

Event- and function lists

¢ Lists of events and functions
® Domain or product level

¢ Good as checklists at verification
¢ Validation at product level?
Feature requirements

¢ Textual requirement: "the product shall ...

¢ High expressive power
¢ Acceptable to most stakheolders
.

Can lead to false sense of security
®* How to ensure that goal-level covered?

Task descriptions
¢ Structured text describing user tasks
¢ Easy to understand and verify
¢ Good at domain level
(Vivid) Scenarios
¢ Rich descriptions of specific cases

¢ Improves developer intuition and imagination
¢+ Products of elicitation but not “real” requirements

High-level tasks
¢ Client view of goal-related tasks
¢ Independent of existing domain-level tasks
¢ Good for business process re-engineering
Use Cases
¢ Widely used in many styles and variants
¢ Some styles are good for design level (Ul)
¢ Can be used at different levels
¢ Risk of pre-mature desin
Standards as requirements

¢ Textual requirement:
“the product shall follow standard xxx”

¢ Transfer the problem to the supplier
¢ Sometimes lead to false sense of security
Development process requirements

¢ Arequirement to follow a certain procedure
® Use prototypes
* Use specific reviews at certain points
* Testin a specific way
* Max number of simultaneous change reports
* ..etc

¢ Validation? Difficult to say how process quality
relates to product quality

Functional details
Lau:4

Skim read so that you know what is in
there and see if anything is relevant for
your project

If you have studied UML you already
know some of it, BUT it is very important
to consider at which level to use the
diagrams (domain, product, or design)...

Functional details &
Special interfaces

Complex & simple functions
Tables & decision tables
Textual process descr.
State diagrams
State-transition matrices
Activity diagrams

Class diagrams
Collaboration diagrams
Sequence diagrams

Reports

Platform requirements
Product integration
Technical interfaces

Fig 4.4 State diagrams

R12: RoomsState shall change as shown in Fig. 12.

Rooms have a RoomState for each day in the planning period. The
status shows whether the room is free, occupied, etc. that day.

From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

Fig. 12. RoomState

cancel
Create ..
.- > free '.’. R
A v".‘."
£
S g
S n:°
(o <) c o
0O C O o
QO ® O ©
< C c c
O O o O
v
occupied
: event
CiD

booked

Fig4.7A _UML Class Diagram

Guest Class name

name

address —

passport ZOperations Association

book . . . - = relationship

1
0..* Service -
- 0.+ [date ServiceType

Stay L count 0.. 1 name

stay# sel price

paymethod 1 get . .. set ...

checkout

recordService

printConfirm
Room State Program: _
date curRoomState.setState(occupied)
#persons .
stpate 0.. 1 |Room
setState
getState
set...

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 4.9 Sequence diagram

User

l FindRooms

¢ free rooms }

Product

SelectRoom

Product

l Transfer

}

Event + message + reply

Event +
asynchronous message

Account system

-
[=
»

OK

\ 4

\ 4

}
}
+
+

Event + message + reply

Message + reply

Message + reply

Asynchronous message

From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

Functional details Summary

State diagrams
¢ Diagram showing how something o SIS0
changes from one state to another

Good for finding missing functions

¢ Both on domain and product level

Can sometimes be very complex

checkout
changeRoom
changeR oom__‘-"_.-"

checkin

and difficult to read °
Class diagrams
¢ A data model with operations on |n.' [
data Esi[a%_ S Acount
aa;r"leth;ad 1 ;:; .
¢ Harder to understand than E/R- ecrisenie
diagrams “\1— o s |
. 1. |#persons
¢+ Widely used even when not good me |
¢ Not good for higher levels o

Sequence diagram

¢ Time diagram for how objects .
communicate FincReoms

free rooms
¢ Good for describing (simple) i
communication protocols } SelectRoom T

¢ Useful at design-level ! i

Activity Diagram...
Collaboration diagrams ...

reqT tutorial and lab prep

Getting started with reqT:
* Check out https://reqT.github.io
Download the Desktop app in regT.jar
* Runwith java -jar reqT.jar
Investigate the GUI, check out the Templates and Tools
« Start the repl with Java -jar reqT.jar repl

* Try some simple Models to see test how it works
m"* Feature: hi has Spec: hello"

Model(Feature("hi").has(Spec("hello")))

https://reqT.github.io/

Evolving mix of levels of detail & quality in
continuous requirements engineering

1B

- [Level of detail, specification quality Time

The reqT tool supports evolving requirements
based on a modeling language with essential
RE concepts suitable for teaching & learning.

The idea behind reqT

* Be methodology agnostic: 'bag of concepts'
* Graphical Ul and Terminal Ul for power users

* Turn requirements into code by a
scalable data structure, from 1 to 10E4 reqts

 Scriptable to the power of Scala and the JDK
* Integrate with git and similar code/text tools

* Solve requirements constraints problems

* Open source: https://github.com/reqT

Research papers on reqT:

https://github.com/reqT
https://reqt.org/documentation.html#pub

New in reqT v4:
Simple syntax based on markdown bullet lists

Especially developed for this course

Essential Requirements Engineering concepts from literature
Generates visualizations using Graphviz

Generates documents via export to html, latex, pdf

Discuss in your project iffhow you want to use reqT

https://reqT.github.io/

Screenshot of reqT

Tree pane Editor pane Log pane

/home/bjornrf/tmp/test-reqt4/untitled.md - reqT v4.4.2 unsaved: Editor

File Tree Editor Log View Tools Export Templates Help
3 Model untitled. md)| 1 * Class: Guest relatesTo ;ggMELCOME to reqT - a requirements modeling tool! [+
el L T [* Class: Stay
b T’He: Goal DESIQH scale | * Min: 1 |Read the docs: https//github.com/reqT/reqT
=3 Goal: accuracyh_ﬁ 4 % Class: Stay relatesTo 3
-3 Feature: quotation has 15 * Class: RoomState =|i[Three independent panes: Tree, Editor, Log 1
¢ CDFunction: experienceData has || © * ﬁ‘:a“l: RoomService £1 for helo text to L
] 17 * Min: : or help text to Log.
DSF_'EC' Product shall have recort * Class: RoomServiceType relatesTo | [/|F9 to Toggle Orientation. |
*EDESH:-]": screenX has i * Class: RoomService |F1@ and arrows to discover all short-cuts.
i 10 * Min: 1 |F11 to toggle full screen.
11 % Class: Room relatesTo CTRL+TAB toggle pane focus: editor or log.
2 * Class: RoomState {ICTRL+A Select all in focused Editor or Log.
i B * Min: 1 :|PAGE UP/DOWN Scroll focused pane.
i1 |[CTRL+PAGE UP/DOWN Scroll focused pane top/bottor
| [CTRL+DEL Delete from cursor to end of line. =
[I of <] DEED] | [v] |

$ java -jar reqT.jar help
Welcome to reqT 4.4.2 https://reqT.github.io

See terminal help:
java -jar reqgT.jar help Main program args:

<none:> open a reql window with empty model

edit f1 f2 for each file open a window with model from file
repl start the scala repl and do 'import reqt.*’

quiz start a quiz game in terminal

version print version, also -v --version

help print this message, also -h, --help

Requirements Entities
Examples from the reqT metamodel

Product, Interface,
Stakeholder, Idea, Goal,
Feature, Data, Function,
State, Event, Quality,
Design, Scenario, Story,
UseCase, Risk, Release,
Issue, Test, Variant, Req

*

*

*

The goal-design scale in reqT

Goal: accuracy has

* Spec: Our pre-calculations shall hit within 5%

Feature: quotation has

* Spec: Product shall support cost recording
and quotation with experience data

Function: experienceData has

* Spec: Product shall have recording and
retrieval functions for experience data

Design: screenX has

* Spec: System shall have screen pictures

as shown in Fig. X

Shipyard example [Lau]

* Product: reqT has
* Feature: toHtml

O 33 Goal-Design-scale X+

C @ — | 120% | + Q, Ffile:///home/bjornr/tmp/untitled.html &3 >» =

Title: Goal-Design-scale

Goal: accuracy has

o Spec: Our pre-calculations shall hit within 5%

Feature: gquotation has

o Spec: Product shall support cost recording and quotation with experience data
Function: experienceData has

o Spec: Product shall have recording and retrieval functions for experience data
Design: screenX has

o Spec: System shall have screen pictures as shown in Fig. X

The reqT metamodel

A Model is a sequence of elements.

An element can be a node or a relation.

A node can be an entity or an attribute.
An entity has a type and an id.
An attribute has a type and a value.

An attribute can be
a string attribute or
an integer attribute.

A relation connects an entity
to a sub-model via a relation type.

Model

Elem

elems: Seq[Elem]

t: ElemType

\

Rel
Node
e: Ent
t: NodeType t: RelType
/ \ sub: Model
Ent Attr(T]
t: EntType t: AttrTypel[T]
id: String value: T
StrAttr INtAttr
t: StrAttrType t: IntAttrType
value: String value: Int

Three views of a reqT Model

e Markdown bullets

* Feature hi: has
* Spec: hello

e Scala constructors

Mode L(
Feature("hi").has(
Spec("hello")))

 Underlying Scala classes of the reqT metamodel

Mode L (
Rel(Ent(Feature, "hi"), Has,
Model(StrAttr(Spec, "hello"))))

The reqT Tools menu

* The tools operate on the Editor pane. Example workflow scenario:

1.
2.
3.
4.

load the things you want to apply a tool to in the Editor pane
select a tool from the menu

the Editor pane is updated

transfer what you want to keep to the Tree pane and save the Tree

e What the tools do:

Format model: standardized reqT markdown pretty-print
Distinct model: remove duplicates on all levels

Keep distinct entities: filter Ent instances, remove duplicates
Entity ordering: append Order relations, in order of apperance

$100 normalized votes: weighted total priorities and benefits, assumes that
your model has same shape as Template -> Prioritization: 100$ test

Id pairs as comparison constraints: append all pairs of ids in Constraints

Solve Comparison Constraint Problem: try to satisfy Constraints by searching
for a solution that fulfills all comparisons; relaxed by allowing deviations if
needed

Automate model merging, analysis, doc building, ...

Download hello-reqt.scala from

and run with: scala run . -M hello

//> using scala 3.6.3
//> using dep "reqt:reqt:4.4.2,url=https://github.com/reqT/reqT/releases/download/v4.4.2/reqT-4.4

import reqt.*

val m = Model(
Feature("hellowWorld") .has(
Spec("Print a nice greeting."),
Why("First step to get started."),

)

@main def hello = println(m.toMarkdown)

https://github.com/reqT/reqT.github.io/blob/master/src/hello-reqt.scala

Some things you can do with regt.Model in Scala
try below in Scala repl: Jjava -jar reqgT.jar repl

var ml = Model() // an empty Model

val id = "hello" // an immutable reference to a String

val m2 = m"* Feature: $id has Spec: print greeting" // reqT special String interpolator m
// parses String and returns a Model

mi=m""" // multi-line String after """

* Feature $id has
* Spec: print greeting"""

ml.show // pretty-print model

ml.toMarkdown // generate Markdown from a Model

ml.toHtml // generate Html from a Model, also

toHtm1lBody

Sys. loadLines("mymodel.md") // parse markdown model from file

Sys.saveTo(ml.toMarkdown) ("mymodel-2.md") // save markdown to file

ml = ml.append(Model(Feature("y").has(Spec("more stuff")))) // append two models also :++

ml

ml.distinctElemsDeep // remove duplicates

ml.elems // a sequence of elems, type is immutable Vector[Elem]

for e <- mi.elems yield // iterate over all elems e in ml
e match // match on e of type Elem
case Ent(id, t) => id // pattern-match on Ent, yield the id

case StrAttr(t, value) => value
case Rel(e, t, sub) => e.id
case _ => "or else this string"

Some questions for you

How will you partition your regts space?
How will you synchronize your work?
What entity id policy will you have?

How will you manage versions?

How will you build your document from
requirements fragments?

Which tools are you going to use?

Office apps e.g. Google Docs, LibreOffice, MS Office
(spreadsheet, wordprocessor, database)

Latex
Web publishing

Configuration management
(git, GitHub, GitLab, Bitbucket...)

Prototyping tools, gui-builders
Issue trackers / ticket managers / Trello etc.
reqT

Who will be tool responsible?

Kommersiella verktyg for kravhantering

https://en.wikipedia.org/wiki/Requirements_engineering_tools

Nagra verktygsexempel:
« Siemens Polarion
e Atlassian Jira
e Github (using issues+labels)

e IBM Doors/Doors Next/Jazz

* |IBM Focal Point

EE kG e hbh & B&EOF O 7

Cost wabup dor APAC valisg for 5A

| |B ¥ ureqiii 44: Mobile Tv 5 |
[[® ¥ urequ s increase imema i
W urehoo37 GFa | />

| ureaf147: Fire slanh
-m I fan Emel Ale from emal

]-v hmm Bieiess l;'mblln}.u r'p-._.l're""‘"-}..__l
B ulennnas: ke chlin camving cass

¥ Cosl {estimats)

100% (25 88000) |
¥ valias for APALC (puiblic)
100%

]
VM'HLIEM'EMEF-EEUHM
1 |

I+ valuse for BA, (pulicy
1

T09%
=¥ vaiuse for SA (pubilc)
100%

—%— The Fangles indicaln
—a— e tobal Gcore
(POl - Megative)

Figure 2 Ralional Focal Point software enables you o visualize value and frade-olfs from various

slakeholders— viewing where slakeholders agree and disagree.

https://public.dhe.ibm.com/software/pdf/fi/IBM-Rational-Focal-Point.pdf
https://public.dhe.ibm.com/software/pdf/fi/IBM-Rational-Focal-Point.pdf
https://public.dhe.ibm.com/software/pdf/fi/IBM-Rational-Focal-Point.pdf

To dOlll

Read these chapters in the textbook by Lauesen: 2, 3, 4, 5
First read all gray boxes, then prioritize things from lectures

Exercise E2: Elicitation, really important for your project work, based on
Lauesen Chaper 8 (see previous lecture L2)

Lab 1: Context, Features and Priorities reqT.github.io
" Work in pairs (or individually), book your slot in Canvas

" Get java -jar reqT.jar running in terminal

" Complete all preparations before the lab: https://cs.lth.se/krav/labs/

- Read paper on prioritization [PRIO] (see previous lecture L2)

Work in the project:
" Book meeting with supervisor to discuss Project Mission v2

" Project Mission v2 handed in via Canvas, deadline: see https://cs.Ith.se/krav/proj/

Lectures next week:
" L5: Tuesday 15-17: Prototyping, Agile RE
" L6: Wednesday 15-17: Open Source RE, Release planning + help to prepare lab 2

https://cs.lth.se/krav/labs/
https://cs.lth.se/krav/proj/

	Slide 1
	Specifying functional requirements
	Slide 3
	All techniques have + and - depending on the context
	Data requirements
	Data requirements techniques – Summary
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Functional Requirements Part 1 Summary
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	What is a ‘feature’?
	Slide 18
	Slide 19
	Slide 26
	Different types of requirements abstraction
	Complete requirements?
	Slide 29
	Short history of scenarios-based requirements
	Användningsfall - begrepp Use case - concepts
	Slide 32
	Traps and pitfalls with scenario-based requirements
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 45
	Slide 46
	Functional Requirements – Summary
	Functional details Lau:4
	Functional details & Special interfaces
	Slide 50
	Slide 51
	Slide 52
	Functional details Summary
	Slide 54
	reqT+Scala Tutorial
	Slide 56
	Slide 57
	
	Slide 59
	Requirements Entities Examples from the reqT metamodel
	The goal-design scale in reqT
	Product("reqT") has Feature("toHtml")
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	To do…

