
ETSN15 Kravhantering 25-vt1

Övning 3 -Prototyping (PROTO1/2), Funktionella krav (Lau:3-5)

1. Plan prototyping in your own project (for elicitation and for validation) by considering
the aspects Purpose, Prototype Scope, Prototype Media, Prototype Use [PROTO1].

a. what you want to learn from prototyping,
b. what kind of prototype is needed, and
c. how should this prototype be used to gain these learnings; with whom,

which review method and usage environment?

2. Which functional styles were used in the Shipyard (Ch 11), in the Bruel & Kjaer case
(Ch 14), and in the Tax Payers’ case (Ch 15)? [Lau övn 3.2]:

Leta efter stilar från alla kapitel 2-5!
Danish Shipyard: Kap 5.2.1.1.1, Kap 5.4, Kap 5.2.4, Fig 11.1, Fig 11.10
Bruel & Kjaer: R-4
Tax Payers’: R2, R3,

Hitta gärna fler egna exempel på kravtyper i specarna!

3. For your own project (or Ticket Machine, page 543) [Lau övn 3.7]:
b) Write Task descriptions (Ch 3.6) for two to three user tasks. If suitable, write
Tasks & Support (Ch 3.8) rather than simple Task descriptions.
e) Make a dataflow diagram for part of the system (choose an appropriate level).
Discuss the differences between the dataflow diagram and the task description.
f) Which functional requirement styles would you suggest using in this case, for
each requirements level? Consider all of the styles mentioned in Chapter 3 (+2, 4)
and not only the styles you used above.

NOTE: If you already have draft requirements, work with these. Consider how to specify
using other techniques

4. For your project, now that your understanding of the domain & product has increased,
revisit your context diagram (ch 3.2) and consider updating it with

a. additional actors and interacting systems
b. high-level features flowing between your product and actors and other

systems. (Mark this on the arrows.)

Att göra hemma
 Compare Dataflow diagrams and Task descriptions, for instance based on these factors

[Lau övn 3.5]
-Precision of input/output
-Precision of function
-Precision of user tasks
-Customer understanding
-Developer understanding
-Problem description
-Design independence
-Verification

Se kap 3.6 och 3.14


