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Abstract 

The purpose of this master thesis is to research possible optimizations for shadows in 
interactive graphics. In interactive graphics performance is always an important factor 
since it limits the complexity of the images that can be drawn in a pace high enough to 
generate a sequence of images that seem animated to the user. There already exist several 
optimizations for shadows but in this thesis an alternate approach is taken. The 
optimizations are based on a pre-computational phase that generates important data that can 
be saved to the hard drive and used in the interactive part of the application to achieve 
higher run-time performance.  
 
The thesis report presents an algorithm for high performance light and shadow rendering 
under the assumption that many of the light and objects in the world are static during the 
whole execution time. The algorithm has been evaluated on mainstream graphics hardware 
and a demo application has been constructed that implements both the algorithm described 
in this paper as well as an optimized version of a common shadowing algorithm. 
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1 Introduction 

Graphics drawn on a screen is one of the most important means of communication between 
computer software and the user. Traditional computer graphics is based on rendering 
(drawing) two-dimensional images on the screen. Images are represented as a grid of pixels 
where every pixel has a color assigned to it.  
 
In three-dimensional graphics the goal is to compute a two-dimensional image on the 
screen based on a representation of the three-dimensional world and a view position. The 
representation may vary from implementation to implementation but the most common 
representation is geometrical and based on building objects from planar polygons. Common 
linear algebra and vector geometry can be used to perform varying computations for the 
objects. 
 
Computer graphics, in particular three-dimensional graphics, is divided into the two main 
fields: Cinematic graphics and Interactive graphics. Cinematic graphics is generated one 
single time and then stored as a two-dimensional image or movie which makes the actual 
rendering time a less important factor. In Cinematic graphics the greatest focus is on 
realism, very accurate simulations of physics is used which gives images that are (almost) 
photo-realistic. The field of Interactive graphics is a lot more dynamic. The user should be 
able to interact with the virtual world and the delay from a user action to an update on the 
rendered image should be small enough to feel instant to the user. In reality, this means that 
the computer should be able to render at least around 20 frames (images) per second. 
Thanks to the development of hardware designed solely for the purpose of rendering three-
dimensional graphics, the image quality gap between Interactive graphics and Cinematic 
graphics is constantly decreasing. The programmability has increased as well as the 
performance, which allows for much more complex and application specific effects to be 
performed. 
 
An important part of the three-dimensional graphics is lighting, this is the part where most 
of the extra computational power used in Cinematic graphics is spent. Programs designed 
for Cinematic graphics often use accurate simulations of light, where light reflected by the 
other objects in a scene play an important role. In Interactive graphics this light is typically 
ignored and up until recently the same has been true for shadows caused by objects 
obstructing the light from reaching another object. A common strategy for Interactive 
graphics, called light-mapping, has been to divide the world into static and dynamic objects 
and to perform advanced lighting on the static objects which is stored as an image of the 
incoming light for every polygon. This gives high quality lighting for the static objects, but 
since dynamic lights and objects must be computed in real-time the quality of this lighting 
will be much lower. 
 
Another important aspect of three-dimensional graphics is shadowing, which of course is 
closely related to lighting. Although techniques used for computing shadows in Interactive 
graphics have existed for more than a decade they have been rarely used. This is almost 
solely because of the very large pressure put on the graphics hardware compared to the 
other, less complex, light models. The techniques adds a fair amount of extra polygons to a 
scene, but the most important limitation is the fill-rate (pixel processing power) required by 
the hardware which is still often the limiting factor. In this thesis project, a technique 
intended for optimization of the fill-rate used for rendering scenes with shadows, has been 
developed. Just like light mapping, this technique is based on differing between static and 
dynamic objects. The difference however is that the technique used for static and dynamic 
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objects are identical except for the optimizations. It’s also possible to perform correct 
shadow interactions between dynamic and static objects which has always been a problem 
light-mapping suffered from.  
 
The presented algorithm contains several new contributions as well as further usage for 
existing methods. Many of the new contributions are related to allowing dynamic objects to 
receive shadowing and lighting of the same quality as the static geometry. Also, a method 
for pre-computing relevant data is presented that although it is related to work done by ATI 
was developed independently. The contributions include 
 

• Pre-computational algorithm to generate data that is crucial to optimizations 
• Using dynamic object bounding volumes to further improve common shadow 

volume optimization techniques and how these properties will affect different parts 
of the engine pipeline and performance. 

• Special shadow volume construction from the optimized pre-computed meshes. 
• Robust implementation of the faster “depth pass” shadow volume algorithm in 

special cases. 
 

The presented approach has been compared with an optimized implementation of the 
common shadow volume algorithm. The evaluation was performed on mainstream (low 
cost) hardware and showed an encouraging result of 50% better performance in high 
resolutions with the presented algorithm. 
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2 Background 

To understand the mechanics of the optimizations presented it’s important to have a basic 
understanding of the basic lighting and shadowing algorithms used in modern interactive 
graphic engines. This section describes the common algorithms used to perform the lighting 
and shadowing along with the strengths and weaknesses of every such algorithm. 

2.1 The Phong reflection model 
The Phong reflection model approximates light by dividing it into two separable parts 
illustrated in Figure 1. The first part is the diffuse light which is light reflected equally in all 
directions and therefore is independent on the viewer’s position. The second part is the 
specular light which is directly reflected of the surface just as if it where a mirror, the 
specular lighting for a point therefore gets dependant on the viewer’s position. These light 
types are mixed together to produce the output result. 
 

Figure 1 Conceptual differences between specular and diffuse reflections 

 
For a given light source the pong reflection model can be written as 
 

Equation 1 The Phong reflection model 

 
Where the output of I(pc,ps,pl) is a 3 component (r,g,b) color value describing the intensity 
of the light reflected from the point ps (which is a point somewhere on a surface in the 
scene) towards the viewer. The other inputs, pc and pl are the positions of the viewer and the 
light source for which to compute the illumination. The vectors L, R and C may be 
computed directly from the input parameters, they are: L – normalized vector from ps to pl, 
R – normalized reflection of L in the plane formed by Nps and ps and C – normalized vector 
from ps to pc. The Nps, kdps, ksps and αps values defines the material properties of the surface 
for the point ps, texture maps are commonly used to describe those properties for each point 
on a given surface. 
 
The function light(pl,ps) computes a scalar value for the properties of a certain light, here 
functions such as light distance attenuation is included. In the original Phong reflection 
model this attenuation is computed using Equation 2 
 

( ) ( ) ( )( ) ( )slspspsdpslsc pplightCRkNLkpppI ps ,,, ⋅⋅+⋅= α

Specular reflection 
(smooth surface) 

Diffuse reflection 
(rough surface) 
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Equation 2 Attenuation equation 

 

2.2 Light maps 
Light mapping is based on assigning a unique (low resolution) texture map to every 
polygon in the world. This texture map, called a light map, is used to store pre-computed 
and pre-mixed lighting for every sample point used in the world. Thanks to light maps the 
whole lighting computation is moved out of the real time part of a program. This allows us 
to use complex algorithms such as radiosity since time is less of an issue, also computing 
shadows can be done by simple ray tracing between the two sample-points currently used to 
compute light distribution. 
 
The real magic with light maps are seen on rendering time, to render a scene with full 
lighting one must simply go through the polygons that needs to be rendered and use texture 
combining to multiply the base diffuse texture of a polygon with the light map for that 
polygon. 
 
A problem with the light maps is that they are too static. The fact that intensity of a sample 
point in the light map is a mix of all lights affecting that point makes it problematic to 
introduce physically correct shadows for dynamic objects. The most common solution is by 
removing light from the area shadowed by a dynamic object but this will also subtract light 
from areas that are already shadowed by the static environment itself. Since the shadows in 
that case already exist in the light maps a shadow within a shadow will occur, the same 
goes for if two dynamic objects are shadowing the same position. 
 
Last but not least light maps consume a great amount of video memory. Especially if trying 
to achieve the same picture quality with light maps as with per pixel lighting, in which case 
the lighting must be sampled with very high resolution. 

2.3 Per pixel lighting 
Lighting computations have traditionally been made on a per-vertex basis using simple 
interpolation schemes to compute the lighting values for each pixel. However, new 
hardware is flexible and powerful enough to compute the lighting of every pixel 
individually. This does not only give better image quality but also allows using texture 
maps to describe the different parameters in the Phong equation giving artists possibilities 
to create much more realistic models without adding more polygons and different materials 
to it.  
 
Per pixel lighting is often implemented using pixel and vertex shaders. A shader capable 
card can execute programs defined by the coder or artist for every pixel rendered on screen 
and every vertex of the geometry processed. The first generation of graphics hardware 
called programmable could only execute rather simple and restricted programs but the 
newer cards constantly remove more and more of the restrictions on what programs can be 
written. 
 
The attenuation factor of the Phong model (Equation 2) can also be implemented in a 
somewhat different fashion because of two problems related to it. The first of these 
problems is the division, only the newest cards such as the ATI R300 and NV30 series 

( )
cppbppa

pplight
lsls

sl
+−+−

= 2
1,
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currently supports division on a per pixel basis.  Also, the attenuation factor in Equation 2 
never reach zero, this introduces some problems related to efficient culling for light sources 
although they are quite easily solved using a threshold value. In my implementation I have 
chosen to implement the attenuation function based on the mathematical expression in 
Equation 3 (Dietrich 2001) which may not be physically correct but produce a visually 
trustworthy result. 
 

Equation 3 Per pixel distance attenuation 

 
As can be seen in Equation 3, the internal expression ( )ls ppk −  can be linearly 
interpolated since k is constant for every light. This means that it can be performed in a 
vertex program rather than on a per pixel basis. This leaves only a subtraction and a dot 
product which can even, on some hardware, be collapsed into a single instruction. 
Alternatively, texture lookup tricks with two or three dimensional textures can be used to 
compute this function. 
 
A frequent function needed in a Phong pixel shader is the normalization of vectors on a per 
pixel basis. Normalization is rather slow to compute on new hardware and impossible on 
old hardware unless using polynomial approximations of the reciprocal square root. The 
best alternative is to use a cube map (Kilgard 2000). Cube maps are widely supported and 
they only use the direction of a vector to address a pixel. A pre-computed cube map with a 
normalized vector representation for every fragment in the map efficiently normalizes the 
interpolated vector used for addressing a fragment in the texture. 
 
Looking back at the Phong equation (Equation 1) there’s a lot of new material components 
that may be moved to a texture map evaluated on a per pixel basis instead of the previous 
per vertex basis. Components that can be moved to a texture map are Nps, kdps, ksps and αps. 
 
Of special interest is the Nps texture. As can be seen in the Phong equation this texture 
represents the normal of a surface in a given point. It allows us to simulate roughness in an 
otherwise plane surface as far as lighting goes, this technique is called bump mapping 
(Blinn 1978, Kilgard 2000).  
 
The values for pixels in the normal map texture are interpreted as vectors rather than colors, 
thus a question arise of in which coordinate system these normals should be represented.  
There are mainly two coordinate systems that are efficient to use, object space and tangent 
space.  The object space normal representation usually gives better performance, but it 
suffers from memory problems on very large meshes such as the world mesh due to the fact 
that every surface needs to have a unique normal map.  The tangent space coordinate 
system is built from the coordinate space of the texture map, thus the vectors building this 
coordinate system for a specific face are the vectors for the main texture axes and the 
normal for that face. One usually assumes an orthogonal coordinate system for the texture 
map axes, which makes the transformation to tangent space a simple matter of computing 
the dot products of a vector in object space and the vectors building the tangent space for a 
single face. The usage of tangent space allows you to assign a certain normal map to a 
material rather than to a surface as was the case in the object space based representation. 
 
Many implementations use the Blinn shading model in Equation 4 to perform the per pixel 
lighting. The purpose is to save the rather expensive per-pixel reflection computations 
needed for the Phong model. This model uses the half angle vector instead of the reflection 
vector furthermore the half angle vector is often approximated on a per pixel basis with 

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −−=−⋅−= 0,1max0,1max,

22
lslssl ppkppkpplight
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linear interpolation. Unfortunately this approximation doesn’t work particularly well with 
the geometry generated by the shadow algorithm, described in this paper, due to non-
uniform and rather low tessellation. In this case the Phong illumination model may be 
preferable since the reflection based on two normalized vectors is also a normalized vector 
while the normalization of a half angle vector that is computed on a per-pixel may be 
troublesome on some hardware. 
 

Equation 4 Blinn illumination model (Assumes the C and L vectors are normalized) 

 
The αps component raises some problems on older hardware. The new cards have support 
for power instructions which makes the specular computation easy alternatively a 
dependant texture lookup can be used to emulate the power function. A problem is the 
GeForce3/4 cards which are too limited to allow for the dependant texture lookup and a 
normalization of the half angle vector at the same time. This can be worked around using a 
lower degree polynomial to approximate the power function (Beaudoin 2002). The 
polynomial coefficients for a given power can be looked up from a texture map. 
 
All in all, implementation of these shaders is simple straightforward coding for new 
hardware with good pixel shader capabilities. Implementation on old hardware or using old 
capabilities for performance reasons make the implementation a more challenging task 
because of both instruction limitations and the amount of textures simultaneously 
accessible. 
 
Up to this point we have forgotten all about shadowing for the per pixel lighting. Shadows 
do their fair share to the realism of a scene, especially for dense indoor scenes. Shadowing 
is a quite simple problem with time consuming solutions. The goal of every shadow 
algorithm is to determine if a point is visible from the light source. If it’s not visible, it’s in 
shadow and no light should be rendered there. There are two commonly used and well 
supported methods for computing in real time if a pixel is in shadow or not given a specific 
light. They are described in the following sections 

2.3.1 Shadow maps 
The Shadow maps algorithm (Williams 1978) is based on using a common depth buffer and 
depth comparisons to compute shadows. In a first step all polygons visible to the light 
source is rendered into an off-screen depth buffer often called the shadow map. This is done 
in a light-space coordinate system, and furthermore the polygons must be projected in some 
way to be able to render them. 
  
When the shadow map has been created we have enough information to determine if a pixel 
is in shadow or not. When rendering lighting to the scene the coordinates for every pixel is 
computed not only in image space, but also in light space. The light space coordinate 
representation is used to compare the depth component with the value in the shadow map. If 
a pixel has a higher depth value than the one in the shadow map it’s rejected. The shadow 
map algorithm can be described by the following pseudo-code 

( ) ( ) ( )( ) ( )slpsspspsdpslsc pplightNHkNLkpppI ps ,,, ⋅⋅+⋅= α  , 
LC
LCH

+
+

=  
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Pass 1. For every polygon visible to the light source 
Transform to light-space coordinate system 
Render to off-screen depth buffer 

 
Pass 2. For every polygon visible to the viewer 

Transform to light-space coordinate system 
Transform to view-space coordinate system 
For every pixel in polygon 

   if (light-space depth <= depth in shadow map) 
    render shaded pixel and add to the current color for this pixel 
   else  
    discard pixel, in practice add black to the current color  
 
The shadow map algorithm is very simple and elegant. It is also rather well supported on 
hardware and can be emulated through pixel shaders or the alpha testing unit possibly at 
some precision cost, if no support exists.  
 
Unfortunately there are also many problems related to the shadow map technique. Since the 
scene must be projected and most hardware only supports pixel accurate projection of the 
scene onto a plane, omni-directional lights are both problematic and slow to implement. 
Other problems with this algorithm are often related to precision issues, since the shadow 
map is represented in light space there’s no guarantee that one pixel of the shadow map 
maps to a single pixel when rendering the scene. There are a workarounds for this 
(Fernando 2001, Stamminger 2002, Sen 2003), but shadow maps are seemingly better 
suited for cinematic graphics due to the possibility of choosing appropriate shadow map 
resolutions based on the light, geometry and the camera path. This is not as easy for 
interactive environments due to the unpredictability of these parameters. 

2.3.2 Shadow Volumes 
“Shadow volumes” is also an old algorithm. It was originally designed by Frank Crow in 
the late seventies (Crow 1977, Bergeron 1985, 1986).  
 
The first step in this algorithm is to compute the “shadow volume”, which is a polygon 
mesh that encloses the subspace that lies in shadow for a specific light. The shadow volume 
mesh can be constructed given the original geometry of the scene and the position of the 
light source. This is done by finding the silhouette edges of the world mesh. A silhouette 
edge is defined as an edge between two faces where one face faces the point (light source) 
and the other face faces away from the point. When the silhouette edges has been found the 
shadow volume mesh can be constructed by inserting a quad for every single silhouette 
edge. The quad is constructed using the vertices for the silhouette edge and the same 
vertices pushed infinitely far away from the light. The shadow volume construction of a 
cube is shown in . 
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Figure 2 I) A cube and light source. II) Shadow volume mesh constructed from the cube 
based on the position of the light. The original cube is shown with a darker shader of gray. 
The faces added in silhouette edges are shown as the thinner lines. The thick lines in the 
shadow volume meshes show the faces of the original geometry used to close the shadow 
volume mesh, the thinner lines are the quads inserted in silhouette edges. 
 
If you want to achieve a robust shadow volume implementation, it is often essential that the 
shadow volume mesh is a closed mesh (Bergeron 1986). This can complicate the procedure 
somewhat but if the object mesh is a simple closed mesh enclosing a finite subspace the 
process is rather straightforward. In this case a closed shadow volume mesh can be 
constructed by combining the quads inserted in silhouette edges with the original geometry 
where the faces facing the light are kept at their original position while the faces facing 
away from the light are pushed back enough to make sure the resulting shadow volume 
mesh is connected.  
 
It’s quite likely that al least some of the geometry will not enclose a finite subspace. This is 
for instance true for a simple room modeled through a cube where all polygons face toward 
the center of the cube. In this case a slightly different technique is better for the shadow 
volume construction. Find all polygons front facing or back facing the light source and 
compute the edges for these faces. Every edge only belonging to one polygon will be a 
silhouette edge and treated just as in the previous algorithm. Closing the volume can be 
done using the original front or back facing polygons and copies of those pushed back from 
the light far enough to close the mesh. The choice of using front facing or back facing 
polygons for shadow volume extraction will have influence on the robustness and 
performance of the algorithm. Using back facing polygons will work in all but very special 
cases and produce a quite small shadow volume mesh while using front facing polygons 
works in every case but results in a larger more complex shadow volume mesh. In this 
thesis the back facing polygons was used since it covers all desired cases and gives better 
performance. All in all, this algorithm isn’t much harder to implement than the previously 
described algorithm for shadow volume extraction. However, the previous algorithm may 
be adapted to execute completely on the vertex program unit of graphics hardware. This 
algorithm on the other hand must currently be executed almost entirely on the CPU. 
 
It’s worth to note that shadow volume meshes quickly become more complex when the 
shadow caster geometry is more complex. Figure 3 shows a slightly more complex mesh 
than the nicely convex cube. The generated shadow volume is a closed but self intersecting 
mesh and the number of levels of self intersections in a shadow volume mesh is equal to the 
number of overlapping concavities in the shadow caster from the lights point of view. 

I 

L 

II

L 
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Figure 3 I) A more complex shadow caster object. This object is concave from the lights 
point of view. II) The shadow volume mesh shown just as in . Note that this mesh gets more 
complicated and even intersects itself due to the concavity in the shadow caster. 

 
 
Once the shadow volume mesh is constructed we can use it to determine whether a point is 
in shadow or not. It is equivalent to testing whether the point lies within the shadow volume 
mesh which can be tested using a variation of the crossings test (Haines 1994). Imagine 
yourself standing on a field where an area is enclosed by fences. Start walking straight in an 
arbitrary direction, if the number of fences you had to cross is an odd number you started 
inside the enclosed area and otherwise you started outside of it. This algorithm works in the 
three-dimensional case as well. 
 
The crossings test does not deal with some issues related to shadow volume meshes that are 
constructed using the silhouette edges such as self intersection. However, the algorithm can 
be extended to computing the difference between number of “back facing” fences and the 
number of “front facing” fences (assuming there is such a thing as a front/back facing 
fence). One can realize that you started inside the field if the number is greater than zero 
and that you started outside the field in the zero case. Figure 4 gives a graphical example of 
the crossings test in action. 
 
 

Figure 4 The crossings test performed along the arrow line on the shadow volume meshes 
constructed in .  I) Note that on this simple shadow volume constructed by the cube, the 
odd/even crossings test is sufficient. II) For this more complex shadow volume the odd/even 
test returns 2 (even) which would mean that the point isn’t in shadow.  Computing #back 
facing fences crossed - #front facing fences crossed instead will give the number 2 (2 back 
facing fences) which correctly states that the point is in shadow. 

 
In practice this test is implemented with the viewpoint as the starting point and walking 
from the viewpoint towards the point that we want to do the shadow test for. In this form 
the algorithm can be accelerated by most common hardware using the stencil buffer 
(Heidmann 1991). The stencil buffer handles integer values and can perform simple 
operations such as incrementing and decrementing the values stored in the buffer, it also 
provides testing mechanisms to discard output on a per pixel basis when rendering. The 

I 

L L
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1 
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1 
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idea is to use the depth buffer in combination with the stencil buffer to do the counting. 
This can be done using the following algorithm, which is also illustrated in Figure 5. 
 

1. Render the whole world geometry from the cameras point of view to set up the 
correct depth buffer values. This is also a good opportunity to render effects 
independent of the lighting such as ambient light, reflection maps and similar. 

 
2. For every light L 

♦ Clear the stencil buffer to value zero, Turn off depth buffer updates 
♦ Compute the shadow volume mesh for the geometry and L  
♦ Render the front facing polygons (from view position) of the shadow 

volume mesh and increment the stencil buffer value if the depth test 
passes 

♦ Render the back facing polygons (from view position) of the shadow 
volume mesh and decrement the stencil buffer value if the depth test 
passes 

♦ Render the lighting for L with the stencil buffer hardware setup to reject 
pixels with a stencil buffer value not zero 

 
 

Figure 5 Using the stencil and depth buffer to determine if a pixel lies in shadow.  This 
figure shows the shadow volume of the cube object in  and a rectangular object. To simplify 
the figure the cube object and shadow volume of the rectangular object is left out but in 
practice every object and the shadow volume of every object is processed. Every pixel 
rendered to the screen can be thought of as following one ray as shown in the figure and 
performing the crossings test (Figure 4). The depth buffer assures that the ray followed 
“ends” at the position of the original geometry since no counting is performed for pixels 
failing the depth test 

 
This algorithm, often called the depth pass shadow volume algorithm, suffers from many 
problems related to the view frustum. Counting will not be made for those pixels clipped by 
the camera near clipping plane which results in artifacts when the camera moves in and out 
of the shadow volume mesh. If the camera is completely in the shadow volume mesh the 
artifacts can be fixed by clearing the stencil buffer to a value corresponding to the crossings 
test result for the cameras point of view but when the near clipping plane of the camera 
intersects a polygon of the shadow volume it will result in some crossing tests starting in 
shadow and some starting outside. This is illustrated in Figure 6 
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Figure 6 The rays used for the crossings test starts at the near clipping plane rather than 
the camera point when the depth pass implementation is used. Ray II and III will cross a 
shadow volume polygon and therefore indicate that the pixels lie in shadow. Since ray I 
starts inside the shadow volume mesh it doesn’t cross any shadow volume polygons, this 
results in that the pixel will be considered not to be in shadow although it is. 

 
To work around this unwanted behavior the algorithm can be changed to the following 
(changes are marked in bold), which is also illustrated in Figure 7. 
 

1. Render the whole world geometry from the cameras point of view to set up the 
correct depth buffer values. This is also a good opportunity to render effects 
independent of the lighting such as ambient light, reflection maps and similar. 

 
2. For every light L 

♦ Clear the stencil buffer to value zero, Turn off depth buffer updates 
♦ Compute the shadow volume mesh for the geometry and L  
♦ Render the back facing polygons (from view position) of the shadow 

volume mesh and increment the stencil buffer value if the depth test 
fails 

♦ Render the front facing polygons (from view position) of the shadow 
volume mesh and decrement the stencil buffer value if the depth test 
fails 

♦ Render the lighting for L with the stencil buffer hardware setup to reject 
pixels with a stencil buffer value not zero 

 
This simple reverse (Bilodeau 1999, Carmack 2000) moves the artifacts from appearing 
when a polygon is clipped by the near clipping plane to appearing when a polygon is 
clipped by the far clipping plane. It can also be thought of as letting the rays used for the 
crossings test come from points infinitely far away and travel towards the camera instead of 
the other way around. The reverse introduces need for a fully closed shadow volume mesh, 
at least when the camera is positioned within the mesh. This variation of the algorithm is 
often called the depth fail shadow volume algorithm since the counting operations are 
performed when the depth test fails rather than passes. It is often combined with setting an 
infinite far clipping plane or using the depth clamping (instead of clipping) extension 
supported by some graphics hardware (Everitt 2002, Lengyel) 

I 
II 
III 

C
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Figure 7 Changing the stencil counting algorithm to depth fail instead of depth pass. 
Closing the shadow volume mesh is important at least when the camera is positioned inside 
the shadow volume. Note that the algorithm works just as in Figure 5 but performs 
operations when the depth test fails which is equivalent to performing the crossings test in 
the opposite direction, from infinity towards the camera.  

 
The shadow volume algorithm has through several years of development reached a point 
where it can be considered robust. Its strengths lie in the geometrical representation of 
shadows which gives a pixel accurate representation of the shadows as well as possibility to 
include omni-directional lights with no modifications to the algorithm. 
 
As for weaknesses the shadow volume algorithm also has its fair share. The fist one 
concerns hard shadows, due to the fact that shadows are pixel perfect there will be a razor 
sharp edge separating lit from shadowed. This makes an image look synthetic since real 
shadows usually have a fuzzy edge due to the fact that lights in reality are volumetric or 
have an area instead of being a single point. Since there are implementations of the shadow 
volume algorithm to render soft shadows (Akenine-Möller 2002) this gets less and less of 
an issue. 
 
Another weakness of the shadow volume algorithm is its massive usage of rendering 
resources. Since the shadow volume mesh is pushed away from the light it often tend to 
occupy more pixels on screen than the original model. This is illustrated in wire frame 
mode in Figure 8. 

 
Finally the shadow volume algorithms operates on mesh geometry while the shadow map 
algorithm operates on a per pixel level. Thus, the shadow map algorithm can be altered to 
work on semi transparent surfaces and surfaces where texture maps control the level of 
transparency. This is not easily done using the shadow volume algorithm. 
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Figure 8 Top left: Rendered image. Top right: Overdraw factor for lighting only. Bottom 
right: Overdraw factor for lighting and shadow volumes.  Pure white means the pixel is 
processed at least 20 times. Pixels failing the depth test were ignored although they 
contribute to further slowdown. 

2.4 Rendering 
As can be seen in the previous algorithms the rendering pipeline of an engine designed for 
per pixel lighting is a bit different from the traditional vertex lighting pipeline. When using 
OpenGL or some other API for rendering, one usually renders every object in the scene 
together with information about the relevant lights. However, per pixel lighting is at least a 
two pass rendering process for every single light. The rendering of one frame is performed 
in the following way. 
 

• Normal visibility calculations, note that good view frustum and occlusion culling 
is even more important in an engine with complex lighting. The ambient pass 
gives great opportunities for “free” hardware accelerated occlusion culling. 

• Render visible objects with ambient lighting, mainly to initialize the depth buffer. 
• For every visible light 

o Visibility calculations based on both light position and position of 
viewer 

o Render shadow maps or shadow volumes for objects visible to light 
o Render lighting on objects visible to viewer with shadow testing for 

every pixel  

2.5 Culling 
Culling (Policarpo, 2001) is the process of removing what is not visible to the viewer. This 
is done using gross representations of the objects in hope that you gain more performance 
by quickly removing the invisible objects than you loose when performing the culling tests. 
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In practice this will almost always be true since the tests performed are very simple and 
may remove objects consisting of several thousands of elements. The tests are generally 
performed using so called bounding volumes, a kind of simple geometric primitive 
enclosing the entire object. If the bounding volume is invisible the object must be too but 
the bounding volume can be visible although the object is not. The first part of Figure 9 
shows a typical culling operation between the view frustum and the bounding sphere of an 
object 
 
The exact implementation of culling is dependant on what data types are used in the engine 
and the quality and performance of the different types of culling often have a major impact 
on the complexness of the scenes that can be rendered at interactive frame rates.  
 
When it comes to per pixel lighting and shadowing rendering is a two pass process for 
every light source visible to the viewer which means that there’s a great deal to win by 
performing culling not only for the view frustum but also based on the properties of the 
light when lighting is rendered. There are also pitfalls since an invisible object may still cast 
a visible shadow so we need to isolate the culling into two cases: light culling and visibility 
culling. Visibility culling can be performed just as before and is mainly used during the 
ambient rendering pass. The light culling process on the other hand is dependant on the 
technique used for shadows. With shadow maps the culling can be done using the frustum 
for the light as well as the position and radius of influence, after all rendering the shadow 
map is no different from a common rendering operation so the same culling methods can be 
used. When using shadow volumes the light culling starts like when using shadow maps 
with the only difference that a frustum for the light may not exist if the light is omni 
directional. The result of this culling will be a list of objects visible to the light and inside 
it’s radius of influence which can then be used to determine objects with a visible shadow. 
The objects with a visible shadow can be found by extracting the shadow volume mesh for 
the bounding volume and cull it by the view frustum. The complete light culling process is 
shown in the second part of Figure 9. Everitt et al (2003) presents an alternative culling 
approach for this last step which alters the view frustum and therefore doesn’t have to 
compute the shadow volume meshes for the bounding volumes. 
 
 

Figure 9 The culling process. I) A complex object is represented through the bounding 
sphere, since the sphere intersects the view frustum the object is assumed to be visible 
which is also the case in this example but must not be true at all times. II) Light culling, 
first a complete object culling is done based on light position and radius. This is followed 
up by culling the shadow volumes of bounding volumes to the view frustum. 

 
We now have lists of objects for the ambient rendering pass and the shadow volume 
rendering pass the only thing left is to compute a list of objects for light rendering, this is 
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simply the intersection of both culling operations which is equivalent to the objects existing 
in both lists. 
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3 Optimizations for shadow volumes 

3.1 Concept 
Shadow computations are done on a per-pixel level when using volume shadows. The 
advantage of this is that the shadow computations get relatively simple, 
increasing/decreasing a value and a simple comparison is all that is needed to do the 
computations in the shadow volume case. The downside is of course that a lot of 
computations must be done all in all due to the large amount of pixels that must be rendered 
to get the desired result.  
 
Another possibility of generating shadows is to operate on the polygons of a scene rather 
than a single pixel. These algorithms are almost totally disregarded today because they are 
much too complicated to perform even on modern graphics hardware. They also scale 
worse than volume shadows and shadow maps when the number of polygons in a scene 
grows. My intent is to use a combination of these algorithms where I mix the advantages of 
both worlds to achieve better overall performance. 
 
If we take a closer look at the shadow volume algorithm it could just as well be performed 
on a polygonal level as well as the pixel level. Cut all polygons by the shadow volume 
mesh for a single light and remove all resulting polygons that are inside the shadow volume 
mesh. This would save us not only the fill-rate needed to render the shadow volume 
polygons, but we would also skip drawing what’s in shadow rather than actually drawing it 
and check which pixels should be skipped. The only problem associated by performing the 
shadow volume algorithm on a per-polygon level is the vast amount of computations 
required to cut all polygons by the shadow volume mesh and determine which are inside it. 
 
Let’s assume for a while that all meshes in the world and all lights in the world are static. In 
that case there wouldn’t be a problem with cutting polygons by the shadow volume mesh 
for every light since this could be offloaded to a pre-computation phase. In this phase we 
can spend quite some time and resources on performing the shadow volume algorithm on a 
per-polygon level rather than a per-pixel level and store it in a file for later use. If this is 
done for every light in the world we would end up with the original world mesh and a mesh 
for every light containing polygons only completely visible from the light. Upon rendering 
time these pre-calculated light meshes could be used to render lighting with correct 
shadows without any testing what so ever at runtime. 
 
In reality we can’t assume a completely static world with completely static lights but what 
we can assume is that a majority of the polygons and lights will be completely or at least 
partially static. Since we want to support dynamic objects as well, shadow casting must 
work both ways between dynamic and static geometry. This results in eight different cases 
of shadowing if considering both dynamic and static lights and geometry. As can be seen in 
Table 1 there is in practice only three different methods as only two of the combinations 
can be optimized and the rest of the cases are performed using a standard stencil buffer 
based shadowing algorithm. The cases on which to use the standard algorithm are all cases 
where light or shadow caster is dynamic, since all pre-computations are based on static data 
there’s no additional information that can be used to optimize performance. 
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Light type Shadow 

caster type 
Shadow 
receiver type 

Shadowing algorithm 

Static Static Static  Pre-computed lit polygons 
Static Static Dynamic Optimized stencil buffer shadow volumes 
Static Dynamic Static Stencil buffer shadow volumes 
Static Dynamic Dynamic Stencil buffer shadow volumes 
Dynamic Static Static Stencil buffer shadow volumes 
Dynamic Static Dynamic Stencil buffer shadow volumes 
Dynamic Dynamic Static Stencil buffer shadow volumes 
Dynamic Dynamic Dynamic Stencil buffer shadow volumes 

Table 1 Different cases of lighting and geometry (static or dynamic) and the algorithm used 
in every case. 

 
The case where static geometry casts shadows on dynamic geometry should be handled 
with care because this case conflicts with the optimizations done through cutting the world 
polygons since it means that we still need to render the shadow volumes of the static 
geometry if we want to use the stencil buffer based method to compute those shadows.  
However, we still have a good advantage over the other cases with dynamic parameters 
where shadow volumes are used. The advantage is that the shadow volume mesh is known 
and static and that shadows on static geometry are already handled. The only varying 
parameter is the objects that receive the shadow. From these dynamic objects important 
information can be rapidly computed using bounding volumes, this information can be used 
with traditional shadow volume optimization strategies. For instance graphics hardware is 
able to limit rendering to a given rectangle of the screen using a so called scissor box. 
Usually the size of these boxes are determined by the projection on the screen of a light but 
since shadows are already correct on the static geometry the scissor boxes can be limited to 
the intersection of the projection of dynamic objects and the light which is often 
considerably smaller than the projection of the light and thus saves fill-rate. Another 
optimization that can be done is to construct minimal view frustums that contain dynamic 
objects and the camera and use these to cull many unnecessary shadow volumes that the 
scissor boxes don’t handle. 
 
The rendering approach found in the previous section has to be changed when using this 
algorithm. For the dynamic lights everything is more or less the same but static lights are 
treated differently to be able to get as much optimization as possible out of the case where 
static geometry shadows dynamic objects. 
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• Normal visibility calculations, note that good view frustum and occlusion culling 
is even more important in an engine with complex lighting. The ambient pass 
gives great opportunities for “free” hardware accelerated occlusion culling. 

• Render visible objects with ambient lighting, mainly to initialize the depth buffer. 
• For every visible static light 

o Visibility calculations based on both light position and position of 
viewer 

o Render shadow volumes from dynamic objects 
o Render lighting on the static geometry with stencil testing 
o Compute sets of dynamic objects that will be treated as one entity 

during shadow volume rendering 
o For every such set of dynamic objects 

 Render static shadow volumes optimized based on the 
properties of objects in this set 

 Render lighting on dynamic objects in the set, with shadow 
testing 

• For every visible dynamic light 
o Visibility calculations based on both light position and position of 

viewer 
o Render shadow volumes 
o Render lighting on objects visible to viewer with shadow testing for 

every pixel  

3.2 Static light computations 
In the pre-computation phase where we wish to compute the meshes containing lit polygons 
only, a number of basic tools are needed. These are shortly presented before the actual 
algorithm for computing the “light meshes”. The most important component of this 
algorithm is a robust mesh by mesh clipper. That in combination with basic ray tracing and 
silhouette extraction is everything needed.   

3.2.1 Edges in a mesh 
An edge is defined by two vertices {Va,Vb} and a number of polygons connected to the 
edge. For convenience, the number of polygons connected to a single edge may not exceed 
two. This introduces some limitations on supported meshes but it’s rarely needed or even 
practical to have more than two polygons per edge in a mesh. However, sometimes CSG 
operations in modeling packages may result in these types of anomalies which should then 
preferably be corrected before the operations are performed. In Figure 10 a very simple 
mesh and its edges are illustrated. 
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Figure 10 Mesh with 5 edges where the edge between Va Vb is shared by both triangles in 
the mesh.  

 
A silhouette edge from the viewpoint V=[Vx,Vy,Vz] is defined as: 

• An edge between two planar convex polygons with one of the polygons front 
facing the viewpoint and the other polygon back facing the viewpoint 

• Any edge that only belongs to a single polygon 
 
The second point is not needed if the mesh is a closed mesh, but is practical if we want to 
compute shadow volumes based on the computed light mesh which will be an open mesh 
due to the removed parts that lie in shadow 

3.2.2 Mesh clipping 
Clipping a mesh A by mesh B is equivalent to ensuring that no polygons in mesh A cross 
any polygon in mesh B. The two dimensional case of mesh clipping, which is to clip a 
polygon by another polygon in the plane, is shown in Figure 11. 
 
 

Figure 11 Polygon by polygon clipping in the plane (two dimensional case of mesh by mesh 
clipping). I) Two polygons, before the clipping operation is performed. II) Polygons after 
clipping A by B. All line segments in A that cross any boundary of B is split into many new 
segments and new vertices are inserted in the intersection points. 

 
The first attempt in creating a mesh clipper may be to implement a polygon by polygon 
clipping method. However, this is not as easy or straightforward as a line clipper in the two 
dimensional polygon by polygon clipping case. Figure 12 shows a possible case for 
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polygon clipping, the main problem here is that the result from clipping polygon A by B is 
a polygon just like A but with an infinitely thin hole in it. If both meshes used for clipping 
are closed meshes all the infinitely thin holes caused by clipping will form a line curve or 
line loop splitting the polygon.  It is probably possible to implement a mesh by mesh 
clipper that operates using exact polygon clipping but there will be many problems to solve 
related to finding the whole intersection line curves or loops. Also the resulting polygons 
may be concave which means that they need to be tessellated to convex polygons before 
rendering. 
 
A simpler and much more useful operation to base a mesh by mesh clipper on is to cut a 
polygon by an infinite plane. This is done by traversing the edges of a polygon and 
inserting a new vertex if the two vertices of the edge cross the cutting plane. If the input 
polygon is a convex polygon that crosses the plane the resulting polygons will be two 
convex and planar polygons, one behind and one in front of the cutting plane. Code 1  
shows a simple pseudo-code function for cutting a polygon by a plane and Figure 12 
illustrates the polygon by plane clipping for the same example as the polygon clipping. 
 
 

Figure 12 I) The problem of polygon clipping, how is polygon A clipped by B? Is a 
resulting polygon with an infinitely thin hole in practical to work with? The answer is no. 
II) Another approach, clip polygon A by the plane of polygon B. The result is two convex 
and planar polygons which is easier to work with than the result in I 

 
Clipping all polygons in one mesh by the planes of all polygons is simple enough to code 
but will produce an output mesh with a lot of polygons. Since performance is not only 
dependant on fill rate but also on the geometrical complexity it is of interest to minimize the 
number of polygons and vertices inserted in the clipping operation. One thing that can be 
done is to only perform the polygon by plane clipping operation if the polygons of the 
different meshes actually intersect. To find out if two polygons intersect (Möller 1997) is 
pretty close to cutting a polygon by a plane. Find the intersection points between the first 
polygon and the plane of the other polygon and vice versa. If both polygons intersect the 
plane of the other polygon, the result will be two three dimensional line segments, one for 
each polygon. The line segments are segments of the same infinite line, the line where the 
planes of both polygons intersect. This means that the segments can be represented with 
one-dimensional intervals. If these intervals overlap the polygons intersect. The overlapping 
test can be done using the largest coordinate component of the interval vectors which saves 
the trouble of parameterizing the line segments. 
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[back,front] = cutPolyByPlane(Poly,Plane)  
 List FrontVerts,BackVerts 
 for evert vertex V in Poly 
  N = cyclicNextVertex(V) // chooses vertex 0 if V is last vertex 
 
  if sideOfPlane(V,Plane) == FRONT 
   add(FrontVerts,V) 
  else 
   add(BackVerts,V) 
    
  // Test if edge cross the plane, if it does insert a new vertex 
  if sideOfPlane(N) != sideOfPlane(V) 
   alpha = distance(V,Plane)/(distance(V,Plane)-distance(N,Plane) 
   newVertex = linearInterpolation(V,N,alpha) 
   add(FrontVerts,newVertex) 
   add(BackVerts,newVertex) 
 
 back = face with vertices BackVerts 
 front = face with vertices FrontVerts 
 
 return [back,front] 

Code 1 Pseudo-code that clips a polygon by a plane. The resulting is two new polygons, 
one in front of the plane and one behind the plane. 

 
Writing a robust mesh by mesh clipper can be a more problematic task than it seems. As a 
rule of thumb, floating point comparisons should be avoided whenever possible due to 
precision related issues. A problem that is introduced when only performing polygon by 
plane clipping for polygons that actually intersect is that T-junctions may appear. An 
example clipping case when a T-junction appears is illustrated Figure 13.  
 
 

Figure 13 Image of a T-junction. I) The original mesh A and another mesh B used for 
clipping. II) The resulting mesh after the mesh clipping operation. Note that the resulting 
mesh is “opened” along the edge where only one polygon is clipped and the other is not. 

 
T-junctions introduce precision related pixel sized gaps when rendering geometry and they 
will also open the resulting mesh in an unnecessary place which will possibly create more 
silhouette edges and thus unnecessary shadow volumes. Removing the T-junctions can be a 
quite troublesome functionality to code. Especially since floating point comparisons should 
be avoided whenever possible. I use an edge “cache” in my clipping utility which stores 
clipped edges when clipping a mesh by a specific polygon (mainly to ensure only one extra 
vertex was inserted for an edge shared by clipped polygons) this cache is used to insert the 
extra vertex in all none clipped polygons sharing a clipped edge. However, this might not 
be efficient or possible depending on which types of optimizations that are used in the 
clipping code. The structure of a mesh clipper is outlined on a high level in Code 2. 
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clipMeshByMesh(meshA,meshB)  
 for every polygon Pb of meshB 
  for every polygon Pa of meshA 
   if intersects(Pa,Pb) 
    [back,front] = cutPolyByPlane(Pa,Pb.plane) 
    meshA.removePoly(Pa) 
    meshA.addPolys([back,front]) 
 
  RemoveTJunctions(meshA) //T-junctions can be removed per polygon  
 
 // Or here, per mesh which is harder but possibly faster 

Code 2 Very high level pseudo code for mesh clipping 

3.2.3 Ray tracing 
Ray tracing will also be used in the algorithm for visibility testing purposes. Tracing a ray 
for intersections can be used to efficiently check visibility between two points. Even though 
we work with polygons in the end point visibility can be used. Tracing a ray is as simple as 
getting all intersections between a three-dimensional line segment and all the polygons in 
the scene. Given a position P = [Px,Py,Pz] and a direction D = [Dx,Dy,Dz] the ray is given by 
Equation 5 
 

Equation 5 Ray parameterization from a point and vector 

 
For the intersection between a ray and a plane of a polygon (ax+by+cz+d=0) we can solve 
the t parameter as the minimal distance between P and the plane divided by the length of 
the projection of the direction vector D on the normal of the plane. Call the plane normal N 
= [a,b,c] and we can write the following equation (Equation 6). 
 

Equation 6 Intersection between a ray and a plane (can be optimized if normal is 
normalized). 

 
Once the plane intersection parameter value is established the intersection point can be 
computed directly from the ray equation (Equation 5) once the intersection point is found 
it’s a matter of an inside/outside test for the intersection point, this could be done using the 
2-dimensional crossings test that was described in the shadow volume section. 
 
Ray tracing can be sped up by a number of different tweaks where trees are probably the 
most important. Using a hierarchical structure, many triangles may be culled with very little 
effort. One may also traverse the tree in an ordered fashion which gives an opportunity for 
early exits if only the first intersection point is desired.  The implementation made for this 
paper used an oc-tree based ray-tracer with early exit. A brute force ray-tracer was also 
implemented for debugging purposes. 
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3.2.4 Algorithm 
In this pre-computational phase we wish to compute a mesh for every light containing only 
polygons lit by the light. Polygons partially lit should be cut to construct polygons only 
completely lit by the light. The following tree steps sum up the algorithm quite well: 
 

• Compute shadow volume mesh 
• Create a new mesh by cutting a copy of the static geometry mesh by the shadow 

volume mesh 
• Test every polygon in the new mesh for visibility by tracing a single ray to a point 

in the polygon  
 
Given the previously described tools this is a rather simple operation but it can get quite 
slow. Common data structures such as trees or portal/zone partitioning can be used to 
optimize the performance of the algorithm.  
 
The first step, computing a shadow volume mesh, is done using the definition of a 
silhouette edge. Gather a list of silhouette edges by testing all edges in the mesh to the 
silhouette edge conditions. Once this is done the shadow volume mesh can be constructed 
by inserting a quad for every silhouette edge. The quad is defined by the vertices of the 
silhouette edge and the same vertices pushed directly away from the light source in a 
straight line. The vertices must be pushed back far enough to ensure that the pushed back 
edge of the quad does not intersect the bounding sphere of the light-source.  
 
The second step is to cut the world geometry mesh by the constructed shadow volume 
mesh. If a robust mesh clipper (as outlined in previous sections) is already implemented this 
is just a matter of a single function call. 
 
Once the clipping is performed, we will have the same world mesh with a couple of new 
polygons caused by the clipping operations. A very convenient property with these 
polygons are that they are either completely in shadow or completely visible to the light-
source. Visibility can now be tested from any point in the polygons to the light-source this 
is easily done by tracing a ray from the mid-point of every polygon to the light-source 
position if all polygons where an intersection of the ray occur are removed from the mesh 
we will end up with a mesh of lit polygons only. Alternatively one can construct a closed 
shadow volume mesh using the original back and front facing geometry plus the silhouette 
edges and then use this mesh to do an inside/outside test for the mid-point of every polygon 
on this mesh. 
 
Since many 3D engines already have implemented simple polygon clipping and ray tracing 
tools it should not be too hard to implement this algorithm with reasonable performance 
(Performance is not that important in pre-computational phases unless the time required 
gets very high). The pseudo code representation of the outer (conceptual) loop of the 
algorithm is listed in Code 3 
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LitMesh = computeLitPolys(Mesh M,Light L) 
 
// Extract shadow volume polygons from the silhouette edges 
Mesh ShadowVolumes 
 for every edge E in M 
  if L.attenuation(E.minDistance(L)) > TRESHOLD && E.silhouetteEdge(L) 
   ShadowVolumes.addPolygon(MakeShadowVolume(E,L)) 
 
 Mesh MCopy 
 for every polygon P in M 
  if L.attenuation(P.minDistance(L)) > TRESHOLD && P.FrontFacing(L) 
   MCopy.addPolygon(P) 
 
 Mesh LitMesh = MCopy.CutByMesh(ShadowVolumes) 
  
 For every polygon P in LitMesh 
  if M.rayIntersects(Ray(P.MidPoint(),L)) 
   LitMesh.removePolygon(P) 
 Return LitMesh 

Code 3 Pseudo code for the main loop for cutting polygons to fit the completely 
lit/shadowed criteria 

 
The different methods used by this algorithm have already been outlined in previous 
sections, the main optimizations that can be done to this algorithm lie within the mesh by 
mesh cutting utility and the ray-tracer as these parts of the algorithm is O(n2) whereas 
silhouette extraction is only O(n). As previously mentioned the most rewarding 
optimization to these functions is to use a tree structure.  
 
All of the different steps of the algorithm are illustrated in Figure 14 
 
 

Figure 14 The three major operations when cutting the world geometry. I) Shadow volume 
extraction. II) Cutting static geometry by the shadow volume mesh. III) Ray tracing from 
light to polygon to determine visibility (only some of the rays are shown). IV) Lit polygon 
mesh. 

 
The whole polygon cutting algorithm should be performed for every static light in the 
scene. This gives one mesh containing the original static geometry and one mesh for every 
light containing the lit parts of the static geometry for the light. Since the computations 
involved are not fit for real-time applications it’s a good idea to store this information in the 
file used for describing the world geometry. 
 
In this pre-computational phase, it’s also a good idea to produce a potentially visible set for 
the light, this goes hand in hand with optimizations of the algorithm. Since my 
implementation of this algorithm is portal-cell based it’s only natural to use this property to 
speed up the algorithm. This is done by testing the portals for visibility with exactly the 
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same type of cutting algorithm used for the shadows. Simply clip the portal polygon with 
all shadow volumes, the resulting polygons are tested for visibility with using ray-tracing 
and if any test pass the portal is visible. After this optimization of the algorithm, the 
potentially visible set of cells for a light is simply all cells that were processed. The pseudo-
code listed as Code 4 outlines the implementation of the portal-cell based version of this 
algorithm. 
 
 
computeLitPolysRec(Cell C,Light L,ShadowVolumes Sv,OutData Data) 
 
// The cell may have been entered through another portal 
if !Data.PVS.cellExists(C) 
 Data.PVS.addCell(C) 
 
Mesh CellMesh = C.getMesh() 
 
// Compute new shadow volumes and merge with shadow volumes computed for 
previous 
// cells. Also computes a list of lit polygons for this cell, only 
difference in  
// the computeLitPolys function is that it doesn’t compute shadow volumes 
and 
// ray-tracing must be performed recursively through portals or be performed 
on all 
// meshes in “Data” 
Sv.addShadowVolumes( ComputeShadowVolumes(CellMesh,L) ) 
Mesh LitMesh = computeLitPolys( CellMesh, L, Sv ) 
 
// Adds the light mesh if cell isn’t inserted before, otherwise merges it 
with  
// previously inserted for this cell. 
Data.addLitMesh(C,LitMesh) 
 
for every portal P in C 
 if !P.alreadyTraversed() 
  ShadowVolumes isectsPortal = findIntersectingFaces(P,Sv) 
  computeLitPolysRec(P.otherCell(C),L,isectsPortal,Data); 

Code 4 Outline of a recursive portal-cell based implementation of the pre-calculation 
algorithm. It also computes the potentially visible set for every light. 

3.3 Dynamic objects 
Since we’re dealing with real-time graphics, dynamic objects will of course play an 
important role. The dynamic objects should be able to move around in a static world and 
the lighting quality for the dynamic objects should be close to or on par with the lighting for 
static geometry. It’s also important that the shadow casting between static and dynamic 
geometry works as it‘s supposed to or the rendered image will not be credible.  
 
There are two types of shadows from static lights which can be treated in different ways. 
They are the shadows caused by dynamic objects on dynamic/static geometry and the 
shadows caused by static geometry on dynamic objects. The dynamic objects casting 
shadow on dynamic/static geometry is a simple case because it cannot be optimized at all. 
In this case the shadow volumes are dynamic which means that no complex data structures 
or pre-computations can be used. Another issue is that every object in the world including 
the static geometry is a potential shadow receiver. This gives fewer opportunities for 
optimizations of the shadow volume algorithm. 
 
The case where static geometry casts shadow on dynamic geometry only includes static 
shadow volumes which mean that tree-structures may be used to accelerate algorithms. 
Also, the shadow receivers are only the dynamic objects since the pre-computational step 
already ensures shadows are correct on the static geometry. Since the dynamic geometry is 
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assumed to be relatively small in relation to the static geometry we can use the bounding 
volumes of dynamic objects to further improve common shadow volume optimizations 
such as scissor boxes and culling. Figure 15 shows a typical case with a small dynamic 
object positioned in a static world with several lights. The figure also displays overdraw 
factor for all shadow volumes and after all optimizations implemented in this thesis project, 
described in detail later in this section. In the top row of the figure it’s apparent that the 
projection of the dynamic object on the screen is very small, this results in a small scissor 
box used to clip the static shadow volumes and therefore the overdraw factor is very low 
except for in the small box around the sphere. The second row of figures shows another 
case where the projection of the sphere on the screen is large. Since the resulting scissor 
box will be large most of the optimizations will have to be done by culling shadow volume 
polygons. Thankfully, under the right circumstances this is a good scenario for shadow 
volume culling and as can be seen in the figure, many of the shadow volume polygons in 
the background have successfully been culled. 
 
 

 
Figure 15 Left: Rendered image with a dynamic object (the sphere). Mid: Shadow volume 
complexity visualized through the overdraw factor. Right: Near optimal overdraw under the 
assumption that all shadows on static geometry is pre-computed (except for the sphere 
shadows) 

3.3.1 Shadows cast by static geometry on dynamic geometry 
As stated before this is the most important shadowing case, optimizations here will have a 
direct outcome on the performance of the engine at least fill-rate wise. The first and most 
obvious approach is to render the complete shadow volume mesh for the static geometry to 
set up the stencil buffer. However, this is also the worst approach from a fill-rate 
perspective although it is the best if we consider CPU utilization. Since all shadow volume 
polygons will be rendered it efficiently cancels out all optimizations that was done during 
the pre-computational phase. 
 
What can be done is to use simple information about the dynamic objects, such as bounding 
volumes, to try to prevent as many shadow volume polygons and pixels as possible from 
actually being rendered. The more rendering that can be prevented the more performance 
gained from the pre-computational phase can be kept during run time. 
 
To achieve optimal performance there are several factors that must be taken into account. 
There are three conflicting factors, fill-rate utilization, geometry utilization and CPU 
utilization. During the rendering process it’s possible to make the decision to “merge” 
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several dynamic objects and treat them as one single entity as far as shadows is concerned. 
Doing this will result in lower geometry and CPU utilization but also in a larger entity 
which means less spatial information and also less opportunities to cull shadow volume 
pixels that does not contribute to shadows on the dynamic objects.  
 
Common shadow volume optimizations for hardware (Everitt, 2003 and Kilgard 2003) 
include using scissor boxes and view frustum culling of the shadow volumes to render. 
Since the shadows only need to be correct on the dynamic objects we can use the 
information about all objects in every such merged group to further narrow the scissor box 
and the frustum used for culling. It’s important to understand how merging of different 
objects will affect the resulting scissor box and how the culling operations. This is 
described in the following sections 

3.3.1.1 Scissor boxes 
All modern hardware is capable of clipping polygons against a view frustum to make sure 
only pixels that are actually visible are processed. The clipping can be setup to force the 
card to consider only a part of the screen as a visible surface, this operation is called 
scissoring and is often used to try to minimize the number of pixels that needs to be 
processed when rendering shadow volumes.  
 
The most common optimization is to compute a screen-space bounding rectangle for every 
visible light in a scene and use that to discard all the pixels that cannot be affected by the 
light both when it comes to shadow volume rendering and light rendering. Since the static 
shadows are already computed for the static geometry it’s only necessary that the light and 
shadow rendering is correct on the pixels occupied by the dynamic objects. This means that 
the bounding box of a dynamic object can be projected to a bounding rectangle on the 
screen and then used as well as the bounding rectangle of the light to compute a new 
bounding rectangle of the pixels that needs correct rendering for that particular object. The 
resulting rectangle will be the intersection of the light and object rectangles. 
 
When more than one dynamic object is visible on screen the bounding rectangle problem 
gets considerably more complicated. If two bounding rectangles exist for two different 
objects we can either choose to merge them to a single bounding rectangle which is the 
union of the two original rectangles. This will increase the area of the boxes and therefore 
increase fill-rate usage. On the other hand, if the two bounding boxes are not merged 
everything will be rendered twice which means a higher amount of polygons sent to the 
graphics card. The bounding rectangles for the object may also overlap which means that if 
they are not merged the area shared by both rectangles will be rendered twice. This may not 
sound so bad but the double stencil buffer rendering in the shared area will cancel each 
other out or otherwise produce artifacts, the stencil buffer values in the shared area must be 
cleared which unfortunately also clears out possible values from a previous pass where 
dynamic object shadowing dynamic or static geometry is computed, also using the stencil 
buffer. An alternative way to clear the effect of shadow volumes rendered if using the invert 
stencil buffer operations is to render the shadow volumes once again which means that the 
geometry must be rendered three times. The differences fill-rate wise and geometry wise 
between two overlapping boxes is illustrated in Figure 16. 
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Figure 16 Two rectangles approximating the area of two dynamic objects in screen space.  
Shows shadow volume rendering based on the rectangles individually and a combined box 
for both objects. I) Original bounding rectangles for the two objects. II) Shadow volume 
rendering process if objects are treated individually. III) Objects treated as one entity for 
the shadowing process. 

 

3.3.1.2 Frustum culling 
The choice of shadow volume implementation has great impact on the frustum culling 
optimizations that can be made. The shadow volumes algorithm can be implemented in two 
ways, depth pass and depth fail, which are both described in the background section. As the 
name suggests one of the implementations performs stencil buffer operations when the 
depth test passes and the other implementation performs stencil buffer operations when the 
depth test fails, this is illustrated in Figure 5 and Figure 7.  
 
Take the case of a single dynamic object, in the previous section the bounding rectangle of 
an object was used to compute a scissor box. Another common shadow volume 
optimization is to properly cull shadow volume meshes by the view frustum to ensure they 
are visible before rendering them. Culling is often done on a per object basis but since 
shadow volumes are static in this case a tree data structure can be used and therefore it is 
reasonable to assume that polygon accurate culling may be performed. Since our only 
interest is correct shadowing on the pixels occupied by dynamic objects we could compute 
a frustum based on the bounding rectangle used for scissoring and an approximate nearest 
or furthest point on the dynamic object. The frustum creation is dependant on the shadow 
volume algorithm chosen. If depth pass is chosen the frustum will be defined by the 
bounding rectangle and have the furthest point on the object as a far clipping plane because 
all shadow volume polygons completely behind the object will only fail the depth test and 
therefore not contribute to the final stencil buffer value. The depth fail implementation on 
the other hand will use the nearest point on the object as a near clipping plane and use no 
far clipping plane at all. In Figure 17 a simple fictive scene is shown as well as the culling 
possibilities using the depth pass and the depth fail shadow volume algorithms. There’s a 
consistent relation between the size of an object onscreen (intersection with the near camera 
plane in the figure) and the number of shadow volumes that can be culled away.  
 
The depth fail technique has the most extreme cases. It’s possible to cull many shadow 
volumes when the projected image of an object is small but when the projected image 
grows larger the number of shadow volumes that can be culled shrink drastically. A very 
good best case but also a very bad worst case where we’ll end up with a large scissor 
rectangle and a large overdraw. 
  

Must be ”cleared”, shadow volumes rendered 3 times 

3 times geometry 1 time geometry 

I II III
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The depth pass algorithm on the other hand has the complete opposite behavior. When the 
projected image of an object shrinks, the number of shadow volumes between the camera 
and object increase and when the projected image grows, the number of shadow volumes 
decrease. This gives us a constant performance rather than the two extreme cases. 
 
 

Figure 17 Room with many shadow volumes (Gray dashed lines) where the sphere 
represents a dynamic object. On second and third row shadow volumes for depth pass 
respectively depth fail stencil shadow algorithms has been culled. 

 
Unfortunately this adds another dimension to the previous problem of determining whether 
to merge the shadow and light rendering of two objects or not. Now we also have the 
number of shadow volumes that can be culled to take into consideration, if we perform a 
merge we must of course base the frustum construction on the worst case which would be 
the nearest point for a depth fail shadow volume implementation and the furthest point 
object for a depth pass implementation. In an extreme case this could mean that it would be 
better not to merge the light and shadow rendering of two objects even if one is completely 
covered by the other due to the number of shadow volumes that cannot be culled after the 
merge. Take for instance Figure 17, if we assume that depth pass is used and the objects in 
the leftmost and rightmost images exists in the same world it might be favorable not to 
merge the light and shadow rendering since the object in the leftmost image ensures no 
shadow volumes can be culled and the object in the rightmost image has a large bounding 
rectangle.  
 
It can also be noted that the computed largest and smallest distances for the merged objects 
can be used with the GeForce FX depth bounds testing capabilities to accelerate the shadow 
volume rendering further. The depth bounds test rapidly rejects pixels if the current value in 
the depth buffer is not within the defined depth bounds range. 

3.3.1.3 Putting it together – Merging heuristics  
Computing the optimal merge of objects for the shadowing pass from a fill-rate point of 
view is a rather complex operation which is unlikely to yield high performance since it 
must be carried out completely on the CPU and will require lots of frustum culling 
operations. It’s as important not to underestimate the ability of the graphics card just as well 

Depth pass 

Depth fail 
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as not overestimate it. Therefore I used a simple heuristic to perform the merging, namely 
to merge all dynamic objects affected by the current light. This heuristic doesn’t result in 
minimal overdraw in all cases, but it’s fast and easy to implement and also assure no 
“clearing” needs to be done since there will be no overlapping scissor boxes. This very 
simple heuristic still works quite well in the case it was meant for, namely when visibility 
from light sources is limited due to dense static geometry and relatively small light 
radiuses. The probability that many objects onscreen are affected by the same light source 
is relatively low and the dimensions of the light will limit the maximum dimensions of the 
frustum used for shadow volume culling. 

3.3.2 A robust depth pass stencil buffer implementation 
The reason a depth pass implementation of shadow volumes is desirable is that it is usually 
less fill-rate intense than the depth fail implementation. It also removes the need for closing 
the shadow volume mesh and as seen in the previous section it allows much more 
aggressive frustum culling in our case. The problem lies in making a robust depth pass 
implementation that doesn’t suffer from artifacts when the camera moves in and out of 
shadow. To do this we must look into how shadow volumes can be extracted and how the 
depth pass algorithm can be implemented. An unfortunate problem is that the depth pass 
implementation presented here will not work on ATI hardware due to lack of support for 
removing the near clipping plane. The alternatives lie in falling back on the depth fail 
implementation instead or setting the near clipping plane close enough to the view point to 
make the camera approximately point sized, this have a large negative effect on the depth 
buffer precision. 

3.3.2.1 Shadow volume meshes constructed from the static 
geometry 

There are several different approaches that can be taken to compute shadow volumes for the 
static geometry to use for run-time purposes. One can for instance use the original geometry 
to compute a shadow volume mesh for every light in a common fashion, a problem with 
this is that we won’t use the visibility information extracted for every light in the pre-
computational phase and may therefore end up with an unnecessary amount of shadow 
volume polygons which may result in higher fill-rate usage.  
 
Another simple approach is to use the list of visible polygons for a light as a means to 
compute the shadow volumes. This can easily be done by inserting shadow volume quads 
in edges shared only by one polygon in the visible polygons list, if a closed shadow volume 
mesh is desired this can be achieved using the original geometry visible to the light and the 
same geometry pushed away from the light. If correct winding order is desired the polygons 
pushed away from the light must have the reversed vertex order of the original geometry. A 
nice property of the shadow volume meshes generated this way is that it will not self-
intersect which makes it possible to use a simpler version of the stencil buffer algorithm 
where the stencil buffer values are inverted for both front and back facing polygons. The 
shadow rendering can be simplified a bit since the stencil buffer operations are identical. It 
doesn’t buy anything in fill-rate performance and can be achieved for modern hardware 
which supports different stencil buffer operations on front and back facing polygons but 
this shadow volume computation method ensure that no double shadowing occurs. 
The differences between the two approaches for shadow volume computation are illustrated 
in Figure 18. 
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Figure 18 Two different kinds of shadow volume extraction based on a directional light 
source. I) Shows the original geometry mesh II) The common shadow volume extraction 
algorithm based on the geometry in I, the resulting shadow volume mesh is self intersecting. 
III) Geometry visible to the light source (equivalent to the “light mesh”). IV) Shadow 
volumes extracted from the mesh in III, this shadow volume mesh consists of several none 
intersecting segments 

 

3.3.2.2 Implementation 
A robust implementation of the depth pass shadow volume algorithm (Heidmann, 1991) 
can prove to be a quite challenging task. But with the depth clamping capabilities of some 
cards it is possible to remove the near clipping plane at the expense of assigning the same 
depth value for pixels that lie between the near clipping plane and the viewer. Since the 
scene is still rendered using normal clipping the depth value anomalies doesn’t have any 
effect on the shadow volume rendering. 
 
Assume that we use the method in the previous section which uses the list of lit polygons 
for a light to compute the shadow volume mesh. In this case the stencil buffer shadow 
volume algorithm can be performed using bitwise invert operations rather than 
increasing/decreasing a value. Figure 5 shows that if the near clipping plane is removed the 
depth pass algorithm will work unless the viewer is inside a shadow volume mesh, if the 
viewer is inside a shadow volume mesh the stencil buffer must be initialized to the correct 
value before the shadow volumes are rendered. With a common self intersecting shadow 
volume mesh or a shadow volume mesh with double shadowing the correct value can be 
quite hard to find and conflicts with possible optimizations through removing shadow 
volume polygons outside the radius of impact for a light. Since the method used for shadow 
volume extraction assured that no double shadowing or intersection of shadow volume 
meshes occurred, the problem is much simpler. If the viewer is positioned in a shadow 
volume mesh the stencil buffer can simply be inverted to get the correct value, the 
viewpoint is in shadow if a ray from the viewpoint to the light intersects any of the 
polygons in the mesh of lit polygons. 

3.3.3 Summary and alternatives 
In the previous sections we’ve examined a possible approach to optimize the important case 
where static geometry casts shadow on dynamic geometry. The approach was based on 

L L LL
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common strategies for shadow volume optimizations that were refined using the bounding 
volumes of the dynamic objects to further lower the load on the graphics hardware. The 
problem whether to merge dynamic objects and treat those as one entity as far as shadow 
optimizations are concerned plays a major part and is unfortunately also a hardware 
dependant problem. The best blend lies in a simple heuristic that grossly minimize the fill-
rate utilization without putting too much work on the CPU. 
 
It’s important to note that the usage of the optimizations described herein does not override 
the use of common optimizations in the graphics engine. An example of this is to test if an 
object is inside the radius of a light before performing any lighting or shadowing operations 
and of course to test if the object is visible or not. Another possibility is to use the occlusion 
culling functionality that is more or less standard even on older graphic hardware. This 
occlusion culling doesn’t buy you anything in terms of fill rate performance in most cases 
since the graphics hardware needs to render all pixels of an object to determine if it’s 
visible or not. However, in our case the test can be performed when rendering the ambient 
or depth buffer setup pass for almost no extra cost at all. If an object is occluded it can be 
completely discarded for light rendering and the merging process described in this section 
which gives a fair speedup. Note that the shadow volume of an object can be visible even if 
the object is not. 
 
There are also other several alternative approaches that can be done but haven’t been tested 
so far. These include 
 

• Shadow volume construction:  In the pre-computational pass when shadow 
volume polygons are used to cut the static geometry to produce lit polygons the 
reverse process can be done as well. Cut the shadow volume polygons with the 
world geometry and remove all polygons that are not visible from the light source 
using ray tracing. The result is a shadow volume mesh with higher polygon and 
vertex count but it ensures that the shadow volumes polygons have minimal area. 
Closing the shadow volume mesh would be a definite problem but it would not be 
necessary if the depth pass implementation is used.  

• Other heuristics: More complicated heuristics could be used. One could for 
instance assume that the shadow volume polygons are approximately uniformly 
distributed. In a first step objects with overlapping bounding rectangles would be 
merged to make sure no “clearing” issues needs to be dealt with. Secondly further 
merging could be done based on some heuristic like: frustum volume after merge / 
frustum volumes before merge < constant. A problem is that the constant would be 
machine dependant since more frustums means more culling and therefore a higher 
CPU utilization while the volume of the frustums affect the utilization of the 
graphics hardware. 

• Shadow maps: It’s possible to make a different approach altogether and use 
shadow maps instead of shadow volumes for the case where static geometry casts 
shadow on dynamic geometry. If the target hardware is good enough to handle 
things such as cube shadow maps this is definitely something that should be 
considered. Shadow maps suffers from more aliasing problems than stencil buffer 
based shadows and the static shadow algorithm described in here, but may still be 
enough for the dynamic objects. Alternatively the algorithm presented in (Sen 
2003) could be used to give more satisfactory results. The strong point with using 
shadow maps is that they can be pre-computed and stored which means that on 
run-time they only need to be projected on the dynamic objects and used to render 
the lighting. This only gives a very slight overhead to the shading and doesn’t 
introduce any of the problems in the other approach based on shadow volumes, the 
price to pay is higher memory overhead and possible aliasing problems. Using 
shadow maps to solve this case could be combined with either using shadow maps 
for everything but the pre-computed static shadows or using shadow maps 
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exclusively for the static geometry casting shadow on dynamic geometry case 
while using stencil buffer shadows for the other cases. 

3.4 Fake soft shadows 
The algorithm so far can work in combination with stencil shadow volumes and produce the 
same type of hard shadows as the shadow volume algorithm. In real life light-sources are 
never a single point entity but rather a volume of glowing matter, since it’s a volume it’s 
possible that a point is partially visible to the light source which gives shadows a smooth 
penumbra where the light fades out.  Figure 19 illustrates that even with a rough 
approximation of the penumbra soft shadows are more realistic than its counterpart. 

Figure 19 Hard vs. fake soft shadows 
 

The title of this section quite nicely sums up what we’re trying to do. Rather than a 
physically correct representation of soft shadows the goal is to come up with something 
that’s visually credible yet simple enough to run with good performance. For the 
performance we need to consider the extra amount of polygons that the cutting phase will 
add and the accuracy with which we will compute the visibility approximate for every pixel 
in the penumbra regions on run time. The goal is to perform the same kind of cutting of the 
world geometry as the previous algorithm but this time resulting polygons should be either 
lit, shadowed or in a penumbra region. This can be done using a more complex mesh than 
the shadow volume mesh for cutting. This mesh would consist of penumbra wedges (T. 
Akenine-Möller, 2002), a geometrical primitive which completely encloses the volume of a 
penumbra caused by a silhouette edge. The wedge is essentially built from two quads which 
are constructed from the silhouette edge and the light’s max/min visibility positions and 
two triangles that tie both quads together, closing the wedge. All points contained in the 
penumbra wedge is considered to lie in the shadow region, since this algorithm operates on 
polygons rather than a per pixel level it’s desirable that the penumbra wedges fit together to 
remove unnecessary polygon cutting. Figure 20 shows a penumbra wedge constructed 
using a volumetric light source and a silhouette edge. 
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Figure 20 Penumbra wedges. Inside the volume of a penumbra wedge all points are 
considered to lie in the shadow penumbra.  The lighting intensity of a pixel in the wedge is 
proportional to how much of the light is visible from that point. In this project this was 
approximated using linear interpolation, the intensity function is shown below the figure. 

 
 
The algorithm I use for penumbra wedge construction is very simple and also probably a 
rough approximation but on my test cases it looks relatively good and overall cause a rather 
low amount of polygon splits. First of all, silhouette edges are still computed from a light’s 
position which is a single point rather than a volume. Given the light radius (the radius of 
actual glowing matter) and a vertex on a silhouette edge we wish to compute points in the 
light’s volume that represent minimal/maximal visibility and use these positions for 
pushing back that vertex when creating the quads for wedges. The points of 
minimal/maximal visibility can be approximated using the pseudo normal of a vertex. The 
max position is roughly in the direction of the pseudo normal of a vertex while the min 
position is in the opposite direction. Note that using this method, a quad constructed by a 
silhouette edge and the vertices pushed back for min or max visibility position, may not be 
planar. In the test scenes used this was not a large issue and assuming planar quads worked 
very well, but if a problem would arise this could be worked around simply using two 
triangles rather than a single quad although it would result in more polygon splits.  
 
Once the wedges have been constructed the world geometry should be cut using them. 
From the resulting mesh, polygons completely in shadow are removed. Since the light is 
now a sphere rather than a point, ray-tracing is now less efficient. It is a good idea to 
maintain a mesh based on the polygons in the wedge mesh representing maximum visibility 
and use it to do an inside outside test with the crossings test. The mesh must be closed in 
order to make the test work. 
 
For later use, light-source visibility estimates are computed for every vertex. I computed 
these estimates using the penumbra wedges by finding the wedge containing a vertex and 
using linear interpolation based on the distances to the polygons representing max/min 
visibility from the light. If a point lies within more than one wedge the smallest visibility 
estimate is chosen. All vertices not contained in a wedge are set to full visibility.  
 
Quadratic interpolation would intuitively seem more accurate than linear since the intensity 
in a point is proportional to the area of the light visible from the point. However my tests 
did not show any significant improvement in visual quality when using quadratic 
interpolation, linear interpolation was chosen since it’s cheaper than quadratic. 
 

Light intensity 
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In practice it may be convenient to combine pre-computed static soft shadows with hard 
shadows on dynamic objects. Although the difference in shading may clash there are 
currently plenty of performance related reasons for doing so. If this is the case it might be 
good to compute wedges based on the minimum visibility and the point light visibility 
rather than the min and max visibilities. Even though this can cause recognizable anomalies 
in some cases it will ensure that the dynamic shadows “fits” in nicely in the scene. For 
instance imagine a common doorway. If the door is considered a dynamic object while the 
wall and doorframe is static, a mix of soft and hard shadows can make a closed door “leak” 
light. However if the wedges are constructed as previously mentioned, the maximum 
visibility will be equal to the shadow volume mesh of the dynamic object which will 
because the shadows to fit together. This is how my implementation of fake soft shadows 
worked. The shadows generated are far from physically correct but in most cases when 
textures is added the result looks quite realistic, especially when compared to hard shadows. 
In Figure 21 fake soft shadows are compared soft shadows, using the mean of ray tracing to 
random points on the light, rendered using popular model and render software. Due to the 
implementation the penumbras on the fake shadows will be half the size of the other 
penumbras. Note that this was to allow hard and soft shadows to blend well together, if an 
engine is targeted for soft shadows only it should be possible to use full penumbras. The 
shading is also slightly different in the two images, it’s probably related to the attenuation 
and attenuation approximations used in the pixel shaders. 
 
 

 
Figure 21 Comparison between the fake soft shadows and real soft shadows rendered with 
a popular modeling and rendering program. Top left: hard shadows. Top right: Fake soft 
shadows. Bottom left: Accurate soft shadows  
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4 Evaluation 

It’s hard to perform benchmarks comparing the method described in this paper, but for 
testing purposes I also implemented an optimized implementation of dynamic shadows. 
Furthermore I used a high resolution and low polygon meshes for benchmarking to try to 
make up for the performance loss introduced by real time shadow volume generation in the 
dynamic algorithm that could have been eliminated through using a shadow cache.  
 
For benchmarking, three different setups were tested: No shadows, dynamic volume 
shadows and finally an implementation of the algorithm described in this paper. This 
implementation features fake soft shadows for the static shadows and (only) hard, per pixel 
shadows for dynamic objects. The benchmarking was performed on an AMD XP 2000+ 
(1666 MHz) with 512 Mb SDRAM and a GeForce FX 5200 (Mainstream/Low end card). 
Screenshots of the different test images can be found in Figure 22. 
 
 

  
Figure 22 Screen shot of the test scene with 4 lights (textures/bump maps are not 
displayed). The pictures show the test scene with no shadows, hard dynamic shadows and 
soft static shadows. 

 
I also decided to perform some tests using a pixel shader which utilizes the flexibility of 
programming languages for modern hardware (often known as ps2.0). This allows the 
shading to be collapsed into a single pass and therefore eliminates repetitive stencil buffer 
testing for the same pixel favoring the dynamic implementation somewhat. Noticeable is 
that these shaders performed very poorly next to the old shaders, they were outperformed 
by over 100% but I believe this difference is lower with high end hardware. 
 
The tests were performed on a simple scene with a varying number of dynamic objects and 
static lights. This was to try to measure the performance drop of the static method as the 
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number of dynamic objects in a scene increase. Note that no lights were dynamic in the 
tests since these cannot be optimized and must be implemented using the common 
algorithm for dynamic lighting and shadows at any rate.  
 
The results, shown in Table 2, indicate that the algorithm presented outperforms not only a 
common implementation of dynamic shadows but also an implementation with per pixel 
lighting only. The reason for this is that all shadowed areas that can be swiftly skipped save 
more hardware resources than the rendering of the necessary shadow volumes. The results 
also show lower performance gains with DirectX ps2.0 or equivalent shaders although the 
difference is only noticeable in the test with one light and two dynamic objects 
 
 

Benchmark settings 
Only lighting 
(FPS) 

Dynamic 
shadows (FPS) 

Optimized Static 
shadows (FPS) 

1 Light, 2 dynamic objects 30.2 21.6 32.2 
4 Lights, 2 dynamic objects 14.0 10.1 16.1 
1 Light, 0 dynamic objects 34.4 25.4 39.2 
4 Lights, 0 dynamic objects 16.1 11.9 20.2 
1 Light, 2 dynamic objects ps2 13.3 11.4 14.8 
4 Light, 2 dynamic objects ps2 5.5 5.0 7.3 
Avg. relative performance 1.29 1.0 1.51 

Table 2 Performance measurements for the different algorithms implemented. The 
performance is measured in FPS (Frames per second)  

 
All in all, the performance gain is almost constant around 50% although it may differ based 
on the scene geometry. The strengths of static shadows lie specifically in scenes with 
shadow details that will rarely affect dynamic objects.  The shadow pre calculation phase is 
also an excellent opportunity to produce a potentially visible set for every light which can 
further help the culling of shadow volumes, this can further help to cull objects that is 
within the falloff radius of a light but completely in shadow.  
It may seem odd that the static shadows often outperform the test run with lighting only. 
This is because the lighting equations are very heavy on the per-pixel resources of a card. 
The test using static shadows doesn’t need to perform the lighting computations in 
shadowed areas for a specific light. This is most apparent in the lower right corner of the 
pictures in Figure 22, in the lighting only picture notice the bright specular spot caused by 
the light in the distant room. The gain in performance due to static shadowing was larger 
than the loss from rendering dynamic shadows for the dynamic objects in the scene.  
 
Another aspect that may lower performance gain is the high end cards that have currently 
appeared on the market, specifically GeForce FX 5900 and Radeon 9700/9800 models. 
These cards are more or less optimized to maximize shadow volume performance being 
able to push vast amounts of colored or single textured fragments per second. I still believe 
that the optimized algorithm will outperform the common algorithm with a significant 
factor. Especially when used in combination with more complex soft shadow methods (U. 
Andersson, 2003), where even more opportunities for optimization may arise. The 
technique used for these soft shadows are more complex than the simple method used in 
this paper, it breaks down to the following steps: 
 

1. Render a pass of the geometry where every fragments position in world-space is 
written to a floating point texture 

2. Render a pass with the common shadow volume algorithm and initialize shadowed 
fragments to 0 and lit to 1. This pass serves as a crude approximation and 
initializes shadow fragments to “black” but it also causes a problem since some 
fragments in the penumbra wedge will be initialized to 0 and others to 1. One can 
say that the shadow volume polygon divides the penumbra wedge in two halves 
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3. Create shadow penumbra wedges that completely enclose the penumbra of the 
shadow. A good property with this algorithm is that they may overlap/intersect 
freely. 

4. Render penumbra wedges with a rather complex fragment shader that computes 
the area of the light source that is “covered” by the silhouette edge used to 
generate the wedge. This fragment shader is based on geometrical properties of the 
light, for instance for a spherical light a cone based on the fragment’s world-space 
position and the light sphere is used in combination with the edge to compute a 
coverage factor. What are computed in practice are the coverage factor for one of 
the halves of the penumbra wedge and the visibility factor for the other half. These 
are stored in two textures and then subtracted respectively added to the texture that 
was generated during the common shadow volume pass. 

5. Render lighting with the visibility estimate texture generated in the last step. 
 
I believe that using the technique described herein to cut the scene with penumbra wedges 
generated and then through some technique remove all polygons completely in shadow 
would give great possibilities for optimization of the algorithm described above.  
 
If only looking at static geometry and shadows one could remove the need for 
subtractive/additive contribution since the shadowed polygons are already removed. The 
world-space position texture map would not be needed for static shadows since polygons in 
the penumbra could be sent rather than the polygons enclosing the penumbra. This also has 
the effect that the world-space position of a fragment can be linearly interpolated over the 
polygon rather than looked up from a texture map which may very well make it possible to 
move out a large part of the complex fragment shader to a vertex shader and interpolate it 
linearly. This part of the fragment shader is devoted to creating a translation matrix to 
translate the penumbra causing edge’s coordinates into a local light-position coordinate 
system. If the world-space position can be interpolated linearly it sounds reasonable that the 
edge could be translated in a vertex program and then using linear interpolation to get the 
edge’s coordinates to the fragment program. 
 
Even though the soft shadow method described in this paper is a rather simple 
approximation by comparison there are still plenty of reasons to use it at least for the static 
geometry. First of all it’s inferiority in quality is not as easy to notice as one might think. 
When diffuse-, bump- and gloss-maps are mixed in a lighting pass there’s enough noise that 
it’s not easy to notice the lower quality. Also it requires no advanced programming features 
what so ever to work since the only thing added is a linear interpolation of colors. Still, it 
should be used with care because when the radius of lights increase, the errors introduced 
by interpolation and approximation are bound to be more and more obvious. 
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Vlachos et al (2003) presents a pre-computational algorithm for shadow optimizations 
called composite shadows. This presentation is based on the same original concept as the 
pre computational algorithm in this thesis report where static shadows are optimized 
through a pre-computational cutting phase, although they have been developed 
independently. The article is based on one of the technology demos used to promote ATI’s 
Radeon 9700 PRO series graphic cards. 
 
The composite shadows article also suggests a pre-computational pass to cut static shadows 
out of the geometry thereby creating lists of polygons either completely lit or completely in 
shadow. However, this approach is much more aggressively optimized and contains more 
approximations. First the static lighting is rendered completely, after this the shadow caused 
by dynamic geometry is removed from the image to remove lighting in areas shadowed by 
dynamic geometry. To avoid removing too much light from areas where the angle of impact 
or distance from the light affects the lighting intensity, a darkening value is computed for 
every pixel when the lighting is rendered. If the pixel is multiplied by the darkening value 
only the ambient lighting term should be left. The shadow volumes of dynamic objects are 
then rendered to set up the stencil buffer and for every pixel that lie in shadow, the current 
lighting intensity is multiplied by the previously computed darkening value. This will result 
in incorrect shadowing where lights overlap since the lighting will always be forced to the 
ambient level in shadowed areas even though the point may be shadowed from one lights 
point of view but lit by all the other lights. The presentation also totally ignores shadows on 
dynamic geometry cast by static geometry. In all the test cases for this algorithm this would 
have a severe impact on the realism of the rendered images. It is also the single most 
important performance limiting factor of our approach. 
 
All in all, the approximations are fair for demo style scenes with pre-determined animation 
paths, small dynamic objects that don’t need to receive shadows from static geometry and 
light positions that are strategically positioned to not show the possible artifacts. For a game 
engine more freedom is generally desired and although scenes as the one shown in Figure 
23 can be designed without revealing any of the weaknesses of the algorithm there’s bound 
to be cases it shows in an interactive program. 
 
 

 
Figure 23 This figure is a screenshot from a tech demo by ATI showing a similar 
optimization for static shadows. All dynamic objects are kept at a small size, traveling in 
paths where they won’t enter shadow cast by static geometry. 
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Chin et al (1989) presents optimizations for shadow volumes using BSP Trees and cutting 
all geometry by shadow volumes to gradually remove resulting polygons that lie in shadow. 
Unlike traditional implementations, using shadow volumes on a per pixel basis in 
combination with a depth buffer, this algorithm operates on the original polygonal 
geometry using a BSP tree to speed up polygon clipping and shadow determinations. 
 
Even though the article itself is outdated due to the high performance of graphics hardware 
and the possibility to implement shadow volumes on a per pixel basis using the stencil 
buffer, the concept is the same as in the pre-computation step that creates light meshes. In 
fact, this algorithm could be used in the pre-computational phase to compute the lists of 
completely lit polygons. It’s probably very fast but has the drawback of producing several 
extra polygons since it’s working on planes rather than polygons. This will cause slower 
rendering overall at runtime and of course a larger memory footprint. 
 
Everitt et al (2003) and Kilgard et al (2003) discuss general optimization strategies for 
shadow volumes on modern graphics hardware. This includes scissor boxes to limit fill-rate 
usage, the depth range extension of GeForce GX 5900, view frustum clipping, shadow 
volume generation and similar.  These optimizations play a central role of the algorithm 
presented in this report. 
 
In the static geometry casting shadows on dynamic geometry case of the algorithm, much 
more spatial information than usual is available. The shadows only need to be correct on the 
pixels occupied by dynamic objects which mean that the objects screen-space bounding 
rectangles and placement can be taken into consideration both for the scissor box 
computations and the usage of the depth range extensions. Furthermore the view frustums 
to use for shadow culling can be optimized to only contain the dynamic objects rather than 
the whole visible volume. 
 
Akenine-Möller et al (2002) and Assarsson et al (2003) presents two algorithms for 
rendering soft shadows. The approach used resembles most to the first of the two reports as 
a simple model based on linear interpolation is used rather than the more computationally 
intense but better approximation in the second paper.  
 
A base concept taken from these reports is the penumbra wedge primitive that is used to 
enclose the volume that lies in the shadow penumbra. The penumbra construction itself 
differs quite much from the method presented in the papers. These methods are originally 
meant for per pixel computations whereas my method operates on polygon geometry. The 
method presented in the second paper only ensures that the penumbra region lies 
somewhere inside the penumbra wedge, it produce lots of overlapping wedges which will 
result in many splits and higher polygon counts. Since the needs are different for a 
geometry based algorithm and a per pixel algorithm I chose to use a simplified version of 
penumbra wedge computation which is aimed more at getting a penumbra region than 
making sure it’s physically correct. 

 
Kilgard et al (2001) presents some information about stencil buffer based shadow volumes 
using the invert operation rather than the increment and decrement operations. The 
algorithm based on bitwise inversion of the stencil buffer values only work for none 
overlapping and intersecting shadow volume meshes, however we can create these types of 
shadow volume meshes using the pre-computed lists of lit polygons. This simplifies the 
case of static geometry casting shadow on dynamic geometry and the implementation of a 
depth pass shadow volume algorithm. 
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6 Conclusion 

To summarize, let’s look at the advantages and disadvantages of the optimized algorithm 
for static lighting and shadowing. 
 
Advantages 

• Less fragments processed when rendering light  
• Less fragments processed when rendering shadow volumes 
• Static fake soft shadows for virtually no extra cost on a per-pixel basis 
• Fake soft shadows helps to hide polygonal appearance of shadows 
• The geometry throughput may be lower if more polygons lie in shadow than the 

amount of new polygons created through cutting geometry by shadow volumes. 
• Potentially visible set helps to further lower fill rate usage (points 1,2) 

 
Disadvantages 

• Geometry throughput will in most cases be higher due to the polygons created 
when cutting the geometry by the shadow volumes. Especially for soft shadows 
due to the more complex penumbra wedges used for cutting 

• CPU utilization may be higher due to the process of culling shadow volumes.  
• Higher memory usage. Both client side (CPU) and server side (GFX Hardware). 

One light mesh per light or at least the extra vertices and faces introduced through 
clipping must be stored. 

 
It’s possible to view this technique as a way of trading a lower fill rate for a higher 
geometry throughput. Especially when using soft shadows the extra amount of splits will 
cause many new polygons but it’s also at possible that the amount of new polygons inserted 
when clipping is lower than the amount of polygons not visible to the light but in the lights 
radius of influence. In this case the technique will lead to a lowered geometry complexity as 
well. In the demo scene used, the number of triangles sent to the graphics hardware was 
indeed lower when using static fake soft shadows than the traditional shadow volume 
algorithm. This was mainly due to many shadow volume polygons that could be saved 
using culling and non-capped shadow volume meshes. 
 
In most engines static geometry is already of a considerably lower tessellation than 
dynamic meshes. The reason for this is that physics and collision detecting must often be 
performed on a per-polygon basis rather than on a bounding volume basis as can be done 
for dynamic meshes. In this case the increased geometry throughput is usually insignificant 
since the added geometry need not be used for physics or collision purposes but rendering 
only. 
 
The increased CPU utilization of the technique is rather low. The extra power is used in the 
phase where dynamic objects are merged and shadow volumes are culled based on a 
frustum enclosing the dynamic objects. This process can be optimized using a suitable tree 
when performing shadow volume culling. Shadow volume meshes based on silhouette 
edges only (no capping geometry) also tend to have a lower complexity than the original 
mesh.  
 
Last but not least is the memory issue. There’s indeed a higher memory footprint than using 
a completely dynamic shadow volume algorithm. This is generally the case of structural 
optimizations, that performance is traded for memory (additional computed information). 
There are several optimizations that can be done to reduce the memory footprint and when 
compared to using the popular shadow and lighting cache optimization the difference 
shouldn’t really be big. 
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In my opinion the disadvantages are a fair price to pay. Even though the evaluation was 
only performed on one single type of hardware setup and a rather limited set of different 
situations, the performance gain was apparent in all the tests performed. The theoretical 
minimal performance of the algorithm is almost equal to the dynamic shadow volume 
algorithm except for the extra CPU utilization from processing information about the 
dynamic objects. Unless the number of dynamic objects is very high this should not be an 
issue. 
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Appendix A: Rendered Images 

 
Figure 24 Screenshot from a test and demo scene with 14 Lights and about 10000 polygons 
before shadow clipping 

 

 
Figure 25 Two screenshots of the same scene, they are taken with respectively without fake 
soft shadows enabled. 
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