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Abstract

This thesis presents two new viable approaches to accelerating
the visualization of light shafts from a point light source. A
coarse representation of the three-dimensional scene is used to
identify regions of space that are fully lit, fully in shadow and
those that can not be determined from the coarse
representation alone. The two methods then visualize the
different regions as efficiently as possibly. The first of the
methods fully relies on sampling but ignores many of the
evaluations required by previous sampling-based methods. The
other method uses an analytical solution in the fully lit region,
drastically reducing the required fillrate of the algorithm.
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Chapter 1

Introduction

Visualization of environments in computer games and computer generated films
can benefit from taking participating media into account. Usually only the
effects of light being reflected at object surfaces are visualized but light also
interacts with microscopic particles in the air giving rise to effects such as fog
and haze. Light also interacts with the molecules inside within objects resulting
in subsurface scattering.

Photons from the sun that enters a cloud interact with the water molecules.
Some are absorbed and some are scattered in new directions. In the space
between two clouds we can see a ray of light known as a god ray. The same
effect can be seen in a foggy environment behind a character being lit by a light
source; in front of the character we can see the lit air, behind him shadows in
the air.

1.1 Previous Work

There are many different problems related to visualizing participating media.
Different restrictions result in different methods. The main differences are in
how the density of the media are modeled. Either it is homogeneous (constant
density) or inhomogeneous (varying density). If it is inhomogeneous it can
either be arbitrary (defined through a function or a texture) or expressed as a
sum of radial function (such as Gaussians) centered around 3D points. Another
restriction is in the type of scattering that is taken into consideration. Single-
scattering means that photons are only scattered once. In multiple-scattering
photons can be scattered an arbitrary number of times. In [single or multiple]
forward scattering, photons can only be scattered in the forward direction so that
they always travel away from the light source. See Section 2.1 for a discussion
on scattering. Another restriction is how advanced the scattering is modeled.
Depending on the type of the media, different models are suitable from a physical
standpoint. If, however, a simpler scattering model is chosen over the correct,
model performance can be improved.

Jensen and Christensen, show how photon mapping [2] can be extended to
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include volumetric effects [1]. The effects of multiple scattering of photons in
inhomogeneous air and inside objects are taken into account. The method is
divided into two phases. In the first phase, photons are emitted from light
sources. They are stored at surfaces they hit and also in the air where they
interact with the medium. In the second phase an image is rendered from the
camera using ray marching. Incoming light at a surface point or in the air can
be approximated using a photon density estimation. The result from the first
phase is stored in a kd-tree for efficient density evaluation. Unlike rendering
using a standard photon map (without the volumetric effects), ray marching
must be used instead of ray tracing. This increases the rendering time. The
resulting images are realistic but the rendering times are long and the method
is not suited for real-time rendering.

A real-time sampling based method was introduced by Dobashi et al. [6]. It
supports visualization of light shafts in a single scattering homogeneous media.
We review their technique in Section 3.1 in detail, since it forms the basis for
our own work.

Harris et al. investigate multiple forward scattering in clouds composed of Gaus-
sian particles with varying density [14, 15, 16]. They focus on finding the correct
amount if incoming light for each such particle. Each particle that the clouds are
composed of, is rendered as a billboard. Air without particles, is not rendered
so light shafts cannot be captured by this method. It archives real-time perfor-
mance by caching the images of the individual clouds in dynamically updated
impostors. A blend between this method and the sampling method introduces
cloud rendering with light shafts [7]. This method, however, is currently not
running in realtime.

Y. Zhu et al. uses depth peeling to extract an interval per pixel that is inside a
light cone [4]. The light inside the cone is then sampled using a shadow map.
With hardware that supports dynamic branching we can optimize the sampling
phase, using fewer shadow map lookups in uncomplicated intervals.

Kun Zhou et al. introduce a method for visualizing a single scattering inhomo-
geneous participating media [3]. The density of the media is modeled as the sum
of radial basis functions, each a Gaussian centered around a three-dimensional
point. Simplifying approximations allow the method to run in realtime, but
makes it unable to capture high frequency effects, such as, light shafts.

Eva Cerezo et al. reviews many volumetric methods [5]. Mitchell has written a
review, that focus on realtime methods of light shafts visualization [9].

1.2 Outline

In Chapter 2 we look at the model used to describe the light sources and the
participating media. In Chapter 3 we look at two methods for visualizing the
participating media. One of the methods introduces and needs the visible set in
order to function. In Chapter 4 we describe a tree structure suitable for finding
the visible set of simple triangular scenes. Finally in Chapter 5 we utilize the
tree structure and develop two hybrid schemes for visualizing the participating
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media. The results are presented in Chapter 6 and our conclusions in Chapter
7. Ideas for further improvements on the two methods are discussed in Chapter
8.

1.3 Contributions

Our first contribution is a data method that partitions the volume of a point
light source into three different regions; fully lit, uncertain and fully unlit. The
result can be used to accelerate methods that visualizes the effect of point light
sources in a homogeneous participating media. Our second contribution is the
development of two such methods that utilize this data structure to accelerate
the rendering process. The improved methods are based on the idea of moving
some of the GPU-heavy calculations from the GPU to the CPU. While this
goes against the current trend in realtime graphics, it might make sense in the
context of rendering volumetric effects that are fill rate bound.
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Chapter 2

Participating Media and
Light Model

Much of the work presented here is based on Dobashi et al’s work [6] using
Nishita and Nakamae’s light model [12] as a basis for the light transfer inside
the participating medium. In this chapter this model is introduced.

2.1 Absorption and Scattering

Figure 2.1: Multiple and Single Scattering of Light Rays

When photons leaving a light source collide with small microscopic particles,
they will either be absorbed or scattered in a new direction. In Figure 2.1, we
can see two different paths of photons reaching the eye. The photons traveling
the yellow path are scattered only once while the photons traveling the blue
path are scattered multiple times. We denote the two cases single and multiple
scattering. If we take the effects of absorption and scattering into account we
say that we have a participating media that influence the rendering.
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Figure 2.2: Scattering of Photons

In realtime rendering the influence of a participating media is often limited to
quite simplistic fog. If we study the two paths in Figure 2.2, the scattering
from the yellow path is sometimes taken into account while contribution from
the blue path is ignored. Objects that are far away will correctly be darker and
objects that are far from light sources will get less incoming light. However, the
fog itself will not be visualized.

We denote the intensity of the light from a light source L(x,w) where x is a
point in space and w the direction1. If we denote the rate of absorption σa and
the rate of scattering, σs we can define the rate of extinction as σt = σa + σs.
If the medium is homogeneous σt is constant and we get

dL(x,w)
ds

= −σtL(x,w) (2.1)
⇒

L(x + sw,w) = e−σtsL(x,w) = T (s)L(x,w). (2.2)

Here T (s) denotes transmittance, the amount of intensity of light that is left
after traveling s length units. With the choice of T (s) = e−σts we get the well-
known Beer’s law. If the initial energy leaving the light was Iobj then the light
reaching the eye s units away is IobjT (s).

2.2 Phase Function

When a photon with the direction w′ collides with an air particle it is scattered
with a probability σs. It will then continue in a possibly new direction according
to a phase function p(w′ → w) where w is the new direction. Independent of
w, all scattered photons will continue in some direction so the total probability
is:

∫
S2
p(w′ → w)dw′ = 1. (2.3)

1Notice that this is intensity per time unit. Since light in computer graphics is considered
to travel with infinite speed this functions only describes the instantaneous light distribution
in space. Normally this can easily be defined for any point but if we take scattering into
account it is not so easy.
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Often the air particles are spherical and the probability function is spheri-
cally symmetric so the phase function is often a function of one variable α =
cos−1 (w ·w′) denoting the angular difference between the incoming direction
and the scattered direction. A phase function suitable for a hazy atmosphere
[12] is given by:

p(α) = K(1 + 9 cos16(
α

2
)), (2.4)
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Figure 2.3: A Phase Function suitable for a hazy atmosphere

where K is a normalization constant2. In Figure 2.3 we see that there is a high
probability of scattering in the forward direction while there is little scattering
in the backward direction.

2.3 Light Model

Each pixel on the screen corresponds to an eye ray that starts at the point p0

and has a direction Ωe that depends on the pixel3. The points on a ray are
then given by:

P(z) = p0 + zΩe, z ≥ 0, |Ωe| = 1. (2.5)

In order to render a scene we need to calculate the intensity of the light that
arrives at p0 from the direction −Ωe. We denote this intensity Ieye. Usually
this is a vector that has three intensities; red, green and blue.

In Figure 2.4, we can see the principals of our lighting model. There are two
types of light contributions. The light source illuminates the object resulting
in the intensity Iobj being reflected toward the eye. It is then attenuated due

2See appendix A for details on K.
3Here we assume a pin-hole camera.
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Figure 2.4: Light Model

to absorption and scattering. The contribution to Ieye is IobjT (Z). The other
contribution comes from single-scattering toward the eye, from each point on
the eye ray. The amount of the scattering is governed by σs and the phase
function. In general, we have:

e(z) = T (z)Ip(z)σsp(α), (2.6)

Ieye = IobjT (Z) +
∫ Z

0

e(z)H(z)dz, (2.7)

where p(α) is the phase function, T (z) the transmittance, H(t) the boolean
visibility at P and Ip(t) the light intensity at P 4. The function e(z) is the point
wise contribution to Is(Z) assuming H(z) = 1.

Our goal in this paper is to improve the previous methods for evaluating Is(z).
We use the phase function (2.4) and the transmittance function (2.2).

A point light is modeled by:

Ip(t) =
I(Ω)T (r)

r2
, (2.8)

where Ω is the direction from the light source to the point P. A simple spotlight
can be modeled by using a point light and varying the intensity I(Ω) depending
on the angle between Ω and the forward direction of the spotlight.

I(Ω) =

{
1, cos−1

(
Lforward · ~LP

)
≤ Lfov

0, otherwise
(2.9)
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Figure 2.5: Lit intervals on an eye ray.

2.4 Reformulations

In Figure 2.5, we can see an eye ray decomposed into the fully lit segments,
drawn in red, in front of the scene geometry. If we denote the intervals of these
segments [zini , z

out
i ], we can use the integral of e(z):

E(z0, z1) =
∫ z1

z0

e(z)dz, (2.10)

to obtain Is(Z) using summation as

Is(Z) =
∑
i

E(zini , z
out
i ) =

∑
i

E(0, zouti )−
∑
i

E(0, zini ). (2.11)

This will turn out to be useful in Section 3.2.

2.5 Simplified Lighting Model

For evaluation of our method, that requires E(z), we have developed a simplified
version of e(z) called ê(z). It has a form that is easier to integrate, yielding Ê(z).
We will now describe this model.

This simplified model ignores the effect of transmission of light. Light is only
attenuated by the squared distance from the light source. The terms a0 and a1

can be used to keep the light from being to bright near the light position, and
to fake some transmission from the light source to the point. A simple isotropic
phase function p(α) is used. The terms in the light model is the same as in (2.6)

4Obviously Ip(t) influences Iobj as well but we are not interested in Iobj and we don’t want
to burden this presentation with the BRDF of the objects material.
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with:

ê(z) = T (z)Ip(z)σsp(α), (2.12)

Ip(z) =
I(Ω)

a1r(z)2 + a0
, (2.13)

p(α) =
1

4π
, (2.14)

T (s) = 1, (2.15)

and I(Ω) as in (2.9).

L

r

∆

r0

z=1

z=zs
z

P0
Ωe

Figure 2.6: Finding r(z).

First let us find an expression for r(z). From the Figure 2.6 we can see that
there must be a point on the eye ray that is closest to the light source. We
denote the z-value of this point zs and the distance from the light source to the
point r0. We see that zs is obtained as the orthogonal projection of ∆ on Ωe.
Pythagora’s Theorem gives us an expression for r0 and of the exact distance
from the light source to any point on the eye. The sought identities are:

∆ = L− p0,

zs = ∆ ·Ωe,

r0 =
√
|∆|2 − z2

s ,

r(z) =
√
r20 + (z − zs)2. (2.16)

Now we want to find the integral of ê(z). First consider only segments within
the fully lit cone such that I(Ω) = 1. Using (2.16) we get a function of z to
integrate. The result is

Ê(z0, z1) =
∫ z1

z0

ê(z)dz =

=
σs
C4π

[
tan−1

(
a1(zs − z0)

C

)
+ tan−1

(
a1(z1 − zs)

C

)]
(2.17)

with

C =
√
a1(a1r20 + a0).
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Now consider a segment that is not fully inside the cone such that I(Ω) varies.
If we want to calculate Ê(z0, z1) we can use a cone intersection test [22] to
determine a new smaller interval on the ray that lies fully inside the lit cone.
First we determine the interval on the eye ray that is inside the cone. We then
take the intersection of that interval and [z0, z1] as our new interval. The key
here is that I(Ω) is either 0 (outside a cone) or 1 (inside a cone).

While this model is not physically correct it matches some of the lighting meth-
ods used in realtime graphics. Sun et al. has presented an approximation to
the full integral of e(z) [8]. Combined with the cone intersection above it could
be used for more realistic results for spotlights as well. We have chosen to use
the simpler model in order to limit the scope of this thesis.
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Chapter 3

Visualization of Media

This chapter investigates two methods to visualize the spotlight cone in partic-
ipating media using a GPU. As a light source shines on the particles in the par-
ticipating media, light is scattered from each visible point toward the viewer ac-
cording to an intensity function e(z) (for a given eye ray). The function e(z) does
not take occlusion between the light source and the point p(z) into account. We
denote the volume that is actually illuminated B = {p(z) : H(z) = 1, z ∈ [0, Z]}.

L

B

Figure 3.1: The illuminated volume B.

For each ray from the eye through the spotlight cone we shall calculate the total
amount of incoming light on that ray. First, the surfaces of the scene is rendered
using the graphics card. The term IobjT (Z) is written to the frame buffer and
the z-value of that fragment is written into the z-buffer. This corresponds with
standard rendering with fog of constant density, with T (Z) being the effect of
the fog. Second, the effect of the participating media, Is(Z), must be added.
Together they form the full solution. The two following sections will discuss two
methods to find Is(Z).
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3.1 Sampling based approach

Dobashi et al. approximates Is(Z) using sampling of the integral in (2.7) [6, 7].
The integrand is assumed to be constant over a small depth. Several virtual
planes parallel with the image plane is rendered at different z-values, dz steps
apart, as in Figure 3.21.

light source

L

image plane

virtual planes

Figure 3.2: Virtual sampling planes aligned with the image plane.

As we can see in Figure 3.3, portions of the sampling planes that are behind
geometry in the z-buffer, here drawn in red, will not be drawn, resulting in
contributions only from visible portions of the eye rays.

light source

L

image plane

virtual planes

Figure 3.3: Red portions of sampling planes behind scene geometry.

While most of the terms of (2.7) can be be easily evaluated at the center point
(or by using a closed form solution to the full integral) the term H(z) is more
troublesome. In the sampling based approaches it is evaluated using shadow
mapping [27]. Shadow mapping enables evaluation of the visibility at an arbi-
trary point in space by projection of the shadow map. This makes it suitable

1Notice that if you place planes dz apart then the distance between the intersections of
a ray and those planes will depend on what ray you chose. For eye rays only the ray that
looks along the forward vector will intersect the planes every dz length unit, to the sides the
intersections will be further apart. Take care that most of the times we use z to refer to a
distance along a ray, not to the z-value of a point on that ray (unless the z-buffer is involved
in the argument).
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for evaluating H(z) in mid air. In Figure 3.4 we can see the portions of the
sampling planes that receive no light due to occlusion drawn in red.

light source

L

image plane

virtual planes

Figure 3.4: Red portions of the sampling planes in shadow.

(a) Too few virtual planes. (b) Enough virtual planes.

Figure 3.5: Effect of under-sampling.

There are two main problems of this algorithm. First, there is aliasing both due
the sampling by virtual planes, and due to shadow mapping. In Figure 3.5 we
can see what happens when too few planes are used. The other problem is that
the algorithm requires rendering a lot of planes covering large portions of the
screen which results in a lot of fragments being rendered by the GPU. We say
that the algorithm is fill-rate bound2.

Mitchell suggests increasing the efficiency by clipping the planes to the volume
that bounds the influence of the light source to reduce the fill-rate [9]. A ground
plane is also proposed such that portions below the floor will not be needlessly
rendered. He also suggest more aggressive trimming of the sampling planes so
that portions that are known to be lit does not perform a possibly costly shadow
map computation, and that portions that are known to be in shadow could be
ignored altogether.

A third problem with the sampling method is due to low precision in the texture
formats, accumulating quantization errors as the number of planes increases.
This can be seen in Figure 3.5(b).

2The limiting factor is not the number of vertices but the numbers of fragments.
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light source

L

image plane

virtual planes

image plane

virtual planes

Figure 3.6: Sampling Planes trimmed by the light frustum.

3.2 Volume-based Integration

In this section, we will present a new approach to light shaft visualization that
is inspired by existing algorithms of fog volume visualization.

When programmable graphics cards was new several simple methods to visualize
volumes of fog was developed. Boyd and Baker describes one such method [10].
The basic concept is simple; the distance a ray travels through the fog volume
affects how much off the fog colors it picks up. The distance is measured by
comparing the two z-buffers, one that contains the backside of the triangles in
the fog volume, one that contain the front-sides. Given that the fog volume is
convex the distance can be calculated with a simple subtraction. Complications
arise when the fog volume intersects geometry or when the camera is inside the
fog volume. One last issue is how to store the z-buffer with enough precision,
given the low number of bits per pixel typically for textures found on older
graphics cards.

In Figure 3.7, we can see a light source and the scene geometry. We can also see
the volume B where the light source has some influence. Had there not been any
geometry in the world B would be as large as the full dashed influence volume
of the light source. However since there is blocking geometry not all points will
be illuminated. If we place ourself at the light position and look around, we see
the portions of the polygons that will be lit. The air that will be illuminated
is the air in front of those lit polygon portions, but inside the dashed influence
volume.

3.2.1 The Visible Set

From now on we assume that the influence volume of a light source is a volume
that fully encloses the space that the light source affects in a significant way
(regions where the intensity of the light is impossible to perceive can be left
outside this volume). For a spotlight, we use a pyramid with the apex at the
light source. This is important because we want to be able to express the
surface of the influence volume using triangles. Had we used the true cone
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light source

L
B

Figure 3.7: The Visible Set

as our influence volume the surface of that volume would be curved, requiring
many triangles in order be express properly.

We denote the polygons that the are visible from the light source, with occluded
portions trimmed away, as the visible set. We include the backplate of the light
source influence volume. In Figure 3.7, these are the polygons drawn in red. As
we can see in the figure each such polygon contributes with a pyramid to the
volume B, with the polygon as the base and L as the apex. All the individual
pyramids taken together spans B. Since no polygons are overlapping as seen
from the light source the individual pyramids do not overlap, and also there can
be no geometry inside them. This yields the full volume B. The surface of B is
not as simple as it could be since it has a lot of interior polygons as shown in
Figure 3.8.

L

Figure 3.8: Two pyramids that forms B with duplicated polygons in red.

In Chapter 4, we describe a data structure called the Beam Tree that can be
used to construct the visible set. An alternate approximate algorithm based on
image analysis methods to find the surface of B, without any interior polygons
such as the on in Figure 3.8, is proposed by McCool [17].

3.2.2 Visualization using the GPU

Our aim is to calculate Is(Z) for each pixel simultaneously. We do this by
exploiting equation (2.11). By rasterization of the surface of B (the surfaces
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of all the pyramids) the pixels that are written to are those that will receive
scattered light from B. For a front-side face then the length to the rasterized
position for the written fragment, zfrag, is the depth of an entry into B for a
given pixel3. In the same manner a backside face represent and exit out from
B.

Each in/out-pair represents a fully lit segment of the corresponding eye ray for
a given pixel. See Figure 2.5. Since no geometry can intersect B, the z-buffer
will for an interval either do nothing (if the scene geometry is behind and not
blocking the scattered light) or remove both in/out (if the scene geometry blocks
the scattered light).

Thus we can find the term
∑
iE(0, bi) in (2.11) by rendering the backsides of

B using additive blending, writing the term E(0, zfrag) in the fragment shader.
The term −

∑
iE(0, fi) can be found in the same manner by rendering the

front-sides, using subtractive blending and writing E(0, zfrag).

If the eye point is inside B there will be an exit from B but no entry into it.
The backside will be rendered but not the front side. This, however, poses no
problem since E(0, bi) represents the full integral from 0 to bi which is what we
wanted.

3.3 Discussion

The two approaches work in two very different ways and they have different
benefits and drawbacks.

The performance of the sampling method is highly dependent on the number
of virtual sampling planes and the visible size of them. The number of planes
can be somewhat reduces by introducing noise but even then it is an expensive
method. In the distance however the size of the sampling planes shrink and the
number of planes can be also be reduced. So while sampling is slow it is easy
to adapt the quality of it depending on how large the spotlight cone is on the
screen.

The performance of the volume-based integration method is dependent on a
high number of factors. First we need to determine the visible set and the per-
formance of this step is dependent on the geometry of the scene. The Beam
Tree is expensive to construct making this approach impossible for highly tes-
sellated scenes. Once the visible set is found it is rendered by the GPU. The
number of vertices rendered is dependent on the total number of pyramids. If
the number of pyramids that a given ray can see are fewer than the number of
sampling planes the same ray would see this method will use a lower amount
of fill-rate. The work per fragment work however could be higher if E(z) is
expensive to calculate. It is not possible to reduce the work of this algorithm
when the light source is far away, it might even be better to switch to a sampling
based approach. A drawback is that the light cone might seem too smooth since
it is hard to introduce a noise factor. Optimizations that limits the number of

3Notice that zfrag is not the z-value written to the z-buffer but rather the length from the
camera to the position of the point being rasterized.
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polygons in the visible set could be used to reduce the amount of work needed
for shadow casters not visible to the observer (not all shadow casters need to
be included in the visible set since they are not visible themselves and can not
cast shadows onto anything visible) [11].

Depending on the precision of the destination buffer we are rendering to we
might have to render each pyramid individually, adding the back side contri-
bution and then subtracting the front side contribution. This is to avoid the
problem when the sum of all backside contributions are larger than the maxi-
mum value in that buffer. If the buffer can not handle negative values then care
must be taken so we do not underflow. The method is also sensitive to very
bright lights since the back side contributions can again overflow. Overflowing is
in usual rendering not a problem but here we need to subtract from the value so
clamping to a maximum value is not possible. Since blending cannot be set on a
per triangle/fragment basis on the GPU we need so submit smaller batches. By
defining a value numOverflow we can use the intensity numOverflow−1 instead
of 1, that is we divide all contributions by numOverflow−1. This allow us to
overflow the buffer a certain number of times, but at the same time we are re-
ducing the precision of the buffer. If we use a destination buffer with 8 bits per
color channel then a value of numOverflow = 8 will only give us 32 gray tones.
This might appear as banding in the image, especially if many thin pyramids are
present. The same problem applies to the sampling-based approach but there
we never have to subtract so clamping to a maximum value is a valid option.
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Chapter 4

Beam Tree

In this chapter, we describe a special subclass of the Solid BSP Tree called the
Beam Tree that can be used to determine the visible set from a point L. The
term was coined by Abrash [18]. It is a degenerate variant of the Solid BSP
Tree which is often used for solid modeling [19]. An alternate way to construct
the Beam Tree is through Beam Tracing introduced by Heckbert [20]. It should
be possible even for complex scenes with the new methods by Overbeck et al.
[21]. Pseudo code for the beam tree can be found in appendix B.

4.1 Nodes and Leafs

We begin by introducing the building blocks of the Beam Tree.

The Beam Tree is a binary tree that recursively partitions the space R3 using
splitting planes. The algorithm start with the entire space. Each node in the
tree then represents a division of the parent space into two parts, a front side
and a back side. Each node holds the splitting plane and references to two child
nodes describing the space in front and behind respectively. The two children
spaces can then be further subdivided, resulting in a tree structure. Since each
partition splits a convex volume by a plane, the resulting volumes will also be
convex. Thus each node represents a convex subspace of the original space.

The leafs (the nodes without children) represent convex subspaces of R3. They
are classified as being either open or closed. An open leaf means that the space
represented by that leaf is considered to be unoccupied. A solid leaf is considered
to be occupied.

In a Beam Tree all the splitting planes passes through a single point L. This
makes all the convex subspaces into beams, or pyramids. The pyramids only
have walls and are infinitely long.

Initially the tree contain one open leaf, representing a beam as large as the
frustum of the camera or the light source1. We can see a Beam Tree in Figure

1Even if a light source might have a circular frustum (a cone) we use the four bounding
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4.1. While this figure is in two dimensions the Beam Tree itself is in three
dimension with each line in the figure being a plane passing through the point
L.
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(a) Initial Tree.
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(b) One solid beam inserted.

Figure 4.1: A Beam Tree as seen from the light source.

We can see the Beam Tree from Figure 4.1(a) in tree form in Figure 4.2.
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root

solid

solid

solid
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Figure 4.2: Initial Beam Tree in Tree Form.

4.2 Insertion

When we insert a polygon we first construct that which we want, the portions
of that polygon which are part of the visible set. For each such portion then we
take its polygon and insert the corresponding beam into the beam tree.

To insert, we traverse the tree with the primitive, splitting it against the splitting
planes. Convex portions of the original primitive will end up in an open or a
closed leaf. If it ends up in a closed leaf we ignore it since that space is already
represented. If it ends up in open space we insert a new beam, marking that
space as being occupied. We also add the portion of the polygon that created
the beam to the visible set (along with the plane of that polygon).

walls of that cone as our frustum.
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In order to get not only the correct beams but also the correct visible set, we
need to insert the polygons of the scene in a front-to-back order (as seen from
the light), and they must not intersect each other. If they do intersect each
other this must be resolved before constructing the Beam Tree.

In our application we use the Beam Tree to obtain the visible set from a light
source. For a light source, we are not interested in the full visible set but rather
only the portion that is in front of the far plane of the light source. Thus we clip
all polygons to this plane prior to insertion. After the full frustum is created,
we can traverse the tree with a polygon with the shape of the far clipping plane.
The portions that ends up in open leafs are fully visible and are added to the
visible along with the far plane as its plane.

4.3 Example: Efficient Point Test

Program 1 Beam Tree point classification.
def isInside(node, point):

while (isLeaf(node)==false)
if (node.plane.isInFront(point)) node=node.frontNode;
else node=node.backNode;

return isLeafSolid(node)

While constructing the tree can be expensive it can efficiently be used to answer
queries. To determine if a point is in the solid subspaces, we simply traverse
the tree and choose child depending on if the points lies in front or behind the
splitting plane. Once we end up in a leaf, we classify the points depending on
if that leaf is solid or not.

Points lying exactly on a splitting plane traverses the front node. Once it reaches
the leaf it will be classified as being in open space if it is exactly on a boundary
between solid and open space. However, unless exact arithmetic is used, due
to precision issues, it will be randomly classified. The alleviate this splitting
planes are given a thickness ε. Program 1 would then be rewritten as:

Program 2 Beam Tree point classification with thick splitting planes.
def isInside(node, point):

while (isLeaf(node)==false)
distance=node.plane.calculateDistance(point)
if (distance<-epsilon) node=node.backNode
else node=node.frontNode

return isLeafSolid(node)

Now the point will always be classified as being in front of the plane if the
distance from the plane is less than ε. For the same reason the splitting planes
are given a thickness during construction of the (S)BSP Tree as well. Tolerances
such as ε should always be carefully chosen [25, 26]. If the world is modeled in
SI units then ε = 1mm might be reasonable, unless the user can zoom in on
small things.
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4.4 Partitioning a polygon

L

Figure 4.3: Partitioning a polygon into green parts that are in front and red
parts that are behind.

If the Beam Tree is created with the position of the light source as L then the
portion in front of the visible set is the lit parts of the polygon and the portions
behind the visible set is the occluded parts. One operation we then might want
to perform with a Beam Tree is to partition a polygon into two parts, one that
is in front of the visible set and one that is behind it. The situation is depicted
in Figure 4.3 with the green regions being the parts that are in front of the
visible set and the red regions being the parts that are behind the visible set.

We can first partition our polygon into small parts, one for each leaf in the
Beam Tree that the polygon passes through. We do this by traversing the tree.
We take our initial polygon and clip it with the splitting planes of the nodes.
If a part ends up in an open leaf then that whole part is in front of the visible
set. For each such part ending up in a solid leaf, we can split it with the plane
of the polygon that was used when creating that leaf. This will yield two parts,
one that is in front and one that is that behind the visible set.
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Chapter 5

New Hybrid Methods

We have seen how the two method developed in chapter 3 can be used to visualize
the full light cone. However, they both have their drawbacks. The first one
requires a lot of fill-rate, while the second can only handle scenes with few faces
or the CPU work from constructing the Beam Tree is too demanding. Here,
we first review the use of bounding volumes and how they relate to volumetric
lighting. We then develop two methods to take advantage of the bounding
volumes to reduce the fill-rate requirements of the sampling method.

5.1 Bounding Volumes

Bounding volumes can be used to perform conservative but efficient evaluations
of properties of objects. An outer bounding volume fully encloses an object. If
we want to determine if an object is inside the influence of a spotlight cone we
could first determine if the outer bounding volume is inside the cone. If it is
not, we know that the object receives no light. If, however, the outer bounding
volume is partially inside the cone, the actual object might still be receive no
light. This is what makes the test conservative and not exact.

A

B

L

Figure 5.1: Outer bounding volumes can be used to conservatively test if an
object is inside a cone.

Furthermore, a inner bounding volume can be used. It is fully enclosed by an
object. It can be used if we want to find out if an object A receives any light
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from a light source when another object B is potentially blocking the light. If
the outer bounding volume of A is fully inside the volume behind the inner
bounding volume of B as seen from the light source, no light is received by A.

A B
L

Figure 5.2: The use of inner bounding volumes. Object B blocks the light from
arriving at A.

It is also possible to have several inner bounding volumes for a single object.
Usually bounding volumes are assumed to be convex to further speed up the
test carried out with them.

5.2 Beam Tree of Bounding Volumes

For both our methods, we construct a Beam Tree of the polygons of the bounding
volumes instead of the actual scene geometry. This is less expensive since the
number of triangles in the bounding volumes is much smaller than number of
triangles in the full scene. We first construct a Beam Tree using the polygons of
the outer bounding volumes. This gives us the visible set of the outer bounding
volumes (and the visible polygons of the backplate).

LB

Figure 5.3: By using the visible set of the outer bounding volumes we get B̂.

Constructing pyramids using this visible set gives us a subset B̂ of the volume
B introduced in Section 3.2.1. If the outer bounding volume closely resembles
the actual object the difference of B̂ and B will be small.

At this point we could choose to use the volume-based approach to visualize the
influence inside the volume B̂. If we have sufficiently good bounding volumes
this approach might be good enough, especially if the light source is far away
from the viewer.
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5.2.1 Partitioning a beam

Using the Beam Tree of bounding volumes, we can divide a beam into three types
of regions as seen in Figure 5.4. First, we have the fully lit yellow region in front
of the visible set. Then we have the uncertain gray region where the status of
being lit or unlit depends on the complex object that is enclosed in the outer
bounding volume. The third region in black is unlit since the inner bounding
volume tells us that the gray object is blocking the light. Some beams might
not have a fully unlit region (because the beam does not see a inner bounding
volume). Some beams are also fully lit since the uncertain region starts at the
backplate of the light source influence volume.

Fully lit

Uncertain

Unlit

L

Figure 5.4: We divide a beam into three types of regions.

After the construction of the Beam Tree, we have many beams, one for each
polygon in the visible set. In order to partition the beams as in Figure 5.4
we need the information from the inner bounding volume in addition to the
information from the outer bounding volumes.

We want to partition the beams using planes. Let us assume that we have a
Beam Tree constructed from the surfaces of the inner bounding volumes as well.
If these two Beam Trees had the exact same leafs we could match the beams
by matching the leafs. We would then have two planes for each beam; one from
each leaf. Taken together they would form the partitioning planes between the
regions of that beam. The plane from the leaf in original Beam Tree would be
the partitioning plane between fully lit and uncertain. The plane from the leaf
from the Beam Tree of the inner bounding volumes would be the partitioning
plane between uncertain and fully unlit. In reality however the two Beam Trees
will have different leafs, and we would have to subdivide the leafs of both trees
until perfectly matching leafs could be formed.

We have chosen to construct only one Beam Tree, the one composed of the
surfaces from the outer bounding volumes. We then augment this tree with the
information from the inner polygons. We do this like in Figure 5.5. We start by
clipping the polygons from the inner bounding volumes and keep the parts that
end up in solid leafs (that represents a beam that does not see the backplate).
We call these clipped polygons stopper polygons. The situation is depicted in
Figure 5.5(a). We then subdivide the leaf and adds new leafs. All but one of
these are solid just as the original leaf, but the last is a blocker leaf. The blocker
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leaf is assigned the plane of the stopper polygon, called the stopper plane.

Solid

Stopper

(a) A solid leaf.

Solid

Solid

Solid
Blocker

(b) Result after augmenting with inner
bounding volume.

Figure 5.5: Subdividing a solid leaf.

Now we have three types of leafs; open, solid and blocker. Open leafs represents
beams that only intersect the backplate. Solid leafs represents beams that in-
tersects an outer bounding volume, but not an inner. A blocker leaf represents
a beam that intersects both outer and inner bounding volumes. This gives us a
modified partitioning algorithm. If we have a polygon that we want to partition
we clip it (as in Section 4.4) so we get the portion that ends up in leafs. We can
then use the partitioning planes of the corresponding beam to select only the
part that is fully lit or uncertain. Parts that are fully unlit can be discarded all
together.

5.3 Method 1: Sampling with Aggressive Clip-
ping

We construct a Beam Tree from the bounding volumes of the objects as de-
scribed in the previous sections. We then use the sampling method as described
in Section 3.1. However, we partition the sampling polygons using the method
in Section 4.4 so that portions that are fully lit and portions that are partially lit
are separated. Portions that are unlit are discarded. The two lists of polygons
are then rendered with different shaders, one that performs shadow lookup us-
ing the shadow map and one that does not. The real gain is from the reduction
in fragment rasterized due to discarding fragments that are unlit. This is quite
close to the suggestion for future improvements made by Mitchell [9].

A good side effect of using this method is that we can utilize all the sampling
tricks developed by Dobashi et. al [6] and Mithcell [9]. We introduce no addi-
tional errors or restrictions compared to the original method.
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5.4 Method 2: Hybrid Method

We construct a Beam Tree from the outer bounding volumes of the objects as
described in the previous section. In order to visualize the fully lit portions we
use the integration-based method described in Section 3.2.

The Beam Tree is then augmented with the information from the inner bounding
volumes as described in Section 5.2.1. The sampling method (Section 3.1) is
then used to visualize the uncertain portions of the beams. The augmented
Beam Tree gives us the extra information needed to clip away everything but
the uncertain parts of the sampling planes.

Taken together we get the full contribution and a correct result. This reduces
fill-rate drastically when the bounding volumes are placed such that a majority
of the illuminated volume is either fully lit or fully unlit. When most of the
region is uncertain we need to fully rely on sampling and since we can not
use alias hiding techniques (such as noise) we might need more virtual planes
compared to using a plain sampling based approach.

In lack of a good estimate of E(0, Z) we have not been able to obtain the same
visual results as the method that fully rely on sampling. In testing we have
used the simplified lighting model from Section 2.5 to get an estimate of how
beneficial this would be performance wise in comparison to the other method.

Sampling does not yield the exact solution and if the number of virtual planes
is too small there will be visible differences between the two solutions. Also if
the precision of the destination buffer is too low small contributions from the
sampling might be ignored, yielding an incorrect sum. This is handled better
in the integration-based approach since it operates on longer intervals. This is
another source of difference between the solutions.
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Chapter 6

Results

We have implemented the original sampling based method [6]1 and the two new
hybrid methods for comparison. We have not implemented the methods by
Mitchell [9] to reduce banding due to a low number of sampling planes since
those would not work together with the second hybrid method. We use variance
shadow mapping [23] as our shadow mapping solution. It is a fairly cheap
shadow method compared to PCF-filtering [24]. This reduces the difference in
rendering sampling planes with and without shadow mapping, something that
should be remembered when we compare the original method with our first
hybrid method.

A restriction of the implementation is that we do not support objects whose
outer bounding boxes overlap. This is a serious limitation in this particular
implementation but it can easily be lifted by building a BSP-tree for the outer
bounding volumes and then inserting them front-to-back into the Beam Tree
(the inner bounding volumes are convex and if they can be assumed not to
intersect they can be added front-to-back into the Beam Tree after a simple
sort on their center point).

We want the measure performance and quality of the two methods. Our quality
concerns are both inside the two different regions and at the boundary between
them. Speed wise we have three principal cases that are of interest. When the
scene contains few objects with simple bounding volumes the beam tree will be
uncomplicated. When the number of objects goes up so will the complexity of
the beam tree, making both the construction and the visualization of the pyra-
mids slower. The performance of the sampling depends solely on the drawn area
of the sampling planes. The number of virtual planes goes up as the light source
gets more parallel to the viewing direction. The other performance/quality fac-
tor here is the spacing factor dz between the virtual planes.

The volume of the regions rendered using the different methods depends not
only on where the objects are located relative the light source but also on how
well the objects are described by the inner and outer bounding volumes. If we
assume all bounding volumes to be convex then highly non-convex objects will

1We have however chosen not to subdivide the sampling planes into a grid and calculate
slowly varying information per vertex. This is the same choice as was done by Mitchell [9].
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(a) Without light-shafts. (b) With light-shafts.

(c) Contribution from Beam Tree. (d) Contribution from Sampling.

Figure 6.1: Scene: Toplight.
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be poorly bound. This will increase the volume rendered by the slower sampling
method.

To evaluate performance, we have constructed three different scenes:

1. Parallel: Parallel light source

2. Toplight: Orthogonal light source

3. Multiple: Many objects

Toplight can be seen in Figure 6.1. Parallel and Multiple can be seen in Figure
6.2.

(a) Scene: Parallel. (b) Scene: Multiple.

Figure 6.2: Test scenes.

We will take performance measures using different values for dz. Notice that the
Beam Tree column only includes a partial solution so the results in that column
will be lower. Also since the primary bottleneck is the fill rate required by both
the algorithms, especially in simpler scenes, we measure at different resolutions.

We have not made any special benchmark to tests the image quality. This is
primarily because not enough time has been spent on optimizing the quality of
the sampling method. Hence, this is left for future work. Since the sampling
method using many small contributions added together truncation is a severe
problem, especially with small values for dz. But with larger values of dz there
are more pronounced boundaries between the sampling regions and the beam
tree regions. Another factor here are that since they are rendered into the same
buffer, we must deal with both overflow and truncation issues. A solution here
would be to render the contributions into different buffers, allowing different
quality settings.
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dz Scene Size Beam Tree Sampling Method 1 Method 2
0.5 Parallel 64 850 924 204 174

(71) 256 311 325 204 180
512 102 100 100 146
1024 28 34 27 44

Toplight 64 879 985 563 515
(17) 256 342 567 339 515

512 117 240 116 269
1024 32 73 32 85

Multiple 64 79 440 223 206
(47) 256 79 440 224 200

512 79 257 175 200
1024 57 80 54 89

0.1 Parallel 64 850 556 53 45
(356) 256 311 80 50 45

512 102 24 53 21
1024 28 7 27 6

Toplight 64 879 719 288 229
(88) 256 342 172 288 150

512 117 50 111 47
1024 32 13 31 13

Multiple 64 79 407 100 83
(239) 256 79 164 100 83

512 79 64 102 50
1024 57 13 47 15

Table 6.1: Performance for the different methods (in frames per second). Num-
ber of parenthesis is number of virtual planes used for sampling.
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Chapter 7

Conclusions

We can see that our two different methods perform better than the original
sampling method for some setups. Furthermore, the portions that are rendered
by the Beam Tree approach suffer far less from banding, yielding smoother
looking light shafts. Some applications that have a light setup similar to those
cases where the new methods perform well could use them. It is, however, not
simple to implement the methods. If any of the methods should become popular
it must be made easier to implement.

The Beam Tree based methods are most benficial for simple scenes rendered
in high resolutions. In order to handle scenes with more objects the Beam
Tree implementation must be better than the one we implemented. We do
not feel that we have made the fastest solution possible. On the other our
implementation for the reference sampling method is not perfect either.

A disadvantage of the hybrid method with the Beam Tree visualization is the
alias-reducing methods available for the sampling based method. That is while
we can sometimes render the regions that are fully lit faster, the regions that are
in doubt and thus clipped might be slower than the corresponding regions would
be in a pure sampling based method. This is because we might have to increase
the number of virtual planes a lot for the Beam Tree solution and the sampling
solution to match, and since we cannot use anti-aliasing techniques/hacks, such
a noise, since they are not present in the Beam Tree solution.

Another negative thing with the Beam Tree visualization is that we must render
only a few pyramids at the time or we will overflow our buffer. Were it possible
to use additive blending for both front sides and back sides but giving the front
side contribution a negative color then we could render all the pyramids at once
using a vertex buffer. Negative colors are however not a part of the OpenGL
standard (although some cards seems to support it).

Although it is hard to compare methods that have many different quality pa-
rameters, we can see that our methods is not always better, and sometimes
worse. This could be due to a poor implementation, but it could also very well
be that the simplicity of the sampling algorithm; in some cases the Beam Tree
does not add anything.
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We see very little benefit from using Method 1. This might be due to our choice
of VSM as our shadow mapping algorithm; it is much cheaper than percentage
closest filtering so an additional shadow map lookup is not that expensive1.

1VSM only does one texture lookup per evaluation and supports mip-mapping of the
shadow map.
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Chapter 8

Future Work

It should be possible to insert polygons into a Beam Tree in a random order
(not front-to-back as seen from the light). This would allow overlapping outer
bounding boxes. The trick would be to check when a polygon is inserted into a
solid leaf. It should then be clipped by the plane of that leaf. If a portion of it
is in front we subdivide the original leaf and fix things up. It might hamper the
performance/quality of the tree a lot but might be worth it. The alternative is
to first build a BSP-tree and then traverse the resulting BSP-tree front-to-back.

Instead of partitioning polygons to the Beam Tree, we can just generate them in
a geometry shader. Given a pyramid and two planes (where uncertainty begins
and stops) in space, we want to generate the intersection with the virtual planes
z = n∗dz. In some cases, this corresponds to the projection of either one of the
two planes onto the planes z = n∗dz. Sometimes clipping needs to be performed.
Either way the result will be a convex planar polygon. This algorithm should
be possible to perform in a geometry shader.

It might also be possible to use the Beam Tree alone, and not do any sampling
at all if the bounding volumes are good enough. An adaptive version of the
sceen could be used, giving adaptive control of the complexity of the Beam Tree
and the number of pyramids that needs to be visualized.
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Appendix A

Conservative Phase Function

α x

y

z

1

Figure A.1: Rewriting Integral over Sphere

For a phase function that only depends on the angle α, we can rewrite the
conservative condition as:

∫ 1

−1

p(α)2πhdx = 2π
∫ 1

−1

p(cos−1 x)
√

1− x2dx = 1. (A.1)

For the phase function in (2.4)

p(α) = K
(

1 + 9 cos16
α

2

)
= K

(
1 + 9

(
1 + cosα

2

)8
)
,

this means that

2π
∫ 1

−1

p(cos−1 x)
√

1− x2dx = K
54647π2

215
,

which gives us the normalization factor K ≈ 16.45948−1.
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Appendix B

Beam Tree

Program 3 Pseudo code for Inserting a polygon in a Beam Tree
insert(root, polygon.vertices)

def insert(node, vertices):
if len(vertices)==0: return

if node.mode==SOLID: // Fully occluded, ignore
return

if node.mode==OPEN: // Fully visible, insert
attachPolygon(node, vertices)
return

[backVert,frontVert]=split(node.plane, vertices)

insert(node.backNode, backVert)
insert(node.frontNode, frontVert)
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Program 4 Pseudo code for creating new nodes for a newly found solid leaf in
a Beam Tree
def attachPolygon(node, vertices):

for each edge v0,v1 in vertices:
prevNode=node

node.frontNode=new Node(OPEN)
node.backNode =new Node(SOLID)

node.mode=SPLIT
node.plane.construct(L, v0, v1)

node=n.back

prevNode.solidPlane=Plane(vertices)

Program 5 Pseudo code for partition a polygon with a Beam Tree
partition(root, polygon.vertices)

def partition(node, vertices):
if len(vertices)==0: return

if node.mode==SOLID: // We ended up in fully occluded space
[backVert,frontVert]=split(node.solidPlane, vertices)

behindPolygons.add(Polygon(backVert))
frontPolygons.add(Polygon(frontVert))
return

if node.mode==OPEN: // Fully visible, insert
frontPolygons.add(Polygon(vertices))
return

[backVert,frontVert]=split(node.plane, vertices)

partition(node.backNode, backVert)
partition(node.frontNode, frontVert)
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