

Master of Science Thesis
Department of Computer Science

Lund Institute of Technology

Optimizations for Shadows in Interactive
Environments

Jon Hasselgren [d99jh@efd.lth.se]

December 2003

Supervisor: Lennart Ohlsson, Lund Institute of Technology

Abstract

The purpose of this master thesis is to research possible optimizations for shadows in
interactive graphics. In interactive graphics performance is always an important factor
since it limits the complexity of the images that can be drawn in a pace high enough to
generate a sequence of images that seem animated to the user. There already exist several
optimizations for shadows but in this thesis an alternate approach is taken. The
optimizations are based on a pre-computational phase that generates important data that can
be saved to the hard drive and used in the interactive part of the application to achieve
higher run-time performance.

The thesis report presents an algorithm for high performance light and shadow rendering
under the assumption that many of the light and objects in the world are static during the
whole execution time. The algorithm has been evaluated on mainstream graphics hardware
and a demo application has been constructed that implements both the algorithm described
in this paper as well as an optimized version of a common shadowing algorithm.

Contents

Contents

1 Introduction.. 6

2 Background... 8
2.1 The Phong reflection model.. 8
2.2 Light maps .. 9
2.3 Per pixel lighting .. 9

2.3.1 Shadow maps ... 11
2.3.2 Shadow Volumes ... 12

2.4 Rendering.. 18
2.5 Culling .. 18

3 Optimizations for shadow volumes... 21
3.1 Concept... 21
3.2 Static light computations .. 23

3.2.1 Edges in a mesh ... 23
3.2.2 Mesh clipping .. 24
3.2.3 Ray tracing... 27
3.2.4 Algorithm... 28

3.3 Dynamic objects ... 30
3.3.1 Shadows cast by static geometry on dynamic geometry.............................. 31

3.3.1.1 Scissor boxes .. 32
3.3.1.2 Frustum culling... 33
3.3.1.3 Putting it together – Merging heuristics ... 34

3.3.2 A robust depth pass stencil buffer implementation...................................... 35
3.3.2.1 Shadow volume meshes constructed from the static geometry 35
3.3.2.2 Implementation... 36

3.3.3 Summary and alternatives.. 36
3.4 Fake soft shadows... 38

4 Evaluation ... 41

5 Related work... 44

6 Conclusion... 46

Appendix A: Rendered Images... 48

References... 49

Chapter 1 - Introduction

6

1 Introduction

Graphics drawn on a screen is one of the most important means of communication between
computer software and the user. Traditional computer graphics is based on rendering
(drawing) two-dimensional images on the screen. Images are represented as a grid of pixels
where every pixel has a color assigned to it.

In three-dimensional graphics the goal is to compute a two-dimensional image on the
screen based on a representation of the three-dimensional world and a view position. The
representation may vary from implementation to implementation but the most common
representation is geometrical and based on building objects from planar polygons. Common
linear algebra and vector geometry can be used to perform varying computations for the
objects.

Computer graphics, in particular three-dimensional graphics, is divided into the two main
fields: Cinematic graphics and Interactive graphics. Cinematic graphics is generated one
single time and then stored as a two-dimensional image or movie which makes the actual
rendering time a less important factor. In Cinematic graphics the greatest focus is on
realism, very accurate simulations of physics is used which gives images that are (almost)
photo-realistic. The field of Interactive graphics is a lot more dynamic. The user should be
able to interact with the virtual world and the delay from a user action to an update on the
rendered image should be small enough to feel instant to the user. In reality, this means that
the computer should be able to render at least around 20 frames (images) per second.
Thanks to the development of hardware designed solely for the purpose of rendering three-
dimensional graphics, the image quality gap between Interactive graphics and Cinematic
graphics is constantly decreasing. The programmability has increased as well as the
performance, which allows for much more complex and application specific effects to be
performed.

An important part of the three-dimensional graphics is lighting, this is the part where most
of the extra computational power used in Cinematic graphics is spent. Programs designed
for Cinematic graphics often use accurate simulations of light, where light reflected by the
other objects in a scene play an important role. In Interactive graphics this light is typically
ignored and up until recently the same has been true for shadows caused by objects
obstructing the light from reaching another object. A common strategy for Interactive
graphics, called light-mapping, has been to divide the world into static and dynamic objects
and to perform advanced lighting on the static objects which is stored as an image of the
incoming light for every polygon. This gives high quality lighting for the static objects, but
since dynamic lights and objects must be computed in real-time the quality of this lighting
will be much lower.

Another important aspect of three-dimensional graphics is shadowing, which of course is
closely related to lighting. Although techniques used for computing shadows in Interactive
graphics have existed for more than a decade they have been rarely used. This is almost
solely because of the very large pressure put on the graphics hardware compared to the
other, less complex, light models. The techniques adds a fair amount of extra polygons to a
scene, but the most important limitation is the fill-rate (pixel processing power) required by
the hardware which is still often the limiting factor. In this thesis project, a technique
intended for optimization of the fill-rate used for rendering scenes with shadows, has been
developed. Just like light mapping, this technique is based on differing between static and
dynamic objects. The difference however is that the technique used for static and dynamic

Chapter 1- Introduction

 7

objects are identical except for the optimizations. It’s also possible to perform correct
shadow interactions between dynamic and static objects which has always been a problem
light-mapping suffered from.

The presented algorithm contains several new contributions as well as further usage for
existing methods. Many of the new contributions are related to allowing dynamic objects to
receive shadowing and lighting of the same quality as the static geometry. Also, a method
for pre-computing relevant data is presented that although it is related to work done by ATI
was developed independently. The contributions include

• Pre-computational algorithm to generate data that is crucial to optimizations
• Using dynamic object bounding volumes to further improve common shadow

volume optimization techniques and how these properties will affect different parts
of the engine pipeline and performance.

• Special shadow volume construction from the optimized pre-computed meshes.
• Robust implementation of the faster “depth pass” shadow volume algorithm in

special cases.

The presented approach has been compared with an optimized implementation of the
common shadow volume algorithm. The evaluation was performed on mainstream (low
cost) hardware and showed an encouraging result of 50% better performance in high
resolutions with the presented algorithm.

Chapter 2 - Background

8

2 Background

To understand the mechanics of the optimizations presented it’s important to have a basic
understanding of the basic lighting and shadowing algorithms used in modern interactive
graphic engines. This section describes the common algorithms used to perform the lighting
and shadowing along with the strengths and weaknesses of every such algorithm.

2.1 The Phong reflection model
The Phong reflection model approximates light by dividing it into two separable parts
illustrated in Figure 1. The first part is the diffuse light which is light reflected equally in all
directions and therefore is independent on the viewer’s position. The second part is the
specular light which is directly reflected of the surface just as if it where a mirror, the
specular lighting for a point therefore gets dependant on the viewer’s position. These light
types are mixed together to produce the output result.

Figure 1 Conceptual differences between specular and diffuse reflections

For a given light source the pong reflection model can be written as

Equation 1 The Phong reflection model

Where the output of I(pc,ps,pl) is a 3 component (r,g,b) color value describing the intensity
of the light reflected from the point ps (which is a point somewhere on a surface in the
scene) towards the viewer. The other inputs, pc and pl are the positions of the viewer and the
light source for which to compute the illumination. The vectors L, R and C may be
computed directly from the input parameters, they are: L – normalized vector from ps to pl,
R – normalized reflection of L in the plane formed by Nps and ps and C – normalized vector
from ps to pc. The Nps, kdps, ksps and αps values defines the material properties of the surface
for the point ps, texture maps are commonly used to describe those properties for each point
on a given surface.

The function light(pl,ps) computes a scalar value for the properties of a certain light, here
functions such as light distance attenuation is included. In the original Phong reflection
model this attenuation is computed using Equation 2

() () ()() ()slspspsdpslsc pplightCRkNLkpppI ps ,,, ⋅⋅+⋅= α

Specular reflection
(smooth surface)

Diffuse reflection
(rough surface)

Chapter 2 - Background

 9

Equation 2 Attenuation equation

2.2 Light maps
Light mapping is based on assigning a unique (low resolution) texture map to every
polygon in the world. This texture map, called a light map, is used to store pre-computed
and pre-mixed lighting for every sample point used in the world. Thanks to light maps the
whole lighting computation is moved out of the real time part of a program. This allows us
to use complex algorithms such as radiosity since time is less of an issue, also computing
shadows can be done by simple ray tracing between the two sample-points currently used to
compute light distribution.

The real magic with light maps are seen on rendering time, to render a scene with full
lighting one must simply go through the polygons that needs to be rendered and use texture
combining to multiply the base diffuse texture of a polygon with the light map for that
polygon.

A problem with the light maps is that they are too static. The fact that intensity of a sample
point in the light map is a mix of all lights affecting that point makes it problematic to
introduce physically correct shadows for dynamic objects. The most common solution is by
removing light from the area shadowed by a dynamic object but this will also subtract light
from areas that are already shadowed by the static environment itself. Since the shadows in
that case already exist in the light maps a shadow within a shadow will occur, the same
goes for if two dynamic objects are shadowing the same position.

Last but not least light maps consume a great amount of video memory. Especially if trying
to achieve the same picture quality with light maps as with per pixel lighting, in which case
the lighting must be sampled with very high resolution.

2.3 Per pixel lighting
Lighting computations have traditionally been made on a per-vertex basis using simple
interpolation schemes to compute the lighting values for each pixel. However, new
hardware is flexible and powerful enough to compute the lighting of every pixel
individually. This does not only give better image quality but also allows using texture
maps to describe the different parameters in the Phong equation giving artists possibilities
to create much more realistic models without adding more polygons and different materials
to it.

Per pixel lighting is often implemented using pixel and vertex shaders. A shader capable
card can execute programs defined by the coder or artist for every pixel rendered on screen
and every vertex of the geometry processed. The first generation of graphics hardware
called programmable could only execute rather simple and restricted programs but the
newer cards constantly remove more and more of the restrictions on what programs can be
written.

The attenuation factor of the Phong model (Equation 2) can also be implemented in a
somewhat different fashion because of two problems related to it. The first of these
problems is the division, only the newest cards such as the ATI R300 and NV30 series

()
cppbppa

pplight
lsls

sl
+−+−

= 2
1,

Chapter 2 - Background

10

currently supports division on a per pixel basis. Also, the attenuation factor in Equation 2
never reach zero, this introduces some problems related to efficient culling for light sources
although they are quite easily solved using a threshold value. In my implementation I have
chosen to implement the attenuation function based on the mathematical expression in
Equation 3 (Dietrich 2001) which may not be physically correct but produce a visually
trustworthy result.

Equation 3 Per pixel distance attenuation

As can be seen in Equation 3, the internal expression ()ls ppk − can be linearly
interpolated since k is constant for every light. This means that it can be performed in a
vertex program rather than on a per pixel basis. This leaves only a subtraction and a dot
product which can even, on some hardware, be collapsed into a single instruction.
Alternatively, texture lookup tricks with two or three dimensional textures can be used to
compute this function.

A frequent function needed in a Phong pixel shader is the normalization of vectors on a per
pixel basis. Normalization is rather slow to compute on new hardware and impossible on
old hardware unless using polynomial approximations of the reciprocal square root. The
best alternative is to use a cube map (Kilgard 2000). Cube maps are widely supported and
they only use the direction of a vector to address a pixel. A pre-computed cube map with a
normalized vector representation for every fragment in the map efficiently normalizes the
interpolated vector used for addressing a fragment in the texture.

Looking back at the Phong equation (Equation 1) there’s a lot of new material components
that may be moved to a texture map evaluated on a per pixel basis instead of the previous
per vertex basis. Components that can be moved to a texture map are Nps, kdps, ksps and αps.

Of special interest is the Nps texture. As can be seen in the Phong equation this texture
represents the normal of a surface in a given point. It allows us to simulate roughness in an
otherwise plane surface as far as lighting goes, this technique is called bump mapping
(Blinn 1978, Kilgard 2000).

The values for pixels in the normal map texture are interpreted as vectors rather than colors,
thus a question arise of in which coordinate system these normals should be represented.
There are mainly two coordinate systems that are efficient to use, object space and tangent
space. The object space normal representation usually gives better performance, but it
suffers from memory problems on very large meshes such as the world mesh due to the fact
that every surface needs to have a unique normal map. The tangent space coordinate
system is built from the coordinate space of the texture map, thus the vectors building this
coordinate system for a specific face are the vectors for the main texture axes and the
normal for that face. One usually assumes an orthogonal coordinate system for the texture
map axes, which makes the transformation to tangent space a simple matter of computing
the dot products of a vector in object space and the vectors building the tangent space for a
single face. The usage of tangent space allows you to assign a certain normal map to a
material rather than to a surface as was the case in the object space based representation.

Many implementations use the Blinn shading model in Equation 4 to perform the per pixel
lighting. The purpose is to save the rather expensive per-pixel reflection computations
needed for the Phong model. This model uses the half angle vector instead of the reflection
vector furthermore the half angle vector is often approximated on a per pixel basis with

() () () ⎟
⎠
⎞⎜

⎝
⎛ −−=−⋅−= 0,1max0,1max,

22
lslssl ppkppkpplight

Chapter 2 - Background

 11

linear interpolation. Unfortunately this approximation doesn’t work particularly well with
the geometry generated by the shadow algorithm, described in this paper, due to non-
uniform and rather low tessellation. In this case the Phong illumination model may be
preferable since the reflection based on two normalized vectors is also a normalized vector
while the normalization of a half angle vector that is computed on a per-pixel may be
troublesome on some hardware.

Equation 4 Blinn illumination model (Assumes the C and L vectors are normalized)

The αps component raises some problems on older hardware. The new cards have support
for power instructions which makes the specular computation easy alternatively a
dependant texture lookup can be used to emulate the power function. A problem is the
GeForce3/4 cards which are too limited to allow for the dependant texture lookup and a
normalization of the half angle vector at the same time. This can be worked around using a
lower degree polynomial to approximate the power function (Beaudoin 2002). The
polynomial coefficients for a given power can be looked up from a texture map.

All in all, implementation of these shaders is simple straightforward coding for new
hardware with good pixel shader capabilities. Implementation on old hardware or using old
capabilities for performance reasons make the implementation a more challenging task
because of both instruction limitations and the amount of textures simultaneously
accessible.

Up to this point we have forgotten all about shadowing for the per pixel lighting. Shadows
do their fair share to the realism of a scene, especially for dense indoor scenes. Shadowing
is a quite simple problem with time consuming solutions. The goal of every shadow
algorithm is to determine if a point is visible from the light source. If it’s not visible, it’s in
shadow and no light should be rendered there. There are two commonly used and well
supported methods for computing in real time if a pixel is in shadow or not given a specific
light. They are described in the following sections

2.3.1 Shadow maps
The Shadow maps algorithm (Williams 1978) is based on using a common depth buffer and
depth comparisons to compute shadows. In a first step all polygons visible to the light
source is rendered into an off-screen depth buffer often called the shadow map. This is done
in a light-space coordinate system, and furthermore the polygons must be projected in some
way to be able to render them.

When the shadow map has been created we have enough information to determine if a pixel
is in shadow or not. When rendering lighting to the scene the coordinates for every pixel is
computed not only in image space, but also in light space. The light space coordinate
representation is used to compare the depth component with the value in the shadow map. If
a pixel has a higher depth value than the one in the shadow map it’s rejected. The shadow
map algorithm can be described by the following pseudo-code

() () ()() ()slpsspspsdpslsc pplightNHkNLkpppI ps ,,, ⋅⋅+⋅= α ,
LC
LCH

+
+

=

Chapter 2 - Background

12

Pass 1. For every polygon visible to the light source
Transform to light-space coordinate system
Render to off-screen depth buffer

Pass 2. For every polygon visible to the viewer

Transform to light-space coordinate system
Transform to view-space coordinate system
For every pixel in polygon

 if (light-space depth <= depth in shadow map)
 render shaded pixel and add to the current color for this pixel
 else
 discard pixel, in practice add black to the current color

The shadow map algorithm is very simple and elegant. It is also rather well supported on
hardware and can be emulated through pixel shaders or the alpha testing unit possibly at
some precision cost, if no support exists.

Unfortunately there are also many problems related to the shadow map technique. Since the
scene must be projected and most hardware only supports pixel accurate projection of the
scene onto a plane, omni-directional lights are both problematic and slow to implement.
Other problems with this algorithm are often related to precision issues, since the shadow
map is represented in light space there’s no guarantee that one pixel of the shadow map
maps to a single pixel when rendering the scene. There are a workarounds for this
(Fernando 2001, Stamminger 2002, Sen 2003), but shadow maps are seemingly better
suited for cinematic graphics due to the possibility of choosing appropriate shadow map
resolutions based on the light, geometry and the camera path. This is not as easy for
interactive environments due to the unpredictability of these parameters.

2.3.2 Shadow Volumes
“Shadow volumes” is also an old algorithm. It was originally designed by Frank Crow in
the late seventies (Crow 1977, Bergeron 1985, 1986).

The first step in this algorithm is to compute the “shadow volume”, which is a polygon
mesh that encloses the subspace that lies in shadow for a specific light. The shadow volume
mesh can be constructed given the original geometry of the scene and the position of the
light source. This is done by finding the silhouette edges of the world mesh. A silhouette
edge is defined as an edge between two faces where one face faces the point (light source)
and the other face faces away from the point. When the silhouette edges has been found the
shadow volume mesh can be constructed by inserting a quad for every single silhouette
edge. The quad is constructed using the vertices for the silhouette edge and the same
vertices pushed infinitely far away from the light. The shadow volume construction of a
cube is shown in .

Chapter 2 - Background

 13

Figure 2 I) A cube and light source. II) Shadow volume mesh constructed from the cube
based on the position of the light. The original cube is shown with a darker shader of gray.
The faces added in silhouette edges are shown as the thinner lines. The thick lines in the
shadow volume meshes show the faces of the original geometry used to close the shadow
volume mesh, the thinner lines are the quads inserted in silhouette edges.

If you want to achieve a robust shadow volume implementation, it is often essential that the
shadow volume mesh is a closed mesh (Bergeron 1986). This can complicate the procedure
somewhat but if the object mesh is a simple closed mesh enclosing a finite subspace the
process is rather straightforward. In this case a closed shadow volume mesh can be
constructed by combining the quads inserted in silhouette edges with the original geometry
where the faces facing the light are kept at their original position while the faces facing
away from the light are pushed back enough to make sure the resulting shadow volume
mesh is connected.

It’s quite likely that al least some of the geometry will not enclose a finite subspace. This is
for instance true for a simple room modeled through a cube where all polygons face toward
the center of the cube. In this case a slightly different technique is better for the shadow
volume construction. Find all polygons front facing or back facing the light source and
compute the edges for these faces. Every edge only belonging to one polygon will be a
silhouette edge and treated just as in the previous algorithm. Closing the volume can be
done using the original front or back facing polygons and copies of those pushed back from
the light far enough to close the mesh. The choice of using front facing or back facing
polygons for shadow volume extraction will have influence on the robustness and
performance of the algorithm. Using back facing polygons will work in all but very special
cases and produce a quite small shadow volume mesh while using front facing polygons
works in every case but results in a larger more complex shadow volume mesh. In this
thesis the back facing polygons was used since it covers all desired cases and gives better
performance. All in all, this algorithm isn’t much harder to implement than the previously
described algorithm for shadow volume extraction. However, the previous algorithm may
be adapted to execute completely on the vertex program unit of graphics hardware. This
algorithm on the other hand must currently be executed almost entirely on the CPU.

It’s worth to note that shadow volume meshes quickly become more complex when the
shadow caster geometry is more complex. Figure 3 shows a slightly more complex mesh
than the nicely convex cube. The generated shadow volume is a closed but self intersecting
mesh and the number of levels of self intersections in a shadow volume mesh is equal to the
number of overlapping concavities in the shadow caster from the lights point of view.

I

L

II

L

Chapter 2 - Background

14

Figure 3 I) A more complex shadow caster object. This object is concave from the lights
point of view. II) The shadow volume mesh shown just as in . Note that this mesh gets more
complicated and even intersects itself due to the concavity in the shadow caster.

Once the shadow volume mesh is constructed we can use it to determine whether a point is
in shadow or not. It is equivalent to testing whether the point lies within the shadow volume
mesh which can be tested using a variation of the crossings test (Haines 1994). Imagine
yourself standing on a field where an area is enclosed by fences. Start walking straight in an
arbitrary direction, if the number of fences you had to cross is an odd number you started
inside the enclosed area and otherwise you started outside of it. This algorithm works in the
three-dimensional case as well.

The crossings test does not deal with some issues related to shadow volume meshes that are
constructed using the silhouette edges such as self intersection. However, the algorithm can
be extended to computing the difference between number of “back facing” fences and the
number of “front facing” fences (assuming there is such a thing as a front/back facing
fence). One can realize that you started inside the field if the number is greater than zero
and that you started outside the field in the zero case. Figure 4 gives a graphical example of
the crossings test in action.

Figure 4 The crossings test performed along the arrow line on the shadow volume meshes
constructed in . I) Note that on this simple shadow volume constructed by the cube, the
odd/even crossings test is sufficient. II) For this more complex shadow volume the odd/even
test returns 2 (even) which would mean that the point isn’t in shadow. Computing #back
facing fences crossed - #front facing fences crossed instead will give the number 2 (2 back
facing fences) which correctly states that the point is in shadow.

In practice this test is implemented with the viewpoint as the starting point and walking
from the viewpoint towards the point that we want to do the shadow test for. In this form
the algorithm can be accelerated by most common hardware using the stencil buffer
(Heidmann 1991). The stencil buffer handles integer values and can perform simple
operations such as incrementing and decrementing the values stored in the buffer, it also
provides testing mechanisms to discard output on a per pixel basis when rendering. The

I

L L

II

2

1

II

2

1

I

Chapter 2 - Background

 15

0

-1

+1
+1

0
1

C

idea is to use the depth buffer in combination with the stencil buffer to do the counting.
This can be done using the following algorithm, which is also illustrated in Figure 5.

1. Render the whole world geometry from the cameras point of view to set up the
correct depth buffer values. This is also a good opportunity to render effects
independent of the lighting such as ambient light, reflection maps and similar.

2. For every light L

♦ Clear the stencil buffer to value zero, Turn off depth buffer updates
♦ Compute the shadow volume mesh for the geometry and L
♦ Render the front facing polygons (from view position) of the shadow

volume mesh and increment the stencil buffer value if the depth test
passes

♦ Render the back facing polygons (from view position) of the shadow
volume mesh and decrement the stencil buffer value if the depth test
passes

♦ Render the lighting for L with the stencil buffer hardware setup to reject
pixels with a stencil buffer value not zero

Figure 5 Using the stencil and depth buffer to determine if a pixel lies in shadow. This
figure shows the shadow volume of the cube object in and a rectangular object. To simplify
the figure the cube object and shadow volume of the rectangular object is left out but in
practice every object and the shadow volume of every object is processed. Every pixel
rendered to the screen can be thought of as following one ray as shown in the figure and
performing the crossings test (Figure 4). The depth buffer assures that the ray followed
“ends” at the position of the original geometry since no counting is performed for pixels
failing the depth test

This algorithm, often called the depth pass shadow volume algorithm, suffers from many
problems related to the view frustum. Counting will not be made for those pixels clipped by
the camera near clipping plane which results in artifacts when the camera moves in and out
of the shadow volume mesh. If the camera is completely in the shadow volume mesh the
artifacts can be fixed by clearing the stencil buffer to a value corresponding to the crossings
test result for the cameras point of view but when the near clipping plane of the camera
intersects a polygon of the shadow volume it will result in some crossing tests starting in
shadow and some starting outside. This is illustrated in Figure 6

Chapter 2 - Background

16

Figure 6 The rays used for the crossings test starts at the near clipping plane rather than
the camera point when the depth pass implementation is used. Ray II and III will cross a
shadow volume polygon and therefore indicate that the pixels lie in shadow. Since ray I
starts inside the shadow volume mesh it doesn’t cross any shadow volume polygons, this
results in that the pixel will be considered not to be in shadow although it is.

To work around this unwanted behavior the algorithm can be changed to the following
(changes are marked in bold), which is also illustrated in Figure 7.

1. Render the whole world geometry from the cameras point of view to set up the
correct depth buffer values. This is also a good opportunity to render effects
independent of the lighting such as ambient light, reflection maps and similar.

2. For every light L

♦ Clear the stencil buffer to value zero, Turn off depth buffer updates
♦ Compute the shadow volume mesh for the geometry and L
♦ Render the back facing polygons (from view position) of the shadow

volume mesh and increment the stencil buffer value if the depth test
fails

♦ Render the front facing polygons (from view position) of the shadow
volume mesh and decrement the stencil buffer value if the depth test
fails

♦ Render the lighting for L with the stencil buffer hardware setup to reject
pixels with a stencil buffer value not zero

This simple reverse (Bilodeau 1999, Carmack 2000) moves the artifacts from appearing
when a polygon is clipped by the near clipping plane to appearing when a polygon is
clipped by the far clipping plane. It can also be thought of as letting the rays used for the
crossings test come from points infinitely far away and travel towards the camera instead of
the other way around. The reverse introduces need for a fully closed shadow volume mesh,
at least when the camera is positioned within the mesh. This variation of the algorithm is
often called the depth fail shadow volume algorithm since the counting operations are
performed when the depth test fails rather than passes. It is often combined with setting an
infinite far clipping plane or using the depth clamping (instead of clipping) extension
supported by some graphics hardware (Everitt 2002, Lengyel)

I
II
III

C

Chapter 2 - Background

 17

Figure 7 Changing the stencil counting algorithm to depth fail instead of depth pass.
Closing the shadow volume mesh is important at least when the camera is positioned inside
the shadow volume. Note that the algorithm works just as in Figure 5 but performs
operations when the depth test fails which is equivalent to performing the crossings test in
the opposite direction, from infinity towards the camera.

The shadow volume algorithm has through several years of development reached a point
where it can be considered robust. Its strengths lie in the geometrical representation of
shadows which gives a pixel accurate representation of the shadows as well as possibility to
include omni-directional lights with no modifications to the algorithm.

As for weaknesses the shadow volume algorithm also has its fair share. The fist one
concerns hard shadows, due to the fact that shadows are pixel perfect there will be a razor
sharp edge separating lit from shadowed. This makes an image look synthetic since real
shadows usually have a fuzzy edge due to the fact that lights in reality are volumetric or
have an area instead of being a single point. Since there are implementations of the shadow
volume algorithm to render soft shadows (Akenine-Möller 2002) this gets less and less of
an issue.

Another weakness of the shadow volume algorithm is its massive usage of rendering
resources. Since the shadow volume mesh is pushed away from the light it often tend to
occupy more pixels on screen than the original model. This is illustrated in wire frame
mode in Figure 8.

Finally the shadow volume algorithms operates on mesh geometry while the shadow map
algorithm operates on a per pixel level. Thus, the shadow map algorithm can be altered to
work on semi transparent surfaces and surfaces where texture maps control the level of
transparency. This is not easily done using the shadow volume algorithm.

C

+1
+1

0
1

1
0

Chapter 2 - Background

18

Figure 8 Top left: Rendered image. Top right: Overdraw factor for lighting only. Bottom
right: Overdraw factor for lighting and shadow volumes. Pure white means the pixel is
processed at least 20 times. Pixels failing the depth test were ignored although they
contribute to further slowdown.

2.4 Rendering
As can be seen in the previous algorithms the rendering pipeline of an engine designed for
per pixel lighting is a bit different from the traditional vertex lighting pipeline. When using
OpenGL or some other API for rendering, one usually renders every object in the scene
together with information about the relevant lights. However, per pixel lighting is at least a
two pass rendering process for every single light. The rendering of one frame is performed
in the following way.

• Normal visibility calculations, note that good view frustum and occlusion culling
is even more important in an engine with complex lighting. The ambient pass
gives great opportunities for “free” hardware accelerated occlusion culling.

• Render visible objects with ambient lighting, mainly to initialize the depth buffer.
• For every visible light

o Visibility calculations based on both light position and position of
viewer

o Render shadow maps or shadow volumes for objects visible to light
o Render lighting on objects visible to viewer with shadow testing for

every pixel

2.5 Culling
Culling (Policarpo, 2001) is the process of removing what is not visible to the viewer. This
is done using gross representations of the objects in hope that you gain more performance
by quickly removing the invisible objects than you loose when performing the culling tests.

Chapter 2 - Background

 19

In practice this will almost always be true since the tests performed are very simple and
may remove objects consisting of several thousands of elements. The tests are generally
performed using so called bounding volumes, a kind of simple geometric primitive
enclosing the entire object. If the bounding volume is invisible the object must be too but
the bounding volume can be visible although the object is not. The first part of Figure 9
shows a typical culling operation between the view frustum and the bounding sphere of an
object

The exact implementation of culling is dependant on what data types are used in the engine
and the quality and performance of the different types of culling often have a major impact
on the complexness of the scenes that can be rendered at interactive frame rates.

When it comes to per pixel lighting and shadowing rendering is a two pass process for
every light source visible to the viewer which means that there’s a great deal to win by
performing culling not only for the view frustum but also based on the properties of the
light when lighting is rendered. There are also pitfalls since an invisible object may still cast
a visible shadow so we need to isolate the culling into two cases: light culling and visibility
culling. Visibility culling can be performed just as before and is mainly used during the
ambient rendering pass. The light culling process on the other hand is dependant on the
technique used for shadows. With shadow maps the culling can be done using the frustum
for the light as well as the position and radius of influence, after all rendering the shadow
map is no different from a common rendering operation so the same culling methods can be
used. When using shadow volumes the light culling starts like when using shadow maps
with the only difference that a frustum for the light may not exist if the light is omni
directional. The result of this culling will be a list of objects visible to the light and inside
it’s radius of influence which can then be used to determine objects with a visible shadow.
The objects with a visible shadow can be found by extracting the shadow volume mesh for
the bounding volume and cull it by the view frustum. The complete light culling process is
shown in the second part of Figure 9. Everitt et al (2003) presents an alternative culling
approach for this last step which alters the view frustum and therefore doesn’t have to
compute the shadow volume meshes for the bounding volumes.

Figure 9 The culling process. I) A complex object is represented through the bounding
sphere, since the sphere intersects the view frustum the object is assumed to be visible
which is also the case in this example but must not be true at all times. II) Light culling,
first a complete object culling is done based on light position and radius. This is followed
up by culling the shadow volumes of bounding volumes to the view frustum.

We now have lists of objects for the ambient rendering pass and the shadow volume
rendering pass the only thing left is to compute a list of objects for light rendering, this is

L

C

II

C

I

Chapter 2 - Background

20

simply the intersection of both culling operations which is equivalent to the objects existing
in both lists.

Chapter 3 - Optimizations for shadow volumes

 21

3 Optimizations for shadow volumes

3.1 Concept
Shadow computations are done on a per-pixel level when using volume shadows. The
advantage of this is that the shadow computations get relatively simple,
increasing/decreasing a value and a simple comparison is all that is needed to do the
computations in the shadow volume case. The downside is of course that a lot of
computations must be done all in all due to the large amount of pixels that must be rendered
to get the desired result.

Another possibility of generating shadows is to operate on the polygons of a scene rather
than a single pixel. These algorithms are almost totally disregarded today because they are
much too complicated to perform even on modern graphics hardware. They also scale
worse than volume shadows and shadow maps when the number of polygons in a scene
grows. My intent is to use a combination of these algorithms where I mix the advantages of
both worlds to achieve better overall performance.

If we take a closer look at the shadow volume algorithm it could just as well be performed
on a polygonal level as well as the pixel level. Cut all polygons by the shadow volume
mesh for a single light and remove all resulting polygons that are inside the shadow volume
mesh. This would save us not only the fill-rate needed to render the shadow volume
polygons, but we would also skip drawing what’s in shadow rather than actually drawing it
and check which pixels should be skipped. The only problem associated by performing the
shadow volume algorithm on a per-polygon level is the vast amount of computations
required to cut all polygons by the shadow volume mesh and determine which are inside it.

Let’s assume for a while that all meshes in the world and all lights in the world are static. In
that case there wouldn’t be a problem with cutting polygons by the shadow volume mesh
for every light since this could be offloaded to a pre-computation phase. In this phase we
can spend quite some time and resources on performing the shadow volume algorithm on a
per-polygon level rather than a per-pixel level and store it in a file for later use. If this is
done for every light in the world we would end up with the original world mesh and a mesh
for every light containing polygons only completely visible from the light. Upon rendering
time these pre-calculated light meshes could be used to render lighting with correct
shadows without any testing what so ever at runtime.

In reality we can’t assume a completely static world with completely static lights but what
we can assume is that a majority of the polygons and lights will be completely or at least
partially static. Since we want to support dynamic objects as well, shadow casting must
work both ways between dynamic and static geometry. This results in eight different cases
of shadowing if considering both dynamic and static lights and geometry. As can be seen in
Table 1 there is in practice only three different methods as only two of the combinations
can be optimized and the rest of the cases are performed using a standard stencil buffer
based shadowing algorithm. The cases on which to use the standard algorithm are all cases
where light or shadow caster is dynamic, since all pre-computations are based on static data
there’s no additional information that can be used to optimize performance.

Chapter 3 - Optimizations for shadow volumes

22

Light type Shadow

caster type
Shadow
receiver type

Shadowing algorithm

Static Static Static Pre-computed lit polygons
Static Static Dynamic Optimized stencil buffer shadow volumes
Static Dynamic Static Stencil buffer shadow volumes
Static Dynamic Dynamic Stencil buffer shadow volumes
Dynamic Static Static Stencil buffer shadow volumes
Dynamic Static Dynamic Stencil buffer shadow volumes
Dynamic Dynamic Static Stencil buffer shadow volumes
Dynamic Dynamic Dynamic Stencil buffer shadow volumes

Table 1 Different cases of lighting and geometry (static or dynamic) and the algorithm used
in every case.

The case where static geometry casts shadows on dynamic geometry should be handled
with care because this case conflicts with the optimizations done through cutting the world
polygons since it means that we still need to render the shadow volumes of the static
geometry if we want to use the stencil buffer based method to compute those shadows.
However, we still have a good advantage over the other cases with dynamic parameters
where shadow volumes are used. The advantage is that the shadow volume mesh is known
and static and that shadows on static geometry are already handled. The only varying
parameter is the objects that receive the shadow. From these dynamic objects important
information can be rapidly computed using bounding volumes, this information can be used
with traditional shadow volume optimization strategies. For instance graphics hardware is
able to limit rendering to a given rectangle of the screen using a so called scissor box.
Usually the size of these boxes are determined by the projection on the screen of a light but
since shadows are already correct on the static geometry the scissor boxes can be limited to
the intersection of the projection of dynamic objects and the light which is often
considerably smaller than the projection of the light and thus saves fill-rate. Another
optimization that can be done is to construct minimal view frustums that contain dynamic
objects and the camera and use these to cull many unnecessary shadow volumes that the
scissor boxes don’t handle.

The rendering approach found in the previous section has to be changed when using this
algorithm. For the dynamic lights everything is more or less the same but static lights are
treated differently to be able to get as much optimization as possible out of the case where
static geometry shadows dynamic objects.

Chapter 3 - Optimizations for shadow volumes

 23

• Normal visibility calculations, note that good view frustum and occlusion culling
is even more important in an engine with complex lighting. The ambient pass
gives great opportunities for “free” hardware accelerated occlusion culling.

• Render visible objects with ambient lighting, mainly to initialize the depth buffer.
• For every visible static light

o Visibility calculations based on both light position and position of
viewer

o Render shadow volumes from dynamic objects
o Render lighting on the static geometry with stencil testing
o Compute sets of dynamic objects that will be treated as one entity

during shadow volume rendering
o For every such set of dynamic objects

 Render static shadow volumes optimized based on the
properties of objects in this set

 Render lighting on dynamic objects in the set, with shadow
testing

• For every visible dynamic light
o Visibility calculations based on both light position and position of

viewer
o Render shadow volumes
o Render lighting on objects visible to viewer with shadow testing for

every pixel

3.2 Static light computations
In the pre-computation phase where we wish to compute the meshes containing lit polygons
only, a number of basic tools are needed. These are shortly presented before the actual
algorithm for computing the “light meshes”. The most important component of this
algorithm is a robust mesh by mesh clipper. That in combination with basic ray tracing and
silhouette extraction is everything needed.

3.2.1 Edges in a mesh
An edge is defined by two vertices {Va,Vb} and a number of polygons connected to the
edge. For convenience, the number of polygons connected to a single edge may not exceed
two. This introduces some limitations on supported meshes but it’s rarely needed or even
practical to have more than two polygons per edge in a mesh. However, sometimes CSG
operations in modeling packages may result in these types of anomalies which should then
preferably be corrected before the operations are performed. In Figure 10 a very simple
mesh and its edges are illustrated.

Chapter 3 - Optimizations for shadow volumes

24

Figure 10 Mesh with 5 edges where the edge between Va Vb is shared by both triangles in
the mesh.

A silhouette edge from the viewpoint V=[Vx,Vy,Vz] is defined as:

• An edge between two planar convex polygons with one of the polygons front
facing the viewpoint and the other polygon back facing the viewpoint

• Any edge that only belongs to a single polygon

The second point is not needed if the mesh is a closed mesh, but is practical if we want to
compute shadow volumes based on the computed light mesh which will be an open mesh
due to the removed parts that lie in shadow

3.2.2 Mesh clipping
Clipping a mesh A by mesh B is equivalent to ensuring that no polygons in mesh A cross
any polygon in mesh B. The two dimensional case of mesh clipping, which is to clip a
polygon by another polygon in the plane, is shown in Figure 11.

Figure 11 Polygon by polygon clipping in the plane (two dimensional case of mesh by mesh
clipping). I) Two polygons, before the clipping operation is performed. II) Polygons after
clipping A by B. All line segments in A that cross any boundary of B is split into many new
segments and new vertices are inserted in the intersection points.

The first attempt in creating a mesh clipper may be to implement a polygon by polygon
clipping method. However, this is not as easy or straightforward as a line clipper in the two
dimensional polygon by polygon clipping case. Figure 12 shows a possible case for

Va

Vb

A A

B B I II

Chapter 3 - Optimizations for shadow volumes

 25

polygon clipping, the main problem here is that the result from clipping polygon A by B is
a polygon just like A but with an infinitely thin hole in it. If both meshes used for clipping
are closed meshes all the infinitely thin holes caused by clipping will form a line curve or
line loop splitting the polygon. It is probably possible to implement a mesh by mesh
clipper that operates using exact polygon clipping but there will be many problems to solve
related to finding the whole intersection line curves or loops. Also the resulting polygons
may be concave which means that they need to be tessellated to convex polygons before
rendering.

A simpler and much more useful operation to base a mesh by mesh clipper on is to cut a
polygon by an infinite plane. This is done by traversing the edges of a polygon and
inserting a new vertex if the two vertices of the edge cross the cutting plane. If the input
polygon is a convex polygon that crosses the plane the resulting polygons will be two
convex and planar polygons, one behind and one in front of the cutting plane. Code 1
shows a simple pseudo-code function for cutting a polygon by a plane and Figure 12
illustrates the polygon by plane clipping for the same example as the polygon clipping.

Figure 12 I) The problem of polygon clipping, how is polygon A clipped by B? Is a
resulting polygon with an infinitely thin hole in practical to work with? The answer is no.
II) Another approach, clip polygon A by the plane of polygon B. The result is two convex
and planar polygons which is easier to work with than the result in I

Clipping all polygons in one mesh by the planes of all polygons is simple enough to code
but will produce an output mesh with a lot of polygons. Since performance is not only
dependant on fill rate but also on the geometrical complexity it is of interest to minimize the
number of polygons and vertices inserted in the clipping operation. One thing that can be
done is to only perform the polygon by plane clipping operation if the polygons of the
different meshes actually intersect. To find out if two polygons intersect (Möller 1997) is
pretty close to cutting a polygon by a plane. Find the intersection points between the first
polygon and the plane of the other polygon and vice versa. If both polygons intersect the
plane of the other polygon, the result will be two three dimensional line segments, one for
each polygon. The line segments are segments of the same infinite line, the line where the
planes of both polygons intersect. This means that the segments can be represented with
one-dimensional intervals. If these intervals overlap the polygons intersect. The overlapping
test can be done using the largest coordinate component of the interval vectors which saves
the trouble of parameterizing the line segments.

A

B

A

B

I II

Chapter 3 - Optimizations for shadow volumes

26

[back,front] = cutPolyByPlane(Poly,Plane)
 List FrontVerts,BackVerts
 for evert vertex V in Poly
 N = cyclicNextVertex(V) // chooses vertex 0 if V is last vertex

 if sideOfPlane(V,Plane) == FRONT
 add(FrontVerts,V)
 else
 add(BackVerts,V)

 // Test if edge cross the plane, if it does insert a new vertex
 if sideOfPlane(N) != sideOfPlane(V)
 alpha = distance(V,Plane)/(distance(V,Plane)-distance(N,Plane)
 newVertex = linearInterpolation(V,N,alpha)
 add(FrontVerts,newVertex)
 add(BackVerts,newVertex)

 back = face with vertices BackVerts
 front = face with vertices FrontVerts

 return [back,front]

Code 1 Pseudo-code that clips a polygon by a plane. The resulting is two new polygons,
one in front of the plane and one behind the plane.

Writing a robust mesh by mesh clipper can be a more problematic task than it seems. As a
rule of thumb, floating point comparisons should be avoided whenever possible due to
precision related issues. A problem that is introduced when only performing polygon by
plane clipping for polygons that actually intersect is that T-junctions may appear. An
example clipping case when a T-junction appears is illustrated Figure 13.

Figure 13 Image of a T-junction. I) The original mesh A and another mesh B used for
clipping. II) The resulting mesh after the mesh clipping operation. Note that the resulting
mesh is “opened” along the edge where only one polygon is clipped and the other is not.

T-junctions introduce precision related pixel sized gaps when rendering geometry and they
will also open the resulting mesh in an unnecessary place which will possibly create more
silhouette edges and thus unnecessary shadow volumes. Removing the T-junctions can be a
quite troublesome functionality to code. Especially since floating point comparisons should
be avoided whenever possible. I use an edge “cache” in my clipping utility which stores
clipped edges when clipping a mesh by a specific polygon (mainly to ensure only one extra
vertex was inserted for an edge shared by clipped polygons) this cache is used to insert the
extra vertex in all none clipped polygons sharing a clipped edge. However, this might not
be efficient or possible depending on which types of optimizations that are used in the
clipping code. The structure of a mesh clipper is outlined on a high level in Code 2.

A

B

V1 V2 V3

I II

Chapter 3 - Optimizations for shadow volumes

 27

clipMeshByMesh(meshA,meshB)
 for every polygon Pb of meshB
 for every polygon Pa of meshA
 if intersects(Pa,Pb)
 [back,front] = cutPolyByPlane(Pa,Pb.plane)
 meshA.removePoly(Pa)
 meshA.addPolys([back,front])

 RemoveTJunctions(meshA) //T-junctions can be removed per polygon

 // Or here, per mesh which is harder but possibly faster

Code 2 Very high level pseudo code for mesh clipping

3.2.3 Ray tracing
Ray tracing will also be used in the algorithm for visibility testing purposes. Tracing a ray
for intersections can be used to efficiently check visibility between two points. Even though
we work with polygons in the end point visibility can be used. Tracing a ray is as simple as
getting all intersections between a three-dimensional line segment and all the polygons in
the scene. Given a position P = [Px,Py,Pz] and a direction D = [Dx,Dy,Dz] the ray is given by
Equation 5

Equation 5 Ray parameterization from a point and vector

For the intersection between a ray and a plane of a polygon (ax+by+cz+d=0) we can solve
the t parameter as the minimal distance between P and the plane divided by the length of
the projection of the direction vector D on the normal of the plane. Call the plane normal N
= [a,b,c] and we can write the following equation (Equation 6).

Equation 6 Intersection between a ray and a plane (can be optimized if normal is
normalized).

Once the plane intersection parameter value is established the intersection point can be
computed directly from the ray equation (Equation 5) once the intersection point is found
it’s a matter of an inside/outside test for the intersection point, this could be done using the
2-dimensional crossings test that was described in the shadow volume section.

Ray tracing can be sped up by a number of different tweaks where trees are probably the
most important. Using a hierarchical structure, many triangles may be culled with very little
effort. One may also traverse the tree in an ordered fashion which gives an opportunity for
early exits if only the first intersection point is desired. The implementation made for this
paper used an oc-tree based ray-tracer with early exit. A brute force ray-tracer was also
implemented for debugging purposes.

() tDPtR +=

()
DN

NdPN

N
DN

N
dPN

t
⋅
+⋅

−=
⋅

+⋅

−=

2

Chapter 3 - Optimizations for shadow volumes

28

3.2.4 Algorithm
In this pre-computational phase we wish to compute a mesh for every light containing only
polygons lit by the light. Polygons partially lit should be cut to construct polygons only
completely lit by the light. The following tree steps sum up the algorithm quite well:

• Compute shadow volume mesh
• Create a new mesh by cutting a copy of the static geometry mesh by the shadow

volume mesh
• Test every polygon in the new mesh for visibility by tracing a single ray to a point

in the polygon

Given the previously described tools this is a rather simple operation but it can get quite
slow. Common data structures such as trees or portal/zone partitioning can be used to
optimize the performance of the algorithm.

The first step, computing a shadow volume mesh, is done using the definition of a
silhouette edge. Gather a list of silhouette edges by testing all edges in the mesh to the
silhouette edge conditions. Once this is done the shadow volume mesh can be constructed
by inserting a quad for every silhouette edge. The quad is defined by the vertices of the
silhouette edge and the same vertices pushed directly away from the light source in a
straight line. The vertices must be pushed back far enough to ensure that the pushed back
edge of the quad does not intersect the bounding sphere of the light-source.

The second step is to cut the world geometry mesh by the constructed shadow volume
mesh. If a robust mesh clipper (as outlined in previous sections) is already implemented this
is just a matter of a single function call.

Once the clipping is performed, we will have the same world mesh with a couple of new
polygons caused by the clipping operations. A very convenient property with these
polygons are that they are either completely in shadow or completely visible to the light-
source. Visibility can now be tested from any point in the polygons to the light-source this
is easily done by tracing a ray from the mid-point of every polygon to the light-source
position if all polygons where an intersection of the ray occur are removed from the mesh
we will end up with a mesh of lit polygons only. Alternatively one can construct a closed
shadow volume mesh using the original back and front facing geometry plus the silhouette
edges and then use this mesh to do an inside/outside test for the mid-point of every polygon
on this mesh.

Since many 3D engines already have implemented simple polygon clipping and ray tracing
tools it should not be too hard to implement this algorithm with reasonable performance
(Performance is not that important in pre-computational phases unless the time required
gets very high). The pseudo code representation of the outer (conceptual) loop of the
algorithm is listed in Code 3

Chapter 3 - Optimizations for shadow volumes

 29

LitMesh = computeLitPolys(Mesh M,Light L)

// Extract shadow volume polygons from the silhouette edges
Mesh ShadowVolumes
 for every edge E in M
 if L.attenuation(E.minDistance(L)) > TRESHOLD && E.silhouetteEdge(L)
 ShadowVolumes.addPolygon(MakeShadowVolume(E,L))

 Mesh MCopy
 for every polygon P in M
 if L.attenuation(P.minDistance(L)) > TRESHOLD && P.FrontFacing(L)
 MCopy.addPolygon(P)

 Mesh LitMesh = MCopy.CutByMesh(ShadowVolumes)

 For every polygon P in LitMesh
 if M.rayIntersects(Ray(P.MidPoint(),L))
 LitMesh.removePolygon(P)
 Return LitMesh

Code 3 Pseudo code for the main loop for cutting polygons to fit the completely
lit/shadowed criteria

The different methods used by this algorithm have already been outlined in previous
sections, the main optimizations that can be done to this algorithm lie within the mesh by
mesh cutting utility and the ray-tracer as these parts of the algorithm is O(n2) whereas
silhouette extraction is only O(n). As previously mentioned the most rewarding
optimization to these functions is to use a tree structure.

All of the different steps of the algorithm are illustrated in Figure 14

Figure 14 The three major operations when cutting the world geometry. I) Shadow volume
extraction. II) Cutting static geometry by the shadow volume mesh. III) Ray tracing from
light to polygon to determine visibility (only some of the rays are shown). IV) Lit polygon
mesh.

The whole polygon cutting algorithm should be performed for every static light in the
scene. This gives one mesh containing the original static geometry and one mesh for every
light containing the lit parts of the static geometry for the light. Since the computations
involved are not fit for real-time applications it’s a good idea to store this information in the
file used for describing the world geometry.

In this pre-computational phase, it’s also a good idea to produce a potentially visible set for
the light, this goes hand in hand with optimizations of the algorithm. Since my
implementation of this algorithm is portal-cell based it’s only natural to use this property to
speed up the algorithm. This is done by testing the portals for visibility with exactly the

I II III IV

Chapter 3 - Optimizations for shadow volumes

30

same type of cutting algorithm used for the shadows. Simply clip the portal polygon with
all shadow volumes, the resulting polygons are tested for visibility with using ray-tracing
and if any test pass the portal is visible. After this optimization of the algorithm, the
potentially visible set of cells for a light is simply all cells that were processed. The pseudo-
code listed as Code 4 outlines the implementation of the portal-cell based version of this
algorithm.

computeLitPolysRec(Cell C,Light L,ShadowVolumes Sv,OutData Data)

// The cell may have been entered through another portal
if !Data.PVS.cellExists(C)
 Data.PVS.addCell(C)

Mesh CellMesh = C.getMesh()

// Compute new shadow volumes and merge with shadow volumes computed for
previous
// cells. Also computes a list of lit polygons for this cell, only
difference in
// the computeLitPolys function is that it doesn’t compute shadow volumes
and
// ray-tracing must be performed recursively through portals or be performed
on all
// meshes in “Data”
Sv.addShadowVolumes(ComputeShadowVolumes(CellMesh,L))
Mesh LitMesh = computeLitPolys(CellMesh, L, Sv)

// Adds the light mesh if cell isn’t inserted before, otherwise merges it
with
// previously inserted for this cell.
Data.addLitMesh(C,LitMesh)

for every portal P in C
 if !P.alreadyTraversed()
 ShadowVolumes isectsPortal = findIntersectingFaces(P,Sv)
 computeLitPolysRec(P.otherCell(C),L,isectsPortal,Data);

Code 4 Outline of a recursive portal-cell based implementation of the pre-calculation
algorithm. It also computes the potentially visible set for every light.

3.3 Dynamic objects
Since we’re dealing with real-time graphics, dynamic objects will of course play an
important role. The dynamic objects should be able to move around in a static world and
the lighting quality for the dynamic objects should be close to or on par with the lighting for
static geometry. It’s also important that the shadow casting between static and dynamic
geometry works as it‘s supposed to or the rendered image will not be credible.

There are two types of shadows from static lights which can be treated in different ways.
They are the shadows caused by dynamic objects on dynamic/static geometry and the
shadows caused by static geometry on dynamic objects. The dynamic objects casting
shadow on dynamic/static geometry is a simple case because it cannot be optimized at all.
In this case the shadow volumes are dynamic which means that no complex data structures
or pre-computations can be used. Another issue is that every object in the world including
the static geometry is a potential shadow receiver. This gives fewer opportunities for
optimizations of the shadow volume algorithm.

The case where static geometry casts shadow on dynamic geometry only includes static
shadow volumes which mean that tree-structures may be used to accelerate algorithms.
Also, the shadow receivers are only the dynamic objects since the pre-computational step
already ensures shadows are correct on the static geometry. Since the dynamic geometry is

Chapter 3 - Optimizations for shadow volumes

 31

assumed to be relatively small in relation to the static geometry we can use the bounding
volumes of dynamic objects to further improve common shadow volume optimizations
such as scissor boxes and culling. Figure 15 shows a typical case with a small dynamic
object positioned in a static world with several lights. The figure also displays overdraw
factor for all shadow volumes and after all optimizations implemented in this thesis project,
described in detail later in this section. In the top row of the figure it’s apparent that the
projection of the dynamic object on the screen is very small, this results in a small scissor
box used to clip the static shadow volumes and therefore the overdraw factor is very low
except for in the small box around the sphere. The second row of figures shows another
case where the projection of the sphere on the screen is large. Since the resulting scissor
box will be large most of the optimizations will have to be done by culling shadow volume
polygons. Thankfully, under the right circumstances this is a good scenario for shadow
volume culling and as can be seen in the figure, many of the shadow volume polygons in
the background have successfully been culled.

Figure 15 Left: Rendered image with a dynamic object (the sphere). Mid: Shadow volume
complexity visualized through the overdraw factor. Right: Near optimal overdraw under the
assumption that all shadows on static geometry is pre-computed (except for the sphere
shadows)

3.3.1 Shadows cast by static geometry on dynamic geometry
As stated before this is the most important shadowing case, optimizations here will have a
direct outcome on the performance of the engine at least fill-rate wise. The first and most
obvious approach is to render the complete shadow volume mesh for the static geometry to
set up the stencil buffer. However, this is also the worst approach from a fill-rate
perspective although it is the best if we consider CPU utilization. Since all shadow volume
polygons will be rendered it efficiently cancels out all optimizations that was done during
the pre-computational phase.

What can be done is to use simple information about the dynamic objects, such as bounding
volumes, to try to prevent as many shadow volume polygons and pixels as possible from
actually being rendered. The more rendering that can be prevented the more performance
gained from the pre-computational phase can be kept during run time.

To achieve optimal performance there are several factors that must be taken into account.
There are three conflicting factors, fill-rate utilization, geometry utilization and CPU
utilization. During the rendering process it’s possible to make the decision to “merge”

Chapter 3 - Optimizations for shadow volumes

32

several dynamic objects and treat them as one single entity as far as shadows is concerned.
Doing this will result in lower geometry and CPU utilization but also in a larger entity
which means less spatial information and also less opportunities to cull shadow volume
pixels that does not contribute to shadows on the dynamic objects.

Common shadow volume optimizations for hardware (Everitt, 2003 and Kilgard 2003)
include using scissor boxes and view frustum culling of the shadow volumes to render.
Since the shadows only need to be correct on the dynamic objects we can use the
information about all objects in every such merged group to further narrow the scissor box
and the frustum used for culling. It’s important to understand how merging of different
objects will affect the resulting scissor box and how the culling operations. This is
described in the following sections

3.3.1.1 Scissor boxes
All modern hardware is capable of clipping polygons against a view frustum to make sure
only pixels that are actually visible are processed. The clipping can be setup to force the
card to consider only a part of the screen as a visible surface, this operation is called
scissoring and is often used to try to minimize the number of pixels that needs to be
processed when rendering shadow volumes.

The most common optimization is to compute a screen-space bounding rectangle for every
visible light in a scene and use that to discard all the pixels that cannot be affected by the
light both when it comes to shadow volume rendering and light rendering. Since the static
shadows are already computed for the static geometry it’s only necessary that the light and
shadow rendering is correct on the pixels occupied by the dynamic objects. This means that
the bounding box of a dynamic object can be projected to a bounding rectangle on the
screen and then used as well as the bounding rectangle of the light to compute a new
bounding rectangle of the pixels that needs correct rendering for that particular object. The
resulting rectangle will be the intersection of the light and object rectangles.

When more than one dynamic object is visible on screen the bounding rectangle problem
gets considerably more complicated. If two bounding rectangles exist for two different
objects we can either choose to merge them to a single bounding rectangle which is the
union of the two original rectangles. This will increase the area of the boxes and therefore
increase fill-rate usage. On the other hand, if the two bounding boxes are not merged
everything will be rendered twice which means a higher amount of polygons sent to the
graphics card. The bounding rectangles for the object may also overlap which means that if
they are not merged the area shared by both rectangles will be rendered twice. This may not
sound so bad but the double stencil buffer rendering in the shared area will cancel each
other out or otherwise produce artifacts, the stencil buffer values in the shared area must be
cleared which unfortunately also clears out possible values from a previous pass where
dynamic object shadowing dynamic or static geometry is computed, also using the stencil
buffer. An alternative way to clear the effect of shadow volumes rendered if using the invert
stencil buffer operations is to render the shadow volumes once again which means that the
geometry must be rendered three times. The differences fill-rate wise and geometry wise
between two overlapping boxes is illustrated in Figure 16.

Chapter 3 - Optimizations for shadow volumes

 33

Figure 16 Two rectangles approximating the area of two dynamic objects in screen space.
Shows shadow volume rendering based on the rectangles individually and a combined box
for both objects. I) Original bounding rectangles for the two objects. II) Shadow volume
rendering process if objects are treated individually. III) Objects treated as one entity for
the shadowing process.

3.3.1.2 Frustum culling
The choice of shadow volume implementation has great impact on the frustum culling
optimizations that can be made. The shadow volumes algorithm can be implemented in two
ways, depth pass and depth fail, which are both described in the background section. As the
name suggests one of the implementations performs stencil buffer operations when the
depth test passes and the other implementation performs stencil buffer operations when the
depth test fails, this is illustrated in Figure 5 and Figure 7.

Take the case of a single dynamic object, in the previous section the bounding rectangle of
an object was used to compute a scissor box. Another common shadow volume
optimization is to properly cull shadow volume meshes by the view frustum to ensure they
are visible before rendering them. Culling is often done on a per object basis but since
shadow volumes are static in this case a tree data structure can be used and therefore it is
reasonable to assume that polygon accurate culling may be performed. Since our only
interest is correct shadowing on the pixels occupied by dynamic objects we could compute
a frustum based on the bounding rectangle used for scissoring and an approximate nearest
or furthest point on the dynamic object. The frustum creation is dependant on the shadow
volume algorithm chosen. If depth pass is chosen the frustum will be defined by the
bounding rectangle and have the furthest point on the object as a far clipping plane because
all shadow volume polygons completely behind the object will only fail the depth test and
therefore not contribute to the final stencil buffer value. The depth fail implementation on
the other hand will use the nearest point on the object as a near clipping plane and use no
far clipping plane at all. In Figure 17 a simple fictive scene is shown as well as the culling
possibilities using the depth pass and the depth fail shadow volume algorithms. There’s a
consistent relation between the size of an object onscreen (intersection with the near camera
plane in the figure) and the number of shadow volumes that can be culled away.

The depth fail technique has the most extreme cases. It’s possible to cull many shadow
volumes when the projected image of an object is small but when the projected image
grows larger the number of shadow volumes that can be culled shrink drastically. A very
good best case but also a very bad worst case where we’ll end up with a large scissor
rectangle and a large overdraw.

Must be ”cleared”, shadow volumes rendered 3 times

3 times geometry 1 time geometry

I II III

Chapter 3 - Optimizations for shadow volumes

34

The depth pass algorithm on the other hand has the complete opposite behavior. When the
projected image of an object shrinks, the number of shadow volumes between the camera
and object increase and when the projected image grows, the number of shadow volumes
decrease. This gives us a constant performance rather than the two extreme cases.

Figure 17 Room with many shadow volumes (Gray dashed lines) where the sphere
represents a dynamic object. On second and third row shadow volumes for depth pass
respectively depth fail stencil shadow algorithms has been culled.

Unfortunately this adds another dimension to the previous problem of determining whether
to merge the shadow and light rendering of two objects or not. Now we also have the
number of shadow volumes that can be culled to take into consideration, if we perform a
merge we must of course base the frustum construction on the worst case which would be
the nearest point for a depth fail shadow volume implementation and the furthest point
object for a depth pass implementation. In an extreme case this could mean that it would be
better not to merge the light and shadow rendering of two objects even if one is completely
covered by the other due to the number of shadow volumes that cannot be culled after the
merge. Take for instance Figure 17, if we assume that depth pass is used and the objects in
the leftmost and rightmost images exists in the same world it might be favorable not to
merge the light and shadow rendering since the object in the leftmost image ensures no
shadow volumes can be culled and the object in the rightmost image has a large bounding
rectangle.

It can also be noted that the computed largest and smallest distances for the merged objects
can be used with the GeForce FX depth bounds testing capabilities to accelerate the shadow
volume rendering further. The depth bounds test rapidly rejects pixels if the current value in
the depth buffer is not within the defined depth bounds range.

3.3.1.3 Putting it together – Merging heuristics
Computing the optimal merge of objects for the shadowing pass from a fill-rate point of
view is a rather complex operation which is unlikely to yield high performance since it
must be carried out completely on the CPU and will require lots of frustum culling
operations. It’s as important not to underestimate the ability of the graphics card just as well

Depth pass

Depth fail

Chapter 3 - Optimizations for shadow volumes

 35

as not overestimate it. Therefore I used a simple heuristic to perform the merging, namely
to merge all dynamic objects affected by the current light. This heuristic doesn’t result in
minimal overdraw in all cases, but it’s fast and easy to implement and also assure no
“clearing” needs to be done since there will be no overlapping scissor boxes. This very
simple heuristic still works quite well in the case it was meant for, namely when visibility
from light sources is limited due to dense static geometry and relatively small light
radiuses. The probability that many objects onscreen are affected by the same light source
is relatively low and the dimensions of the light will limit the maximum dimensions of the
frustum used for shadow volume culling.

3.3.2 A robust depth pass stencil buffer implementation
The reason a depth pass implementation of shadow volumes is desirable is that it is usually
less fill-rate intense than the depth fail implementation. It also removes the need for closing
the shadow volume mesh and as seen in the previous section it allows much more
aggressive frustum culling in our case. The problem lies in making a robust depth pass
implementation that doesn’t suffer from artifacts when the camera moves in and out of
shadow. To do this we must look into how shadow volumes can be extracted and how the
depth pass algorithm can be implemented. An unfortunate problem is that the depth pass
implementation presented here will not work on ATI hardware due to lack of support for
removing the near clipping plane. The alternatives lie in falling back on the depth fail
implementation instead or setting the near clipping plane close enough to the view point to
make the camera approximately point sized, this have a large negative effect on the depth
buffer precision.

3.3.2.1 Shadow volume meshes constructed from the static
geometry

There are several different approaches that can be taken to compute shadow volumes for the
static geometry to use for run-time purposes. One can for instance use the original geometry
to compute a shadow volume mesh for every light in a common fashion, a problem with
this is that we won’t use the visibility information extracted for every light in the pre-
computational phase and may therefore end up with an unnecessary amount of shadow
volume polygons which may result in higher fill-rate usage.

Another simple approach is to use the list of visible polygons for a light as a means to
compute the shadow volumes. This can easily be done by inserting shadow volume quads
in edges shared only by one polygon in the visible polygons list, if a closed shadow volume
mesh is desired this can be achieved using the original geometry visible to the light and the
same geometry pushed away from the light. If correct winding order is desired the polygons
pushed away from the light must have the reversed vertex order of the original geometry. A
nice property of the shadow volume meshes generated this way is that it will not self-
intersect which makes it possible to use a simpler version of the stencil buffer algorithm
where the stencil buffer values are inverted for both front and back facing polygons. The
shadow rendering can be simplified a bit since the stencil buffer operations are identical. It
doesn’t buy anything in fill-rate performance and can be achieved for modern hardware
which supports different stencil buffer operations on front and back facing polygons but
this shadow volume computation method ensure that no double shadowing occurs.
The differences between the two approaches for shadow volume computation are illustrated
in Figure 18.

Chapter 3 - Optimizations for shadow volumes

36

Figure 18 Two different kinds of shadow volume extraction based on a directional light
source. I) Shows the original geometry mesh II) The common shadow volume extraction
algorithm based on the geometry in I, the resulting shadow volume mesh is self intersecting.
III) Geometry visible to the light source (equivalent to the “light mesh”). IV) Shadow
volumes extracted from the mesh in III, this shadow volume mesh consists of several none
intersecting segments

3.3.2.2 Implementation
A robust implementation of the depth pass shadow volume algorithm (Heidmann, 1991)
can prove to be a quite challenging task. But with the depth clamping capabilities of some
cards it is possible to remove the near clipping plane at the expense of assigning the same
depth value for pixels that lie between the near clipping plane and the viewer. Since the
scene is still rendered using normal clipping the depth value anomalies doesn’t have any
effect on the shadow volume rendering.

Assume that we use the method in the previous section which uses the list of lit polygons
for a light to compute the shadow volume mesh. In this case the stencil buffer shadow
volume algorithm can be performed using bitwise invert operations rather than
increasing/decreasing a value. Figure 5 shows that if the near clipping plane is removed the
depth pass algorithm will work unless the viewer is inside a shadow volume mesh, if the
viewer is inside a shadow volume mesh the stencil buffer must be initialized to the correct
value before the shadow volumes are rendered. With a common self intersecting shadow
volume mesh or a shadow volume mesh with double shadowing the correct value can be
quite hard to find and conflicts with possible optimizations through removing shadow
volume polygons outside the radius of impact for a light. Since the method used for shadow
volume extraction assured that no double shadowing or intersection of shadow volume
meshes occurred, the problem is much simpler. If the viewer is positioned in a shadow
volume mesh the stencil buffer can simply be inverted to get the correct value, the
viewpoint is in shadow if a ray from the viewpoint to the light intersects any of the
polygons in the mesh of lit polygons.

3.3.3 Summary and alternatives
In the previous sections we’ve examined a possible approach to optimize the important case
where static geometry casts shadow on dynamic geometry. The approach was based on

L L LL

I II IVIII

Chapter 3 - Optimizations for shadow volumes

 37

common strategies for shadow volume optimizations that were refined using the bounding
volumes of the dynamic objects to further lower the load on the graphics hardware. The
problem whether to merge dynamic objects and treat those as one entity as far as shadow
optimizations are concerned plays a major part and is unfortunately also a hardware
dependant problem. The best blend lies in a simple heuristic that grossly minimize the fill-
rate utilization without putting too much work on the CPU.

It’s important to note that the usage of the optimizations described herein does not override
the use of common optimizations in the graphics engine. An example of this is to test if an
object is inside the radius of a light before performing any lighting or shadowing operations
and of course to test if the object is visible or not. Another possibility is to use the occlusion
culling functionality that is more or less standard even on older graphic hardware. This
occlusion culling doesn’t buy you anything in terms of fill rate performance in most cases
since the graphics hardware needs to render all pixels of an object to determine if it’s
visible or not. However, in our case the test can be performed when rendering the ambient
or depth buffer setup pass for almost no extra cost at all. If an object is occluded it can be
completely discarded for light rendering and the merging process described in this section
which gives a fair speedup. Note that the shadow volume of an object can be visible even if
the object is not.

There are also other several alternative approaches that can be done but haven’t been tested
so far. These include

• Shadow volume construction: In the pre-computational pass when shadow
volume polygons are used to cut the static geometry to produce lit polygons the
reverse process can be done as well. Cut the shadow volume polygons with the
world geometry and remove all polygons that are not visible from the light source
using ray tracing. The result is a shadow volume mesh with higher polygon and
vertex count but it ensures that the shadow volumes polygons have minimal area.
Closing the shadow volume mesh would be a definite problem but it would not be
necessary if the depth pass implementation is used.

• Other heuristics: More complicated heuristics could be used. One could for
instance assume that the shadow volume polygons are approximately uniformly
distributed. In a first step objects with overlapping bounding rectangles would be
merged to make sure no “clearing” issues needs to be dealt with. Secondly further
merging could be done based on some heuristic like: frustum volume after merge /
frustum volumes before merge < constant. A problem is that the constant would be
machine dependant since more frustums means more culling and therefore a higher
CPU utilization while the volume of the frustums affect the utilization of the
graphics hardware.

• Shadow maps: It’s possible to make a different approach altogether and use
shadow maps instead of shadow volumes for the case where static geometry casts
shadow on dynamic geometry. If the target hardware is good enough to handle
things such as cube shadow maps this is definitely something that should be
considered. Shadow maps suffers from more aliasing problems than stencil buffer
based shadows and the static shadow algorithm described in here, but may still be
enough for the dynamic objects. Alternatively the algorithm presented in (Sen
2003) could be used to give more satisfactory results. The strong point with using
shadow maps is that they can be pre-computed and stored which means that on
run-time they only need to be projected on the dynamic objects and used to render
the lighting. This only gives a very slight overhead to the shading and doesn’t
introduce any of the problems in the other approach based on shadow volumes, the
price to pay is higher memory overhead and possible aliasing problems. Using
shadow maps to solve this case could be combined with either using shadow maps
for everything but the pre-computed static shadows or using shadow maps

Chapter 3 - Optimizations for shadow volumes

38

exclusively for the static geometry casting shadow on dynamic geometry case
while using stencil buffer shadows for the other cases.

3.4 Fake soft shadows
The algorithm so far can work in combination with stencil shadow volumes and produce the
same type of hard shadows as the shadow volume algorithm. In real life light-sources are
never a single point entity but rather a volume of glowing matter, since it’s a volume it’s
possible that a point is partially visible to the light source which gives shadows a smooth
penumbra where the light fades out. Figure 19 illustrates that even with a rough
approximation of the penumbra soft shadows are more realistic than its counterpart.

Figure 19 Hard vs. fake soft shadows

The title of this section quite nicely sums up what we’re trying to do. Rather than a
physically correct representation of soft shadows the goal is to come up with something
that’s visually credible yet simple enough to run with good performance. For the
performance we need to consider the extra amount of polygons that the cutting phase will
add and the accuracy with which we will compute the visibility approximate for every pixel
in the penumbra regions on run time. The goal is to perform the same kind of cutting of the
world geometry as the previous algorithm but this time resulting polygons should be either
lit, shadowed or in a penumbra region. This can be done using a more complex mesh than
the shadow volume mesh for cutting. This mesh would consist of penumbra wedges (T.
Akenine-Möller, 2002), a geometrical primitive which completely encloses the volume of a
penumbra caused by a silhouette edge. The wedge is essentially built from two quads which
are constructed from the silhouette edge and the light’s max/min visibility positions and
two triangles that tie both quads together, closing the wedge. All points contained in the
penumbra wedge is considered to lie in the shadow region, since this algorithm operates on
polygons rather than a per pixel level it’s desirable that the penumbra wedges fit together to
remove unnecessary polygon cutting. Figure 20 shows a penumbra wedge constructed
using a volumetric light source and a silhouette edge.

Chapter 3 - Optimizations for shadow volumes

 39

Figure 20 Penumbra wedges. Inside the volume of a penumbra wedge all points are
considered to lie in the shadow penumbra. The lighting intensity of a pixel in the wedge is
proportional to how much of the light is visible from that point. In this project this was
approximated using linear interpolation, the intensity function is shown below the figure.

The algorithm I use for penumbra wedge construction is very simple and also probably a
rough approximation but on my test cases it looks relatively good and overall cause a rather
low amount of polygon splits. First of all, silhouette edges are still computed from a light’s
position which is a single point rather than a volume. Given the light radius (the radius of
actual glowing matter) and a vertex on a silhouette edge we wish to compute points in the
light’s volume that represent minimal/maximal visibility and use these positions for
pushing back that vertex when creating the quads for wedges. The points of
minimal/maximal visibility can be approximated using the pseudo normal of a vertex. The
max position is roughly in the direction of the pseudo normal of a vertex while the min
position is in the opposite direction. Note that using this method, a quad constructed by a
silhouette edge and the vertices pushed back for min or max visibility position, may not be
planar. In the test scenes used this was not a large issue and assuming planar quads worked
very well, but if a problem would arise this could be worked around simply using two
triangles rather than a single quad although it would result in more polygon splits.

Once the wedges have been constructed the world geometry should be cut using them.
From the resulting mesh, polygons completely in shadow are removed. Since the light is
now a sphere rather than a point, ray-tracing is now less efficient. It is a good idea to
maintain a mesh based on the polygons in the wedge mesh representing maximum visibility
and use it to do an inside outside test with the crossings test. The mesh must be closed in
order to make the test work.

For later use, light-source visibility estimates are computed for every vertex. I computed
these estimates using the penumbra wedges by finding the wedge containing a vertex and
using linear interpolation based on the distances to the polygons representing max/min
visibility from the light. If a point lies within more than one wedge the smallest visibility
estimate is chosen. All vertices not contained in a wedge are set to full visibility.

Quadratic interpolation would intuitively seem more accurate than linear since the intensity
in a point is proportional to the area of the light visible from the point. However my tests
did not show any significant improvement in visual quality when using quadratic
interpolation, linear interpolation was chosen since it’s cheaper than quadratic.

Light intensity

Chapter 3 - Optimizations for shadow volumes

40

In practice it may be convenient to combine pre-computed static soft shadows with hard
shadows on dynamic objects. Although the difference in shading may clash there are
currently plenty of performance related reasons for doing so. If this is the case it might be
good to compute wedges based on the minimum visibility and the point light visibility
rather than the min and max visibilities. Even though this can cause recognizable anomalies
in some cases it will ensure that the dynamic shadows “fits” in nicely in the scene. For
instance imagine a common doorway. If the door is considered a dynamic object while the
wall and doorframe is static, a mix of soft and hard shadows can make a closed door “leak”
light. However if the wedges are constructed as previously mentioned, the maximum
visibility will be equal to the shadow volume mesh of the dynamic object which will
because the shadows to fit together. This is how my implementation of fake soft shadows
worked. The shadows generated are far from physically correct but in most cases when
textures is added the result looks quite realistic, especially when compared to hard shadows.
In Figure 21 fake soft shadows are compared soft shadows, using the mean of ray tracing to
random points on the light, rendered using popular model and render software. Due to the
implementation the penumbras on the fake shadows will be half the size of the other
penumbras. Note that this was to allow hard and soft shadows to blend well together, if an
engine is targeted for soft shadows only it should be possible to use full penumbras. The
shading is also slightly different in the two images, it’s probably related to the attenuation
and attenuation approximations used in the pixel shaders.

Figure 21 Comparison between the fake soft shadows and real soft shadows rendered with
a popular modeling and rendering program. Top left: hard shadows. Top right: Fake soft
shadows. Bottom left: Accurate soft shadows

Chapter 4 - Evaluation

 41

4 Evaluation

It’s hard to perform benchmarks comparing the method described in this paper, but for
testing purposes I also implemented an optimized implementation of dynamic shadows.
Furthermore I used a high resolution and low polygon meshes for benchmarking to try to
make up for the performance loss introduced by real time shadow volume generation in the
dynamic algorithm that could have been eliminated through using a shadow cache.

For benchmarking, three different setups were tested: No shadows, dynamic volume
shadows and finally an implementation of the algorithm described in this paper. This
implementation features fake soft shadows for the static shadows and (only) hard, per pixel
shadows for dynamic objects. The benchmarking was performed on an AMD XP 2000+
(1666 MHz) with 512 Mb SDRAM and a GeForce FX 5200 (Mainstream/Low end card).
Screenshots of the different test images can be found in Figure 22.

Figure 22 Screen shot of the test scene with 4 lights (textures/bump maps are not
displayed). The pictures show the test scene with no shadows, hard dynamic shadows and
soft static shadows.

I also decided to perform some tests using a pixel shader which utilizes the flexibility of
programming languages for modern hardware (often known as ps2.0). This allows the
shading to be collapsed into a single pass and therefore eliminates repetitive stencil buffer
testing for the same pixel favoring the dynamic implementation somewhat. Noticeable is
that these shaders performed very poorly next to the old shaders, they were outperformed
by over 100% but I believe this difference is lower with high end hardware.

The tests were performed on a simple scene with a varying number of dynamic objects and
static lights. This was to try to measure the performance drop of the static method as the

Chapter 4 - Evaluation

42

number of dynamic objects in a scene increase. Note that no lights were dynamic in the
tests since these cannot be optimized and must be implemented using the common
algorithm for dynamic lighting and shadows at any rate.

The results, shown in Table 2, indicate that the algorithm presented outperforms not only a
common implementation of dynamic shadows but also an implementation with per pixel
lighting only. The reason for this is that all shadowed areas that can be swiftly skipped save
more hardware resources than the rendering of the necessary shadow volumes. The results
also show lower performance gains with DirectX ps2.0 or equivalent shaders although the
difference is only noticeable in the test with one light and two dynamic objects

Benchmark settings
Only lighting
(FPS)

Dynamic
shadows (FPS)

Optimized Static
shadows (FPS)

1 Light, 2 dynamic objects 30.2 21.6 32.2
4 Lights, 2 dynamic objects 14.0 10.1 16.1
1 Light, 0 dynamic objects 34.4 25.4 39.2
4 Lights, 0 dynamic objects 16.1 11.9 20.2
1 Light, 2 dynamic objects ps2 13.3 11.4 14.8
4 Light, 2 dynamic objects ps2 5.5 5.0 7.3
Avg. relative performance 1.29 1.0 1.51

Table 2 Performance measurements for the different algorithms implemented. The
performance is measured in FPS (Frames per second)

All in all, the performance gain is almost constant around 50% although it may differ based
on the scene geometry. The strengths of static shadows lie specifically in scenes with
shadow details that will rarely affect dynamic objects. The shadow pre calculation phase is
also an excellent opportunity to produce a potentially visible set for every light which can
further help the culling of shadow volumes, this can further help to cull objects that is
within the falloff radius of a light but completely in shadow.
It may seem odd that the static shadows often outperform the test run with lighting only.
This is because the lighting equations are very heavy on the per-pixel resources of a card.
The test using static shadows doesn’t need to perform the lighting computations in
shadowed areas for a specific light. This is most apparent in the lower right corner of the
pictures in Figure 22, in the lighting only picture notice the bright specular spot caused by
the light in the distant room. The gain in performance due to static shadowing was larger
than the loss from rendering dynamic shadows for the dynamic objects in the scene.

Another aspect that may lower performance gain is the high end cards that have currently
appeared on the market, specifically GeForce FX 5900 and Radeon 9700/9800 models.
These cards are more or less optimized to maximize shadow volume performance being
able to push vast amounts of colored or single textured fragments per second. I still believe
that the optimized algorithm will outperform the common algorithm with a significant
factor. Especially when used in combination with more complex soft shadow methods (U.
Andersson, 2003), where even more opportunities for optimization may arise. The
technique used for these soft shadows are more complex than the simple method used in
this paper, it breaks down to the following steps:

1. Render a pass of the geometry where every fragments position in world-space is
written to a floating point texture

2. Render a pass with the common shadow volume algorithm and initialize shadowed
fragments to 0 and lit to 1. This pass serves as a crude approximation and
initializes shadow fragments to “black” but it also causes a problem since some
fragments in the penumbra wedge will be initialized to 0 and others to 1. One can
say that the shadow volume polygon divides the penumbra wedge in two halves

Chapter 4 - Evaluation

 43

3. Create shadow penumbra wedges that completely enclose the penumbra of the
shadow. A good property with this algorithm is that they may overlap/intersect
freely.

4. Render penumbra wedges with a rather complex fragment shader that computes
the area of the light source that is “covered” by the silhouette edge used to
generate the wedge. This fragment shader is based on geometrical properties of the
light, for instance for a spherical light a cone based on the fragment’s world-space
position and the light sphere is used in combination with the edge to compute a
coverage factor. What are computed in practice are the coverage factor for one of
the halves of the penumbra wedge and the visibility factor for the other half. These
are stored in two textures and then subtracted respectively added to the texture that
was generated during the common shadow volume pass.

5. Render lighting with the visibility estimate texture generated in the last step.

I believe that using the technique described herein to cut the scene with penumbra wedges
generated and then through some technique remove all polygons completely in shadow
would give great possibilities for optimization of the algorithm described above.

If only looking at static geometry and shadows one could remove the need for
subtractive/additive contribution since the shadowed polygons are already removed. The
world-space position texture map would not be needed for static shadows since polygons in
the penumbra could be sent rather than the polygons enclosing the penumbra. This also has
the effect that the world-space position of a fragment can be linearly interpolated over the
polygon rather than looked up from a texture map which may very well make it possible to
move out a large part of the complex fragment shader to a vertex shader and interpolate it
linearly. This part of the fragment shader is devoted to creating a translation matrix to
translate the penumbra causing edge’s coordinates into a local light-position coordinate
system. If the world-space position can be interpolated linearly it sounds reasonable that the
edge could be translated in a vertex program and then using linear interpolation to get the
edge’s coordinates to the fragment program.

Even though the soft shadow method described in this paper is a rather simple
approximation by comparison there are still plenty of reasons to use it at least for the static
geometry. First of all it’s inferiority in quality is not as easy to notice as one might think.
When diffuse-, bump- and gloss-maps are mixed in a lighting pass there’s enough noise that
it’s not easy to notice the lower quality. Also it requires no advanced programming features
what so ever to work since the only thing added is a linear interpolation of colors. Still, it
should be used with care because when the radius of lights increase, the errors introduced
by interpolation and approximation are bound to be more and more obvious.

Chapter 5 - Related work

44

5 Related work

Vlachos et al (2003) presents a pre-computational algorithm for shadow optimizations
called composite shadows. This presentation is based on the same original concept as the
pre computational algorithm in this thesis report where static shadows are optimized
through a pre-computational cutting phase, although they have been developed
independently. The article is based on one of the technology demos used to promote ATI’s
Radeon 9700 PRO series graphic cards.

The composite shadows article also suggests a pre-computational pass to cut static shadows
out of the geometry thereby creating lists of polygons either completely lit or completely in
shadow. However, this approach is much more aggressively optimized and contains more
approximations. First the static lighting is rendered completely, after this the shadow caused
by dynamic geometry is removed from the image to remove lighting in areas shadowed by
dynamic geometry. To avoid removing too much light from areas where the angle of impact
or distance from the light affects the lighting intensity, a darkening value is computed for
every pixel when the lighting is rendered. If the pixel is multiplied by the darkening value
only the ambient lighting term should be left. The shadow volumes of dynamic objects are
then rendered to set up the stencil buffer and for every pixel that lie in shadow, the current
lighting intensity is multiplied by the previously computed darkening value. This will result
in incorrect shadowing where lights overlap since the lighting will always be forced to the
ambient level in shadowed areas even though the point may be shadowed from one lights
point of view but lit by all the other lights. The presentation also totally ignores shadows on
dynamic geometry cast by static geometry. In all the test cases for this algorithm this would
have a severe impact on the realism of the rendered images. It is also the single most
important performance limiting factor of our approach.

All in all, the approximations are fair for demo style scenes with pre-determined animation
paths, small dynamic objects that don’t need to receive shadows from static geometry and
light positions that are strategically positioned to not show the possible artifacts. For a game
engine more freedom is generally desired and although scenes as the one shown in Figure
23 can be designed without revealing any of the weaknesses of the algorithm there’s bound
to be cases it shows in an interactive program.

Figure 23 This figure is a screenshot from a tech demo by ATI showing a similar
optimization for static shadows. All dynamic objects are kept at a small size, traveling in
paths where they won’t enter shadow cast by static geometry.

Chapter 5 - Related work

 45

Chin et al (1989) presents optimizations for shadow volumes using BSP Trees and cutting
all geometry by shadow volumes to gradually remove resulting polygons that lie in shadow.
Unlike traditional implementations, using shadow volumes on a per pixel basis in
combination with a depth buffer, this algorithm operates on the original polygonal
geometry using a BSP tree to speed up polygon clipping and shadow determinations.

Even though the article itself is outdated due to the high performance of graphics hardware
and the possibility to implement shadow volumes on a per pixel basis using the stencil
buffer, the concept is the same as in the pre-computation step that creates light meshes. In
fact, this algorithm could be used in the pre-computational phase to compute the lists of
completely lit polygons. It’s probably very fast but has the drawback of producing several
extra polygons since it’s working on planes rather than polygons. This will cause slower
rendering overall at runtime and of course a larger memory footprint.

Everitt et al (2003) and Kilgard et al (2003) discuss general optimization strategies for
shadow volumes on modern graphics hardware. This includes scissor boxes to limit fill-rate
usage, the depth range extension of GeForce GX 5900, view frustum clipping, shadow
volume generation and similar. These optimizations play a central role of the algorithm
presented in this report.

In the static geometry casting shadows on dynamic geometry case of the algorithm, much
more spatial information than usual is available. The shadows only need to be correct on the
pixels occupied by dynamic objects which mean that the objects screen-space bounding
rectangles and placement can be taken into consideration both for the scissor box
computations and the usage of the depth range extensions. Furthermore the view frustums
to use for shadow culling can be optimized to only contain the dynamic objects rather than
the whole visible volume.

Akenine-Möller et al (2002) and Assarsson et al (2003) presents two algorithms for
rendering soft shadows. The approach used resembles most to the first of the two reports as
a simple model based on linear interpolation is used rather than the more computationally
intense but better approximation in the second paper.

A base concept taken from these reports is the penumbra wedge primitive that is used to
enclose the volume that lies in the shadow penumbra. The penumbra construction itself
differs quite much from the method presented in the papers. These methods are originally
meant for per pixel computations whereas my method operates on polygon geometry. The
method presented in the second paper only ensures that the penumbra region lies
somewhere inside the penumbra wedge, it produce lots of overlapping wedges which will
result in many splits and higher polygon counts. Since the needs are different for a
geometry based algorithm and a per pixel algorithm I chose to use a simplified version of
penumbra wedge computation which is aimed more at getting a penumbra region than
making sure it’s physically correct.

Kilgard et al (2001) presents some information about stencil buffer based shadow volumes
using the invert operation rather than the increment and decrement operations. The
algorithm based on bitwise inversion of the stencil buffer values only work for none
overlapping and intersecting shadow volume meshes, however we can create these types of
shadow volume meshes using the pre-computed lists of lit polygons. This simplifies the
case of static geometry casting shadow on dynamic geometry and the implementation of a
depth pass shadow volume algorithm.

Chapter 6 - Conclusion

- 46 -

6 Conclusion

To summarize, let’s look at the advantages and disadvantages of the optimized algorithm
for static lighting and shadowing.

Advantages

• Less fragments processed when rendering light
• Less fragments processed when rendering shadow volumes
• Static fake soft shadows for virtually no extra cost on a per-pixel basis
• Fake soft shadows helps to hide polygonal appearance of shadows
• The geometry throughput may be lower if more polygons lie in shadow than the

amount of new polygons created through cutting geometry by shadow volumes.
• Potentially visible set helps to further lower fill rate usage (points 1,2)

Disadvantages

• Geometry throughput will in most cases be higher due to the polygons created
when cutting the geometry by the shadow volumes. Especially for soft shadows
due to the more complex penumbra wedges used for cutting

• CPU utilization may be higher due to the process of culling shadow volumes.
• Higher memory usage. Both client side (CPU) and server side (GFX Hardware).

One light mesh per light or at least the extra vertices and faces introduced through
clipping must be stored.

It’s possible to view this technique as a way of trading a lower fill rate for a higher
geometry throughput. Especially when using soft shadows the extra amount of splits will
cause many new polygons but it’s also at possible that the amount of new polygons inserted
when clipping is lower than the amount of polygons not visible to the light but in the lights
radius of influence. In this case the technique will lead to a lowered geometry complexity as
well. In the demo scene used, the number of triangles sent to the graphics hardware was
indeed lower when using static fake soft shadows than the traditional shadow volume
algorithm. This was mainly due to many shadow volume polygons that could be saved
using culling and non-capped shadow volume meshes.

In most engines static geometry is already of a considerably lower tessellation than
dynamic meshes. The reason for this is that physics and collision detecting must often be
performed on a per-polygon basis rather than on a bounding volume basis as can be done
for dynamic meshes. In this case the increased geometry throughput is usually insignificant
since the added geometry need not be used for physics or collision purposes but rendering
only.

The increased CPU utilization of the technique is rather low. The extra power is used in the
phase where dynamic objects are merged and shadow volumes are culled based on a
frustum enclosing the dynamic objects. This process can be optimized using a suitable tree
when performing shadow volume culling. Shadow volume meshes based on silhouette
edges only (no capping geometry) also tend to have a lower complexity than the original
mesh.

Last but not least is the memory issue. There’s indeed a higher memory footprint than using
a completely dynamic shadow volume algorithm. This is generally the case of structural
optimizations, that performance is traded for memory (additional computed information).
There are several optimizations that can be done to reduce the memory footprint and when
compared to using the popular shadow and lighting cache optimization the difference
shouldn’t really be big.

Chapter 6 - Conclusion

 47

In my opinion the disadvantages are a fair price to pay. Even though the evaluation was
only performed on one single type of hardware setup and a rather limited set of different
situations, the performance gain was apparent in all the tests performed. The theoretical
minimal performance of the algorithm is almost equal to the dynamic shadow volume
algorithm except for the extra CPU utilization from processing information about the
dynamic objects. Unless the number of dynamic objects is very high this should not be an
issue.

Appendix A: Rendered Images

- 48 -

Appendix A: Rendered Images

Figure 24 Screenshot from a test and demo scene with 14 Lights and about 10000 polygons
before shadow clipping

Figure 25 Two screenshots of the same scene, they are taken with respectively without fake
soft shadows enabled.

References

References

T. Akenine-Möller and U. Assarsson. Approximate Soft Shadows on Arbitrary Surfaces
using Penumbra Wedges. Eurographics Workshop on Rendering 2002.

Ulf Assarsson, Michael Dougherty, Michael Mounier, and Tomas Akenine-Möller, An
Optimized Soft Shadow Volume Algorithm with Real-Time Performance, to Graphics
Hardware 2003, pp. 33-40, p. 131, July 2003.

P. Beaudoin and J.Guardado. A Non-Integer Power Function on the Pixel Shader,
http://www.gamasutra.com/features/20020801/beaudoin_01.htm, 2002

P. Bergeron. Shadow volumes for non-planar polygons, Proceedings of the Conference on
Graphics Interface (May 1985), 417–418.

P. Bergeron. A general version of Crow’s shadow volumes. IEEE Comput. Graph. Appl. 6,
9 (Sept 1986), 17–28.

B. Bilodeau and M. Songy, unpublished slides, Creative Labs sponsored game developer
conference, Los Angeles, May 1999.

J. Blinn. Simulation of Wrinkled Surfaces, Proceedings of SIGGRAPH 1978, August 1978,
pp. 286-292.

N.Chin, S.Feiner, Near Real-Time Shadow Volume Generation Using BSP Trees,
Computer graphics, Volume 23, Number 3, July 1989.

J. Carmack. Unpublished correspondence, 2000

F. Crow. Shadow Algorithms for Computer Graphics, Proceedings of SIGGRAPH, 1977,
pp. 242-248.

S. Dietrich. Per pixel lighting, Published online at developer.nvidia.com, September 2001.

C. Everitt, M. Kilgard. Practical and Robust Stenciled Shadow Volumes for Hardware-
Accelerated Rendering, Published on-line at developer.nvidia.com, March 2002.

C. Everitt, M. Kilgard. Optimized Stencil Shadow Volumes. GDC 2003 presentation.
Published online at
http://developer.nvidia.com/docs/IO/8230/GDC2003_ShadowVolumes.pdf, 2003

R. Fernando, S. Fernandez, K. Bala and D.P. Greenberg. Adaptive shadow maps.
Proceedings of SIGGRAPH 2001, pp. 387-390, 2001

E. Haines. Point in polygon strategies, Graphic gems IV, ed. Paul Heckbert, Academic
Press, p.24-46, 1994. Published online at
http://www.acm.org/pubs/tog/editors/erich/ptinpoly

T. Heidmann. Real Shadows Real Time, IRIS Universe, Number 18, 1991, pp. 28-31.

M. Kilgard, C. Everitt, M. McGuire, J. Hughes and K. Egan. Fast, Practical and Robust
Shadows, Published online at developer.nvidia.com, November 2003

References

M. Kilgard. Robust Stencil Shadow Volumes, Cesa Developers Conference 2001
presentation, published online at developer.nvidia.com, 2001.

M. Kilgard. A Practical and Robust Bump-mapping Technique for Today’s GPUs.
Technical report, NVIDIA corporation, February 2000. Available at www.nvidia.com.

E. Lengyel.” The Mechanics of Robust Stencil Shadows.” Gamasutra,
http://www.gamasutra.com/features/20021011/lengyel_01.htm, 2003

Tomas Möller and Ben Trumbore, Fast, Minimum Storage Ray-Triangle Intersection.
journal of graphics tools, vol. 2, no. 1, pp. 21-28, 1997

W. Policarpo. 3D Games Real-time Rendering and Software Technology, Volume one.
Book, First Edition 2001.

P. Sen, M. Cammarano, P. Hanrahan. Shadow silhouette maps. Proceedings of SIGGRAPH
2003. Published online at http://graphics.stanford.edu/papers/silmap/silmap.pdf, 2003

M. Stamminger, G. Drettakis. Perspective Shadow Maps. Proceedings of ACM SIGGRAPH
2002, July 2002

A.Vlachos, G.James. Special effects with DirectX 9 - Composite shadows, GDC 2003
presentation. Published online at www.ati.com/developer, 2003

L. Williams. Casting Curved Shadows on Curved Surfaces. Computer Graphics
(Proceedings of SIGGRAPH 78), 12(3):270–274, August 1978. R. L. Phillips, editor.

