= - = = -
Tl
AR - = -Cb-h

s

LUND ETSN15 Kravhantering

Lecture 2 (2025):

Decide on product idea, work on PM v1

Elicitation: Lau:8
Prioritization: [PRIO]

Bjorn Regnell
http://www.cs.lth.se/krav

Gastforelasare

e L6: Dr. Johan Linaker om 6ppen kallkod

e Fraga om ert intresse for extra sem. om RE+AI?

— RE4AI
— AI4RE

— Doktorand Matthias Wagner om Al-reglering
— Forslag: W4 eller W57 tisdag kl 15

e Forberedelse infor gastforelasningar:

— diskutera i projektgruppen intressanta fragor infor Q&A

Draft Product Names 2025

Alfa: squolgame
Beta: edubee
Gamma: easytrip
Delta: immune

Talk to me during the brake if you want to product idea.

You should bring PM v1 to tomorrow’s exercise and
start working on your context diagram.

reqtbox

a summary of important areas
In software requirements engineering

https://github.com/lunduniversity/reqeng/tree/master/reqtbox

Reqguirements cheat sheet:
reqtbox "kravboxen"

context — who intentions — why

© ?

requirements — what |delivery — when

! @

https://github.com/lunduniversity/reqeng/tree/master/reqtbox

reqtbox/who:context [spsi]

stakeholders our product
incl. human users

other systems interfaces
and protocolls

https://github.com/lunduniversity/reqeng/tree/master/reqtbox

reqtbox/why:intentions [gprc]

goals priorities

+- .

risks commitments

%* @ S$

https://github.com/lunduniversity/reqeng/tree/master/reqtbox

reqtbox/what:requirements [fdqt]

functionality data

quality tests

https://github.com/lunduniversity/reqeng/tree/master/reqtbox

reqtbox/when:delivery [rrcr]

road-map resources
and strategy

constraints release plan

https://github.com/lunduniversity/reqeng/tree/master/reqtbox

reqtbox/{who,why,what,when}
[cird/{spsi, gprc, fdqt, rrcr}]

context - who intentions - why

stakeholders our product ? goals priorities
incl. human users

other systems interfaces risks commitments
and protocolls

requirements - what |delivery - when

' functionality data road-map
and strategy
o

quality tests constraints release plan

https://github.com/lunduniversity/reqeng/tree/master/reqtbox

reqt process box
{flearn, model, check, decide} [esvs]

elicitation - learn specification - model
validation - check selection - decide

Vv 3

https://github.com/lunduniversity/reqeng/tree/master/reqtbox

Requirements engineering
core activities

you need to iterate & work in parallel

[Specification }

Elicitation Validation |

[Selection}

Evolving mix of levels of detail & quality in
continuous requirements engineering

- ==
>

- | B Level of detail, specification quality Time

Fig 3.2 Context diagram

R1:) | Hotel Account
The product shall % booking, system system
have the following checkout,
interfaces: Recep- service note, confirmation,

" invoice

tionist Telephone

system
Guest
R272: . Recep- - ==~ "Raception "~~~
The reception domain tionist ~.
. . , .

communllcateg W|th the | L Hotel Account]
surroundings in this way: \ — system system h

From: Soren Lauesen: Software Requirements Waiter Guest

© Pearson / Addison-Wesley 2002

Accountant

Fig 3.1 Human-computer - who does what?

guest’s Domain model:
parties joined

wishes

FindFree
Room

guest name

+ chosen room# Rooms

Physical model:
work split

FindFreeRoom
period+room type

—

-
-

guest’s
wishes

Product

free rooms

choice
guest name

Rooms

room#

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Some different project types

Product Development — Produktutveckling for 6ppen marknad, t.ex.
inbyggda system, generella appar for en marknad (COTS develpment), etc.

Commercial Off-The-Shelf software purchase (COTS purchase)
— Produktinkop av generisk (hyll-) programvara

Time & Materials — Utveckling pa I6pande rakning, rorligt pris
Customization — Kundspecifik anpassning av generisk programvara
(Request for) Tender — Anbudsforfragan

¢ Customer specific: for upphandling av kundspecifik utveckling

¢ Generic (COTS): for upphandling av generisk programvara
Contract development — Kontraktsbaserad utveckling med fast/rorligt pris
Sub-contracting — Underleverantorskontrakt med fast/rorligt pris
In-house — Internutveckling for egna behov
Unknown, pre-study — Okand, forstudie for att utreda lamplig projekttyp
Hybrid — kombinationer av ovanstaende
o ?

The context is critical to how you do requirements engineering!

¥ A

—— E ———TY T T | -

L ey

1 —. 'i‘.
i i
i '-.- ¥
i ik el i
r h

||qi||llllll -

ME

The goal-design scale:

Goal—-Domain—Product—Design

Model (
Goal("accuracy") has
Why? Spec("OQur pre-calculations

shall hit within 5%"),
Feature("quotation") has

Spec("Product shall support
Who? cost recording and
quotation with
experience data"),

Function("experienceData") has

Spec("Product shall have
recording and
retrieval functions
for experience data"),

What?

Design("screenX") has

Spec("System shall have

HOW? screen.plc’.cures as
shown in Fig. X")

Mal-niva bakomliggande
syfte, affarsmal,
anvandarnytta, effekt,
vinst

Doman-niva
sammanhang, omgivning,
hur anvandarna och
produkten samverkar for
att ge nytta

Produkt-niva externt
observerbara funktioner
och egenskaper

Design-niva specifik
utformning av produktens
innehall

Which level is best?

Overview of techniques for functional
requirements (Swedish terms)

Datakravstilar:
Datamodell

(=E/R-diagr.)
Dataordlista
Reguljara uttryck
Virtuella fonster

Funktionella kravstilar:

First read the "gray
box” of all styles

So that you
understand what
they are about and
their pros and
cons. Then read in
depth as needed.

Kontextdiagram

Handelse- &
Funktionslistor

Produktegenskapskrav
Skarmbilder & Prototyper
Uppgiftsbeskrivningar
Egenskaper fran uppgifter
Uppagifter och stod
(Levande) Scenarier
Hognivauppgifter
Anvandningsfall
Uppgifter med data
Dataflodesdiagram
Standardkrav

Krav pa
utvecklingsprocessen

Funktionella detaljer:

Enkla och sammansatta
funktioner

Tabeller & Beslutstabeller
Textuella processbeskrivningar
Tillstandsdiagram
Overgangsmatriser
Aktivitetsdiagram
Klassdiagram
Samarbetsdiagram
Sekvensdiagram

Speciella granssnitt

Rapporter
Plattformskrav
Produktintegration
Tekniska granssnitt

Elicitation: [Lau:8]
Get out there and dig up reqts!

"You cannot sit in your office and
produce requirements based on
intuition and logic.

You have to dISCOVer the non-

trivial requirements from users and
other stakeholders.”

[Lausen, page 42]

= PROVOKING AN
UNDERSTANDING

Fig 1.6B__ Ask “why”

Neural diagnostics

System shall have mini keyboard with
start/stop button, . ..
Why?

Possible to operate it with “left hand”.
Why?

Both hands must be at the patient.
Why?

Electrodes, bandages, painful . ..

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Deep domain knowledge is critical to
successful requirements engineering!! SkaNE

Why+How+Example

* Feature: navigate has

* Why: Measuring neural response is a bit painful to the
patient. Electrodes must be kept in place ... So both
hands should be at the patient during a
measurement.

* Spec: It shall be possible to perform the commands start,
stop, ... with both hands at the patient.

* Example: Might be done with mini keyboard (wrist keys),
foot pedal, voice recognition, etc.

See [Lausen] fig 1.6C

Why is elicitation so challenging in real projects?

Fig 8.1 Elicitation issues

— — B el
Should be simple.
Ask stakeholders what they need!

— e O o .
/Barriers: \
Cannot express what they need Conflicting demands
Cannot explain what they do and why Resistance to change
May ask for specific solutions Luxury demands
Lack of imagination - new ways New demands once others
\Lack of imagination - consequences are met
Things to elicit - intermediate work products:
Present work, Present problems Consequences and risks
Goals and critical issues Commitment, Conflict resolution
Future system ideas Requirements, Priorities

Realistic possibilities Completeness

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

|] - = n L] :m
Fig 8.2 Elicitation techniques 7=
§>
n

m%-g - U)%
2 SIS = & S o =
5222 2| El, o o D
x 3|8 @ 8lg ol % 58T
©c 2 a|®d & 5|e P|e c O .= C o3

=S ox|>5S5|E S[E o 8 O ©
EEQ, 5 Z|IEBIES 2 c E O >
QD D= = 0 =|53 £ & — ©c ®© @©
$¢8E2g5|55/825 R
aa ol xoloodoea o ZLILX

Stakeholder analysis

Group) interview . .
ﬁ,bserﬂlﬁon Studier av & med (enskilda)

Task demo intressenter eller dokument
Document studies
Questionnaires
Brainstorm
Focus groups Forberedda gruppaktiviteter
Domain workshops
Design workshops

Prototyping

Pilot experiments Exekvering av Sy3tem

Similar companies .

Ask suppliers Omvarldsanalys

Negociation . . .

Risk analysis Avvagnlr_lgar, risker, an_alys
Cost | benefit av kopplingar mellan nivaer
GO&|-d0maIn anaIyS|S From: Soren Lauesen:

Software Requirements

Domain-reqs analysis © Pearson / Addison-Wesley
2002

Stakeholder analysis (intressentanalys)

Example: In-house (internprojekt)
Sponsors — want value for their money
Users at different departments
Managers at different departments

Authorities, security managers, accountants
etc.

System management and support,

Other indirect stakeholders that may provide
valuable input

Example: product development:
Distribution channels and retailers
Solution providers building on your product
Competitors

Interviews in
requirements
elicitation

On or more stakeholders are
interviewed by a requirements
engineer (aka analyst)

Probably the most common elicitation
method.

Reflect on pros and cons with ...
Individual or group interviews?

Structured: prepared questions
and perhaps also response
alternatives

Semi-structured: some Q
prepared, but freedom in order
and depth

Unstructured: no preconceived
closed questions; open questions
to start off: “What is your view on
the system?”

Intervjuer for att
elicitera krav

En eller flera intressenter tillfragas av en
kravingenjor.
Formodligen den vanligaste metoden.
FOr och nackdelar med...
Enskilda eller gruppvisa intervjuer?

Strukturerade:
forbestamda fragor, ev forbestamda
svarsalternativ

Semi-strukturerade:
vissa fragor ar forberett men frihet i
ordning och djup
Ostrukturerade:
inga forberedda fragor alt. nagra fa
oppna fragor

"Beratta om din syn pa systemet?”

Fig 8.4 Focus groups

Bad experience Ideal future
Annoying Wishes
and why? and why?

Marketing

\V axSeveral stakeholder groups

Potential users -xBrainstorm - bad experience
axBrainstorm - wishes & ideal future
a~Each group selects top ten issues
a+A few days later: Decide.

.~Each group must get something

From: Soren Lauesen: Software Requirements CO N Crete exam p I e | N La U: 1 O . 2

© Pearson / Addison-Wesley 2002

Reguirements Prioritization

Book chapter [PRIO]

"Requirements Prioritization”,
Patrik Berander and Anneliese Andrews,
Engineering and Managing Software
Requirements,
Eds. A. Aurum and C. Wohlin, Springer,
ISBN 3-540-25043-3, 2005

Why prioritize?

* To focus on the most important issues

* To find high and low priority requirements

* To Implement requirements in a good order
* To save time and money

[PRIO]

Steps we need to do...

Select prioritization apects

Select prioritization objects (e.g., features)

~— Example: Define features at high level that can
be selected or de-selected independently

Structure and grouping

Do the actual prioritization

~— Decide priorities for each
aspect and object

Visualize, discuss, iterate...

[PRIO]

Prioritization challenges

Finding a good abstraction level
Combinatorial explosion
Inter-dependencies

Not easy to predict the future
Power and politics

[PRIO]

Prioritization aspects

Example aspects:

- Irﬂporta)nce (e.g. financial benefit, urgency, strategic value, market
share...

- Penalty (e.g. bad-will if requirement not included)
- Cost (e.qg., staff effort)
- Time (e.g., lead time)
- Risk (e.g., technical risk, business risk)
- Volatility (e.g. scope instability, probability of change)
Other aspects: competitors, brand fitness, competence, release theme...

Combination of aspects: cost vs. benefit, cost vs. risk, importance vs.
volatility

Optimize: minimize or maximize some combinations, e.g., cost vs. benefit

[PRIO]

Combining two criteria:
Example Cost vs Benefit

25
ol13
20|
£ 15| 0é
L)
=
k-4 o] (3
2 10
3 B
5| 20/°4
B 03
»
0 of g 84 10
1®, *12 . . .
0 5 10 15 20 25
Cost (percent)

Karlsson, Joachim, and Kevin Ryan. "A cost-value approach for prioritizing
requirements." IEEE software 14.5 (1997): 67-74.

When to prioritize?

* At decision points (toll gates), e.g.,
~ Project start
— Start of construction
~ Release planning
~ Increment planning
* When big changes occur

* Regularly with lagom intervals

[PRIO]

Who should prioritize?

* Find the right competence for the right aspect

— Developers know about e.g., development
effort and engineering risk

— Support organization knows about e.g.,
customer value and penalty

— Marketing organization knows e.g., about
competitors

- etc...

[PRIO]

Prioritization techniques

Direct numerical assignment (grading) [Lau 7.4]

- Can be done using any scale (categorical, ordinal, ratio) depending on what the number
actually means.

—- Quick & easy; but

« ariskis that all reqs are deemed highly important as they are not challenged against
each other

* may be misinterpreted as ratio scale (even if "4” not necessarily is "twice as much” as
2” when using an ordinal scale).

Ratio scale 100$-test [PR'O]

- Ratio scale, quick and easy, risk of shrewd tactics (listigt taktikspel)
Ordinal scale Ranking
— sorting, pairwise comparison, easy and rather quick
Top-ten (or Top-n)
- Ordinal scale if the top list is ranked or Categorical scale if grouping is not ranked;
- very quick and simple, gives a rough estimate on a limited set of req
Other methods, e.g. ratio scale Analytical Hierarchy Process (AHP)

- Priority matrix calculation based on pairwise comparison, tool is needed, includes
redundancy that gives estimate of consistency

Typical industry praxis

* Numerical assignment, e.g., 1-5
- See Lauesen, chapter 7.4
* Problems
- Requirements are not confronted to each other
- What should go out when new requirements wants in?
- Everything tends to be important
— decision avoidance

[PRIO]

Categorization

e.g.: must,
ambiguous, volatile

Partition in groups
without greater-less
relations

Ordinal scale

e.g.. more
expensive,
higher risk,
higher value

Ranked list
A>B

Ratio scale

ex: $, h,
% (relative)

Numeric relations:
A=2"B

[PRIO]

Combination of prioritization
technigues

* Example of how prioritization techniques
can be combined:

1)Do a high-level grouping,
2)Do sorting or top-5 per group

3)For some selected groups:
define sub-groups and use 100$-method

Tools can help find
Inconsistencies

/ Voice control

has more value for
customer than

/
Image enhancement Yardld

T~

has more value for
customer than

~—

This will be illustrated at Lab 1.

/

has more value for
customer than

/

Adress book

[PRIO]

To dOlll

Project Mission v1, bring to exercise E1

Assign project roles according to project description
Read Lau:1 on intro, Lau: 8 on elicitation, paper: PRIO
Take a peek into Lau: 3.2 on context diagrams
Sign up for labs in Canvas
Exercise 1: work in your project group

* Lauesen’s book needed. esp. Chapter 1, context diagram
READ CHAPTER ONE BEFORE E1!

* Bring your laptop.
Book meeting with project supervisor W2, see Canvas
Hand in PM v2 on Tuesday W2 (default deadline 23:59)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	reqtbox/who:context  [spsi]
	reqtbox/why:intentions ? [gprc]
	reqtbox/what:requirements ! [fdqt]
	reqtbox/when:delivery @ [rrcr]
	Slide 10
	reqt process box {learn, model, check, decide} [esvs]
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

