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Abstract

Depth of field is a desired, but computationally expensive effect in computer graphics. A number
of algorithms exist, each having distinct drawbacks or limitations. Accumulation buffering is read-
ily hardware accelerated but requires much computation time in order to eliminate unnatural artifacts.
Post-processing techniques are popular because of their performance but are inaccurate. Stochastic ray
tracing gives excellent quality but is computationally intense and not easily accelerated using contem-
porary graphics hardware.

In this thesis, we implement stochastic rasterization on contemporary GPUs, and it is shown to be
as efficient as accumulation buffering with comparable image quality with less obvious artifacts. We
show that it is already viable to use stochastic rasterization in real-time applications, although several
graphics hardware optimizations are unavailable using this technique. Some of these optimizations
can be extended to support stochastic rasterization with only slight hardware modifications, making
the proposed method likely to outperform accumulation buffering for depth of field effects.
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1 Introduction

1.1 Stochastic rasterization

In this thesis, we implement stochastic rasterization [Cook et al. 1984] for depth of field effects on con-
temporary graphics processing units (GPUs), and it is shown to be as efficient as accumulation buffering
with comparable image quality with less obvious artifacts. We show that it is already viable to use
stochastic rasterization in real-time applications. In combination with a good mesh reduction system,
stochastic rasterization outperforms accumulation buffering, becoming the fastest correct real-time depth
of field method to date.

1.2 Depth of field

In photography, certain objects are sharp, while others are blurry. This can be caused by objects moving
relative to the camera during exposure, or because of objects being closer or more distant than the focal
distance. The former effects are called motion blur and will not be discussed here. The latter is the effect
called depth of field.

Depth of field occurs as soon as a three-dimensional object is being projected onto a flat surface through
a lens of non-zero radius. This means that all real-world optical systems — most notably cameras, and
even human eyes — experience some degree of depth of field.

With proper care, depth of field can be used to direct the attention of a viewer to specific areas of an
image by making surrounding details less prominent and also to enhance the sense of depth in the scene.
This is demonstrated in Figure 1, where the same scene is shown with two different focal depths. In
the left image, the attention is directed towards the buildings in the background. In the right image the
attention is naturally focused on the statue in the foreground as it is the only thing depicted sharply.

Figure 1: Directing attention using depth of field.

Another interesting area of application is matching a virtual camera to a real world camera in order to
merge a film clip with a computer generated scene. A human would easily recognize a sharp CG object
in the merged footage if the real film clip contains perceivable depth of field effects.

1.3 Mathematical model of a camera

Computer graphics in general does not take depth of field in to account and simulates the virtual camera
with an idealized pinhole camera. This means that the lens has no size and light can only travel through
one single path through the scene towards the camera film.

When projecting a scene through a lens of non-zero radius, the focal length f of the lens and the distance
a between the lens and the image plane determines the distance z0 to the plane in focus by the lens
equation:
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Any single point at distance z0 will be projected to a single point on the opposite side of the lens at
distance a. Light from a point at distance z0 from the lens will thus converge to a single point on the
image plane. If another point, at distance z, is projected through the same lens, it will be projected to
another point of distance b from the lens. Light arriving from a point of distance z to the entire lens
area will converge towards a point of distance b, and thus cover an entire area of the image plane. This
is illustrated in Figure 2. The result is a smudged image, where the extents of the smudge is called the
circle of confusion (CoC).

Circle of confusionDisc of confusion

0

ImageLens

Figure 2: Confusion projections through a lens. Light from point z0, shown in light grey, is sharply
projected onto the image plane. Light from z, shown in black, covers a circle of confusion on the image
plane. The same result is obtained by projecting an equivalent disc of confusion through a pinhole
camera, shown in dark grey.

Given the aperture size A, the circle of confusion radius in the image plane can be calculated as [Demers
2004]

CoC = Af
|z − z0|
z(z0 − f)

.

Since we will be working mostly in 3D space in later chapters, we introduce the following concept: The
disc of confusion (DoC) is a circular disc in 3D space, aligned along the camera viewing direction that
a point must be evenly smudged across to achieve the same visual result, using a pinhole camera, that
would be obtained by the non-smudged point with a real-lens camera. This distinction is illustrated in
Figure 2. We reverse the projection by re-multiplying the coordinates by the object distance z and rewrite
the circle of confusion equation as

DoC = Af
|z − z0|
z0 − f

with the same constants as above. Unlike the circle of confusion radius, the disc of confusion radius varies
linearly across a triangle face, since the depth is linear along the triangle surface. All the parameters can
be accurately calculated to match a specific camera. They can then be grouped together into two variables
k and z0 to simplify calculations:

k =
Af

z0 − f
,

DoC = k(z − z0).
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Correctly applying the mathematical model described above using any method to a triangle-based 3D-
model will yield several noteworthy characteristics: A single solid triangle will be internally blurred, and
also get a semi-transparent region according to the circle of confusion. Several connected triangles will
smoothly melt together at the seam, without any transparency. Any triangle not directly facing the Z-axis
will get a varying circle of confusion along the face. Any object behind an out-of-focus occluding object
will be partially visible through the semi-transparent region of the occluding geometry.
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2 Current techniques

2.1 Ray-tracing

Ray-tracing is a technique for rendering scenes by repeatedly casting rays from a virtual camera through
each pixel of the rendered image. For each ray, the intersection point with the scene geometry is deter-
mined and the pixel color is calculated using this point. Depth of field is accomplished by distributing
several rays across the lens for each pixel and directing them as to converge according to the lens equa-
tions [Cook et al. 1984]. Since the true light transport is simulated, the image acquired this way is
unbiased and will converge towards the correct image with an increasing amount of rays.

Ray-tracing is almost exclusively used for high quality offline renderings as it is a very time consuming
process that is not accelerated by current graphics hardware.

2.2 Accumulation buffering

Accumulation buffering techniques (ABT) is based on the pinhole camera model. Instead of rendering
a single image of the scene, a number of different locations on the lens are used as camera positions to
achieve depth of field. The rendered image from each of these positions is weighted and blended together
to create the final image [Haeberli and Akeley 1990]. The accumulated image is unbiased and converges
towards the correct image with an increasing number of render passes.

Artifacts appear with this technique when too few samples are used; a distinct outline of every sample
image is visible in the accumulated result, shown in Figure 3. This is called ghosting.

Figure 3: Left: reference image, 256 sample stochastic rasterization. Right: accumulation buffering
using 4 samples, showing severe ghosting.

Ghosting is most visible in the blurriest regions, meaning that the largest circle of confusion of the entire
image decides the number of passes needed for a certain overall image quality. The number of passes
needed is proportional to the circle of confusion area in pixels.

Contemporary hardware is well utilized by this technique, since each pass is rendered using the standard
pinhole camera. A drawback is that the geometry of the entire scene is sent to the GPU once per lens
sample [Wexler et al. 2005]. For real-time applications it is important to minimize the amount of draw-
calls, otherwise the performance may become CPU-bound [NVIDIA 2006]. Accumulation buffering
intensifies this problem since the amount of draw-calls scales linearly with the number of passes.

2.3 Post-processing

Depth of field can be approximated by doing a pinhole camera rendering and subsequently blurring the
rendered image with a variable blur kernel according to the depth of each pixel. The images produced
this way are severely biased due to the fact that they only consider light arriving at a single point of the
camera lens.
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Many artifacts appear with post-processing depth of field techniques [Demers 2004]. One of these is
bleeding of blurry background objects into a sharp foreground. Another severe but typical artifact is that
blurry foreground objects fail to blend over sharp backgrounds.

Post-processing techniques are still often used in real time applications due to their ability to produce
relatively appealing visual results at a low constant cost.

2.4 Stochastic rasterization

Stochastic rasterization (SR) was introduced by Cook et al. [Cook et al. 1984], and depth of field was
described as one of its potential uses. It was later implemented on a GPU [Wexler et al. 2005], but was
found inferior to accumulation buffering with their naı̈ve implementation. Time-continuous triangles
[Akenine-Möller et al. 2007] were introduced in order to make stochastic rasterization for single-degree-
of-freedom systems, such as motion blur, efficient on graphics hardware.

Akenine-Möller et al. proposed a hybrid accumulation buffered stochastic rasterization technique in
order to achieve real-time depth of field. In contrast, we present a single-pass stochastic rasterization
technique.
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3 Workflow of our technique

High quality is best achieved by means of stochastic rendering. However, typical graphics hardware
is highly optimized for pinhole-camera rasterization. Our method combines the strengths of both into
a single technique. To conform to contemporary GPUs, a standard pinhole camera is the basis the for
rasterization. The typical real-time approach to achieve true depth of field, as described in chapter 2.2,
perturbs the pinhole camera to numerous locations on the camera aperture. Our approach instead perturbs
the rendered geometry.

In this chapter, the layout and functionality of a typical contemporary graphics hardware pipeline is first
described, followed by an overview of how our method is applied throughout the pipeline.

3.1 Pipeline of contemporary graphics hardware

When data is passed from the application to the graphics hardware, it is sent as a stream of vertices.
These vertices are first processed individually in the vertex shader. The vertex shader processes a single
vertex at a time and always output one vertex per input vertex.

When all the vertices belonging to a single triangle are processed by the vertex shader, they can optionally
be passed to a geometry shader. The geometry shader can perform per-triangle calculations as it has
access to all vertices comprising a triangle at once. It may also do data amplification, outputting more
than one triangle for each input triangle. If no geometry shader is used, the input triangle is directly
passed to the next stage of the pipeline.

Each triangle is then rasterized by fixed-function (non-programmable) hardware. Rasterization is the
process of determining which pixels, also referred to as fragments, are covered by a triangle. The input
positions to the rasterizer, and thus the output from the previous shader, are expected in clip space. Each
rasterized pixel invokes the pixel shader, also called the fragment shader. The pixel shader has access
to parameters outputted from earlier steps, linearly interpolated across the triangle in homogenous space.
The pixel shader must always output a color and may optionally output a depth value. If no depth is
written in the pixel shader, it is instead interpolated from the vertex depths in homogenous space.

Incorporating our proposed technique in these stages is accomplished by using each of the three pro-
grammable shaders as described in the following subchapters. An illustration of the workflow can be
seen in Figure 4.

VS PSGS

Figure 4: The triangle-processing workflow. The vertices are first processed individually by the vertex
shader (VS). The triplet of vertices forming a triangle are then processed by the geometry shader (GS).
Finally each pixel covered by the GS output is processed by the pixel shader (PS).

3.2 The vertex shader

The main role of the vertex shader in our technique is to perform transformation from object space to
view space. The only additional information that can be calculated per vertex is the disc of confusion
radius since this varies linearly along the view vector.

Working in view space is convenient since it simplifies later calculations as it is a 3D space with the cam-
era aligned to the Z-axis. All blur thus takes place in the x and y directions, with magnitude depending
only on the z components.
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3.3 The geometry shader

By calculating our proposed disc of confusion in 3D-space, a bounding volume V can be calculated for
each triangle by enclosing the circular discDoC for each point q on the triangle surface T , also illustrated
in Figure 5:

V = (p : p ∈ DoC(q), q ∈ T ) ⊂ R3

DoC(q)
q

T

V

DoC(p0 )

DoC(p1 )

DoC(p2 )

Figure 5: Left: exact bounding volume (light grey) can be seen as a generalized Minkowski-addition of
the original triangle (dark grey) and the variable disc of confusion (white). Right: The dark area is seen
as solid, as it will be covered for every valid perturbation of the triangle T . The light area is not covered
for all perturbations and is thus semi-transparent.

Stochastic intersection testing — which will be further explained in chapter 5 — can only hit the triangle
within the projected area of this volume. In order to obtain an image of the entire blurred triangle, the
projection of the bounding volume needs to be rasterized.

We propose two approaches to calculate triangle confusion bounds. The first approach is to construct a
conservative bounding volume in 3D space around the exact bounding volume. The second approach is
to calculate a bounding area that covers the projected area of the enclosing volume in image space. Both
result in data amplification; for each triangle input, a set of triangles are generated, forming the bounding
volume or area. The data amplification is generally higher when constructing three-dimensional volumes.

Each of the output triangles contain all vertex attributes of the contained triangle: the location of the three
unperturbed corners along with their associated parameters such as texture coordinates and normals. The
data regarding the contained triangle is stored as view space coordinates, while the positions for the
bounds are in clip space since the graphics hardware requires this for the fixed-function rasterization
stage.

3.4 The pixel shader

The pixel shader is executed for each pixel of the bounding volume generated by the geometry shader.
Since each triangle of the bounding volume contain all data regarding the enclosed triangle, stochastic
sampling is made possible. The details of this procedure is covered in chapter 5.

Since each pixel is sampled only once, the cast ray will either hit or miss the triangle in the semi-
transparent region seen in Figure 5. The result is a jitter between the triangle and the background. Even
in the center of the triangle, where a hit often is guaranteed, adjacent fragments will not sample the
surface coherently and thus give rise to internal jittering as well.

Noise reduction is crucial to all stochastic methods since they have a high variance by nature. This is
solved by super sampling which is explained in chapter 9.4. Mathematical statistics states that four times
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as many samples are required to halve the standard deviation. Assuming that the distance of rendered
objects is large compared to the lens radius, the incoming light to the camera will be evenly distributed
across the lens surface. The stochastic sampling should thus be uniformly distributed1. If the aperture is
circular, the perturbed position can be calculated as follows:

{
u0 ∈ [0, 1)
u1 ∈ [0, 1)

→

{
r =
√
u0

θ = 2πu1

→

{
x = r cos θ
y = r sin θ

The stochastic variables x and y representing the position on the lens are calculated from two uniform
distributions that can be stratified to prevent sample clustering, further reducing noise.

1Unless time-varying aperture effects are desired, which is discussed in chapter 5.3
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4 Bounding volumes

In this chapter, several different methods for creating bounding volumes are discussed. The strong and
weak points of each technique are considered.

It is important to minimize the unnecessary rasterized area without performing excessive calculations
and using too much bandwidth between the geometry shader and rasterizer. Any area outside the true
enclosing volume will always result in discarded pixels and wasted computation time. The bandwidth
used is proportional to the number of output vertices from the geometry shader. Different workloads
result in bottlenecks at different parts of the graphics pipeline, as will be discussed in chapter 7.1.

This chapter will refer to different bounding volume terms. We define them as follows, also illustrated in
Figure 6:

• The exact bounding volume is defined as all points belonging to the enclosed triangle for some
perturbation.

• The convex bounding volume is the smallest convex bound for the exact bounding volume. Another
interpretation of the convex bounding volume is the convex bound for the discs of confusion of the
enclosed triangle’s vertices.

Figure 6: Bounding volumes. The black circles are the discs of confusion at the three vertices of the dark
grey triangle. The medium grey area is the exact bounding volume, and the light grey area is the convex
bounding volume. The bounding volumes include the darker areas in the figure.

The narrow waist shown in Figure 6 appears when a triangle spans across the focal plane. If the triangle
is entirely on one side of the focal plane, then the exact and convex bounding volumes will be identical.

All of our bounding volumes can be constructed in a single triangle strip, meaning the number of output
vertices is always the number of triangles plus two.

4.1 Overview of bounding volumes

Class Bounding method Vertices Triangles Computation Usability

3D 3D Hexagon 12 20/16 heavy excellent
3D Wedge 6 8 medium good
3D Reduced Wedge 5 4 intense excellent
2D 2D Hexagon 6 4 medium mediocre
2D Parallel edge triangle 3 1 light poor
2D Variable radius triangle 3 1 medium very poor

Table 1: Summary of bounding volumes

Table 1 shows an overview of the relevant bounding solutions discussed in the subsequent subsections.
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4.2 General image-space considerations

These methods are based on the projected area of the enclosing volume. Calculating the projected shape
of the convex bounding volume is not trivial, as many special cases arise. This happens when one or two
vertices are behind the camera. Negativew-components for the homogenous coordinates of these vertices
cause triangle inversions which are computationally intense to handle properly. Degenerate triangles also
pose a problem. Some of these problems apply to all two-dimensional methods, whereas others are
specific to certain methods. These difficulties are further discussed in chapter 4.8.

4.3 General 3D-space considerations

Constructing a bound for the enclosing volume can also be done in three dimensional space, most notably
in view space. The task is to enclose the discs of confusion in a hull. Since non-projected coordinates
are used, the graphics hardware will subsequently clip the generated bounding volume and thus all of
the problems with the image-space methods never occur in the first place. There are other minor issues
regarding near and far clipping that can arise using three-dimensional methods, as will be discussed later,
but these methods are generally more robust and require no scene object validity checks.

4.4 Hexagonal bounding volumes

Figure 7: Extrusion of the bounding hexagon from the triangle plane to 3D. The flat hexagon is inflated
along the contained triangle’s normal until it tangents the largest disc of confusion.

For heavily blurred scenes, the best of our proposed bounding volumes is the hexagonal bounding volume,
shown in Figures 8 and 7. In the 3D version, it is calculated in the following manner:

1. The discs of confusion at the three vertices are projected to the triangle plane.

2. Each of the three edges of the triangle is moved so that it tangents the outside of the larger of the
two projected discs at the edge endpoints.

3. At each vertex, a new edge is created with the average angle of the two edges meeting at that
vertex. The new edge is then placed as to tangent the outside of the projected disc of confusion at
that vertex.

4. The intersection points between the six edges are calculated, forming a flat hexagon.

5. The hexagon is inflated along the enclosed triangle’s normal, such that it tangents the largest of the
non-projected discs of confusion.

The 2D version is very similar; instead of projecting to the triangle plane, all coordinates are projected to
image space, and no inflating is performed at the end.

The resulting hull for the 2D version consists of 6 vertices forming 4 triangles in 1 strip. For the 3D
version it is 12 vertices forming 20 triangles in 1 strip. If triangles are considered as one-sided (only
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Figure 8: Bounding hexagon in the triangle plane. The enclosed triangle is depicted in dark grey. The
discs of confusion at each vertex of the enclosed triangle, projected to the triangle plane, are shown as
transparent ellipses. The generated hexagon is shown in light grey.

visible when front-facing), this can be reduced to 16 triangles; if the inside of the bounding volume is
rasterized, then stochastic sampling on the bounding volume lid will always produce backfacing hits, or
similarly for the bounding volume bottom if the outside is rasterized.

The worst case fit for the hexagonal bounding volumes is a nearly degenerate triangle with an extremely
large blur radius to triangle size ratio. In this case, the result will mostly resemble a rectangle for the 2D
version or a box for the 3D version. The best case fit is when the blur radius is zero. In this case, the
bounding volume will exactly fit the enclosed triangle. The hexagonal bounding volumes always produce
the most tight-fitting bounds of our proposed methods. However, they are also the most bandwidth-
consuming methods and are rather computationally intense. For low-blur scenes, it might therefore be
better to use another method since the bound tightness will be less crucial.

4.5 Bounding wedge and parallel edge bounding triangle

Figure 9: Bounding wedge in the triangle plane. The enclosed triangle is depicted in dark grey. The
discs of confusion at each vertex of the enclosed triangle, projected to the triangle plane, are shown as
transparent ellipses. The generated triangle is shown in light grey.

If the workload on the geometry shader using hexagonal bounding volumes is so high as to make the
geometry shader a bottleneck, it is better to produce slightly worse-fitting bounds at reduced computa-
tional cost. The bounding wedge is essentially the same as a 3D hexagonal bounding volume, but without
introducing the averaged edges. This is illustrated in Figure 9. The 2D-equivalent is called the parallel
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edge bounding triangle, since the bound’s edges are parallel to the enclosed triangle’s edges.

The best case for the bounding wedge is when the enclosed triangle is entirely in focus, and the radii
are zero. The wedge will then exactly match the contained triangle. The worst case is when a triangle
is nearly degenerate, in which case a very long bar with a rectangular cross-section is produced. In
practice, geometry is modeled as not to have any nearly degenerate triangles, but procedures such as
morphing level of detail produce such shards. For morphing objects, it is therefore better to use the
hexagonal bounding methods or an adaptive method.

The parallel edge bounding triangle consists of 3 vertices forming a single triangle. The bounding wedge
consists of 6 vertices forming 8 triangles in 1 strip. If triangles are considered one-sided, this can be
reduced to 7 triangles.

We have developed a reduction technique that generates fewer triangles, covering the same screen area
as the full wedge. The technique does contour determination by detecting which sides of the wedge
are front facing. The reduction technique uses the same vertices as the original wedge, but connects
them differently. This reduced bounding wedge method outputs at most 4 triangles in a single triangle
strip. The reduced bounding wedge only works if the camera lens is not penetrating the triangle. A
downside with our reduction method is that it requires several branches. Contemporary GPUs have poor
performance when branching and this increase the strain on the geometry shader.

4.6 Variable radius triangle bound

Figure 10: Variable radius bounding triangle in image space. The enclosed triangle is depicted in dark
grey. The circles of confusion at each vertex of the enclosed triangle are shown as transparent ellipses.
The generated triangle is shown in light grey.

As convenient as it might be to create new edges parallel to the enclosed triangle’s edges, it is naturally
not necessary. Many triangles get a better fit if the new edges are created as to tangent each disc of
confusion at the respective end, as shown in Figure 10.

At first glance, it is tempting to draw the conclusion that this variable radius (VR) triangle bound always
produce tighter bounds than the previously discussed parallel edge (PE) triangle bound. This is not the
case. It is easy to construct a case where the area of the VR triangle is significantly larger than for a
corresponding PE triangle, and there are cases when it is impossible to create a VR triangle at all.

Also, the difference between a VR and a PE triangle is most notable when there is a large difference of
radii between the vertices. The difference in radius is generally small within a single triangle, unless it is
extremely close to the camera. The reduced rasterized area does not always yield a workload reduction
large enough to compensate the increased computational effort calculating the VR bounds.

There are several problems calculating variable radius triangles. There are quite a few special cases where
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the VR algoritm breaks down unless they are properly handled; when calculating the edges tangenting
the circles in the variable radius triangle bound, problems arise when no such line exists. These is, for
instance, no line that tangents two circles if one is entirely enclosed within the other. There are also
inversion problems arising when two edges diverge, caused by a very large disc of confusion radius
compared to triangle edge lengths. Handling special cases always adds to the code complexity. It is
only worthwhile handling these cases if the even heavier computations still outperform the parallel edge
triangle.

These special cases make the variable radius triangle rather unreliable. It is therefore not a recommended
technique.

4.7 Adaptive method switching

An application implementing our depth of field effects may choose to apply a single bounding method
throughout the entire rendering process. Though this would be easily implemented, performance can
be increased by adaptively switching between several techniques. As can be seen in Figure 18, simpler
shapes perform far better for low-blur scenes, while heavily blurred scenes benefit from the more complex
bounding volumes.

The decision making can be split into two levels; microscopically, the geometry shader can determine
which bounding shape to use for each triangle of a mesh. Macroscopically, the application can do an
assessment for each object, selecting an appropriate geometry shader mesh-wise. High level decisions
can be based on object bounds that usually already exist in any rendering engine for culling purposes.
This allows an application to reduce computation and bandwidth costs for the geometry shader in parts
where there is very little difference in rasterized area between different methods.

An application might also choose to render objects that are very near the focus plane without the depth
of field effect, but this is not recommended since the transition is very hard to conceal.

4.8 Special cases

Constructing bounding volumes and areas is not a trivial task. Care must be taken to utilize them in a
correct way, as there are special cases when some of our methods will fail. In this section we will present
these and assess the severity and likelihood of each.

4.8.1 Inverted planes

The most severe problem from which all image space methods suffer arises when one or two vertices
are located behind the camera. The problem that occurs can be seen in Figure 11 where one vertex
travels in the camera view-direction from the positive to the negative domain. The projected point wraps
around infinity and re-enters the screen area from the opposite direction with a negative homogenous
w-component. Blindly creating bounding areas based on the projected xy-coordinates clearly results in
invalid bounds. This is a severe problem, limiting the use of these methods to objects entirely in front of
the camera. Any object reaching behind the camera must use a volumetric method working in 3D space
since they inherently avoid such problems as they do not use projected points in the first place.

4.8.2 Near and far clipping

While the volumetric methods do not suffer from plane inversion problems, they instead have the problem
of bounding volumes extending into a clipping plane even if the contained triangle does not. This may or
may not affect rendering; if the outside of the bounds is rasterized and the rear of the bounding volume is
clipped by the far clipping plane, the resulting rasterized surface will still cover the exact bounding area.
If the inside of the same volume is rasterized instead of the outside, the clipped region will erroneously
not be processed by the fragment shader. The opposite is true when the bounding volume intersects the
near clipping plane; if the outside of the volume is rasterized, the clipped region will not be rendered.
If the inside of the volume is rasterized, it will not be affected by removal of the clipped parts of the
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Figure 11: Image space triangle inversion for negative w-components. View space x and y coordinates
are identical for the four images.

volume. For interactive applications, we recommend rasterizing the inside of the bounding volumes due
to better resilience to camera penetration.

The solution presented above can only be guaranteed to work if the contained triangle itself does not
intersect a clipping plane. In applications not relying on near and far clipping planes in order to get
correct rendering, this is not a problem. If geometry is rendered very close to the near clipping plane, it
is recommended to rasterize the insides of the bounding volumes. Geometry known to always be distant
may be safer to render using the outside of the bounding volumes.

The image-space methods always output the generated bounding areas in the same depth plane, effec-
tively disabling near and far clipping problems.

The reduced wedge triangulation does not unambiguously rasterize the outside or inside of the bounding
volume, but rather whatever polygon happens to connect the points along the silhouette. It is therefore
impossible to predict the outcome of clip plane intersection. If such intersections are expected this method
is inappropriate.

4.8.3 Degeneration

If a triangle is degenerate, our methods result in undefined behavior. In order to safely handle this with
minimal computation cost the geometry shader should detect and discard any degenerate triangle.

Figure 12: Surfaces degenerate in image space are still visible due to the non-zero radius camera lens.

When a non-degenerate triangle becomes degenerate in image space it will still be visible from some
parts of the camera lens, seen in Figure 12. The image space methods will fail to construct correct
bounds for triangles degenerate in image space, resulting in undefined behavior. Our proposed way
of correctly handling these cases would be to detect zero-area triangles and generating object aligned
bounding rectangles instead.
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5 Stochastic pixel shading

In this chapter, our stochastic sampling pixel shader is explained. Finally, we will discuss some details
that deserve further attention.

5.1 The novel algorithm

When the bounding geometry generated in the geometry shader gets rasterized by fixed function hard-
ware, the rasterizer interpolates all vertex parameters linearly in homogenous space. Since each vertex
of the bounding volume contain the same parameters — except for position — they will be identical for
the entire rasterized area around the contained triangle.

The data that is supplied to the pixel shader is the following:

• The position of each of the three corners of the enclosed triangle

• The signed disc of confusion radius at each of the three corners

• Any additional vertex parameters needed for fragment processing, e.g.:

– Normal at each corner

– Texture coordinates at each corner

– Diffuse color at each corner, etc.

The first task for the pixel shader is to stochastically perturb the enclosed triangle. This is done by
randomizing a perturbation vector uniformly on the unit disc in the XY -plane and offsetting the corner
positions by this vector multiplied by the respective disc of confusion radius.

After randomly perturbing the enclosed triangle, an intersection test has to be done with the ray going
through the fragment center and the pinhole camera. This is the pinhole camera eye vector, here denoted
eyepinhole. The barycentric weights ei for the intersection point with the triangle plane are calculated
using the vector eyepinhole and the perturbed vertices Pi as follows:

ei = (Pi+1 × Pi+2) · eyepinhole, i = {0, 1, 2}

These three dot products may be evaluated as a single matrix-vector multiplication.

If any component of the barycentric weights is negative, the ray does not intersect the triangle. In that
case, the fragment is discarded. This will happen in the semi-transparent region of the triangle, show in
Figure 5. In the areas covered by the bounding area that are outside the exact bounding area, all fragments
will be discarded.

If there is an intersection with the triangle, execution continues and the barycentric weights are normal-
ized to form the barycentric coordinates:

esum = e0 + e1 + e2, u =
e0
esum

, v =
e1
esum

, w =
e2
esum

The depth and the additional shading parameters are then interpolated using these barycentric coordinates
as weights. The intersection position can be interpolated from the enclosed triangle vertex positions.
After this, the usual pixel shading takes place using the newly calculated parameter values.

Lighting calculations for a pinhole camera use an eye vector, originating from the point being shaded,
directed towards the pinhole camera. If the lens has a non-zero radius, the light path variations has to be
taken into account. We introduce a lens vector eyelens originating from the point being shaded, directed
towards the point on the lens from which the scene is viewed for the current perturbation.

17



It is straightforward to construct the lens vector by calculating the perturbed eye position on the lens and
subtracting it from the interpolated intersection point. It is important to note that eyelens differs from
eyepinhole, of which the latter should not be used in lighting calculations.

When fragment shading is done, the interpolated depth is returned along with the computed color.

5.2 Tie-breaker rules

If an edge between two triangles cross exactly through a pixel center, the pixel shader clipping rules
described above will pass fragments from both triangles. Rendering the same fragment for both trian-
gles will not yield any visual artifacts if both triangles are opaque and the shading across the edge is
continuous. If they are not opaque, rendering two fragments will result in incorrect blending.

To avoid such artifacts, it is possible to create a set of tie-breaker rules. Such rules generally have
several comparisons that can be simultaneously performed very efficiently in hardware, but are rather
time consuming to perform in a pixel shader. Tie-breaker rules should thus only be used if the artifacts
are truly visible and are found disturbing.

5.3 Random perturbations

For our perturbations we need two (pseudo-)random numbers. Our method of choice is to sample a
texture filled with random numbers pre-calculated on the CPU.

There are several advantages using the pre-calculated texture:

• Only a single texture lookup is required for the fragment shader to obtain the two random numbers
that are needed.

• The random numbers can be stratified in advance.

• Any aperture shape can be produced by limiting the random vectors in the texture to a subset of the
unit disc. Time-varying apertures can be simulated by making the distribution density proportional
to the local exposure time.

A drawback with the sampling method is that each fragment requires an additional texture lookup. How-
ever, the texture coordinate is simply the screen coordinate of the pixel, scaled to a one-to-one pixel-to-
texel ratio; the continuity is therefore very good and the texture cache should be effective when perform-
ing this lookup. Aside from the increased texture bandwidth, performing such a texture lookup is highly
efficient on typical hardware. Impacts on caching are further discussed in chapter 9.3.

5.4 Depth culling

The algorithm above calculates the depth of each fragment; this means that the fixed function hardware
cannot discard regions that are outside the valid depth range [0, 1] before the pixel shader is evaluated. If
the application renders a significant amount of geometry outside these bounds, it may be advantageous
to perform a clipping operation on the depth value as soon as it has been interpolated, thus avoiding the
fragment lighting calculations.

It might also be more efficient to perform depth culling in the geometry shader since the entire depth
interval is known at that stage.
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6 Integrating other effects

It is crucial that any technique should be compatible with other visual effects. This chapter describes how
other shading effects can be integrated with our technique.

• Vertex effects

Many techniques such as skinning, morphing, space warping, wave generation and texture coor-
dinate generation operate solely on the vertex shader. As long as their output isn’t infinite points
with zero homogenous w-components, they can simply be prepended to our vertex shader.

Since our geometry shaders works in view space, a requirement of the other vertex shader effects
is that any output must be able to be converted into view space. It is possible to rewrite our
geometry shaders to work in projection space, however that would further increase computational
complexity.

• Geometry effects

Geometry shaders can produce data dramatically different than the input, and are thus difficult to
generalize.

– The easiest way to handle data amplification and extensive modification of input data is to
move the calculation of the DoC radius from the vertex shader to the beginning of our geom-
etry shaders, and executing the bounding shader sequentially on each output triangle of the
integrated geometry effect.

– A multi-pass approach is also possible: in a first pass, vertex and geometry shading with other
effects is performed, and the output is stored to a vertex buffer. A subsequent pass is then
performed on this vertex buffer using our shaders.

• Pixel effects

Almost any pixel shader can be appended to our stochastic pixel shading. The main limitation
is the number of interpolated registers used. Every vertex attribute needs three registers, and the
maximum allowed register count is thus reached much sooner.
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7 Performance and quality considerations

In this chapter, various important performance issues are discussed.

7.1 Bottlenecks

There are mainly three points in the graphics pipeline which receive heavy load during stochastic raster-
ization. The first point is the geometry shader, where the bounds are calculated. The more complex the
bounding volume, the more work is required from the geometry shader.

The second potential bottleneck in the pipeline is the input stage to the fixed function rasterizer. Since our
geometry shaders do moderate to heavy data amplification, the bandwidth between the geometry shader
and fixed function rasterizer may become a limitation.

The major performance bottleneck is the pixel shader. First, intersection testing and parameter interpola-
tion are now done in the pixel shader – this is normally handled by the fixed function rasterizer. Second,
super sampling vastly increases the rasterized surface compared to the final image. Third, there is added
overdraw due to the padding of each triangle.

In order to balance these weak links optimally, the choice of bounding solution should be made based on
the circle of confusion radius in pixels.

7.2 Perceptive considerations

Rendering with the depth of field effect increase the work of calculating the final image. Since the main
visual impact of the effect is actually detail degradation, this is not always necessary.

Mesh reduction is the key to achieve good performance using SR. The main performance hit compared
to non-depth-of-field rendering is a result of massive overdraw that is later discarded due to the padding
of every triangle in the scene. The amount of overdraw is highly dependent on the blur radius compared
to the triangle size. It is therefore crucial to have a good mesh reduction system to prevent rendering tiny
triangles that will never be resolved due to blur.

z0

r∞

z

r

Figure 13: Circle of confusion radius vs. object distance. As z grows towards infinity, the radius is
bound by r∞.

Traditionally object detail has been dynamically reduced as the object distance increases. This avoids
rendering details on objects far away that would not be resolved. The smallest resolved detail is pro-
portional to r/z, where r is the resolution and z the object distance. With depth of field, this quality
reduction can be drastically extended since the circle of confusion radius is inversely proportional to z
for objects closer than the focus depth, as seen in Figure 13. Objects close to the camera have previ-
ously required the highest model detail. Unless they are in focus, they now become less resolved and can
thus be rendered with reduced geometric quality, demonstrated in Figure 14. For objects far away, detail
visibility is still inversely proportional to object distance with some higher attenuation factor.

Latest hardware technology have taken a turn to provide mesh tesselation as an alternate means of detail
control. The same guidelines are valid for mesh tesselation as with mesh reduction; detail level should
be chosen not only based on distance, but also on blur radius.
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Figure 14: Detail reduction impact with variable circle of confusion radius.

It is important to note that mesh reduction in the foreground affects large screen areas; unless the method
used is morphing between quality levels, severe popping will be visible despite heavy blur.
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8 Comparisons to accumulation buffer techniques

8.1 Image quality comparisons

1x 4x 16x 64x 256x

A
B
T

SR

Figure 15: Image quality comparison between stochastic rasterization and accumulation buffering at
different sampling rates.

Figure 15 shows a pylon at different quality levels using stochastic rasterization and accumulation buffer-
ing. Areas of interest include the top of the pylon, the ground, and the shadow at the pylon base.

Reference 16x ABT 16x SR 4x SR

16
0x
12
0

64
0x
48
0

Figure 16: Image quality comparison between stochastic rasterization and accumulation buffering at
different resolutions.

Figure 16 shows a triangle and the text Blur Test at two resolutions using different techniques and sam-
pling densities. Increasing the resolution using accumulation buffering does not increase image quality;
as the resolution increase, ghosting gets more pronounced. The image quality of stochastic rasterization
increases with the resolution.

22



8.2 Performance comparisons

All tests were performed on a PC equipped with an Intel Dual Core D945 3.4GHz CPU, 2GB RAM and
a GeForce8800 GTX with 768MB VRAM. The tests were run in a resolution of 1280x720.

Foreground Background

16
x 
SR

32
x 
A
B
T

Figure 17: First and last frame of focus sweep from foreground to background for stochastic rasterization
and accumulation buffering.

Figure 18: Performance during focus sweep from foreground to background for different methods. Black
lines are stochastic rasterization. Medium grey lines are approximately of equal quality using accumula-
tion buffering. The light grey line is equal sampling rate using accumulation buffering.
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Figures 17 and 18 show a focus sweep from a statue in the foreground to some distant buildings. Since
perceived quality is highly subjective, both 32x and 64x accumulation buffering are shown in the plot.
The 16x accumulation buffering plot shows overhead induced performance loss compared to the reduced
wedge when the foreground is in focus.

Full (8308 triangles) Reduced by 78% (1825 triangles)
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Figure 19: Visual impact of geometric reduction, shown for stochastic rasterization and accumulation
buffering. Only the bunny statue is reduced.

Figure 20: Framerate impact of geometric reduction, shown for stochastic rasterization (16x) and accu-
mulation buffering (64x). As reduction increases, performance becomes real-time.
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Figure 21: Performance gain by geometric reduction, shown for stochastic rasterization (16x) and ac-
cumulation buffering (64x).

Figures 19, 20 and 21 illustrate various aspects of geometric quality reduction, in this case in the fore-
ground. Reduction is solely performed on the bunny statue.
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9 Discussion

We have shown that stochastic rasterization is possible at quality and speed comparable to current ac-
cumulation buffering techniques. We have developed a fairly well optimized framework on which all
our tests were performed. Our results and various aspects of our method are discussed in the following
subsections.

9.1 Results

All perceived image quality comparisons are subjective [Richardson 2003], and the conclusions drawn
here are based upon the authors’ judgements.

Figure 15 clearly shows that equal sampling rates does not mean equal quality. We find that approx-
imately four times as many samples are needed for accumulation buffering to achieve a comparable
result. In the lowest quality regions, this number increases somewhat. Depth of field is about directing
focus; objects outside the focal range are not supposed to draw attention. Noise does in general not draw
as much attention as ghosting and is therefore more desirable.

Figure 16 shows the effect of increasing resolution. The circle of confusion radius is kept fixed in physical
units, which means equally magnifying the circle of confusion in pixels. For accumulation buffering, no
improvement is achieved by increasing resolution; the pixellation is reduced at the cost of increased
ghosting. For stochastic rasterization this is not the case; pixellation is reduced and the noise gets more
dense and thus less pronounced.

Performance scales with resolution only if the rendering speed is fillrate bound. For stochastic rasteriza-
tion, this is the case most of the time. This means that while SR gains quality by increasing resolution,
it also loses performance. Accumulation buffering, on the other hand, is seldom solely fillrate bound and
does therefore not suffer an equally large performance penalty. This performance loss for SR is of the
same magnitude as the needed increase in sampling density for ABT to achieve the same quality increase.
It is easily realized that the same argument applies to varying the aperture size.

Figure 18 shows how performance is affected by the ratio of triangles in focus and out of focus. The
largest circle of confusion radius is almost constant throughout the sweep, keeping the needed sampling
rate fixed. The entire scene except the statue is comprised of just a few hundred triangles, while the
statue itself has about 8000 triangles. It is seen that performance is highest when most triangles are in
focus. This is because of reduced average overdraw — overdraw is dependent on circle of confusion
area compared to the triangle screen area. Also important to note is that all objects within the scene
are rendered using the same method. Dynamically choosing the appropriate method (switching between
reduced wedge and hexagon per object) would make performance at least equal to the best of the two
methods at every focal depth, and even better for some intervals. This would be more pronounced if the
triangles were more evenly distributed across the scene, as is most often the case.

The most demanding regions are highly tesselated surfaces that are out of focus. However, the smallest
resolvable detail is inversely proportional to the circle of confusion as discussed in chapter 7.2, until the
pixel size is reached. The number of triangles needed for an object is thus proportional to the covered
screen area divided by the circle of confusion size. The concept is illustrated in Figure 14. Figure 19
shows this effect in practice; it is hard to see any difference between the fully resolved statue and a
heavily reduced version.

Combining the reduction argument above with what can be seen in Figure 21, it is obvious that the
performance decline visible in Figure 18 can at least be compensated. Note that the performance gain
shown in Figure 21 is caused by decreased overdraw and is valid when the rendering speed is fillrate
bound. If instead rendering speed is geometry bound, the rendering time is proportional to the number of
triangles and the reduction gain is similar.

Accumulation buffering does not benefit from any significant performance boost by geometric reduction
if the rendering speed is fillrate bound. For geometry bound renderings, the performance gain is equal
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to that of stochastic rasterization. If the rendering speed is CPU bound, then no performance gain is
obtainable at all by mesh reduction. It is most often desirable to have a balance between the three
bounds, avoiding any bottleneck. There is therefore typically limited increase in performance when
reducing geometric detail using accumulation buffering.

9.2 Derivatives

One of the disadvantages of our implementation of SR is that hardware-provided functional derivatives
are erroneous: graphics hardware estimate derivatives by first order differences between fragments, but
since neighboring fragments have scattered vertex attributes this will provide invalid estimations. Es-
pecially, since texture lookups from neighboring fragments will be scattered across the texture surface,
automatic miplevel selection will grossly underestimate the appropriate texture resolution. Regular tex-
ture lookups based on automatic derivatives will therefore yield smudged surfaces.

It it possible to circumvent the mipmapping errors simply by disabling mipmapping. While resulting in
sharp textures, this method has the usual problem with aliasing when texture resolution is greater than
the sampling density. Super sampling lessens the aliasing, but does not eliminate it entirely.

A better solution is to calculate the texture coordinate derivatives at the three vertices of the enclosed
triangle in the geometry shader. These derivatives will then be interpolated in the pixel shader along
with all the other shading parameters. These true derivatives can then be supplied to the texture sampler,
allowing proper miplevel selection.

Interpolating the texture derivatives has the obvious disadvantage of requiring additional registers. In
return, the visual quality should actually become better than using the built-in hardware first order differ-
ence estimation since the derivatives at the sample centers are obtained.

9.3 Texture cache

Stochastic rasterization will result in high sampling strides due to incoherent sampling patterns. This
should reduce texture cache efficiency if the locally sampled texture coordinates span over a larger area
than can be fit into the texture cache. Sampling multiple textures reduce the area that can be accommo-
dated in the cache for each texture, as they have to share the available space. In our solution, a part of the
cache will be occupied by the sample distribution texture, reducing the capacity for other textures. The
sampling pattern for the sample distribution texture is highly spatially coherent, so it should only occupy
small amounts of the cache. The spatial sampling range of other textures depend mainly on the circle of
confusion radius of the textured surfaces.

9.4 Super sampling and stratified distributions

Super sampling is accomplished by rendering to an oversized render target, and subsequently re-scaling
the render target to the actual resolution. For instance, a 1024x768 image might be rendered to a
4096x3072 render target, and each pixel of the final image will be the average of 4x4 samples in the
render target.

If each sample is randomly distributed, this method produces unbiased images. Introducing stratified
sampling may bias the image unless proper care is taken. In order to avoid biasing, the geometry per-
turbation parameters must be uncorrelated to the sample position within a single super sampling block.
This might be accomplished by first generating the stratified offsets and then randomly permuting them
within the super sampled pixel block.

It is not necessary to generate unique random sample offsets for each and every pixel of the supersized
render target. It is sufficient to create a block of about 512-by-512 samples or even less and repeat this
pattern across the entire render target. The screen space tile size is reduced if super sampling density is
increased, but the repeating pattern gets less pronounced due to the increased quality.
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High quality super sampling requires a lot of memory and large texture sizes. This might prevent a direct
rendering of an image in one pass; for instance, DirectX 10 has a specified maximum texture size of
8192-by-8192 pixels. If a larger supersized render target is required, the image has to be tiled. This is
actually no real limitation; if resolutions are that great, it is highly probable that the pixel shader is the
only bottleneck in the rendering and the additional triangle setup work caused by the tiling process will
not impair performance.

9.5 Deferred shading

Typical graphics hardware work on two-by-two-pixel blocks in order to produce derivative estimations.
If any one of four pixels needs to evaluate a code path, all four pixels will do so. Those pixels that did not
intend to evaluate that path simply discard the results. During normal rasterization, this has little effect
since only a few pixels at each edge will be evaluated in vain. SR will have large amounts of blocks with
only one or two live pixels. In order to avoid wasted computational power, the code path after evaluating
whether a pixel is inside the triangle or not should be as short as possible.

One way of reducing unnecessary evaluations is using deferred shading, with one deferred pass before
each state change: As soon as the triangle attributes have been interpolated in the regular draw calls, they
can be stored in render targets. A stencil buffer should be used to mask the areas that were written to
during these draw-calls. The deferred pass should then render a single full-screen quad, only operating
on areas masked in the stencil buffer. This pass should read the interpolated values and perform the actual
shading.

Which state changes that require a deferred pass is not unambiguous. If textures are changed very fre-
quently it might be more efficient to store an index in the pre-pass and using it to index a texture array in
the deferred shading pass. Likewise, it might be reasonable to store a small amount of frequently chang-
ing shader constants to render targets in order to reduce the total amount of deferred shading passes.
Performance gain should be highest if shaders, textures and shader constants are changed as infrequently
as possible. However, if one of these are changed, all of them may be changed at no additional cost.

Using deferred shading with SR will reduce the number of shading evaluations, but it will not reduce
the number of interpolation evaluations. Also, it uses up lots of memory and bandwidth. It is therefore
probably only worthwhile if the shading procedure is complex.

9.6 Suggested hardware improvement: triangle- and strip constants

One of the major issues with SR is the large amount of vertex attributes that need to be passed to the pixel
shader. Most of that data is constant for the entire bounding geometry. For instance, if the desired effect
is a bump mapped textured surface with depth of field, then each vertex in the bounding geometry would
use a minimum of 39 floats (bound: position, contained triangle: position, normal, tangent and texcoord
for each of the three vertices). Of these, only 4 floats are varying (bound position), while the other 35 are
constant. These 35 constant floats are copied to each of the output vertices on the bounding geometry.
Introducing triangle constants would have two major benefits:

• Reduced bandwidth from the geometry shader

• Reduced utilization of interpolation units

The bandwidth gain is most pronounced for triangle lists, and strips of only a few triangles. If long
triangle strips are used, the bandwidth gain is neglectable. However, the same concept can also be
expanded to strip constants, which would be constant within all triangles of a single strip. This would
further reduce bandwidth from the geometry shader, especially for longer strips. The impact of our
suggestion is shown for the above described example in table 2.

Other applications would doubtlessly also benefit from this kind of constant banks, albeit not as much as
SR. Applications could for instance make larger draw-calls by moving frequently varying pixel shader
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Bounding geometry type Constant type Total output floats Interpolated floats per triangle

3D hexagon None 858 39
Triangle 788 4

Strip 123 4
2D hexagon None 234 39

Triangle 164 4
Strip 59 4

Table 2: Impact of triangle and strip constants on bump mapped, textured surface with depth of field

constants to strip constants. This would not only reduce the number of draw calls but also reduce constant
modification calls, resulting in less overhead.

9.7 Suggested hardware improvement: depth-interval

Modern hardware tiles the depth buffer and keeps track of the minimum and maximum depth within each
tile. This way depth culling can be done quickly for an entire tile; if a triangle to be rendered is farther
away than the tile maximum, then all fragments can be discarded at once. If instead the entire triangle is
closer than the minimum depth value within a tile, then no depth comparison is needed pixel-wise since
it is already known that all fragments will pass the depth test. Not only do these optimizations reduce the
number of depth comparisons, but they also reduce bandwidth usage to the depth buffer.

If a fragment shader writes to the position register, and thus makes the depth of each fragment unpre-
dictable, the depth optimizations are disabled on current hardware. Performance is reduced even further
since the depth test has to be performed after fragment shading, resulting in wasted computations. The
nature of stochastic rasterization requires writing to the position register since the depth of each fragment
is interpolated in the fragment shader. Thus, SR cannot take advantage of depth optimizations.

Even though the depth of each fragment is unknown beforehand, a conservative interval may easily be
provided on several levels:

• Bounds for an entire object can be calculated by the application. This should suffice to perform
optimized inter-object depth culling.

• Bounds for each vertex can be calculated by the vertex shader. These bounds can be interpolated
across each triangle, forming interval planes. Alternatively, the minimum and maximum of the
vertices comprising each triangle can be used.

• Bounds for each triangle can be calculated by the geometry shader. This would benefit from
triangle constants for storage as discussed in 9.6.

If the depth buffer is tiled at several resolutions, a combination of object depth-bounds and either vertex
or triangle depth-bounds would have the greatest potential, with coarse inter-object culling mainly taken
care of by the object depth-bounds while finer intra-object culling may be performed with the vertex or
triangle depth bounds.

A more lightweight method of providing at least partial depth optimization is to provide a render state
where the application can guarantee that no depth writes will be greater than — or less than — the
interpolated depth of the fragment. In the case of SR, where we always rasterize the backside of the
bounding volume (as discussed in chapter 4.8.2), this would suffice to take advantage of depth culling
and to prevent evaluating the pixel shader for hidden fragments. The advantage of this method is that it
only requires very slight hardware modifications.
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9.8 Suggested hardware improvement: programmable raster shader

It is an undeniable trend that more and more of the graphics pipeline is becoming programmable. The
rasterizer is still fixed function, and it might be of interest to consider what could be achieved by making it
a programmable shader unit. The main task of such a raster shader (RS) would be to take a single triangle
input and produce a set of fragments that are overlapped by the input triangle. The vertex attributes should
be interpolated for each of the fragments in the output fragment set. Should triangle and strip constants
be implemented, as discussed in 9.6, then these should be accessible from the raster shader. It should also
preferably have access to shader constants. Ideally, the raster shader should work in some hierarchical
manner, performing coarse tile-wise evaluations at first and gradually refining the evaluation to smaller
regions, much as current fixed-function rasterization works.

Using such a raster shader, the stochastic perturbation and intersection test could be performed before the
fragment shader is ever evaluated. This would allow for much better subsequent mapping of the jittered
live fragments to the SIMD units, thus avoiding much of the unnecessary work. This would give the
same advantages as deferred shading, as discussed in section 9.5, but without any of the drawbacks. No
additional memory would be needed, no deferred pass would be performed, and the only modification to
the application render loop would be to load the raster shader prior to rendering.

The fragment to SIMD unit allocation process would be vastly improved if the two-by-two block restric-
tion was lifted; it would be a simple task for the device driver to properly detect whether a particular
shader needs access to derivatives and only activating blocking if needed. Normally derivatives are used
for texture filtering, but in SR that is not the case. If no hardware-supplied derivatives are accessed,
fragments become independent of each other and arbitrary mapping to SIMD units is possible.

Also, the depth-interval culling discussed in 9.7 could be implemented with ease using a raster shader.

Other impacts of a programmable raster unit include the ability to perform sub-triangle culling; a PCU
[Hasselgren and Akenine-Möller 2007] could be implemented on the raster shader, reducing the sensitiv-
ity to bounding geometry tightness. Also, rasterization of higher order primitives, as discussed in section
9.9, would gain much being able to evaluate functions hierarchically.

9.9 Other uses of our work

A new possibility that comes with our technique is the ability to sample non-linear surfaces. Since the
intersection testing and parameter interpolation is done in the pixel shader, there is no inherent limitation
to triangle based geometry. Any shape can be used, as long as a conservative bound can be calculated in
the geometry shader. Using higher order primitives might be a better alternative than doing tesselation,
since it results in better quality and less overdraw due to padding. Using higher order primitives will
naturally be slower in areas that are in focus, but in blurry regions it has great quality and performance
potential. This tradeoff might be worthwhile in many applications, since the blurry regions in general are
the more computationally intense areas. Any modification that ease the workload on blurry regions at
the cost of higher workload on sharp regions result in more fluid framerates, since the magnitude of blur
then has less impact on performance.

While in theory any shape can be chosen, such as cylinders and spheres, it is probably only worth im-
plementing flexible shapes, for instance Bézier-surfaces, capable of modeling generic surfaces since too
specialized shapes would break large draw-calls.

Another potential use of our technique is rendering single-pass glossy reflections. An interesting appli-
cation that has only been feasible using ray tracing until now is per pixel variable glossiness.
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