
1

Visual Value 3D

Efficient event propagation in scene graphs.

Anders Nilsson

Master Thesis in computer science, 20 credit points,
Department of Computer Science,
Faculty of Engineering, LTH
December, 2006

2

3

Abstract

Scene graph based applications for 3D graphics normally supports event
listeners in order to interact with displayed data. Events that eventually
change data held in the scene graph need to be processed and handled in a
robust manner. If a scene graph contains a complex structure with multiple
dependencies between attributes, the event processing mechanism through
the scene graph becomes a problem difficult to solve in an optimal way.
Problems that seem to occur are multiple and partly inconsistent updates of
scene graph data which in the end will affect the rendering performance.

In this paper I will argue that a technique called Visual Value 3D solves the
event propagation problem in a robust and optimal way. Visual Value 3D
should mainly be used as a complement framework for scene graphs with
demands on complex dependencies. Designing dependencies between scene
graph objects and attributes is easily made with Visual Value 3D since the
entire scene graph with including dependencies is expressed in xml.

4

Preface
This master thesis project was initiated in January 2005 by Winsider AB
and the Department of Computer Science at Lund University in Sweden.

I would like to thank my both my supervisors, Lars Andersson at Winsider
and Lennart Ohlsson at Lund Unviersity for their commitment and
contributions to this project.

5

Table of contents

1 - Introduction ...6

1.1 - Event handling ..6

1.2 - Why was this thesis written? ...6

1.3 - Visual Value 3D ..7

2 – Event Propagation in Scene Graphs..8

2.1 – Overview of the event propagation problem ..8
2.1.1 - Static scene graph nodes ..8
2.1.2 - Dynamic scene graph nodes...9

2.2 - The cylinder example ..12

2.3 - Existing solutions, related work ...13
2.3.1 – OpenSceneGraph, NVSG, Java3D and Panda3D ...13
2.3.2 - X3D ..13

2.4 - Conclusions ...16

2.5 – Visual Value 3D, a solution to the event propagation problem16

2.6 - Comparing Visual Value 3D to related works..18

3 –Visual Value 3D (VV3D) Architecture and Implementation19

3.1 – The framework of Visual Value 3D ...19
3.1.1 - ActiveValue ..19
3.1.2 - ActiveValue<T>...20
3.1.3 - IEvaluator<T>...20

3.2 – Implementation...22

3.3 - Description of a scene ...26

3.4 - The Cylinder Example in VV3D ...26

3.5 - ActiveValue<Matrix>, examples ..27

4 – Results and Discussion..29

4.1 - Future Work..30

5 – References..32

Appendix A – The cylinder example in Visual Value 3D ..33

Appendix B – The cylinder example in X3D...36

6

1 - Introduction

In most 3D graphics systems the entire 3D scene is described in a scene
graph. A scene graph is a reusable set of data structured in nodes that
contains necessary information for the rendering software when a scene is
rendered. Typically a scene graph contains object’s transforms, materials
and geometrical data as well as information about lights and viewer.
Structural and spatial relationships between objects are normally also
included in the scene graph.

Scene graphs are in most cases a variety of a directed acyclic graph. They
exist in game engines, computer-aided design (CAD) programs, scientific
and commercial visualization applications, simulators, and modeling
programs. To render a 3D scene is the process of converting the data held in
the scene graph into colored pixels on screen. Constructing and maintaining
the 3D data is handled with software whereas the rendering is normally
done in the graphics hardware.

1.1 - Event handling

To process events in a desirable way has always been hard. Events are hot,
meaning that there is no way of knowing when they occur, but when they
do it means that something has to be done and depending on their kind and
how well the system is designed, they can cause frustrating and sometimes
disastrous effects.

When a scene graph has dependencies between nodes, their attributes, such
as world matrices and colors, are in need to be calculated somehow for each
object in the scene. Normally, 3D rendering software exploits the scene
graph structure in order to calculate the correct attributes. But as a
consequence complex scenes become sensitive for events that cause
changes in the scene graph data. Extensive recalculations may take place
and attributes might be calculated multiple times. In some situations
attributes may even hold incorrect data while the scene graph isn’t fully
updated.

1.2 - Why was this thesis written?

Rendering a scene with a 3D rendering software is a well known subject
and has been developed a lot during recent years. Especially graphics card
has developed tremendously and many 3D graphics related areas have
drawn benefits of this. Because of the rapid development on hardware the
demands on software development have not been high enough to push
development forward at equal speed.

Having a complex chain of dependencies in a 3D scene is not an
uncommon situation, especially not when rendering a component composed
by several subcomponents that is controlled by for example a user. Today’s
existing methods to express a scene graph filled with complex dependencies
are not satisfying since the playground of defining dependencies between

7

nodes are often limited to the scene graph structure or too clumsy to define
complicated dependencies. Moreover the updating of scene graph data
when complex dependencies are present is not optimal since the data
sometimes is updated multiple times and always updated even though it
doesn’t need to. Thus, finding a general way of handling events with
optimal performance and making it certain that scene graphs hold correct
data is the reason for why this paper was written.

1.3 - Visual Value 3D

Visual Value 3D is a framework used for holding scene graph data and
protect it when events occur. Complex dependencies between nodes in the
scene graph are expressed within Visual Value 3D and event propagation
through dependencies are handled in a robust and optimal way. The
technique uses Forward Propagation1 to keep consistency in the scene graph
when changes occur and scene graph data is calculated dynamically when
access is made in order to optimize the amount of recalculations.

Visual Value 3D acts as a complementary layer to a scene graph, that exists
between the scene graph and event sources. It receives and process events
in order to insure that all scene graph nodes are correctly updated the next
time rendering of the scene is performed.

The technique is developed inspired by an already existing technique called
Visual Value. It is today used for configuration of composite industrial
products. But more than that, Visual Value is an “under-the-hood” concept
which encourages developers to keep a system’s event handling clean,
maintainable, easily exchangeable and generally dynamic. A concept like
that is not just needed in configuration products or in scene graphs but in
any system in need for larger scaled event handling.

Chapter 2 of this paper presents the main problem that was the reason for
making this project. There is an overview of how the problem can be solved
and how today’s existing products solves it and following that; a short
presentation of Visual Value 3D is made together with comparisons to
today’s existing products. The rest of the thesis covers the architecture and
implementation of Visual Value 3D together with results and conclusions

1 Explained in chapter 2.1.2

8

2 – Event Propagation in Scene Graphs

This paper is aimed towards the problem of maintaining a scene graph’s
structure when events occur that has either direct or secondary effects on
the scene graph. Events should inflict as little impact as possible on the
scene graph and when rendering it should be certain that values contained
in the scene graph are consistent when they are accessed. In order to argue
for why Visual Value 3D is needed, a presentation of the problem it solves
is needed together with an explanation of why today’s existing solutions not
are good enough.

2.1 – Overview of the event propagation problem

A dynamic 3D scene with animations and/or user interaction is a normal
seen feature today and excogitated methods for handling such scenes are
needed. The reason for why a dynamic scene’s data is structured into a
graph is that logical and spatial relationships between objects can be
expressed in the graph.

When designing a scene graph, an important issue is to decide how
updating and calculating the data held in the scene graph should be made.
There is no standard answer to this issue. It is a fact that programmers who
implement scene graphs in their applications take the basic principles and
adapt them to suit the needs of that particular application. This means that
there is no hard and fast rule as to what a scene graph should or should not
be. But from looking at the “common case”, it can be seen that in general
there are two ways of describing how calculating data held in the scene
graph should be done and as they are presented below, the event
propagation problem takes shape.

2.1.1 - Static scene graph nodes
The logic of calculating scene graph data is with static scene graph nodes
placed in the rendering software traversing the scene graph. Starting out at
the root of the graph, the context of nodes is after calculation passed down
to their children by using a stack where node attributes are pushed and
popped while traversing. This method requires that the scene graph is a tree
since a node’s attributes are updated relative its parent and with multiple
parents there is no way of knowing which one of the parents the rendering
software should choose. This method also requires that the entire scene
graph is traversed each time a frame is rendered; otherwise changes on
scene graph nodes will not be detected.

Updating the entire scene graph each frame is a relatively naive method for
rendering. What we want is that after the initialization of the scene graph,
nodes are only updated when changes occur and that the change is
propagated to all dependant nodes. In such scene graph the rendering
software only needs to traverse the scene graph’s leaves and render the
objects placed there. Changes will automatically eventually reach the leaves
and update them. By presenting how that is solved leads us into the next
technique of updating scene graphs.

9

2.1.2 - Dynamic scene graph nodes
A popular way of designing a scene graph is to make nodes “dynamic” and
“lazy”, which means that nodes know how to calculate themselves
(dynamic) and they do that only when they are invoked (lazy). A node’s
parents are those that are accessed when the node’s attributes is calculated.
Updating a scene graph with dynamic nodes can generally be made in two
ways. As they are presented below, two important concepts are introduced.

Forward Propagation – pushing
Dynamic nodes need their parents to be updated before they are updated
themselves, and the forward propagation algorithm solves that like this:

void Update()
{
 CalculateMe();
 foreach (Node node in childNodes)

{
 node.Update();
 }
}

(“childNodes” is here an iterable structure over a node’s child nodes)

The initialization of the scene graph should be done by making an update
call on the root of the scene graph which then first updates the root itself
and then recursively its child nodes. Once that is done, an update call on a
single node will propagate forward to all dependant child nodes until the
leaves are reached. Update calls performed after the initialization, are
typically triggered by events.

This is a popular technique in many scene graph based applications. By
using this propagation model for events we find both advantages and
disadvantages. The advantage is that a change is always detected in all
affected nodes immediately when the event occurs. However there is one
big disadvantage with this method. A scene graph containing complex
dependencies where node paths are merged together will perform multiple
updates on nodes with multiple parents when the event change propagates
forward. This is shown in fig 2.1. The only way to avoid this problem is to
use a tree structure as scene graph. It is then ensured that scene graph paths
never merge together but on the other hand it hinders developers to use
complex dependencies such as constraints on structural relationships.
Multiple updates on nodes might not have a big impact on the rendering
performance. Depending on the complexity of the scene and how extensive
the calculations of nodes are the decrease in performance might not even be
noticeable. In other cases, multiple updates could cause a very noticeable
effect. In any case, the aim for every developer should be to reach optimal
performance and a scene graph with merging node paths cannot have that
when solving the event propagation mechanism with forward propagation.

10

Fig 2.1 – Forward Propagation…
a) Update is first performed on the root (node 1)
b) Node 2 is updated with the recursive call from the root node and the recursion
continues to node 5 which also becomes updated.
 c) Still being in the recursive update call of the root node, node 3 is then updated which in
turn means that node 5 is updated recursively, again.
 d) The recursive update call for the root node continues to node 4 and further on to node 5
which becomes updated for the third time.
This example shows how the forward propagation mechanism causes nodes to be updated

multiple times when scene graph paths are merged together.

Backward Extraction - Pulling
Another way to handle the updating logic in a scene graph is to pull the
information from the nodes instead of pushing. In contrast to the forward
propagation technique, the backward extraction technique starts the
updating process at the leaves in the scene graph. Before a node is updated
it makes sure that all its parents are updated.

void Update()
{

if (alreadyUpdated) return;
foreach (Node parent in parentNodes)

 {
 node.Update();
 }
 CalculateMe();
}

11

As can be seen, this is a recursive call from leaves to root. Note that this
recursive method use a flag which indicates that the node already is updated
which in turn will stop the recursion (if the flag is true). The advantage of
using this method is that when a node once is updated it is certain that both
the node itself and all parents and grandfathers hold a correct value and
does not need to be updated again until any of them are invalidated. This
solves the multiple updates problem that was introduced with the forward
propagation technique. Backward Extraction is shown in fig 2.2.

While this might seem to be a good technique to optimize the calculation
of scene graph data with complex dependencies a big disadvantage of this
technique is that there is no good way of detecting events. The only way is
to, before each frame, first invalidate all nodes and then perform the scene
graph update again

Fig 2.2 – Backward Extraction.
 a) Starting at a leaf node (node 5) the update call recursively call parent node’s update
method.
 b) At node 2 the recursive call first updates the root node and then itself.
c) The recursive call at node 5 continues to node 3 and since its parent already is updated
it can update itself correctly.
 d) Continuing with the recursive call at node 5, node 4 is updated and node 5 can now be
updated completing the update call of the scene graph.
 This example shows that by using backward extraction it is ensured that nodes only will
be updated at once during an update session.

12

To summarize and come back to the headline of this section it can be stated
that the event propagation in scene graphs containing complex
dependencies is a problem that needs a solution. The forward propagation
technique is good, because changes in the scene graph are immediately
detected and pushed forward to all affected nodes, but the technique also
causes multiple updates on nodes, unless the scene graph is a tree. On the
other hand, if the backward extraction mechanism is used in a scene graph
with complex dependencies we can insure that nodes won’t be calculated
multiple times but the only way of detecting that an event caused a change
somewhere in the scene graph is to always invalidate all scene graph nodes
and perform an update each time a frame is rendered. Depending on the
complexity of the scene this solution will not hold for larger and complex
scenes.

2.2 - The cylinder example

To point out and clarify the difficulties, a small and simple example is
presented in fig 2.3 which will be a good example to refer to throughout the
report. The scene contains two base cylinders independent of each other
and one top cylinder that is dependant of both base cylinders. The big issue
about this scene is that the top cylinder is constrained to lie on top of the
two other cylinders. Events changing any of the two base cylinders should
change the top cylinder’s translation, rotation and scaling. Updating and
maintaining the scene should be performed in an optimal way, meaning that
recalculation of node values should only take place when it is actually
needed and should only be performed at most once per frame rendered.

Fig 2.3 – A simple example of a 3D scene with a scene graph containing merging node
paths, the top cylinder is dependant on both transform nodes used for the base cylinders.
As we have seen this will cause difficulties when events occurs that updates scene graph
data.

We will now take a look at how scene graphs are used in the applications
out on the market today. A review of how the scene graph part of the
application work will be made and the problems will be targeted. We’ll also
look into how these applications would create and maintain the scene graph
in the cylinder example in order to later compare it with how Visual Value
3D would solve it.

13

2.3 - Existing solutions, related work

Many scene graph based applications supports updating through event
driven mechanisms. OpenSceneGraph [4], NVSG [5], Java3D [9], Panda3D
[10] are similar libraries used for developing advanced 3D graphics. The
existing method that lands closest to Visual Value 3D is X3D [3] which is a
successor of VRML [11].

2.3.1 – OpenSceneGraph, NVSG, Java3D and Panda3D
All of these scene graph based applications are cross platform graphics
toolkits, used for developing high performance graphics applications such
as flight simulators, games, virtual reality and scientific visualization. By
using the scene graph as a concept and a base, they provide an object
oriented framework on top of a Graphics API freeing the developer from
implementing and optimizing low level graphics calls and provides many
additional utilities for fast development of graphics applications. Event
handlers are used as an interface between user and the scene graph. Nodes
are updated dynamically and their update calls are exposed in the interface
to the event handlers. So whenever an event occurs that changes a node, its
update call is invoked and forward propagation is used to make the event
affect all dependant parts of the scene graph. These scene graph based
graphics applications all use a tree as scene graph. The following statement
is taken from www.openscenegraph.org;
“It's a tree! Quite simply it is one of the best and most reusable data
structures invented”
This is most certainly true, and as stated before, forward propagation is
good when the scene graph is a tree since events that affect node attributes
will affect that node and its children and multiple parents does not exist in a
tree, hence multiple updates will not take place. But this hinders developers
to create scenes with complex structural dependencies. E.g. the cylinder
example presented in 2.2 cannot be created with a tree structure. A scene
looking like the cylinder example can of course be created, but only with
the restriction that the top cylinder only will be dependant on one of the
base cylinders and the constraint that the top cylinder should lay on top of
the two base cylinders will not in such case be maintainable. As long as the
scene is static this won’t be a problem, but whenever an event occur which
imposes a change in the scene’s structure, control will be lost over its
updating process.

So to summarize it can be stated that a tree limits a scene’s possibilities to
have dependencies. A tree is a sufficient structure in most cases and is a
well established and used concept in the game industry where most models
are built on hierarchies. But even though OpenSceneGraph, NVSG, Java3D
and Panda3D are all robust and fast 3D graphics framework they still won’t
satisfy developers in certain situations where complex dependencies is
needed.

2.3.2 - X3D
X3D is the ISO-standard for real-time 3D computer graphics and the
successor of VRML. It was developed to easily create and exchange 3D

14

scenes between networked computers. An X3D scene graph is a tree with
typed nodes expressed in an xml file. The actual rendering is made with an
X3D browser. Nodes in X3D are static, meaning that it is the browser that
has to keep the logic of calculating node attributes and traverse the scene
graph each frame and depending on how the browser is implemented, the
performance of a rendered scene in X3D cannot be predicted, but the
concept of X3D still remains the same in any case.

To be able to update the static nodes in an X3D scene graph it is possible in
X3D to create event nodes which listen to e.g. keyboard strokes or mouse
clicks and fire events on these occasions. To make an impact on the scene
graph with event nodes so called routes are added between event nodes and
the nodes that should be affected by the event. A route does nothing else
but passing a specific value from the source node to the target node when
the event is triggered. An example of a common way to use routes is to first
create a clock node which generates time events each frame. A route is
created between the clock node and an interpolator node which calculates a
certain value e.g. a translation vector which then, with help from another
route is passed further on to a transform node. In this way dependencies
between nodes in the scene graph can be designed in a fairly flexible way
which means that it is possible to create complex dependencies in a scene.
Events are processed with forward propagation technique. Hence, values
are updated as they are passed by the forward propagation mechanism. The
disadvantages with this are:

- A route can only pass one value at a time between nodes. Hence, a node
that needs 5 values to get the right transform matrix needs 5 routes. If
this has to be done for each node in the graph the scene graph becomes
extremely complex and overly hard to survey.

- Since X3D events are processed with forward propagation, a node’s
attributes become updated even though they might are unnecessary when
rendering the next frame.

- It is completely possible to add routes that are animating the same value
(fig 2.4)

Fig 2.4 – When events reach the same node through different route paths, there is no
control of which one of the events that will be used. The route which last performs its

update will be the currently held value.

15

X3D is suitable for a streamed environment where the scene updating
process has a clear forward scheme, from event nodes through interpolator
nodes and in the end to some attribute at a scene graph node. With this
streamed environment filled with routes passing values back and forth to
static nodes, it is hard to create complex and dynamic scenes. Also, to
design the scene graph by using routes to control every single dependency
in the scene graph becomes complicated which in the end limit designers to
only apply this method on small and simple scenes, where an overview of
the system still is possible for the human brain.

There is however a way to make it easier to create complex scenes in X3D.
So called script nodes can be created and with a route connected that sends
events to the script node, a script written in JavaScript is executed every
time an event is passed to the node. In this way a script node can make
dynamic updates on nodes in the scene graph. This means that more
complex relationships between nodes can be created. Even if this seems to
be a good way to solve dependencies in a scene graph, we still come down
to the fact that when an event occurs and starts its travel through the route
system it will invoke each script function it finds on its way in the
propagation chain. Hence, if more than one route is connected to a script
node and events are fired from all routes each frame, the script will be
executed multiple times and fire events forward holding incorrect values
until the last time the script is executed. By using script nodes, the scene in
the cylinder example can be created as shown in fig 2.5. An X3D
implementation of the cylinder example is presented in Appendix B. The
animation of the scene does not fully handle all dependencies it should, but
it handles enough dependencies to show that the evaluation script for the
top cylinder will be executed multiple times, and because of this, the scene
will never be rendered with optimal performance. Adding more
dependencies to the scene will just mean more complex code and worse
performance since the script node will be executed more times.

Fig 2.5 – Shows an X3D scene with a script function which calculates the transform for the
TopCylinder node. A scene like this cannot be rendered with optimal performance since

the script will be executed twice during the event processing and between the updates the
top cylinder’s transform will be incorrect.

16

2.4 - Conclusions

Most existing 3D scene graphs libraries are built upon a directed acyclic
graph which in most cases has a tree shape and uses the structure logic for
calculating attributes for scene graph nodes and forward propagation to
process events. Event handling is made through either separate nodes in the
scene graph or through event handlers with callback functions to scene
graph nodes. When an event occurs they will be plugged in to a specific
node in a scene graph and the change propagates forward affecting nodes
connected either as children or with routes. If paths in the scene graph
merge we have seen that it will cause multiple and inconsistent updates. In
this right moment that this paper is being written techniques are being
developed targeting the event propagation problem in scene graphs with
merging dependencies, but until now there is no standard solution to this
problem. So to summarize this section I will, once and for all, state how a
solution to the event propagation problem should act.

“Attributes at scene graph node’s should be able to be dependant on any
number of existing nodes or attributes both in the scene graph itself and
outside the scene graph. To render with optimal performance, merging
scene graph paths should be handled correctly and updates on scene graph
attributes should at maximum be performed once per update session and
they should only take place when they really have to. Moreover
dependencies should automatically be detected when designing the scene”

2.5 – Visual Value 3D, a solution to the event propagation problem

The concept of Visual Value 3D is that no matter how the scene graph
looks like it should act as an abstraction layer used to process events and
calculate node attributes making it possible for events to affect any part of
the scene graph in any way. The scene graph and events do not know about
each other. Events are fired into the Visual Value 3D framework and the
scene graph extracts information from the same framework. Visual Value
3D makes sure that the scene graph always is fed with correct information
(see fig 2.6).

17

Fig 2.6 – Shows an overview over Visual Value 3D as a concept. It acts as a layer between
the scene graph and the event system.

Visual Value 3D is built upon a similar technique that is used by spread
sheet programs. The most used spread sheet program – Microsoft Excel -
where cells can be updated by formulas using other cell values can have
very complex dependencies between cells. Whenever a cell is changed, all
cells that are dependant on the changed cell are invalidated, meaning that
they will not be recalculated until the next time they should be displayed on
screen. A similar technique is used by Visual Value 3D. By combining the
two methods presented in chapter 2.1; Forward Propagation and Backward
Extraction, we can extract the benefits and kill the drawbacks of both. What
is left of that fusion is a powerful algorithm to update and evaluate a scene
graph in an optimal way since change propagation and evaluation are
performed in different steps but hand in hand in the same structures. By
abstracting Visual Value 3D to its own layer everything that is profitable
from the scene graph such as culling mechanisms will still be profitable but
attribute updates will become more powerful. Visual Value 3D does not
only provide a robust and reliable event processing mechanism but it also
opens the door for “crazy” (or creative) dependencies in a scene graph.
Changing color of an object depending on its rotation, making sure two
objects always are a given distance away from each other (magnetism),
changing resolution of objects depending on distance to the camera or just
plain and simple animations are things easily made with Visual Value 3D.
Visual Value 3D also works for a general purpose since all rules and
dependencies are expressed outside the application in xml, more about that
in chapter 3. The cylinder example shown in chapter 2.2 is simple to
express in Visual Value 3D. The same scene expressed with X3D was
much more complicated to design and it rendered with around 10% of the
performance in Visual Value 3D.

18

2.6 - Comparing Visual Value 3D to related works

To sum up what was concluded in this chapter I can say that it is certain
that Visual Value 3D has an area where it is a better solution than what
exist today. When event paths are merged together in a chain of
dependencies the other techniques I previously presented run into problems
that are elegantly solved in Visual Value 3D. The cylinder example in
chapter 2.2 is easily created and maintained with Visual Value 3D and
renders around 10 times faster compared to the same scene expressed in
X3D and rendered in FluxPlayer2. Also, defining dependencies between
scene graph nodes are made a lot easier with Visual Value 3D compared to
e.g. X3D where a hank of routes are needed stitched together with script
functions. Now, for most purposes the traditional hierarchical structure used
in OSG, Java3D, Panda3D and NVSG is sufficient. The game industry still
relies on such structures, but in some situations e.g. solving a system where
events control complex constraints Visual Value 3D could come in handy.

2 http://www.mediamachines.com

19

3 –Visual Value 3D (VV3D) Architecture and
Implementation

VV3D is written in C#.NET and is combined with a 3D rendering software
developed with Managed DirectX

The main idea with VV3D is to let nodes in a scene graph have their
attributes exclusively expressed as values plugged into the VV3D layer.
Values in the VV3D framework know how to calculate themselves and they
can be dependent on other values. The responsibility to calculate consistent
values is now no longer on the rendering software or in the scene graph
structure but to the values themselves leaving the renderer to what it is good
at, rendering!

3.1 – The framework of Visual Value 3D

Since VV3D contains values who actively know when and how to calculate
themselves, they were given the name “ActiveValue”. As described in the
previous section they can be everything from colors to matrices which are
solved by using generics in C#. The most important classes in the VV3D
framework are:

3.1.1 - ActiveValue
This is an abstract class which acts as the layer that handles the forward
propagation scheme.
An ActiveValue has a private member:

bool evaluated;

which indicates if an ActiveValue is evaluated meaning that it already holds
its correct value. An ActiveValue also has a subscriber list containing other
ActiveValues used to handle forward propagation. If ActiveValue A is
dependent of ActiveValue B, A exists in B’s subscriber list. The most
important method in the ActiveValue class is RippleChange:

protected void RippleChange()
{
 foreach (ActiveValue v in subscribers)
 {
 v.Invalidate();
 }
}

This is called to indicate that an ActiveValue has been changed. The
invalidate call sets the evaluator flag to false and calls the RippleChange for
that ActiveValue. This means that RippleChange is a recursive call and it is
important that no circular dependencies exist since that would cause endless
recurrence calls. By just setting the evaluated flag to false makes
invalidation a cheap operation. Hence, invalidation does not affect
performance if it’s done multiple times on an ActiveValue unless it’s not
done zillions of times.

20

3.1.2 - ActiveValue<T>
The most important class of VV3D is the ActiveValue<T> class. It is a
subclass of ActiveValue and it is implemented as a generic class where T
has the constraint that it has to be of a value type. A value type in C# is e.g.
an int, float, Color, Matrix or a type defined with the keyword struct3. The
most important member for ActiveValue<T> is:

T value;

This is the actual value itself and access to this value is made through the
property4 val:

public T Val
{
 get
 {
 if (!evaluated && evaluator != null)
 {
 val = evaluator.Evaluate();
 evaluated = true;
 }
 return val;
 }
 set
 {
 val = value;

evaluated = true;
RippleChange();

 }
}

As can be seen, calculation of a value is not performed until somebody tries
to access the value. This is what makes the evaluation lazy. An
ActiveValue<T> needs an evaluator which implements the interface
IEvaluator<T> to calculate its value. If the evaluator is null the
ActiveValue is considered to be constant and will always return the same
value.

3.1.3 - IEvaluator<T>
This is an interface used by an ActiveValue<T> to evaluate its value. If a
class implements this value it provides two methods:

void SetSubscribers(Value sub);

In this method we make sure that all the other ActiveValues that this
ActiveValue’s evaluator needs to calculate the output value are added in the
subscribers list of this ActiveValue. In practice this means that this
ActiveValue is guaranteed to be invalidated whenever the other
ActiveValues are changed.

3 Information about the C# language can be found at http://www.c-sharpcorner.com/
4 A property is an access layer in .NET

21

T Evaluate();

This method calculates and returns a value of type T.
Here follows an example of a simple evaluator.

public class EvalFloatAdd : IEvaluator<float>
{

ActiveValue<float> one, two;

public EvalFloatAdd(ActiveValue<float> one,
ActiveValue<float> two)

 {
 this.one = one;

 this.two = two;
 }

#region IEvaluator<float> Members
 public void SetSubscribers(ActiveValue sub)
 {
 one.AddSubscriber(sub);
 two.AddSubscriber(sub);
 }

 public float Evaluate()
 {
 return one.Val + two.Val;
 }
 #endregion
}

The evaluator shown above is used to evaluate an ActiveValue<float>
which is a sum of two other ActiveValue<float>. The evaluation of an
ActiveValue can - just as well as the RippleChange mechanism - be
recursive. Since this evaluator uses two other ActiveValues in its evaluation
call the access of those values can as we have seen end up with an
evaluation call for that value. The evaluators use the Backward Extraction
technique which we have seen before makes this a recursive call. An
evaluator like this is assigned to an ActiveValue through the method:

public void SetEvaluator(IEvaluator<T> ev)
{

evaluator = ev;
if (evaluator != null)
{

evaluator.SetSubscribers(this);
}
evaluated = false;
RippleChange();

}

An application using ActiveValues should first create all ActiveValues that
are going to be used and then assign evaluators to the ActiveValues. This
should be done to make sure that an ActiveValue can be dependent on any
other existing ActiveValue.

22

To handle events ActiveValues should be created only to store the event’s
value. When an event occur the only thing that has to be made is to set the
ActiveValue it is connected with. It will then be considered to be evaluated
and a RippleChange will take place invalidating all dependant values. This
is an important pillar for the solution to the event propagation problem. The
invalidating phase starts out when events occur and performs a set on an
ActiveValue. The forward propagation technique is used to invalidate all
ActiveValues is either directly or secondary a subscriber of the changed
ActiveValue. The ActiveValues continue to be invalidated until anyone
tries to access them. That’s when the backward extraction technique takes
over.

By using the combination of the two mentioned techniques above an
application using an ActiveValue can be sure that it will always return a
correct value when access is made. The application does not have to bother
about checking for state changes or updating correctly. Everything is
handled by the ActiveValue itself.

3.2 – Implementation

To show the strength of what VV3D can achieve an implementation of a
renderer was made using the simplest scene graph possible; a root node
only containing nodes one level down shown in fig 3.1.

Fig 3.1 - A very simple scene graph containing 3 objects.

This means that no relation or logic is put into the scene graph but object’s
properties however are exclusively expressed with ActiveValues. Each
renderable object in the scene graph contains an ActiveValue<Matrix>
which is their transform in world space and an ActiveValue<Color> which
describes their color. Together with the scene graph there is VV3D
framework with containing ActiveValues connected with each other. When
the renderer is rendering the scene it only needs to iterate over the scene
graph’s leaves and ask each object for the world matrix and other attributes
which then is extracted from the VV3D framework. If no change occurred
since last time the renderer asked there is no need to calculate the attributes
again.

A render loop in Visual Value 3D can be described like this

1. Allow events from the user interface or the system interact with the
VV3D framework. If an event cause a change in the structure it

23

automatically propagates to the rest of the subscribing values making
them invalid.

2. Iterate over the scene graph leaves, ask the VV3D framework for
transformations and other attributes and render the objects. Any update
of ActiveValues will take place automatically during access.

There are two reasons for why this is good. First, a change will only affect
the values that are subscribers of the change. Second, only the
ActiveValues that need to be evaluated will be evaluated. When an
ActiveValue that already is evaluated is asked for it will simply return its
currently held value. If the chain of dependencies is not complex at all this
method would not be very profitable but having very complex dependencies
between scene graph nodes the combination of Forward Propagation and
Backward Extraction becomes close to optimal for rendering where fast
calculations of world matrices is very important.

Another thing worth to mention is that any kind of dependency can be
defined. They may both be simple or complex. There is no limit on how
many other ActiveValues a single ActiveValue depend on.

Fig 3.2 shows a typical situation when Visual Value 3D is built upon a
scene graph.

Fig 3.2 - A scene graph connected to a Visual Value 3D framework the System and User
represents events that update ActiveValues in the VV3D framework.

As can be seen this scene is not very exciting. It contains 3 objects and their
attributes that are connected to the VV3D framework does not have
dependencies which makes them insensitive to events and therefore static.
The scene could typically look like in fig 3.3.

24

Fig 3.3 - A scene without dependencies as described in fig 3.2 could look like this. Three
static cylinders are standing next to each other with three different animation functions.

By adding some more ActiveValues with evaluators a lot more interesting
scenes can be achieved with the same scene graph. Fig 3.4 shows the Visual
Value 3D framework in its element.

Fig 3.4 – Shows the same scene as in fig 3.2 but with more ActiveValues and dependencies
added.

A Visual Value 3D framework with more complex dependencies which
also reacts to events could look like in figure 3.5. These are screenshots
taken from the same animated scene. The two cylinders standing up are
animated to move up and down and the user is able to change scaling on
both of them. The top cylinder’s evaluator makes sure that it always lies on
top of the other two and adjust it’s rotation, translation and scaling in order
to fulfill this demand. Note that there are still just three objects and the
scene graph is just the same as before the dependencies were added.

25

Fig 3.5 – Shows a scene with fairly complex dependencies. The evaluator for the top
cylinder always makes sure that it lies on top of the two other cylinders. As can be seen the
top cylinder reacts to changes of the two other cylinders. Changes can come both from the

system and from a user interface.

Continuing this way, the scene graph which is really simple itself can with
help from VV3D take shape with relationships that are very hard to express
in a scene graph structure, such as the one shown in fig 3.6.

Fig 3.6 – Screenshots from an animated scene. The animation is entirely handled within
the VV3D framework

Note that the evaluators used for calculating the transform for the cylinders
that lie on top are exactly the same evaluator. The only difference is the
parameters passed in when creating the evaluator.

26

ActiveValues can control all kinds of attributes in a scene graph. E.g. by
making the mesh resolution for objects dependent of the distance between
objects and the camera an easy level of detail engine can be created as seen
in fig 3.7.

Fig 3.7 – Shows the same cylinder at different distance from the camera. As can be seen
the cylinder gets a larger resolution when it is closer to the camera.

3.3 - Description of a scene

In order to make Visual Value 3D general and enable sharing of Visual
Value 3D data between applications the entire scene is expressed in xml.
By using xml serialization an xml file can be directly imported into a C#
class. Benefits of this is that if a type can be expressed as strings e.g. int,
double, float, dates etc it can directly be read into an ActiveValue of that
type. ActiveValues that don’t have the same kind of string representation
will be created with the type’s default value (e.g. a Vector will be created
with the elements [0, 0, 0]) and set to their correct value later. Other
solutions would require an xml parser used to read and translate the xml
into the ActiveValues. That would require more and less efficient code.
With serialization, ActiveValues are created on the fly and the only thing
that needs a more advanced processing is the strings that represent the
evaluators.

3.4 - The Cylinder Example in VV3D

The xml for the cylinder example shown in figure 2.3 is presented in
Appendix A. The xml is straight forward and easy to understand. All
attributes in the xml except some specific attributes (such as textures and
mesh attributes) are serialized into ActiveValues. An ActiveValue with a
defined evaluator is represented by an xml element with the two attributes
“value” and “evaluator” and this is the only way to define evaluators to an
ActiveValue. All ActiveValues without an evaluator are constant. The xml
file are processed and serialized into a scene object holding all data and
ActiveValues contained in the scene. During serialization the ActiveValues
are created and put into a hash table making them easy to access with a
unique key. The given key for an ActiveValue is related to the position the
ActiveValue has in the XML file. After serialization the evaluators are just
held in the scene object as plain strings, therefore a post processing step is
performed after xml serialization to create and set the corresponding
evaluators the ActiveValues should have.

27

In the serialization of the xml to the scene object some classes are
frequently used. The most basic class is the ValueElement<T>. An xml
element with the two attributes “value” and “evaluator” will be serialized
into this object and during serialization a corresponding ActiveValue<T> is
created. If the type T can be represented as a string, e.g. a float or an int, a
default value can be given in the value attribute. In the evaluator attribute a
string is given saying which evaluator to use for the corresponding
ActiveValue. This string has to be known by the application.

Another class the scene object uses is the VectorElement class that is a
subclass of ValueElement<Vector> which means that a corresponding
ActiveValue<Vector> is created. In the xml an element which is serialized
into a VectorElement must either have an evaluator attribute or three child
nodes <X>, <Y> and <Z> where each of these three are serialized into a
ValueElement<float>. If this is the case the evaluator VectorElement will
automatically become a VectorFromFloats evaluator which turns the three
given ActiveValue<float> to a Vector3.

The ColorElement is a subclass of ValueElement<Color>. Similar to the
VectorElement this class creates an ActiveValue<Color> when serialization
is made and the class’ corresponding xml element must either have an
evaluator attribute or three child nodes <R>, <G> and where each of
these three are serialized into a ValueElement<int>. In this case the
evaluator for the ColorElement will then automatically become a
ColorFromInts which takes the three ActiveValue<int> and turns them into
a color.

The TransformElement is a subclass of ValueElement<Matrix>. In the xml,
an element which is serialized into a TransformElement must contain either
an evaluator attribute or three elements <Translation>, <Rotation> and
<Scaling> where each of these three are serialized into a VectorElement. If
this is the case the evaluator for this class will be a MatrixFromTranRotScal
which makes a matrix from the three ActiveValue<Vector> representing
translation, rotation and scaling of the shape that holds the transform.

As can be seen when looking at the evaluators in the xml, All ActiveValues
are given a unique name by combining their position in the xml with the
name attributes and these unique names are used to store all created
ActiveValues into a global hash table. Access to any ActiveValue can now
be made by knowing the key. Passing ActiveValues as parameters to
evaluators is expressed in the xml by using these unique keys.

3.5 - ActiveValue<Matrix>, examples

Fig 5.9 shows overview of how an ActiveValue<Matrix> can be created.
An evaluator for an ActiveValue<Matrix> typically uses three
ActiveValue<Vector> to represent the rotation, scaling and translation in
world space. These vectors’s evaluators in turn use three

28

ActiveValue<float> and simply return a Vector object holding the three
float values. Note that this is just an example of how an
ActiveValue<Matrix> typically looks like. In any of the evaluator owned
by either an ActiveValue<Vector> or an ActiveValue<float>, other
dependencies can be defined.

Fig 5.9 - An ActiveValue<Matrix> which describes an objects transform is typically built
up by three ActiveValue<Vector3> representing translation, scaling and rotation, which in
turn are built up by three ActiveValue<float> representing the x, y and z component in the

vector.

An alternative way of defining how an ActiveValue<Matrix> can be
constructed is shown in figure 5.9. In this case the evaluator uses one
ActiveValue<Matrix> and returns the inverse of that matrix. In the sample
scene the evaluator that calculates the transform for the cylinder that lies on
top of the two others is similar to this one. It uses two other transform
matrices in order to find its own transform.

Fig 5.10 - This is another way to create an ActiveValue<Matrix>. The evaluator only uses
one other ActiveValue<Matrix> and returns the inverse of that matrix.

29

4 – Results and Discussion

Visual Value 3D solves the event propagation problem presented in chapter
2 in an elegant way. The problems that OpenSceneGraph, NVSG and X3D
had with the cylinder example in chapter 2.2 are with Visual Value 3D
gone. Event handling is performed in a robust way and complex scene
graphs are maintained with optimal performance. The scene in VV3D is
entirely defined in an xml-file which means scenes can be built in a general
way and data can be exchanged between VV3D applications.

Complex dependencies are what VV3D handles best. Therefore, in order to
handle event propagation through the dependencies in the most optimal
way, as many dependencies as possible should be moved from the scene
graph to the VV3D framework.

As we saw when looking at related work in chapter 2, most scene graph
based applications are built upon hierarchical structures. There are very few
3D applications that is built on a scene graph with merging nodes, mostly
because there is no need for it, but also because it is a problem to handle
events when the scene graph has merging nodes. With a VV3D framework
connected to a scene graph a wider arena to play with is opened. Scene
graphs attributes can be dependant on any other attribute in the scene graph,
not just its parent’s attributes, which will enhance creative scene graph
effects.

X3D is close to VV3D in the aspect that it also describes scenes in xml and
enables dynamic updates of scene graph nodes making them able to have
complex dependencies. But by looking at Appendix A and B and
comparing how dependencies are described in X3D and VV3D it is a lot
less complicated in VV3D to design scenes with complex dependencies. A
script function in X3D that calculates a value using 6 different values from
other nodes in the scene graph needs to define 6 routes to be able to detect
changes at the scene graph nodes the script needs. In VV3D this is
automatically handled by the evaluators. When designing the scene all that
is needed is to add an evaluator and define which parameters it should take
and the evaluator will make sure that all the dependencies will be detected
when changed. Also VV3D will just execute the evaluator at most once
between two rendered frames. In X3D there is no control of this. A script
node with 6 routes connected will, if all routes pass events to the script
node during one frame, execute the script 6 times between two frames and
the correct value will only be available after the 6th time. The other 5
executions are completely unnecessary. Hence, VV3D will always perform
faster and better than X3D.

Since VV3D does not yet handle culling mechanism, VV3D would be most
useful together with a scene graph that handles culling but uses VV3D to
calculate and maintain attributes for the scene graph nodes.

30

It can be clarified that the technique for Visual Value as it is used at
Winsider is suitable for 3D rendering. This opens the door for Visual Value
to in the future be integrated with 3D rendering in a natural way and since
Visual Value today is used for configuration of industrial composite
products we can expect that it is possible show a 3D representation of the
configured products while it is configured by using the Visual Value
technique.

I can also see that VV3D is a simple way to create creative animations since
dependencies are unlimited. Movements are easy to synchronize by making
different movements be dependent on the same values.

Visual Value 3D was not designed to be a game engine. The well known
game engines are optimized to meet the demands on performance from the
game industry. VV3D is developed to be a robust and consistent way to
solve complex dependencies in a scene. But after implementing the use of
backwards extraction I noticed a big difference in performance since all
values in the dependency graph went from being evaluated each frame to
just being evaluated when they actually had to. In some cases the
performance increased with around 150%. The only thing that is done in
overflow in Visual Value 3D is invalidating values. But since this is a very
cheap operation it gives the least lack of performance possible. Comparing
to what is gained while evaluating, which is that all unchanged values will
not be evaluated, it usually is a big gain. Even if the worst case is that a
change causes all values to be re-evaluated VV3D will with the backwards
extraction make sure that nodes are just updated once no matter how
complex dependencies are.

This project was initialized in the January of year 2005. Since that time new
products have entered the market. One of them is FLEX [8] which is an
AJAX based technology used to build rich multimedia applications on the
internet with the Flash Player as base. By looking at the technology
presented at their website they seem to have undertaken the same principles
that VV3D is built upon. Events are propagated through dependencies
making as little impact as possible, and when values are needed in order to
display data on screen they are dynamically updated with as few function
calls as possible. Combining this with the AJAX technique the
communication between client and server becomes highly optimized.
The fact that more products undertake the same principles as VV3D proves
that concept of Visual Value is a good design to solve the event propagation
problem and that it probably will be well established amongst systems in
need to solve complex dependencies the future.

4.1 - Future Work

Currently Visual Value 3D lacks the support of defining evaluators in a
natural way in the XML file, the strings are now given as evaluators needs
to be recognized by the system. A typical dependency like:

31

32 ValueValueevaluator

cannot be written that way in the XML. Instead the evaluator needs to be
written like this:

)2,1(ValueValueAddevaluator

So making the application better and make it understand snippets of code
and with that create evaluators as the xml file is parsed would lead to a big
improvement.

Since the 3D renderer is built on DirectX there already are a big amount of
possibilities to add a rich multimedia experience. VV3D already renders
with vertex and pixel shaders but such shaders should also be possible to be
defined in the xml file so it would be possible to add effects which make
the rendered model look more realistic. Smoke, fog or water can be added
together with sound.

We have seen that this configuration technique is usable both for industrial
products for a manufacturing industry and for 3D rendering, two areas that
don’t have so much in common except for the use of a dependency graph. I
see that all applications which use a graph will draw benefits of using this
technique. It can be everything from planning traffic systems to Artificial
Intelligence.

32

5 – References

Articles:

[1] - Stephan Diel, Jörg Keller “Constraints for 3D Graphics on the
Internet”
[2] - Graham Smith, Tim Salzman, Wolfgang Stuerzlinger, “3D Scene
Manipulation with Constraints”

Websites:

[3] - http://www.web3d.org/x3d/
[4] - http://www.openscenegraph.org/
[5] - http://developer.nvidia.com/object/nvsg_home.html
[6] - http://www.gamasutra.com/features/20030829/vanderbeek_pfv.htm
[7] - http://www.realityprime.com/scenegraph.php
[8] - http://www.adobe.com/products/flex/
[9] - http://java.sun.com/products/java-media/3D/
[10] - http://www.panda3d.org

Books

[11] - Ames, Nadeau, Moreland “VRML 2.0”

33

Appendix A – The cylinder example in Visual Value
3D
<?xml version="1.0" encoding="utf-8" ?>
<Scene xmlns="http://www.winsider.se/xmlns/scene3d">
 <Time />
 <!--Camera node, don't change this structure, only it's
internal values-->
 <Camera>
 <Eye>
 <X value="0"/>
 <Y value="2.0"/>
 <Z value ="-15.0"/>
 </Eye>
 <LookAt>
 <X value="0"/>
 <Y value="0"/>
 <Z value="0"/>
 </LookAt>
 <Proj fov="45" nearplane ="1.0" farplane="1000.0" />
 </Camera>
 <!--Lights node, here you can add DirectionalLight and
PointLight, but keep the structure-->
 <Lights>
 <DirectionalLight name="dirLight">
 <Direction>
 <X value="3"/>
 <Y value="3"/>
 <Z value="2"/>
 </Direction>
 <Color>
 <R value="250"/>
 <G value="250"/>
 <B value="250"/>
 </Color>
 </DirectionalLight>
 </Lights>
 <!--Model node .. here you can add as many shapes you
want, remember to apply a unique name for each shape-->
 <Model>
 <Shape type="cylinder" name="cyl1" material="default"
texture="blue_black_wave.jpg" height="2.0" radius="0.5"
stacks="3" slices="24">
 <Transform>
 <Translation>
 <X value="2"/>
 <Y value="0" evaluator="Cos(2,-2,Time)"/>
 <Z value="0"/>
 </Translation>
 <Rotation>
 <X value="0"/>
 <Y value="0"/>
 <Z value="0"/>
 </Rotation>
 <Scaling>
 <X value="1"/>
 <Y value="1" evaluator="Slider2(0,5,Cyl1 Y
Scaling)"/>
 <Z value="1"/>
 </Scaling>

34

 </Transform>
 </Shape>
 <Shape type="cylinder" name="cyl2" material="default"
texture="blue_black_wave.jpg" height="2.0" radius="0.5"
stacks="3" slices="24">
 <Transform>
 <Translation>
 <X value="-2"/>
 <Y value="0" evaluator="Sin(2,-2,Time)"/>
 <Z value="0"/>
 </Translation>
 <Rotation>
 <X value="0"/>
 <Y value="0"/>
 <Z value="0"/>
 </Rotation>
 <Scaling>
 <X value="1"/>
 <Y value="1" evaluator="Slider1(1,5,Cyl2 Y
Scaling)"/>
 <Z value="1"/>
 </Scaling>
 </Transform>
 </Shape>
 <Shape type="cylinder" name="cyl3" material="default"
texture="blue_black_wave.jpg" height="5.0" radius="0.5"
stacks="3" slices="24">
 <Transform
evaluator="OnTopOf(Scene/Model/cyl3/height,Scene/Model/cyl1/
Transform,Scene/Model/cyl1/height,Scene/Model/cyl2/Transform
,Scene/Model/cyl2/height)" />
 </Shape>
 </Model>
</Scene>

35

What do all the elements in the XML mean?

<Scene> - document element of the xml, holds all the other elements.
<Time> - if this Time node is given the application creates a global
ActiveValue<double> which is updated each frame with the current application time.
<Camera>- holds data for the camera
<Eye> - tells the starting position of the camera. This element is serialized into a
VectorElement.
<LookAt>- element similar to the Eye element showing the point the camera will be faced
towards.
<Lights> - holds data about the scene’s lights.
<PointLight> - describes a point light
<Position> -VectorElement describing a point light’s position.
<DirectionalLight> - describes a directional light.
<Direction> -VectorElement describing a directional light’s direction.
<Color> - describes a color. It is serialized into a ColorElement.
<Model> - holds data for the scene’s shapes.
<Shape> -Represents a renderable object. This element has attributes describing the
shape.
<Transform> - TransformElement describing a shape’s transform.
<Translation> - VectorElement representing an object’s translation in x-, y- and
z-coordinates.
<Rotation> - VectorElement representing an object’s rotation around x-, y-
and z-axis.
<Scaling> - VectorElement representing an object’s scaling in x-, y- and z-
coordinates.

36

Appendix B – The cylinder example in X3D

<?xml version="1.0" encoding="UTF-8"?>
<X3D version='3.0' profile='Immersive'
xmlns:xsd='http://www.w3.org/2001/XMLSchema-instance'
xsd:noNamespaceSchemaLocation='
http://www.web3d.org/specifications/x3d-3.0.xsd '>
 <head>
 <meta name='title' content='cylinders.x3d'/>
 </head>
 <Scene>
 <Viewpoint description='View test' position='0 0 12'/>
 <Group>

 <Transform DEF='Cylinder1'>
 <Shape>
 <Appearance>
 <Material diffuseColor='0 1 0' shininess='1'
specularColor='1 1 1'/>
 </Appearance>
 <Cylinder radius='0.5' height='2'/>
 </Shape>
 </Transform>
 <Transform DEF='Cylinder2'>
 <Shape>
 <Appearance>
 <Material diffuseColor='0 0 1' shininess='1'
specularColor='1 1 1'/>
 </Appearance>
 <Cylinder radius='0.5' height='2'/>
 </Shape>
 </Transform>
 <Transform DEF='Cylinder3'>
 <Shape>
 <Appearance>
 <Material diffuseColor='1 0 0' shininess='1'
specularColor='1 1 1'/>
 </Appearance>
 <Cylinder radius='0.5' height='1'/>
 </Shape>
 </Transform>
 <PositionInterpolator DEF='PI1' key='0 0.5 1.0' keyValue='2 2 0,
2 0 0, 2 2 0'/>
 <PositionInterpolator DEF='PI2' key='0 0.5 1.0' keyValue='-2 -1
0, -2 2 0, -2 -1 0'/>
 <TimeSensor DEF='Clock' cycleInterval='4' loop='true' />
 <Script DEF='InterfaceScriptNode' directOutput='true'>
 <field name='cyl1Transl' type='SFVec3f'
accessType='inputOnly'/>
 <field name='cyl2Transl' type='SFVec3f'
accessType='inputOnly'/>
 <field name='cyl3Transform' type='SFNode'
accessType='inputOutput'>
 <Transform USE='Cylinder3'/>
 </field>
 <![CDATA[
 ecmascript:

 var cyl1translation;
 var cyl2translation;

37

 function initialize ()
 {
 Browser.print ('initialize ():');

 cyl1translation = new SFVec3f(0, 0, 0);
 cyl2translation = new SFVec3f(0, 0, 0);
 }

 function cyl1Transl (value, timestamp)
 {
 cyl1translation = value;
 setTransl ();
 }

 function cyl2Transl (value, timestamp)
 {
 cyl2translation = value;
 setTransl ();
 }

 function setTransl () {
 var deltaX = cyl1translation[0] - cyl2translation[0];
 var deltaY = cyl1translation[1] - cyl2translation[1];
 var a = (deltaY / deltaX);
 var angleZ = Math.atan(a) + 1.57;
 if (deltaX < 0) deltaX = -deltaX;
 cyl3Transform.scale = new SFVec3f(1, deltaX, 1);
 cyl3Transform.rotation = new SFRotation (0,0,1,angleZ);

 cyl3Transform.translation = new SFVec3f(0,1 +
(cyl1translation[1] + cyl2translation[1]) / 2, 0);
 }

 function shutdown()
 {
 if (DEBUG) Browser.print ('==============================');

 if (DEBUG) Browser.print ('script shutdown.');
 if (DEBUG) Browser.print ('==============================');

 }
]]>
 </Script>
 <ROUTE fromNode='Clock' fromField='fraction_changed'
toNode='PI1' toField='set_fraction'/>
 <ROUTE fromNode='Clock' fromField='fraction_changed'
toNode='PI2' toField='set_fraction'/>
 <ROUTE fromNode='PI1' fromField='value_changed'
toNode='Cylinder1' toField='set_translation'/>
 <ROUTE fromNode='PI2' fromField='value_changed'
toNode='Cylinder2' toField='set_translation'/>
 <ROUTE fromNode='PI1' fromField='value_changed'
toNode='InterfaceScriptNode' toField='cyl1Transl'/>
 <ROUTE fromNode='PI2' fromField='value_changed'
toNode='InterfaceScriptNode' toField='cyl2Transl'/>
 </Group>
 </Scene>
</X3D>

