Design and implementation of real-time
character animation library

Hikan Almer & Erik Erlandson
August 1, 2005

Abstract

This report describes the design and implemention of Open Skeleton Li-
brary, a character animation library for realistic looking human based
characters with a skeleton structure. The library includes most elements
found in other modern character animation libraries. Additionally new
methods of control and animation to make individual characteristics of
characters easier to achieve are included. A technique to import anima-
tions from one model format to another by the use of skeleton matching
is also described.

Contents

1

Introduction
1.1 Outline of Thesis

Theory and Concepts

2.1 Keyframe Animation
2.2 Mesh Animation
2.3 Skeleton Animation.
24 Skinningo
2.5 Motion Capture Techniques . .
2.6 Blending
2.7 Inverse Kinematics
2.8 Vertex Shader Driven Skinning
2.9 New Concepts
2.9.1 Skeleton Fitting
2.9.2 Function Control Effects
Previous Work
3.1 Open Systems.
311 Caldd
3.1.2 Trrlicht
3.1.3 Nebula Device 2
3.2 Commercial Systems
3.2.1 Cipher.
3.2.2 Torque3dD.
3.2.3 True Vision 3D
3.2.4 Unreal Engine 3
3.3 Conclusions

Open Skeleton Library

4.1 Introduction.
4.2 Design Approach
4.3 OSL Basic Features.
4.3.1 Model
4.3.2 Skeleton Structure . . .
433 Mesh.
4.3.4 Animation.
435 Blender
4.3.6 OSL Parser: Model Importer
4.4 New Features
4.4.1 Skeleton Fitting
4.4.2 Function Controlled Effects
4.5 Further Improvements

Library Applications

5.1 Skeleton Fitting
5.2 Randomized Crowd
5.3 Rigid Bone Attachment

Conclusions and Results

References

I1

13
13
13
13
14
14
14
15
16
16
17

18
18
18
19
19
20
20
22
22
22
22
22
22
23

24
24
26
27

29

30

1 INTRODUCTION

1 Introduction

The increasing demand for games and other applications that use detailed
character animation in varied situations, such as a large crowd simulation
or a close view of a human speaking, creates a need for more advanced
character animation libraries. Almost all new games use some sort of
character animation and very often advanced techniques, for instance,
motion capture for data acquisition. Flexible ways to handle different
methods and integrate them is required to avoid spending heavy resources
on developing new modelling file formats. Most commercial game engines
such as Cipher and Unreal Engine 8 have a very extensive and feature
rich support for character animation. There are also open source systems
which are quite extensive, but the commercial systems are superior in
most aspects (see Figure 1 and 2). However, most of the systems, are
integrated in a game engine, which makes them inaccessable outside that
system.

As the goal of this project a new library superior to any other stand-alone
library was designed and implemented. It includes modern features and
new methods for animation, especially for easily variable animations and
adaptation between modelling formats. These varied animations are well
suited to use, for instance, on large crowds to simulate individuality while
still using just a few models. This increases the credibility of a scene while
not imposing much custom programming on the creator. The adaptation,
or model/skeleton fitting, was primarily designed to animate any skeleton
or model using a set of motion capture data from another source. The
library was designed for modularity and useability, which makes it suit-
able for integration in game engines or for stand-alone applications using
arbitrary modelling file formats.

~
~

Skeleton animation X
Mesh animation

Blending

Weighted skinning

Level of detail

Vertex shader skinning
Inverse kinematics
Skeleton fitting

Function controlled effects
Rigid bone attachment, X X X

?Nebula Device 2
bOpen Skeleton Library

A A

Al

Al 1| A A

Al <] A

Table 1: Open system’s features

1.1 Outline of Thesis

The first part of this report deals with the theory of character animation,
both established theory and new additions developed for Open Skeleton

1 INTRODUCTION 1.1 Outline of Thesis

Cerse kimematis | | | X |
Function controlled effects | | | X |

*Torque 3D

bTrue Vision 3D

¢Unreal Engine 3

dProcedural skeletal controllers

Table 2: Commercial game engine’s features

Library. Next, the report presents a review of character animation in some
of the leading game engines and animation libraries, both commercial and
open source, which is found in Section 3. The goal of this review was to
determine what the existing systems lack and how to build a better sys-
tem. In Section 4, the design of Open Skeleton Library will be presented.
This part covers how OSL deals with the theory found in Section 2. The
next section show how easy the library can be used, which is illustrated
by some example applications. Finally, results and conclusions are drawn
from what this report covers.

2 THEORY AND CONCEPTS

2 Theory and Concepts

In this chapter the theoretical issues of classical character animation and
skeleton structures are described. Additionally new concepts developed
for OSL are covered.

2.1 Keyframe Animation

Storing every step of an animation would require a lot of memory. It
is also hard to define what a step is as the model would move different
distances between screen-updates depending on the speed of computer
used. A solution to both these problem is a method of animation called
keyframe animation. In this method the stored keyframes are further
apart and are interpolated between to get the position of the model at
a specific time. By only storing relatively few keyframes there is a large
reduction in the memory needed. Depending on how close the keyframes
are will determine how precise the animation will be, but this comes with
the cost of extra memory used to store the keyframes. This method is
used with both Mesh animation and Skeleton animation, which will be
described in the next two sections.

Figure 1 shows a part of an animation sequence with three keyframes k0,
k1 and k2. The time ¢ shows the current position of the animaiton and
the next position ¢ + A to be sampled. It will then simply use keyframe
k1 weighted by a factor 0.4 and k2 by 0.6 producing an appropriate mix
between the two. Figure 2 shows an example of three sequential keyframes
from a ballet animation.

Ko kL k2

40% . 60%

5
;

t A

Figure 1: Sampling of keyframes

2.2 Mesh Animation

Mesh animation or vertexr animation is perhaps the simplest method of
character animation. It works by building keyframes in a modelling soft-
ware which linear interpolation are then applied to. A keyframe consists
of a complete mesh of the character at a particular time in the animation.
Mesh animation suffers from several severe drawbacks. When perform-
ing linear interpolating between two keyframes the relative dimensions of
the polygon will not always be maintained [1]. A wrongly interpolated

2 THEORY AND CONCEPTS 2.3 Skeleton Animation

Keyframe 0 Keyframe 1 Keyframe 2

Figure 2: Ballet animation keyframe

point is shown in Figure 3 where the indented arch is not followed and the
dimensions are changed, which result in deformation of the mesh. This
problem only gets worse when the animations are blended. Deformation
can be limited by starting with more keyframes. But this only makes the
other large problem mesh animation has more severe. For each keyframe
the position of every vertex needs to be stored. For complex characters
this create a high memory demand and the increase in keyframes will re-
sult an increase in memory used. Additionally all extra keyframes need
to be modelled, which is time consuming. These limitations is why most
modern game-designers no longer use mesh animation.

-
i

Figure 3: Mesh deformation

2.3 Skeleton Animation

The main reason for introducing a skeleton to animate characters is to
overcome some of the problems that arise from simple mesh animation.
As described in Section 2.2, serious problems arise during keyframe inter-
polation but there is also the problem of having to animate every different
models mesh. By using a skeleton as an underlying structure, the mesh
can be attached to it, following the skeletons movements in an appropriate
way. This corrects the problem that arise with mesh animation. Figure 4
illustrates the indented result of Figure 3, following the arch correctly.
How to make the mesh follow the bones are described in the next section.

2 THEORY AND CONCEPTS 2.4 Skinning

Y

Figure 4: Correct interpolation

The most basic skeleton is built by a hierachical structure of joints which
contain a 3x3 rotation matrix or quaternion and the length of the bone,
often given by the offset to its parent in the hierachical structure. A
simple setup of a skeleton structure can be achieved with:

Matrix jointRotations[nbrOfBones]
Vector jointOffset[nbrO0fBones]
int parentBone[nbrOfBones]

Using a setup of this type, a rotation matrix and offset for each joint,
the joints global location, J&, can be transformed to their new correct
position using the following recursive calculations. The result of this can
be seen in Figure 5.

ey = ©f

oF = ey-ei,
J3$ = Jk

IS o= I +ef I

G and L indicate global model space' and local bone space respectively.
J is the joint offset to the root node in global model space and offset to
its parent in bone/joint space. The k:th joint’s global rotation matrix is
@kG. Incidently, this joint propagation technique is also known as forward
kinematics.

2.4 Skinning

Skinning is the technique used for sewing a mesh onto the skeleton. The
main idea is to attach a special mesh to the skeleton and have it follow
it as it moves. A straightforward way of doing this is by assigning ev-
ery vertex of the mesh to a joint. The vertex is also given an offset to
the joint, which is the vertex’s position relative to the joint. The mesh’s
vertices are then transformed by the bones rotation and thus fitted over

IThe different spaces will refer to the different transformations used. More on this can be
found in most modern computer graphic books.

2 THEORY AND CONCEPTS 2.5 Motion Capture Techniques

— Global Offset
- Local Offset
Rotated Local Offset

. Root Joint

Joint

Figure 5: The skeleton structure with rotations

the bone. This simple scheme gives a disturbing artifact because of the
unability to deform the submeshes naturally, as the human body would
do. The desirable effect would be that they join together with each other
by the joints smooth manner. There exist a solution for this problem but
it comes with the price of complexity both for the mesh and algorithms.
The solution is based on the ability for a submesh’s vertex to hold dif-
ferent weights linking it to several bones. All of these bone’s transform’s
will influence the final position of the vertex depending on their weight
resulting in the following transform equation for a single vertex V:

VE=N IO W) wi, Vi (1)
7
, where k is the joint that the weight is attached to, W; the offset of
weight i and w; the influence that the weight has on the vertex. The
weights for each vertex should fulfill the criteria) w; = 1. Normally no
more than four weights are used or neeeded for each vertex. To transform
the vertices’ normals the following, similar transform is used?:

1T
NG=N"Of) T N w, (2)

%

2.5 Motion Capture Techniques

Animating realistic motions, especially for humans, is very difficult. The
slightest deviation from a motion in real world is usually instantly spotted
by any human observer since we are trained from birth in what should
be the correct motion. Instead of trying to guess the correct motion the
use of motion capture techniques are introduced. The common procedure
to record the movement data is for a human actor to wear reflective data
markers and be photographed by special cameras, sampling the space po-
sitions with a specified frequency. This data is then transformed from

2Calculating the transpose of the inverse is not necessary when the matrix is orthogonal,
which is the case for rotation matrices, since M~! = M7 and (MT)T = M holds.

2 THEORY AND CONCEPTS 2.6 Blending

position to rotation of the limb for which the marker belongs to. The
process is neither easy nor cheap but in some cases necessary for the real-
ism it brings. There exists other ways to obtain the data, for example by
the use of special sensors at the desired points registering the movements
from the actor mechanically.

2.6 Blending

Often it is not feasible to make new animations for every motion a char-
acter will have to go through. Making one animation for walking and one
for running is no problem, but one would like to have all the intermediate
states in between the two to accomplish a smooth transition. It would
not be economical to make new animations for each combination which is
why the blending method is introduced. It works similar to keyframe an-
imation in that it interpolates between two keyframes. However, instead
of two keyframes of the same animation, seperated in time, it interpolates
between two keyframes of different animations. Using this it is enough to
have only one animation for walk and one for run, and then blend between
the two to get any intermediate state. The process is simple, but can save
a lot of modelling time and increase flexibility for a relativly small increase
in processing.

This is all good for full body animation but a problem arises when only the
influence of certain bones are used for the action. Imagine the common
scenario where the character is walking and the user triggers an action,
for instance the actor waving with one hand. If just a simple blend,
using equal parts from each animaiton, is used the actor will wave with
the arm and hand but the arm animation from the walk will have a 50%
influence on the wave animation resulting in a half wave. Also the walking
animation will be disrupted by the wave animations all other inactive
bones. This problem can be alleviated by keeping extra information for
all bones in an animation to flag if its active of not. Model formats such
as MD5 used in the game Doom 8° stores 6 bits of information for each
bone of which components it holds, where the components are X, Y and
Z rotations and offsets’. This scheme enables a triggered animation to
have priority over the bones that it influences and replacing them with
the triggered animation. Note that this method replaces the blender with
a simple on/off check for each bone or component. For model formats
that do not store this information it can be obtained at runtime by the
blender or by processing the keyframes offline.

2.7 Inverse Kinematics

Calculating the end point from a series of joint rotations is called forward
kinematics. In inverse kinematics the end point is known and the goal
is to calculate the joint rotations. This is a much more complex problem
because of several factors. For instance, the problem does not always have
a single solution, even when dealing with few bones. Also there has to be
some constraints on the joint rotations or else the joints may bend in a
completely unrealistic fashion. To stop this; some kind of joint constraints
are usually implemented, generally by assigning degrees of freedom, or
DOFs, to the joints as well as placing limits on the rotation angles. Other

3http://wuw.doom3. com
4this is used to vary the size of the bones

2 THEORY AND CONCEPTS 2.8 Vertex Shader Driven Skinning

ways to achieve this include measures such as collison detection to avoid
moving a part of the model through another. Further, there is often
some schemes that tries to limit how far the bones stray from a desired
configuration or minimize how much each joint rotates. Since it would be
impractical to use inverse kinematics on a whole skeleton, which often has
50 or more DOFs, inverse kinematics often divides the skeleton in several
branches. When animating the skeleton, the algorithm will only calculate
as far back as the branch root node. These branch root nodes are usually
the shoulder and hip joints with, for instance head movements calculated
back to the original root node.

2.8 Vertex Shader Driven Skinning

One of the primary bottlenecks in skeleton based character animation is
the transformation of the mesh, the skinning. This can be alleviated by
the use of vertex shader driven skinning.

With a programmable graphics card it is possible to modify the output of
what is sent to the GPUS. Modern cards can be set to operate per vertex
and/or per pixel which has been given the names vertez shader and pizel
shader®. Special programs, called shader programs, are loaded into the
graphic cards memory and subsequently the vertices are sent there for the
code to handle. Popular shading languages are nVidia’s CG”, Microsoft’s
HLSL and the extension of OPENGL; GLSL. The reason for using shaders
is the possibility to do nice effects in real-time, such as fur, animated bump
mapping and a lot more which was previously not possible to accomplish
at run-time. The GPU being designed to process graphics does heavy
computations such as matrix multiplication in a fast way, which is why it
is desirable to move the skinning computations to this processor.

Recalling Equation 1, the same translation of vertices is wanted for this
technique but is applied to the vertices by sending it to the GPU in their
original form and then transforming them by the vertex shader at the
GPU [2].

2.9 New Concepts

This section describes new concepts implemented in Open Skeleton Li-
brary. These techniques are not found in other libraries. However, less
advanced variants of the function controlled effects described in this sec-
tion can be found in modern commercial systems, such as Unreal Engine 3.

2.9.1 Skeleton Fitting

The need for skeleton fitting arises when an animation for a certain model
is desired to fit another skeleton. This means using the same animation of
bones for a different skeleton model with a different configuration of bones.
A function is therefore sought to transform the animation keyframes for
the original model A to another model B. For each keyframe the new joint
rotations Ez\k will be calculated using A:s joint rotations.

5Graphics Processing Unit
6 Also sometimes refered to as the fragment shader.

"www.nvidia.com

2 THEORY AND CONCEPTS 2.9 New Concepts

The simple approach to accomplish this is to locate the corresponding
bones in the two skeleton models. Furthermore, if the file format use
a naming or indexing scheme for the bones that are the same for every
model, it is possible to create a generic function that performs the fitting
between these models. One still has to carefully oversee that the bind
pose corresponds between the two formats. This is normally not the case
and therefore a slighty more advanced method must be applied which is
described below.

Mapping with Offset Compensation

To illustrate this method two example skeletons are used, depicted in
Figure 6. It is obvious that these two skeleton can not be matched exactly.
One method is to make a map of corresponding bones that should rotate
to create a similiar motion. They are easily identified by hand and it is
not a very challanging task for human. For instance looking more closely
on the models left shoulders as depicted in Figure 7 the following bones
match:

e A:Chest - B:Chest

e A:Shoulders - B:Chest2

e A:LeftShoulder - B:LeftShoulder
A:LeftElbow - B:LeftLower Arm
e A:LeftWrist - B:Left Wrist

Figure 6: Two skeletons with different skeletons

Note that A:LeftCollar and B:LeftUpperArm has been left out since no ap-
parent match exists for them. Another possible scheme would be to leave
B:LeftShoulder out and use the pair A:LeftShoulder and B:LeftUpperArm.

2 THEORY AND CONCEPTS 2.9 New Concepts

LeftShoulder

Chest? LeftShoulder

LeftiUpperAm

LeftElbow Lefil owerArm

Shoulders
e LefiWrist

LeftSleeve

LeftWrst

Figure 7: Close up of left shoulder and arm

to avoid the low shoulders model A would get. Moving on, the prob-
lem with the different bind poses of the models is addressed. Using the
suggested mapping above, three of the matching bone pairs are shown in
Figure 8. The interest here lies in their offset. This defines the bones’
directional vector which in turn gives the pair’s offset angle ¢, which is
the desired compensation for this particular bone. A difference or com-
pensation rotation ®; can then be derived by defining a rotation ¢ degrees
around the axis given by the cross product V4 x Vg, where V is the di-
rectional vector of the bone.

A: LeftWrist

A:LeftLowerArm

A: LeftShoulder

)
B: LeftShoulder

B: LeftElbow B: LeftWrist

Figure 8: The matched bones bones and their angles

Since its common to define the bones rotation at its parent bone (see
Figure 12), that is, building the skeleton with joints, there exists no possi-
bility to rotate the bones correctly by using only the animation’s rotations
for joints that has more than one matched child. To alliviate this the bind
pose must be adjusted by setting new offsets for the joints. However, us-
ing this solution may cause problems with the mesh since it also must be
compensated.

Other Possible Techniques

The next approach of doing a skeleton fitting would be of a more analytical
nature. The ultimate goal would be to build a new animation sequence
given any two skeleton model formats and an animation belonging to one
of them. The additional challenge to this method compared to that of the
manually mapped offset compensation is to produce the bone mapping in

10

2 THEORY AND CONCEPTS 2.9 New Concepts

an algorithmical manner. Possible ways to achieve this would typically
involve exploiting the knowledge of the proportions of the human body,
at least when dealing with humanoid forms, to derive what bones should
be matched.

2.9.2 Function Control Effects

Given a motion pattern connected to a set of skeleton bones that is beau-
tifully animated, it could be disirable to change this pattern slightly to
give a wide variety of flavours. This is achieved by the use of function con-
trolled effects that is attached to different parts of the character depending
on its definition.

The possibilities of this technique are numerous. For instance it can be
used on a crowd of people performing the same animation, but with
slightly different effects, producing individual smooth and elegant mo-
tions without being forced to create a unique pattern for each character.
Further uses could include an implementation of inverse kinematics or
parametric dynamics® as described by Ciechomski[3].

By attaching an effect as a function to a bone, the entire skeleton or even a
model’s mesh can produce a controlled deviation which will alter a model
in a flexible way. Some examples of simple skeleton effects would include:

e A slight forward bent applied to the backbone to give the character
a slightly tired appearance

e Letting the spine have a bone oscillate slowly to simulate drunkeness

e Adjusting the rotation of one leg to make the illusion of a crippled
leg

Figure 9: Skeleton with oscillating backbone

One advantage of using effects for creating differences in a crowd of people
is that it can reduce the calculations performed for each model. This is
done by doing all skeleton and mesh calculations for the entire model and

8 A very quick animation, such as the reaction of being shot.

11

2 THEORY AND CONCEPTS 2.9 New Concepts

then applying some effect that would affect some bone in the skeleton
to change its rotation. Note that new locations for this bone and its
children would need to be recalculated, nevertheless this approach would
cut the calculations for those bones not affected by the effect since the
recalculation of an entire model would not be necessary.

12

3 PREVIOUS WORK

3 Previous Work

This chapter deals with existing systems that implement some form of
character animation. A brief description, as well as a list of features, is
provided for each system. Finally, comments on the systems abilities are
presented.

3.1 Open Systems

The selection of open systems was made by first performing a thorough
search, finding every library with character animiation support, and then
select some appropriate systems. Cal3d was choosen because it was the
only stand-alone library found. Nebula Device 2 and Irrlich because of
their popularity in the open source game engine community.

3.1.1 Cal3d

Cal3d is an open source character animation library which is included or
available as a plugin to some open source game engines like Crystal Space.
To quote the projects homepage:

“Cal3d is a skeletal based 3d character animation library written
in C++ in a platform-/graphic API-independent way.”

This is the only existing open source character library not belonging to a
certain engine which meets an acceptable standard. It is a nice system that
can be added to a graphic engine that lacks character support. All basic
concepts of character animation exist in this library but some advanced
features, such as weight controlled meshes, are not available. On the other
hand, its ability to blend animation is very good. It uses a native model
file format and runs other formats by first converting them with different
exporters.

Features
e Skeleton based animation
e Powerful animation blending
e Automatic level-of-detail
e Fully controllable characters
e Exporter for 3D Studio Max and Milkshape 3D

e Stand-alone library

3.1.2 Irrlicht

The Irrlicht engine is a rather fast game engine with support for both
mesh and skeleton based animation. This is an appropriate engine for
applications with basic character animations, but unable to perform ad-
vanced effects. The main focus is clearly not on character animation which
leaves much to be desired in the area of advanced character features and
control (see introduction section Table 1).

13

3 PREVIOUS WORK 3.2 Commercial Systems

Features

e Character animation system with skeletal and morph target anima-
tion

e Support for blending and level-of-detail

3.1.3 Nebula Device 2

Nebula Device 2 is an advanced graphics engine with support for most
modern character animation features. It uses a palette-skinning vertex
shader to perform skinning, which the webpage claims it is the most ef-
fective way to do skinning on a Win32 machine. Vertex shader driven
skinning permits large improvements in performance and also ease the
workload for the processing unit. Since the engine has a good character
animation system and a high performance it is, in the opinion of this
report’s authors, the best open source game engine available especially
concerning character animation.

Features
e Animation data optionally completely in memory, or streamed
e Streaming useful for large cutscenes
e Animation data compression
e Any type of 4-dimensional data, not just translation, rotation, scal-
ing
e Rotation animation through quaternions, not Euler angles
e Weighted animation blending
e Vertex skinning with 4 weights per vertex
e Any number of bones per character
e Any number of skin meshes per character

e Skinning running completely in the vertex shader : no per-vertex
operations on the CPU

3.2 Commercial Systems

There are many games today that implement advanced character anima-
tion systems. These engines are typically built for speed and have their
own modelling formats and structure. This section presents some of these
systems.

3.2.1 Cipher
The Cipher webpage states:

“Cipher’s Advanced Animation System offers powerful features
and integration with Character Studio and Biped in 3ds maz.
The characters in your game can be animated with Cipher’s
sophisticated skeletal animation system, while simpler objects
can toke advantage of the flexibility of the verter animation
system”

14

3 PREVIOUS WORK 3.2 Commercial Systems

After examining the feature list and evaluating this engine the impression
is very positive. It has many advanced features beyond the basics. Such
features include detailed animation possibilities for facial features and hair
and full control of the skeleton, enabling extensions easily. The licence
comes with exporter tools, which enables the use of several model file
formats.

Features
e Arbitrary number of bones per character.
e Arbitrary bone influences per vertex.
e Deformable skins with multiple levels of details.
e Animate facial features and hair.
e Attach rigid models to individual bones.

e Full access to animating bone information (e.g. to place gun in
characters hand).

e Vertex animation supports arbitrary deformation of models.

e Smooth blending between frames in both skeletal and vertex anima-
tions.

e Variable speed and reverse playback of animations.

e Efficient use of memory and extremely fast skinning.

Licence fee: $100
http://wuw.cipherengine.com

3.2.2 Torque 3D

The feature list for Torque 8D reveals insufficient animation library. Pre-
senting trivial features like multi-bone skeleton, mesh and texture coordi-
nates, which are considered intrinsic properties of any character animation
system, is a sign of thin character animation support. However, a scripting
feature is a convinient addition to any library.

Features

e Animation: multi-bone skeletons, mesh, texture bitmap, texture co-
ordinates and visibility

e Mesh vertex deformation animation

e Real-time animation blending for dynamic, flexible character actions
e Scripting interface to multi-sequence animation manager

e Projected object shadows (clipped against the environment)

e Level of detail support

Licence fee: $100
http://wuw.garagegames.com/

15

3 PREVIOUS WORK 3.2 Commercial Systems

3.2.3 True Vision 3D

True Vision 3D is a basic game engine that offers nothing more than what
is available in any modern game engine, except for the use of rigid bone
attachments and custom bone rotations. The focus is not on character
animation but rather the sound and media library.

Features
e Powerful animation system
e Skeleton-based, Keyframe-based, or Morph-based animations
e Attach child meshes to bones

e Animate via custom bone rotations

Licence fee: $150
http://wuw.truevision3d.com

3.2.4 Unreal Engine 3

Unreal Engine 3 is one of the best game engines available to date, but
only available for those who can afford it. The feature list it presents does
not bother to cover the basics and instead displays a list of impressive
goodies. According to the official presentation of the engine, it features
a skeleton animation system combining motion capture animation with
physic feedback and procedual controllers”. A excerpt from the webpage
states:

“UES3 1s Epic’s next-generation technology, intended for games
shipping on next-generation consoles and PCs.”

Features

e Skeletal animation system supporting up to 4 bone influences per
vertex and very complex skeletons

e Full mesh and bone LOD support
e Animation is driven by an “AnimTree” - a tree of animation nodes
including;:
— Blend controllers, performing an n-way blend between nested
animationobjects
— Data-driven controllers, encapsulating motion capture or hand
animation data
— Physics controllers, tying into the rigid body dynamics engine
for ragdoll player and NPC'® animation and physical response
to impulses
— Procedural skeletal controllers, for game features such as having
an NPC’s head and eyes track a player walking through the level
— Inverse Kinematics solver for calculating limb pose based on a
goal location (e.g. for foot placement)

e New node and controller types can be easily added for game specific
control

9Similar to Function Controlled Effects described in this report.
10Non-Player Character

16

3 PREVIOUS WORK 3.3 Conclusions

e Export tools for 3D Studio Max, Maya and XSI for bringing weighted
meshes, skeletons, and animation sequences into the engine

Licence fee: $750,000
http://wuw.unrealtechnology.com

3.3 Conclusions

After thoroughly examining the above systems it was concluded that most
systems come integrated in a game engine. While this might not be a
problem it is not always desirable, for instance when a graphic system is
already used, but lacks character support. The only existing stand-alone
library was Cal3d library, but it was not among the high ranking systems.
As one can expect the commercial engines are generally better than the
open source systems.

New systems usually focus on skeleton animation in their design but does
not bother much with outdated techniques such as mesh animation. It
is becoming more important for a flexible library to include methods to
extend and control skeletal animations, such as rigid bone attachment and
inverse kinematics. This is the direction that Open Skeleton Library has
taken. This, along with a comparision to the above systems, is presented
in the next chapter.

17

4 OPEN SKELETON LIBRARY

4 Open Skeleton Library

This section starts with an introduction to the Open Skeleton Library,
which also serves as a comparison to the systems presented in the previ-
ous section. It continues to explain the design approach and the essential
elements of the library. After this new features are introduced and ex-
plained, finally the library structure is presented.

4.1 Introduction

The Open Skeleton Library is an excellent animation library that includes
most of the features expected in a modern animation library and includes
new improvements. It has a clear and modular design that facilitates solid
structure to support future features. Since it is a stand-alone library, it
is independent from any graphics platform, which makes it possible to
include in any engine. Since it is not completed it still lacks many features.

The OSL can easily be compared to other systems even though they have
had years of development time. The only other stand-alone library, Cal3d,
hasbeen surpassed, much because it has not been properly renewed. Sys-
tems, like Nebula Device 2 or Unreal Engine 3, are more efficient since
they use Vertex Shaders to skin their models, which OSL does not. Adding
this feature would be the next logical step in the development of OSL.
Compared to Unreal Engine 3, OSL still lacks integrated physics support,
currently left to handled by the host system. Both systems feature a form
of function controlled effects, which are very simular in purpose. OSL can
also use these for additional purposes such as rigid bone attachments.

Features
e Skeleton animation controlled models
e Support for multiple formats easily extendable for new ones
e Weighted skinning with support for any number of weights
e Seemless animation blending
e Advanced function controlled effects for any part of the model

e Skeleton fitting makes it possible to use animation from other model
formats

e Rigid bone attachment enables, for instance, a character to hold a
weapon

e Stand-alone library makes it possible to include in any project

4.2 Design Approach

The Open Skeleton Library aims to surpass all existing character anima-
tion libraries in terms of useability and modularity. The focus is skeleton
animation with features enabling extensions to the system.

The library design originated from the motion capture file format BVH!!,
presented below. As this format lacks a mesh structure, this was also
added to the base. This resulted in a library containing structures for

HBioVision Hierarchy file format, http://www.biovision.com

18

4 OPEN SKELETON LIBRARY 4.3 OSL Basic Features

a skeleton, keyframe animation, blender and mesh. Support for new file
formats are achieved by new parsers that are easily integrated to the
library. This makes it relatively easy to include new formats. To facilitate
the introduction of new features the library was made modular in its
design and easy to manipulate. Extensions with popular features such as
inverse kinematics or rigid bone attachment can be done through the use
of function controlled effects.

The BVH format, that formed the basis for the library is a modelling for-
mat designed to store motion capture data. It has a hierarchial structure
of joints and end effectors but lacks support for mesh data (The use of
end effectors is described in Section 4.3.2). A typical excerpt from a BVH
file is shown in Listing 1.

HIERARCHY
ROOT Hips

OFFSET 0.0000 0.0000 0.0000
CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation
JOINT LeftHip

OFFSET 3.7500 —0.0000 0.0000
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT LeftKnee

Listing 1: BVH sample

The other candidate to base the model structure on was H-Anim, an ex-
tensive file format that is intended as a standard for humanoid character
models. It defines structures for joints, bones and end sites which corre-
spond to end effector joints. Each object allows for advanced properties,
such as orientation limits for joints and mass and other physical proper-
ties for bone segments. This format is primarily used for virtual worlds
such as X3D'?, While interesting, since it covers all parts needed for any

animation purpose, it is too focused on humanoid models to be suitable
for OSL.

4.3 OSL Basic Features

This section presents a walkthrough of the essential elements of the Open
Skeleton Library. The features are similar to many animation libraries
and for the basis of the system. New features are presented in section 4.4.

4.3.1 Model

The OSL model contains a skeleton structure and a mesh, which deter-
mines the pose and look of the character. It also has a number of anima-
tions and function based effects. They determine what actions the model
is capable of performing. While it is not necessary for a model to contain
all these things, all models must have a skeleton structure, since mesh
animation is not supported. A quick overview of the models belongings
are depicted in Figure 10. Furthermore, the model’s update sequence is
presented in Figure 11 which becomes more interesting as soon as other
features of OSL are described.

12Extensible 3D, succesor to VRML (Virtual Reality Modelling Language)

19

4 OPEN SKELETON LIBRARY 4.3 OSL Basic Features

| SKELETON| |ANIMATION | | EFFECT |

Figure 10: The Model structure

Interpolate Intermediate frame Update the Skeleton
\ \
Interpolate between animations Update the Mesh
\ \
Execute active Pre—Effects Execute active Post-Effects

Figure 11: Sequence of the Models update

4.3.2 Skeleton Structure

The bone structure hierarchy consists of a number of joints, each con-
nected to its parent by a length offset. This is the basic approach used
in the BVH file structure and other modelling formats. Other ways of
modelling the bones exist, for instance, by having both a structure for
the bone and the joint. This would serve as a more realistic structure
but with the cost of a higher complexity, but is generally not necessary.
The joints have an offset to its parent and a rotation which the animation
manipulates in order to set the skeleton in motions. The animation of the
joints’ offset can be used for muscle modellation and morphing effects.

Another feature inherited from the BVH format is the use of end effectors.
An end effector is a rigid extension from the joint which can not rotate.
This enables external tools to be attached to the body. The end effector
keep its initial relative rotation to its parent. The root joint is the base of
the skeleton structure and its offset indicate the model’s translation. The
structure of the bones are depicted in Figure 12.

4.3.3 Mesh

The mesh possess all basic properties, such as faces'®, vertex normals,
texture coordinates and material properties, generally found in meshes
and also supports weighted vertices. They are used to make the transi-
tions between submeshes smoothly by connecting each vertex to several
influencing bones as described in Section 2.4. The mesh currently sup-
ports any number of weights per vertex, but there is seldom need for more
than four. The mesh is divided into submeshes, to facilitate the use of,
for instance, different textures on a model.

13The faces define what vertices triplets that make up the triangles.

20

4 OPEN SKELETON LIBRARY 4.3 OSL Basic Features

J{n}
Ofn+1}
ofn} @ Root joint
O Normal joint
Hn+1} Jn-1) [J End effector
A
ofn-1}:

@ o
Figure 12: The skeleton structure

Procedual Mesh for BVH-skeleton

To show the easy extension possible for the library a simple procedual
skinning is available for the BVH skeleton as there is no mesh defined in
the BVH file. The mesh produced is a diamond shaped encapsulation of
the bones with a girth proportional to the length of the bone. The result
is a thicker and more lifelike figure than that of the earlier skeleton lines.
This mesh, depicted in Figure 13, is similar to those used by the first
skeleton-based computer games.

Figure 13: Procedual skinning of the bvh model

21

4 OPEN SKELETON LIBRARY 4.4 New Features

4.3.4 Animation

The animation system uses keyframe animation, described in Section 2.1,
and an animation therefore consists of several keyframes each consisting
of one rotation matrix and one offset vector for each bone in the skeleton.
Each animation has a timer to keep track of the current keyframe position.
The animation can either be looped or executed as a one-time-action. It is
also possible to apply many animations to the same model at once, which
is processed and blended by the Blender.

4.3.5 Blender

The OSL blender is responsible for two major steps in the animation
process; interpolation between keyframes of one animation and incorpo-
ration of all active animations by interpolating these together to a single
posture. To do this the Blender uses quaternions to do spherical inter-
polation, as described by [4], which are weighted by a value given by the
user. Currently, the Blender will only blend whole models and not parts
of them. This limits its useability in some situations. The problem with
this method is described in Section 2.6.

4.3.6 OSL Parser: Model Importer

The OSL imports model formats through the use of different parsers. By
simply writing a parser that extends the base parser, the library will gain
a new format that it can use. This solution offers the possibility to keep
the models in their original format and load them without any conversion
back and fourth. Due to this, there is no need for OSL to house a native
format.

4.4 New Features

This section presents the skeleton fitting scheme, as well as the function
controlled effects. These are features new for this library and the basic
theory for them are found in Section 2.9.

4.4.1 Skeleton Fitting

Skeleton fitting is performed by the 0SL_Parser by taking two models,
the target and source, and a joint map to determine what joints should
be matched. This function will add a fitted animation to the target.
Currently, a new map must be created for each new set of model formats
that are to be used.

The implementation of this method works for some models, but strange
artifacts are prominent in others. The reason for this is as yet undeter-
mined, but adjustments can be made to compensate for this. Also, certain
joints can be avoided when creating the map for the matching bones.

4.4.2 Function Controlled Effects

The Effects are implemented in OSL as a subclass of 0SL_Effect, which
forces it to implement the member function execute (0SL_Model*). This
is the function that will execute each update cycle of the model. It is
tightly integrated with the model and has access to all its private members
for total access. There are two sorts of Effects that can be added to the

22

4 OPEN SKELETON LIBRARY 4.5 Further Improvements

model, Pre-Effects or Post-Effects. They are created in the same way but
extra care must be taken for the Post-Effects since they will take place
after the Skeleton and Mesh updates, (Figure 11), which means that the
Model need to be correctly updated again.

The effects will typically execute every update cycle of the model, either
prior to a update or as a Post-Effect. The use of post effects has the
advantage in calculating the positions for multiple models only needing
to do one update run through the entire model and adding the individual
effects afterwards, skipping a lot of unnecessary recalculations. Of course
it must be taken into consideration that changing a bone in a skeleton
structure after its update means that a recalculation of its children must
take place. The Pre-Effects are simply easier to create since no concern
for specific update issues must be addressed.

In the case of Post-Effects, care must be taken to make sure that every-
thing is updated correctly. For instance if the Effect influences a bone,
it must make the effect of this alternation propagate to its children (if
this is desired). An example appliction of this part of OSL is described in
Section 5.2.

4.5 Further Improvements

Since the library is modular in its design and because the function con-
trolled effects are an effective tool, it is easy to add new features to the
library. A list of some possible improvements that can be made is found
below:

e Inverse Kinematics

e Animation bits — blending control
e Level-of-detail

e Vertex shader driven skinning

e Integrated physics

23

5 LIBRARY APPLICATIONS

5 Library Applications
5.1 Skeleton Fitting

The following example illustrates the use of skeleton fitted animations.
The application shows the typical usage where a very good animation for
a skeleton with few bones exists but the animation is to be used on an
advanced model with a detailed skeleton with a mesh. In this demo, the
MD5 model fatty from Doom & is chosen as target model for animation.
The source animation is taken from the the BVH model format, used for
motion capture data. Target and source model in this scenario consists of
80 and 19 joints, respectively. The two models can be seen in Figure 14.

Figure 14: Target and source model

The process of transforming the animation from the source to the target
starts with loading the different models with their corresponding models:

0SL_Parser_MD5 mdb_p;
0SL_Parser_BVH bvh_p;

0SL_Model md5model = md5_p.parseModel("zfat/zfat.mdbmesh");
0SL_Model bvhModel = bvh_p.parseModel("bvh/ballet.bvh");

24

5 LIBRARY APPLICATIONS 5.1 Skeleton Fitting

To match the bones correctly, a map must is required. It contains an
index at every position pointing to the matching joint index of the source
model. If no matching joint is available, the default value will be -1.

std:vector<int> map;

for (int m=0; m<md5.getSkeleton()->getNbrOfBones(); m++) {
std::string name =
mdbmodel . getSkeleton() ->getBone (m) ->getName () ;
int bvhbone;

if (name == "Body") bvhbone = BVH_HIPS;

else if (name == "Lupleg") bvhbone = BVH_LEFTHIP;
else if (name == "Rupleg") bvhbone = BVH_RIGHTHIP
else bvhbone = -1;

}

map.push_back(bvhbone) ;

This map is then used to apply the animation to the target model.

OSL_Parser::fitAnimation(md5model, bvhModel, 0, map);

This line of code adds the animation starting at index 0 from the bvhModel
to mdbmodel. The fitting of the bindpose is made by matching the target’s
bindpose to the source’s bindpose which can be seen in Figure 15, from
left to right, the default bindpose of target, the source’s bindpose and
finally the target’s fitted bindpose. The fitting is now complete and the
animation is loaded and usable by the mdbmodel. A screenshot from fatty
dancing ballet is shown in Figure 16.

o

Figure 15: The steps of skeleton fitting

5 LIBRARY APPLICATIONS 5.2 Randomized Crowd

Figure 16: Fatty zombie dancing ballet

5.2 Randomized Crowd

The object of the Randomized Crowd Demo is to simulate individual char-
acteristics for every person in a large crowd. It can be achieved by slightly
rotating a person’s bones in different ways by the use of the OSL:s Effect
module. First a proper Effect, randomised in some way, is created, which
is added to a model to make it appear slightly different. This is done for
every person in the crowd.

A simple effect which can set the rotation of individual joints is imple-
mented as:

O0SL_Effect_RotJoint::0SL_Effect_RotJoint(int jIndex,
const 0OSL_Vector3&% axis, float angle)
{
jointIndex = jIndex;
0SL_Quaternion q;
q.set_rotate_axis_angle(axis, angle);
rotation.set(0SL_Matrix3(q));
}

void OSL_Effect_RotJoint::execute (0SL_Model* model) {
vector<0SL_Matrix3*>% store = &(model ->matrixStorel[0]);
(*store)[jointIndex]->set(rotation * *(*store)[jointIndex]);

}

Listing 2: ’effect _rotjoint.cpp’

For total control when writing Effects, they are allowed access to the
private members of a model. Here it uses the models matrixStore which
is the structure all joints rotations are stored before sending them to the
update function. In OSL, an Effect can either be added as a Pre-Effect,
influencing the joint just before being sent to update the skeleton, or as
an Post-Effect influencing the joints after the update. The easiest (but
not the most efficient, see Section 2.9.2) is to use the Pre-Effects. This is
done by assigning an Effect to the model like:

26

5 LIBRARY APPLICATIONS 5.3 Rigid Bone Attachment

0SL_Effect_Bone fx(9, OSL_Vector3(1,0,0), PI/6.0);
model . addPreEffect (fx);

5.3 Rigid Bone Attachment

To illustrate how effective the function controlled effects are, they have
been used to implement rigid bone attachments for OSL. The attachment
is implemented through a Post-Effect, taking an 0SL_Model as the at-
tachment, and connecting it to a designated bone. It is then added to a
target model where it's execute function replaces the attached model’s
root offset and rotation found at the target’s designated bone. Since it
is a Post-Effect it will execute after the target model has performed its
updates, thus, putting it in the right place. The effect used can be seen
in Listing 3.

void OSL_Effect_Attachment::execute (0SL_Model* model) {

int par = model->skeleton->getJoint (jointIndex)->getParent();
*(attachedModel.matrixStore[0][0]) = rotation *

model ->skeleton->getJoint (jointIndex)->getGlobalRotation();
*(attachedModel.vectorStore[0][0]) =

model ->skeleton->getJoint (par)->getRootOffset();

attachedModel.skeleton->update (attachedModel.matrixStore[0],
attachedModel.vectorStore[0]);
attachedModel.updateMesh();

Listing 3: ’effect attachment.cpp’

The trick is, as in the randomized crowd application, to communicate
with the model update through the use of its matrix and vector stores.
The result using a BVH model with a MD5 chainsaw model attached can
be seen in Figure 17.

27

5 LIBRARY APPLICATIONS 5.3 Rigid Bone Attachment

Figure 17: BVH model carrying a MD5 model chainsaw

28

6 CONCLUSIONS AND RESULTS

6 Conclusions and Results

The goal was to achieve a stand-alone animation library that is more com-
plete than any other existing system. In many ways this was achieved.
The Open Skeleton Library has a sound design capable of including many
features. All implemented animation techniques in the library are smoothly
integrated with each other and can be used in a smooth way. All basic
character animation methods, such as level of detail and inverse kine-
matics, are not implemented. OSL provides a structure which makes it
possible to add these features with little trouble. The performance of the
library can be improved by implementing vertex shader driven skinning.

The new features, skeleton fitting and function controlled effects, were
succestully implemented. Through the Effects the same model can be
used repetedly with individual characteristics, preventing the appearance
of the cloning effect often seen in games. The Effects can also be used to
easily add new arbitrary methods of control. The skeleton fitting is an
excellent tool for applying animations from one model to another. This is
especially useful when motion capture data, which is obviously done for a
human skeleton, should be applied to a non-human model.

Although not complete the Open Skeleton library has the potential to
be one of the leading open source character animation libraries. A clear
design and extensible structure makes it ideal as a modular extension in,
for instance, a game engine.

29

REFERENCES

7 References

References

1]

2]

3]

[4]

[5]
[6]

Watt, Alan and Policarpo Fabio,

3D Games - Animation and Advanced Real-time Rendering
Vol. 2, 2003

Pearson Educational Lmt, pages 358-362.

Sébastien Dominé
Mesh Skinning
nVidia 2005

Pablo de Heras Ciechomski

Parametric Dynamics - A method for addition of dynamic
motion to computer animated human characters

Lund University of Technology 2001

Paull, David B.,
Programming Dynamic Character Animation, 2002
Charles River Media, inc, pages 164-165.

BioVision Incorporated
http://www.biovision.com

hanim Humanoid Animation Workgroup
http://www.h-anim.org/

Game engines and animation libraries

Cal3d - http://cal3d.sourceforge.net

Nebula Device 2 - http://www.nebuladevice.org
Irrlich Engine- http://irrlicht.sourceforge.net/
Cipher Game Engine - http://www.cipherengine.com/
Torque Game Engine - http://www.garagegames.com/
Truevision 3d - http://wuw.truevision3d.com

Unreal Engine 3 - http://www.unrealtechnology.com/

30

