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CgFX in Python
Programmable Shaders in a Scripting Language

Abstract

Real-time graphics is one of the fastest growing areas in computer graphics today,
where modern graphics hardware can produce almost cinematic rendering. Shaders
provide a new level of control over the rendering pipeline.

This master’s thesis is about combining real-time graphics programmability with
scripting languages. This is accomplished by using Nvidia’s effect format CgFX and
the programming language Python. This approach enables high level scene
descriptions and geometric abstractions. CgFX is a file format encapsulating
rendering conditions to achieve a certain visual appearance. 

Python is an interpreted, high-level, object-oriented, open-source programming
language, used for scripting and gluing existing components together. The dynamic
bindings and semantics of the language significantly simplify connecting the parts of
a graphics renderer. 

This report describes the result; a Python effect class and the way it can be used in a
Python renderer. This thesis has also involved a thorough study of programmable
real-time computer graphics, therefore a considerable part of the report is a result of
this study.

CgFX i Python
Shaderprogrammering i skriptspråk 

Sammanfattning

Realtidsgrafik är idag ett av de snabbast växande områdena inom datorgrafik.
Moderna grafikkort kan uppnå renderingsresultat som är jämförbara med
specialeffekter i filmbranschen. 

Detta examensarbete behandlar kombinationen programmerbar realtidsgrafik och
skriptspråk. För detta ändamål har Nvidias effektformat CgFX använts tillsammans
med programmeringsspråket Python, vilket ger möjlighet att beskriva scener och
geometri på en hög abstraktionsnivå. CgFX är ett filformat som beskriver effekter
för att uppnå olika visuella resultat i en scen.

Python är ett tolkat, objektorienterat högnivåspråk som finns att tillgå som öppen
källkod. Språket används ofta som ett skriptspråk och för att sammanfoga
komponenter i större projekt. Dynamiken i språket gör att det med fördel kan
användas för att underlätta sammanfogning av ett renderingssystem.

Den här rapporten beskriver resultatet, en Pythonklass som fungerar som ett verktyg
för att rendera effekter i Python. Examensarbetet är även en studie av
programmerbar realtidsgrafik och en betydande del av rapporten är ett resultat av
den studien.
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1. Introduction
Real-time computer graphics has come a long way in recent years, and is now
standing on the threshold of a new age. The hardware in our everyday computers has
not just become faster, but even capable of bringing cinematic effects within reach.
The gap is still large, but with the rate at which computer graphics are developing it
will most certainly be decreased in the foreseeable future. 

This thesis is about real-time shaders, effects programming, and scripting languages.
Scripting languages in real-time computer graphics may sound unfamiliar to many,
but this is about to change. Modern applications displaying advanced computer
graphics are often written in low-level languages, as execution speed is the main
priority. As the complexity of the graphics and the programs increases, development
time becomes an important issue. This fact has forced many developers to integrate
higher-level languages into their applications. Development speed is traded off
against execution speed. 

1.1 Background

Real-time graphics is a commonly studied area in computer science. However, the
concepts of shaders are relatively unfamiliar to many, so this report tries to give a
fairly extensive overview. Shaders provide full control over real time rendering, and
they can be programmed with languages that resemble the high-level languages we
are used to when programming regular applications. Cg, C for graphics, is a new
high-level shading language, developed by Nvidia. The language is platform and
API independent. It is used by a large number of companies working with real-time
graphics. Cg also provides a way of encapsulating Cg shaders with other rendering
conditions to achieve a certain appearance. This format is called CgFX which stands
for Cg Effect. 

Python is a high-level, object-oriented scripting language, offering a way to glue
components written in other languages. This makes python a well suited part of
computer graphics programming. It provides a high level control over large projects
such as a renderer. Python is a scripting language, this makes it slightly slower
compared to low-level languages, but since much of the rendering is done in
hardware, the performance is acceptable. The Python language is easy to learn, and
success in working with it is independent of any prior experience with other
programming languages. Combining Python with CgFX would be a powerful and
simple way to program real-time graphics.

1.2 Objectives

The main goal of this thesis is to examine the possibility of applying advanced
effects to objects in a scene which is set up in Python. The Effects will be handled
and accessed though high level abstraction called scene descriptions. For this
purpose Nvidia's CgFX format is used, since it provides an efficient encapsulation
for most parameters needed to render an effect. The format is hardware and platform
independent, which means it can be used together with both leading real-time API's;
OpenGL and DirectX.   
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Since Python is an interpreted language and the chosen effect format, CgFX, can be
compiled at runtime, another goal is to make the applied effect editable at runtime.
This would eliminate the edit-compile-run-quit cycle and therefore make effect
editing much easier. The purpose of this report is to describe the way the
implementation is done and how it is used. The description does not cover every
detail, but enough to be able to use the effect interface to render simple effects. In
addition to these goals, the report is also intended to give an overview to what
shaders are and what can be done with them. The theory behind a number of shader
programs is discussed briefly, both on vertex and pixel levels.
     

1.3 Constraints

Shader programming is a very large area in computer graphics. Applying an
arbitrary shader to a program requires a lot of experience and work. This is because
when writing a shader for a program, the program has to be modified and adapted to
the shader. One of the main goals of this thesis was to avoid this, because it makes
shader programming in Python extremely difficult. This is why CgFX is chosen,
since it supplies an application-independent format, and even other features as
different hardware profiles. This makes the effect format very portable. So instead of
focusing on shader programming, this thesis is more focused on applying effects.
When choosing CgFX, some restrictions follow. CgFX is designed to be applicable
on objects, giving each object a particular appearance. If an effect should be able to
interact with the surrounding geometry or with user input, the effect must be
programmed for this, therefore making it application dependent. This thesis will
mainly focus on shaders that are application-independent. Another constraint is the
fact that CgFX is still in beta stage, this means that the existing documentation is
very sparse. The official documentation only mentions the way CgFX is intended to
be used, but does not explain anything in detail. This fact has made CgFX
programming very hard, and converting existing Cg shaders to CgFX, complicated. 

1.4 The Outline of This Report

After this chapter follows an introduction to shaders, explaining concepts, usage and
what shaders really are. Short examples are given to illustrate what a shading
language could look like and the differences between shader programming and
regular programming. Then, a chapter is dedicated to effects and the CgFX format,
describing how it can be used, what types of applications that can take advantage of
CgFX, and a brief review of the syntax. Furthermore, there is a short section
describing how effects are compiled and a word about the runtime system. The Cg
language is also discussed and its resemblance to other high level languages. The
following chapter briefly describes the Python programming language and some of
the Python libraries. The next three sections describe the Python effect interface. A
top-down approach is used, starting at a high level describing eight different effect
types and scene descriptions. Subsequently the usage of the Python effect interface
is explained, and finally the way the effect interface provided by Nvidia is wrapped
to be used with Python is described. Thereafter follows discussion of the results and
conclusions. Here, different approaches are considered, including future extensions
and what could have been done if Nvidia's effect interface had not been in beta
stage. The last chapter is a short summary.
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2. Introduction to Shaders

2.1 Concepts
The word shader is somewhat misleading, because it applies on two rather different
concepts: pixel shaders and vertex shaders. While a pixel shader is a fairly accurate
name for something that colors a pixel, a vertex shader should rather be called a
vertex processor or a vertex program. In this report, the word “shader” will be used
more as a common name for shaders as a concept, but when referring to an actual
program or code, the word “program” will be used. 

2.2 What is a Shader?

A shader is a common name for an algorithm as a part of a rendering pipeline. When
the algorithm affects vertices, it is called a vertex shader, and when it affects pixels,
it is called a pixel shader. The algorithm controls the way each vertex or pixel is
treated down the rendering pipeline. 

A typical task for a vertex program is to perform transformations, lighting
calculations, manipulating texture coordinates or altering normals. The data
produced by a vertex program can be passed to another vertex shader program, or to
a pixel program.

The pixel program, or fragment program computes the colour of each fragment in
the rasterized data from the vertex program (fragment is a more accurate
nomenclature than pixel since a pixel refers to the actual pixel on a screen, while the
term fragment is the state required potentially to update a particular pixel.[1] ). This
means that when a vertex program is finished, it passes transformed data through a
rasterizer which interpolates the positions and colours from the vertex program, and
performs additional computations on every fragment.
  

2.3 Historical Background  

When it comes down to the very core of computer graphics, things are very simple,
it is just a matter of putting the right color at the right point on the screen. The things
to be displayed are described geometrically, which to some extent is a simplification
of the real world. The geometry consists of vertices, and each vertex has to undergo
a number of steps in a rendering pipeline before it is put to screen. This pipeline
includes such things as transformations, lightning calculations, and clipping. The
steps in the pipeline can vary enormously in complexity, from simple wire frame
rendering to advanced effects like skin and hair. 

In a way, graphics programmers have always been able to do whatever they wanted,
but detail and effects come at the cost of speed. Therefore, the most advanced
graphics have been dedicated to the movie industry, where images can be produced
long before they are used. This is called off-line rendering, and a single frame can
take hours or even days to complete, depending on the complexity of the scene and
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the power of the computer. Several images are then put together and displayed as an
animation. Because time is not of the essence, only the software algorithms and the
creativity of the artist restrict the visual appearance of an image or a frame. 

Processing vertices in real-time is a very time consuming activity for any regular
CPU. Real-time rendering was until the mid 1990's only possible using
supercomputers. A typical example is a traffic flight simulator. In the mid 1990's
things changed dramatically when the first 3D accelerators appeared. These so-
called accelerators are quite simply graphics cards with a built in processor. This
processor is called a GPU (Graphics Processing Unit) and is designed for doing one
thing: calculating the steps in a rendering pipeline. 

Something that is implemented in hardware cannot be changed, so the pipeline was
fixed, which meant in giving up control over the rendering in exchange for speed.
This has been the way real-time computer graphics has looked since the mid 1990's.
The only real improvement has mostly been in performance, i.e. the amount of
vertices and pixels drawn per second. But this is about to change; the new GPU's are
not just faster, but like common CPU's, they are also programmable. This means that
the GPU can run a program that is written in software, using an assembly language
or a high level language if only the program can be compiled for the graphics
processor. The fixed functions are no longer the limit when rendering a scene in
real-time, now any function or algorithm can be implemented and executed.

The first shader languages were assembly languages, in which a programmer
specified instructions directly to the graphics processor. This offers full control, but
as with regular CPU assembly programs, they become long and difficult to read and
understand. This lead to the development of real-time high level shading languages,
and Cg is one of them.

2.4 Computer Graphics Hardware

A Brief History

Computer graphics cards are sometimes divided into four generations, each marking
a significant step in GPU development. 

The first generation of GPU’s is capable of rasterizing pre-transformed triangles
and applying one or two textures. Updating pixels on screen is done completely by
the GPU, but it leaves all the vertex transformations to the CPU. This is a clear
limitation because the CPU power restricts the amount of vertices in a scene. This
generation includes GPU’s such as Nvidia TNT2, ATI Rage and 3dfx Voodoo 3.[1]

The second generation completely relieves the CPU from vertex transformations.
However, the hardware uses fixed-function vertex transformation which is
configurable rather than programmable. The GPU has a wider set of math and
texturing functions, but it is still limited. This generation includes Nvidia GeForce
256, GeForce 2, ATI 7500 and S3 Savage3D.[1]

The third generation is the first to really support programmable vertex
transformations. In addition to the conventional, fixed function lighting and
transformations, these GPU's offer a set of vertex processing instructions. The pixel
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processing configurability is increased substantially, but it cannot be considered
truly programmable. This generation includes Nvidia GeForce3 and GeForce4,
Microsoft Xbox, and ATI Radeon 8500.[1]

The fourth and present generation includes GeForce FX and ATI Radeon cards.
The GPU offloads all vertex and pixel operations from the CPU. These cards are
fully programmable on both pixel and vertex level. Applications use Microsoft's
DirectX 9 or various OpenGL extensions to reach this programmability.  [1]

The Fixed Function Hardware Pipeline

A pipeline is an effective way of using a computer chip for calculating vertices and
pixels; it uses the parallelism in the architecture of GPU's. The pipeline consists of
several different operations that have to be performed on every vertex or pixel. Each
stage receives its information from the previous stage in the pipeline. Because all
stages are executed simultaneously, a large number of vertices or pixels can be
computed much faster than using a non-pipelining approach.    

The first stage in the pipeline is vertex transformation; a number of math operations
are performed on each vertex. This includes transforming coordinates, generating
texture coordinates, and setting colour, based on material and lights. When
completed, this stage sends screen-transformed, lit and textured vertices to the next
stage.

The next stage, primitive assembly and rasterization, assembles the vertices into
geometric primitives. In other words triangles, lines or points, depending on the
vertex' batching information. These geometric primitives are tested against clipping
and culling conditions defined by the programmer and the view frustum. The
remaining primitives are finally rasterized into fragments, with each fragment
representing a corresponding pixel-sized area on the screen/frame buffer. Each
fragment, potentially a pixel, has a location, depth value, colour, and texture
coordinates. These fragments are sent to the next stage, fragment texturing and
coloring. Here the final colour of the fragment is interpolated based on the
information from earlier stages in the pipeline. Depth, colour, and texture
coordinates are taken into account.
  
The final stage performs per-fragment raster operations. This is where fragments are
eliminated through depth test, scissor test, alpha test, and stencil test. If all tests
succeed, the fragment is blended with the corresponding pixel's value and written to
the frame buffer, if not, the fragment is discarded without updating the pixel in the
frame buffer.   

Figure 1. The Fixed Function Hardware Pipeline.
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The Programmable Hardware Pipeline

The programmable part of a graphics processor consists of two parts: a vertex
processor and a fragment processor. These processors are an alternative step in the
fixed pipeline. Figure 2 shows where these programmable parts of the pipeline are
located.

Figure 2. The Programmable Graphics Pipeline.

The programmable vertex processor operates in a number of registers, much like
a common processor. There are three different types of registers: Input registers,
temporary registers, and output registers. When a new vertex is about to be
processed, the vertex' data such as color, position, texture coordinates etc, are loaded
into the input registers. A new instruction is fetched from the instruction memory,
where the compiled program resides, and the temporary registers are used for
intermediate storage of values. This is repeated until there are no more instructions.
The resulting data are written to the output registers, which are passed on to
rasterization.

The programmable fragment processor retrieves interpolated fragments from the
rasterized vertices produced by the vertex processor. The values are stored in input
registers and instructions are fetched from the instruction memory. The fragments
can, in addition to the vertices in the vertex processor, undergo a number of texture
operations. The final colour and depth value are written to the output registers, and
these are passed on to the pixel update tests described above, and maybe written to
the frame buffer. 

2.5 CPU versus GPU

A CPU, or Central Processing Unit, is a general purpose processor, designed for
running all types of applications. It might be fast, but since it is not specialized, a
thing like processing millions of vertices per second is impossible. On the contrary,
a GPU, or Graphics Processing Unit, is designed for just one task, processing
vertices and fragments. With this design, tens of millions of vertices and billions of
fragments can be processed each second. But on the other hand, a GPU cannot
execute general purpose programs. It can only do what it is designed for. This is
why a GPU cannot be programmed with a general purpose language, like C++ or
Java. A language designed specific for programming a GPU is needed, like Cg,
HLSL or GPU assembly.  
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3. The Cg Language and the CgFX 
Format

3.1 The Cg Language

Background

Cg is a high level shading language inspired by several concepts in the graphics
industry. While Cg is a relatively new language, shading languages have existed
since the 1980's. The early shading languages were designed to be used with offline
rendering software, such as Pixar's RenderMan, creating photo-realistic effects for
movies. Many of the concepts in these languages can also be found in Cg, but
adapted to real-time rendering.

The Cg syntax is almost identical to the syntax of the C programming language,
only a small number of keywords and types differ because of the different
architecture of the graphics processor. Finally, the programmable GPU’s as well as
the APIs (Application Programming Interface) for 3D programming have influenced
the design of Cg. The hardware sets the limits of what can be done with Cg, and the
APIs restricts the way the hardware can be used.

Cg is said to be syntactically identical to Microsoft's High Level Shading Language
(HLSL). This is because the languages are developed simultaneously and
cooperatively between Microsoft and Nvidia. This is discussed in chapter 8. 

The Features and Constraints of the Cg Language

Unlike general-purpose languages as C, Cg has no pointer handling, memory
allocation, or file input/output operations. However, conditional statements,
unbound loops, and functions are supported, but these features are limited by the
architecture of today's GPU's. All current graphics hardware has a limited
instruction set for shaders, making many features impossible to support. No cards
today support dynamic conditions or unbound loops, but since this is not a limitation
in the design of the language, they will most likely be supported in future hardware.
Cg natively supports data types like vectors and matrices since most graphics
operations involve vector or matrix operations. Graphics hardware often support
these kinds of operations directly in hardware, so it is natural to have such functions
closely integrated into the language. Cg has a simple library called Standard Library
that has functions like reflect which computes a reflection vector.
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The Data Flow Model

In contrast to general-purpose languages, Cg does not operate on an arbitrary set of
data or memory. Cg is used to perform a number of operations on a set of vertices or
fragments. The vertex or pixel program is executed for each vertex or pixel. The
processing of one vertex has no impact on any of the other vertices, so the execution
of a program is isolated from the rest of the processed data.

A Small Cg Example

This short, but fully functional Cg program has one very simple task: it changes the
colour for each vertex to red. 

struct vertexout {  
float4 position : POSITION;  
float4 color    : COLOR;

};

vertexout  VertexRed(float2 position : POSITION)
{   

vertexout OUT;  
OUT.position = float4(position, 0, 1);  
OUT.color    = float4(1.0,0.0,0.0,1.0); //Set vertex colour

to red
return OUT;

}

The structure vertexout contains the data that is to be sent to the pixel shader. The
program creates a new vertexout structure and sets the members. When calling
return, the data is passed on to the pixel shader. This example contains no pixel
shader, since one is not needed for this simple example. It can be rendered using the
fixed function pixel shader.

3.2 The CgFX Format

The CgFX format integrates vertex and pixel shaders with render states to render
objects. It supports Cg programs, assembly language programs and fixed-function
shaders. Effects provide a way to combine different shaders to produce unique
render conditions.

Figure 3. The effect concept. This shows how effects are supposed to manage the graphics pipeline.
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The CgFX Runtime

Unlike Cg shader programs, an effect contains more than just shading code. The
effect file has to be analyzed using a parser. When parsing an effect, the parser
makes sure the syntax is correct, if it is not, the parsing fails and an error message
can be read from the effect parser. If it succeeds, the parameters are read into
memory and the shader code is compiled with the Cg compiler. When an effect is
successfully parsed and compiled, it can be used via the ICgFXEffect interface.

Figure 4. The way CgFX is intended to be used with an application.
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The Effect Structure

This scheme is an example of how an effect can be structured. The order of the
contents is irrelevant but the passes have to be inside the technique declarations. An
effect contains all information needed to apply a certain appearance to an object.
The different concepts are explained below. 

variables
    .
    .
    .

input/ output structures
    .
    .

vextex shader

pixel shader

technique1
pass1

pass2

technique2
pass1
  
pass2

pass3

Variables and Structures

The global variables of an effect are the means by which the application
communicates with the effect. These can be simple types like floats or integers, but
also more complex types like matrices, textures and structures. Matrices are used
when transforming vertices, and when computing lighting vectors etc. These must
be supplied by the application, and setting them is done in much the same way as
setting simple variables. Textures are set with pointers, pointing to a location in the
video memory, telling the effect where to get image info. 

The structures are handled somewhat differently because they are often used for
sending vertex data between the application and the effect, and transformed vertex
data from the vertex program to the rasterizer. If for example the structure used for
vertex input contains binormal and tangent data, these must be provided by the
application. Thus, the vertex format of the application must match the structure in its
effect.
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Pixel and Vertex Programs

The vertex or pixel programs contained in the effect can be written in Cg or in
assembly language. The programs are compiled when the effect is compiled. Any
type of shader program can be specified, as long as the effect can fall back on a
simpler program if validation fails. Compiler arguments are set in a Pass block.

Techniques

An effect contains one or more techniques, each describing a way to achieve the
desired result. Because different GPU's have different functionality, a single Cg
program is not sufficient to cover all hardware platforms. However, by using
techniques, a different shader program can be specified for each type of hardware. If
the GPU does not support one version of fragment shaders it can fall back to a
simpler program, or a program describing a fixed-function shader. [1] For example:

effect effectName
{
    technique PixelShaderVersion1.4
    {
       ...
       Cg program
       ...
    }; 
    
    technique PixelShaderVersion1.0
    {...}; 
    
    technique FixedFunction
    {...};
}

Passes

Objects are rendered using passes, and a technique can contain one or more passes.
Each pass performs one rendering pass, using a vertex shader or/and a pixel shader.
A pass can accordingly contain both a vertex shader and a pixel shader together with
a set of render states. A render state is typically alpha blending, depth buffer writes
or texturing. A pass can contain assembly language shader programs, Cg programs
or fixed function processing. [1]

A pass uses the shader programs specified in the effect. The usage of a shader is
declared as follows:

VertexShader = compile vs_1_1 MyVS(arguments);

 
MyVS is the shader to be compiled, the vs_1_1 argument states which profile to be
used when compiling the effect. The different vertex profiles are vs_1_1, vs_2_0
and vs_2_x.

vs_1_1 is the first version, only capable of compiling simple and short programs.
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vs_2_0 adds a lot more functionality such as static flow-control conditions. vs_2_x
introduces simple dynamic flow control and the possibility to add more instructions.
[4]

For pixel shaders the following compile arguments can be specified: ps_1_1,
ps_1_2, ps_1_3, ps_1_4, ps_2_0, and ps_2_x. The earliest versions, ps_1_0 –
ps_1_4, are very basic, they support no form of flow-control. ps_2_0 added macro
instructions like cosine and other math functions, as well as higher instruction count.
The latest version adds static flow-control such as if-end-endif, and very simple
dynamic flow-control.
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4. Python

This chapter is a short description of the Python programming language, how it is
used, what the benefits are and how it is used together with C++.

4.1 The Python Language

Python is a high-level, interpreted, object-oriented, open source programming
language. It is designed to optimize development speed. Although Python is a
completely general-purpose language, it is often called an object-oriented scripting
language, as it is commonly used to “glue” software components in an application. 

Python was invented in the early 1990's, and originally designed as a scripting
language for the Amoeba operating system. Today it is used by over a hundred
thousands programmers and engineers in large variety of tasks.[5]

Python is optimized for development speed, not execution speed. The interpreter
handles details like type declarations and memory management. Because the
language is interpreted, the build procedure of lower-level languages is completely
avoided. The simple and clear syntax of the language also contributes to the
development speed, because it is easy to use, read, and understand. Because Python
is hardware-neutral and operating system-neutral, Python scripts will run on most
platforms without being modified. However, there exist non-portable extensions, but
the core language is platform-independent. As most scripting languages, Python can
be extended with scripts written in other languages. This includes both other
scripting languages, and low-level languages like Java, C, and C++. [5]
At the Department of Computer Graphics, a Python renderer is used as a base for the
programming assignments. This enables geometric abstractions on scene
descriptions on a very high level. A focus is placed on teaching basic computer
graphic theory, without having to deal with specific implementation issues. The
concept of scene descriptions plays a key role in this thesis when describing how to
apply an effect to a scene. Details about scene descriptions and how it is used can be
found in chapter 5. 

Python is, compared to languages often used in computer graphics, slow. But due to
the possibility to call C and C++ libraries, performance-critical operations such as
rendering, can be done at a lower level. This, combined with the fact that hardware
rendering today is very fast, makes the speed acceptable.
  
  
4.2 SWIG - Simplified Wrapper and Interface
Generator

Almost every scripting language has some sort of support for running lower level
code like C and C++. SWIG is an interface compiler, generating wrapper code that
scripting languages (this could be a variety of languages, but here it is assumed that
Python is used) need to access methods in a C/C++ library. It is used in this project
to make the CgFX Interface accessible to Python. 
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SWIG uses an interface header file, which can use C++ header files to generate
wrapper code. This code can thereafter be compiled to libraries that can be used
from Python. In this project it is compiled to a Dynamically Linked Library (DLL).
To make the generated module more easily importable from Python, SWIG also
generates a Python file that serves as an interface to the DLL. 

4.3 Numerical Python

Numerical Python (NumPy) is an open-source extension to the Python language.
The extension supplies a way to efficiently handle large arrays of data. These arrays
can have any number of dimensions, where a two-dimensional array can be used as
matrices from linear algebra. The NumPy extension is written in C for the simple
reason that native Python is too slow to perform complex operations on large arrays.
NumPy is inspired by numeric languages like Basis and MATLAB, but requires no
knowledge of these languages. NumPy can be used with PyOpenGL to handle
matrix math and passing matrices to the underlying C-layer. [10]

Because CgFX uses a lot of pre-calculated matrices, NumPy is used in the Python
effect framework to handle this math. NumPy is also required for passing matrix
data to the PyCgFXEffect module. 

4.4 The PyOpenGL library

PyOpenGL is a cross platform, open source OpenGL library for Python. It is created
using the SWIG interface compiler. This makes almost the entire OpenGL library
available directly from Python. PyOpenGL supports OpenGL v1.1. However,
additional functionality can be obtained using various OpenGL extensions.[9] 

The main difference between using PyOpenGL and native OpenGL is the way some
functions are called. Modifications are made to compensate for the problem with
handling data passed between C and Python. For example:

An OpenGL call to a method:

void glGenTextures (GLsizei n, GLuint *textures );

A PyOpenGL call to a method:

glGenTextures  ( n ) •  textures  

This is because of the differences between C and Python. Python cannot return
values as arguments which is a common way to return multiple values in C. 
However, most of the functions are identical in the way they are called.
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5. Scene Descriptions and the Effect 
Class

This chapter gives a short description of the Effect class and the effects that were
intended to be used with the Python effect interface. Implementing these effects was
a part of the goal for this thesis, and some effects were implemented successfully
and some were not. A review of which effects were successfully implemented can
be found in chapter 8.

5.1 The Effect Class

The effect is constructed using the PyCgFXEffect module, and it is the interface
through which effect rendering is done in python. The purpose of this class is to
handle all types of effect rendering through one simple interface. This is done using
dynamic parameter handling inside the effect class. A Simple Effect class capable of
rendering many effects, including effects with textures and environmental mapping
can be found in Appendix A.

          

Figure 5. The way the Effect class interacts with the hardware and a renderer.
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Figure 5 shows how the Effect class is supposed to interact with a renderer an the
underlying hardware. The ICgFXEffect interface uses OpenGL or Direct3D to
interact with the hardware, in this case OpenGL. PyCgFXEffect is a wrapper for
ICgFXEffect to make it accessible from Python. The Effect class is implemented
using the PyCgFXEffect module. OpenGL is also accessed from the effect class and
the renderer. These calls to OpenGL are done via PyOpenGL.

The PyCgFXEffect module is described in chapter 6, and the wrapping of the
ICgFXEffect interface in chapter 7.

Scene Descriptions

A scene description is a high level abstraction of a scene. It is used to describe
objects, appearances, cameras, lights, etc. The purpose of the effect class is to use it
as a part of a scene description. 

When using the Effect class together with a scene description, the constructor of the
class is used to set the effect and all parameters needed to render a particular
appearance. The class always takes the effect filename as an argument, but this is the
only required argument, since the rest of the arguments depend on the parameters of
the specified effect. Most effects has default values for these parameters, so when
supplying only the filename, the effect is rendered using its default appearance.

The Effect Class Structure

The goal of the Effect class is to keep it general and at the same time as simple as
possible. As mentioned above, the constructor takes an arbitrary number of
parameters for initializing an effect. In addition to the filename, other parameters
can be specified using their global variable names from the effect file(see chapter 3).
The parameters left out are set to default values. If the set parameter does not exist
in the effect, an error is generated.

The __setattr__ and __getattr__ methods are special methods used for making
the parameters of the effect editable through dot notation. For example, setting a
vector at runtime could be done like this: effect.lightPos = (10, 0, 20, 1).
Similarly, values can be fetched using for example: light = effect.lightPos  

class Effect

def __init__(self, initialization parameters)  #constructor

def __setattr__(self, paramname, value)

def __getattr__(self, paramname)

def begin(self)

def pass(self, pass number)

def end(self)
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5.2 Scene Examples

A scene description for a renderer can look like this:

Cylinder( transform = Scale(( 1, 1.5, 1)),
 appearance = Material(ambient   = ( 0.11, 0.11, 0.29 ),

    diffuse   = ( 0.37, 0.38, 0.84 ),
    specular  = white,
    shininess = 20.0 ))

A material is defined and used as the appearance of the cylinder. 
The Effect class is intended to be used as an appearance. For example, a scene
description to render the cylinder using an effect called “goochy2.fx”:

Cylinder( transform = Scale((1, 1.5, 1)),
appearance = Effect((effectfile = "goochy2.fx",

       warmColor = red),
      coolColor = blue),
       specExpon = 10.0)) 

All the effects below will be described along with an example of a scene description.

5.3 The Interface to a Renderer

When used together with a Python renderer, the interaction with the Effect class is
done using the methods Begin(), Pass(pass_number), and End(). These three
methods control which geometry to render and what pass to apply. When calling
Begin() all render states and shader data is saved by the Effect class.

Effects are rendering are performed using passes, see chapter 3. The Begin()
method sets all matrices that are not set by the renderer itself. If the matrices are not
set when Begin() is called, the current model view and projection view matrices
are used. The method also returns the number of passes used in the current effect. 

To perform an actual pass, the method Pass(pass_number) is called with the pass
number as an argument.
When all passes are done, End() is called to restore all render states and shaders.
This is an example of what a rendering loop can look like in a renderer:

passes = effect.begin()
for p in range(passes):

effect.pass(p)
draw_geometry()

effect.end()

5.4 Effect Examples

This section contains descriptions of a number of effect types. The theory behind
them is not covered in detail, since many of the effect types involve quite extensive
theories. All effects are described along with a scene description. The scene
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description gives a more specific example of an effect that falls in the range of
possible effects for that effect type.

Per-Fragment Lighting

Standard real-time lighting, or Gouraud shading, is dependent on the detail of the
underlying mesh. The light is computed for each vertex and the interpolated when
rasterizing each triangle.

To achieve better results, lighting calculations have to be performed on a per-
fragment basis. This means that the lighting function is evaluated for every pixel on
the object and therefore gives a much more accurate implementation of lighting.
Both per-vertex lighting and per-fragment lighting are based on Phong shading, so
the only difference is the level at which the calculations are performed. [1]

Figure 6.  Per-vertex and per-fragment lighting.

aBall = Ball(transform = 
MoveTo(( 0.0, 0.0, 0.0))*
Scale(( 1.0, 1.0, 1.0)),

appearance = Effect("pixellighting.fx",
diffuse = (0.5,0.5,1.0),
specular = (1.0,1.0,1.0),
power = 10.0))

Hemispheric Lighting

The hemispheric lighting algorithm approximates an area light. Area lights are the
light reflected by the surrounding environment. Because the surroundings can be
complex, accurately calculating this light is a very extensive procedure. To avoid
this, the light reflected is approximated by two directional lights, a sky light and a
ground light.  The colors of these lights are set to match the surroundings, giving a
realistic illusion of light reflected by the environment. The hemispheric light
component is calculated using a linear interpolation. The Cg function lerp(a, b,
s) linearly interpolates between a and b, such that the return value is a when s is 0,
and b when s is 1. [4] 

Hemi = lerp(groundColor,
 skyColor, (dot(Normal, dirFromSky) + 1) / 2);
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Scene Description:

aSkull = Skull( transform = 
MoveTo(( 1.0, 0.0, 0.0))*
Scale(( 1.0, 1.0, 1.0)),

appearance = Effect("hemispheric.fx",
groundColor = (0.6,0.3,0.3),
skyColor = (0.6,0.6,1.0)))

Figure 7. Hemispheric Lighting

Bump Mapping

Bump mapping is a large and advanced topic in computer graphics. The goal is to
give the illusion of high level details on objects in a scene, without increasing the
number of polygons used in the objects. The technique is a per-fragment technique,
and all lighting calculations are performed on every pixel. There are several ways of
implementing bump mapping, and one of these will briefly be described here. 

Instead of using a high level tessellation, bump mapping uses an extra texture. This
texture represents the normals on the surface in tangent space. The normals are
encoded as colors, where the RGB values for the texture corresponds to the direction
of the normal. Because the normals are in tangent space, the normal texture can be
applied to any type of object in a scene. The light reflected from each pixel on the
surface is modified with consideration to the normal at that pixel.

Scene Description:

aBumpWall = Box( transform = 
MoveTo(( 0.0, 0.0, -5.0))*
Scale(( 5.0, 5.0, 0.1)),

appearance = BumpEffect("DiffuseBumpCg.fx",
bumpheight = 1.0,
normalmap = "LU_logo.dds", 
basetexture = "wall.png"))
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Figure 8. A bump mapped sphere.

Cartoon/Cell Shading

Most shading techniques try to resemble the real world as much as possible. Cartoon
shading is an example of a technique that does not. This effect renders the scene as
if it were taken from a cartoon movie or a comic book. 

The idea behind cartoon shading is to convert the diffuse color spectrum to just a
few shades of color. This is done by using a step function instead of the continuous
function commonly used when computing lighting colors. A step function can be
done using one-dimensional textures to look up what color to draw:

diffuseLighting = tex1D(diffuseTex1D, diffuseLighting);

            
Figure 9. A 1-Dimensional Texture used to represent a step function. N is the normal vector
and L is the lighting vector.
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To further enhance the look of a cartoon movie, an edge-detection function to draw
black or dark outlines around the objects can be used. 

Scene Description:

aTeapot = Teapot(transform = 
MoveTo(( 0.0, 0.0, 0.0))*
Scale(( 1.0, 1.0, 1.0)),

appearance = Effect("Cartoon.fx",
stepDiffuse = "sTexDiffuse.dds",
stepOutline = "sTex02",
diffuseColor = (1.0,0.0,0.0),
edgeColor = (0.0,0.0,0.0)))

        

Figure 10. A cartoon shaded teapot.

Environment mapping

Environment mapping is a technique which simulates an object reflecting its
surroundings. It can be used to create effects like reflection, refraction, dispersion,
and the Fresnel effect. All these effects are achieved using cube textures. A cube
texture is not one but six different textures, each representing a view along the
positive and negative x, y, and z axes. The cube texture can be rendered using six
cameras, or pregenerated to increase performance. A pregenerated texture does not
reflect the actual surroundings, yet it still gives a good illusion of a chrome-like
material.

Reflection is the most basic effect, in which a reflection vector is computed for each
vertex. The reflection vector is then used to look up texture coordinates in the cube
map. The Cg function reflect is used to compute the reflection vector:

R = reflect(I, N);
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Figure 11. The Reflection Vector.

             
Figure 12. An environment mapped teapot.

To simulate refraction in transparent materials like glass and water, Snell's law can
be used to compute a refraction vector. The angle at of the refraction vector depends
on the index of refraction of the material. A material's index of refraction measures
how the material affects the speed of light. Water has a relatively low refractive
index while diamonds have a very high value. The refraction vector is used to
lookup texture coordinates in the cube map. The refraction vector can by computed
in Cg using this function: [1]

T = refract(I, N, nRatio);

Here, I is the incident vector, N is the normal and nRatio is the ratio between the
indices of refraction of the two materials.

Most transparent materials both refract and reflect the incoming light. Whether it is
refracted or reflected depends on the angle which the light reaches the surface of the
material. This effect is called the Fresnel effect. The equations required to compute
an accurate model of the optics involved are complicated. However, approximations
to these equations can be made which give sufficiently good results. This equation
can be used to compute the reflection factor: [1]
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reflectFactor = fresnelBias + 
     fresnelScale * pow(1 + dot(I, N), fresnelPower);

Dispersion is the phenomenon where refracted light spreads into a rainbow, like
light passing through a prism. The dispersion occurs because the speed of light
passing through a material also depends on the wavelength of the light. The effect
can be simulated using several cube textures, each representing a particular color.
These textures are then applied using an offset.

Procedural Textures

Procedurally generated textures are created using conditions and mathematical
functions. These textures are often volume textures which have a third dimension.
Procedurally created textures can be used to create effects like wood, water,
volumetric fog, noise, and lightning bolts. Texture generation is demanding for the
hardware and large textures cannot be generated at runtime, and only the fourth
generation of graphics hardware supports this type of texture operations. The wood
texture on the teapot in Figure 12 uses this noise function to generate the texture:

float4 GenerateNoise(float3 Pos : POSITION) : COLOR
{
    float4 Noise = (float4)0;

    for (int i = 1; i < 256; i += i)
    {
        Noise.r += abs(noise(Pos * 500 * i)) / i;
        Noise.g += abs(noise((Pos + 1)* 500 * i)) / i;
        Noise.b += abs(noise((Pos + 2) * 500 * i)) / i;
        Noise.a += abs(noise((Pos + 3) * 500 * i)) / i;
    }

    return Noise;
}

    
Figure 13. A procedurally generated wood texture.
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Vertex Displacement

Displacing the positions of the vertices is easy to do in a vertex program since the
transformation of vertices is a step required in every vertex program.  An object can
be deformed using various functions to achieve effects like ripples, inflated objects,
and twisting. Other applications include interpolation between different key frames,
to fill the gap between the frames. A vertex program could produce a very simple
animation by interpolating between only two key frames.

Figure 4. Vertex Displacement

Vertex Blending

A commonly used vertex displacement technique is called vertex blending or vertex
skinning. Instead of having a key frame for every pose of a character or shape of an
object, this technique uses a basic pose and a large set of matrices describing the
rotation, scaling and translation of subsets of the basic mesh. These matrix
calculations are much less demanding than providing a mesh for every single key
frame. [1]

Each of the matrices in the set has a weighting factor which indicates how much that
matrix affects each vertex. The weighting factor ranges from 0 to 100 percent. Only
a few of the matrices have positive weighting factors for each vertex, these matrices
are called a bone set. Each vertex has a bone set, and the sum of the weights of the
matrices in this set is always 100 percent.

When rendering the model, each vertex is multiplied with all matrices and their
weights in its bone subset. The sum of the results is called the skinned vertex
position, and it is the position at which the vertex is placed. 
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The scene description,  in this example, the Effect class is subclassed to take another mesh as
an argument:

aDolphin = Mesh( meshfile = "dolphin.x",
transform = 

MoveTo(( 0.0, 0.0, 0.0))*
Scale(( 1.0, 1.0, 1.0)),

appearance = BlendEffect("vertexblend.fx", blendToMesh=
"dolphin2.x"))

Particle Systems

Another application for vertex displacement is particle systems. Here, every vertex
is treated as a point, or particle, moving according to a specified function. With a
large number of particles, effects like smoke, sparkles and snow can be
implemented.
For example, a particle following a projectile motion can be described using this
equation in Cg which is computed every frame:

finalPos = initPos + initVel * time + 0.5 * acceleration * time * time;
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6. The PyCgFXEffect module

This chapter describes how to use the PyCgFXEffect module in a Python program.
It explains how to initialize, load, and render an effect in a PyOpenGL environment. 

6.1 Creating and Loading an Effect

The PyCgFXEffect module can be used as a generic Python class, it can be
instantiated and the constructor has no additional arguments:

from PyCgFXEffect import *
pyeffect = PyCgFXEffect()

When loading an effect, a filename for the effect to be loaded must be supplied. 

pyeffect.PyCgFXCreateEffectFromFileA(filename, 0)
print errors

By calling this method, the effect is compiled by the CgFX runtime. Any errors are
returned by the method as a string.  The last argument is not yet used by CgFX, so it
is set to 0. If no errors where found during compilation, the compiled effect is
loaded into memory.

Before the effect can be used, a technique must be validated. Validation is a way to
find out if the current hardware can run the effect. As described in chapter 3, an
effect can have several techniques. A technique describes one possible way of
achieving the desired result. If no technique is validated, the hardware is not capable
of running the effect. The validation procedure is done by first setting a technique,
and then checking whether it is validated:

pyeffect.SetTechnique(techniqueNum)
pyeffect.Validate()

The Validate method returns true or false.
If a technique is validated, the effect is ready for rendering.

6.2 Descriptions

All effect parameters are handled using descriptions. This is a way to control and
change the variables in an effect, including things such as textures, colors, light
positions, and matrices.
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Effect Description

A compiled effect has an effect description, which can be obtained using the
following method:

effectDesc = pyeffect.GetDesc() 

The returned data is a simple class containing three members, these members are:

effectDesc.Parameters The number of parameters
effectDesc.Techniques The number of techniques
effectDesc.Annotations The number of annotations

Effect Parameter Descriptions

The parameters in an effect are handles to the global variables in an effect file.
These variables are described using parameter descriptions, which there are as many
of as there are parameters in the effect. Effect parameters do not have to be set when
the effect is compiled, default values are given. If no default value is specified in the
effect file, the value is set to zero, or null in case of a string. A parameter description
is a class with the following members:

Name The Unique name of the variable.

Index This index is used when setting parameter values, see below.

Semantic A short text string describing the intended usage for the
parameter. For example, a DiffuseMap parameter is intended to be used as a 

diffuse texture.

Type The variable type. Can for example be CgFXPT_FLOAT or 
CgFXPT_TEXTURE. See Appendix B For a complete listing.

Annotations The number of annotations for this parameter.

A parameter description can be obtained using the following method:

paramDesc = pyeffect.GetParameterDesc(index)

The index argument corresponds to the index of the parameter description. A
convenient way of handling the parameters to an effect is using a python tuple:

for i in range(0, effectDesc.Parameters):
parameterList.append( pyeffect.GetParameterDesc(i) )

A member in the  parameterList can then be accessed using dot notation. For
example, this prints the semantics of an effect:

for param in parameterList:
print param.Semantic

Effect parameters can be set at any time during initialization or rendering.
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Annotations

Annotations are user specified data that can be attached to a parameter. The
information is not crucial and the application can choose whether to use them or not.
Annotations are handled in a similar way to parameter descriptions. The members
are:

Name The name of the annotation.

Index The index of the annotation. A parameter description can have several 
annotations, starting at 0. Use this index to distinguish them. 

Value The value of the annotation, to read the data correctly, the type of the 
annotation must first be checked.

Type The possible data types for an annotation are the same as for a
parameter.

Use this method to get an annotation:

annotation = pyeffect.GetAnnotationDesc(parameter.Index,AnnotationIndex)

Here, the  parameter.Index is the parameter description that contains the
annotation. Annotations can be used to read user-specified texture filenames from an
effect. 
If the parameter is known to be a texture, the filename can be obtained like this:

for i in range(0,parameter.Annotations):
annotation = pyeffect.GetAnnotationDesc(parameter.Index, i)

if annotation.Name = "File":
filename = annotation.Value

6.3 Setting Parameters

To change the appearance of the effect, the values of the parameters can be changed.
The parameters themselves have no information about the values of the parameter,
since the parameter descriptions are merely handles to the values. The current values
have to be fetched from the effect. All parameters can be changed at runtime, but
they cannot be changed inside a Begin() - End() block.

Setting and Getting Basic Parameters

Setting values like vectors or floats are done through various methods in the effect.
Methods for setting values are listed in appendix B. Here are some examples of how
to use these methods:

Setting and getting a float:

pyeffect.SetFloat(parameter.Index, specPower)
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specPower = pyeffect.GetFloat(parameter.Index)

Setting and getting a vector:

pyeffect.SetVector(parameter.Index, lightPos, 4)
lightPos = pyeffect.GetVector(parameter.Index)

Here, lightPos is a Python tuple with length 4, containing values for a light
position.

Setting Matrices

All matrices needed for rendering a scene have to be provided by the application.
Some matrices have to be set every frame, and some can be set only once, for
example if using a fixed camera. An effect might need more than the two matrices
used in OpenGL, the model view matrix and the projection matrix. These additional
matrices have to be computed by the application, and then passed to the effect. The
reason for this is to save a lot of computational work for the vertex program, because
it would have to do several matrix operations for each vertex. 

Matrices are handled using NumPy's arrays. This is the same way matrices in
PyOpenGL are handled, so conversions and operations are very easily performed.
Some matrices can be set directly, and some must first be computed. This is a simple
case, illustrating how to find and set the model view matrix:

for parameter in parameterList:
if parameter.Semantic == "ModelView":

modelView = glGetFloatv(GL_MODELVIEW_MATRIX)
pyeffect.SetMatrix(parameter.Index, modelView, 4, 4)

The first argument is the parameter description describing the model view matrix,
the second is the matrix to be passed to the effect, and the last two arguments are the
dimensions of the matrix. Finding or keeping track of which parameters correspond
to the right matrix can be done in many different ways, the example above is a
simple but ineffective way.

Setting Textures

Any texture used in OpenGL can be used by an effect. Since textures reside in video
memory, the effect only has to know which texture to use, or where to read from the
video memory. Setting a texture is a single call to the effect:

pyeffect.SetTexture(parameter.Index, texture)

where texture is a standard OpenGL texture.

Loading and setting a texture with Pynv_dds 

The DDS file format (DirectDraw Surface) is an image format designed to be used
for textures. The format can hold information about alpha channels, mip-maps,
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compression, and whether the texture is a cube map or a volume map. It was
originally a format used by Microsoft's DirectX API, but Nvidia provides software
for loading these textures in OpenGL. The software is called nv_dds and has been
wrapped using SWIG, and the module is called Pynv_dds. The following illustrates
how to load and set a DDS texture.

First, the module has to be imported:

from Pynv_dds import *

Pynv_dds contains a class called CDDSImage, which handles the loading of images:

ddsimage = CDDSImage()

texture = glGenTextures(1)
ddsimage.load("default_color.dds")
glBindTexture(GL_TEXTURE_2D, texture)
ddsimage.upload_texture2D()
pyeffect.SetTexture(parameter.Index, texture)

6.4 Rendering

When rendering an effect, the fixed function pipeline is replaced by the vertex and
fragment programs specified in the effect file. All render states are automatically set
by the effect. The rendering is done using passes, and with each pass the geometry
to be rendered has to be drawn. The passes handles setting render states and shaders.
Before performing the passes, the Begin method, which returns the number of
passes, has to be called:

numPasses = pyeffect.Begin(flags)

The flags argument is not yet implemented in CgFX, so this value is ignored. The
purpose of the flags argument is to specify whether the effect shall remember what
render states and shaders were set before calling End, but this does not seem to be
implemented yet, see chapter 8 for comments on bugs.

The next step is to iterate over the number of passes, each pass draw the geometry
that is to be rendered. This can be done using a simple for-loop:

passes = pyeffect.Begin()

for p in range(passes):
pyeffect.Pass(p)

DrawGeometry()

pyeffect.End()

Calling End tells the effect that all rendering using this effect is done.

35



36



7. Wrapping the ICgFXEffect Interface
This chapter explains how the ICgFXEffect Interface is accessed from Python. 

7.1 The Effect Interface

The effect interface, ICgFXEffect, is a part of the Nvidia Cg Toolkit. It is designed
to integrate effects into an application. The interface consists of a C++ header file
with an accompanying DLL library. Thus, the actual implementation of the interface
is hidden, but can be accessed through the header file. The header file is also
sufficient for wrapping the interface.

To be able to use the interface from Python, some modifications had to be done, as
the interface could not directly be wrapped with SWIG. This is because the
differences between C++ and Python in the way arguments and types are handled.
This chapter explains the modifications and measures that has been made to be able
to wrap the interface. A header file called PyCgFXEffect.h is used as a layer
between the actual interface and the wrapper. This header file is used to create the
Python module.

The ICgFXEffect.h file, and the PyCgFXEffect.h file, used for wrapping, can be
found in appendix B resp. appendix C.

7.2 Converting Types

A common problem when wrapping code written in C++ to be made accessible from
python are the different ways the languages handles data types. C++ uses static data
types, meaning that they must be defined before compilation. The data types include
floats, integers, booleans and characters. Data can also be grouped together as
structures or classes. At runtime, the type information is lost, so there is no way of
checking what data type a block of memory is. On the other hand, Python handles
data types dynamically, checking types at runtime. All data types in Python are
objects, these objects contains information about what type they are or to what class
they belong.

SWIG automatically handles basic data types, but structures and pointers have to be
manually converted using typemaps. When generating code, SWIG inserts these
typemaps when needed. This is an example of a typemap which converts a Python
tuple to a float[4] array:

%typemap(python,in) float[4] (float temp[4]) {
if (PyTuple_Check($source)) {

if (!PyArg_ParseTuple($source,"ffff", temp, temp+1, temp+2, temp+3)) {
PyErr_SetString(PyExc_TypeError,"expected a 4-element tuple of

floats");

return NULL;
}
$target = temp;

} else {
PyErr_SetString(PyExc_TypeError,"expected a tuple.");
return NULL;
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}
}

The typemap handles all method calls from Python were an argument in the C++
code is a float[4] vector. The $source variable is a Python object containing the data
passed as an argument to the method in Python. PyTuple_Check($source)
checks whether $source really is a Python tuple. If it is, the data is parsed from the
object, or else an error is raised.

7.3 Using Structures

Many of the parameters in CgFX are handled using structures. To be able to access
the members of these data structures from Python, they have to be converted to
classes with public variables. For example this structure used in ICgFXEffect:

typedef struct _CgFXEffect_DESC{
UINT Parameters;
UINT Techniques;
UINT Functions;

} CgFXEFFECT_DESC;

is changed into a class in PyCgFXEffect:

class PyCgFXEFFECT_DESC
{
public:

UINT Parameters; // Number of parameters
UINT Techniques; // Number of techniques
UINT Functions; // Number of functions

};

The purpose is to gain access to the members as they are accessed in C++. For
example:

Desc = effect.GetDesc()
print Desc.Parameters

Some of the members of these structures have been changed because Python and
C++ do not handle characters the same way.

7.4 Methods Returning Data as Arguments
A common way of handling multiple return values in C++ is by passing a pointer to
the variable or data as an argument to a function. For example, when a new interface
is created in ICgFXEffect, a pointer to the interface pointer is passed as an argument
to this function:

HRESULT CgFXCreateEffectFromFileA(
        LPCSTR               pSrcFile,
        DWORD                Flags,
        ICgFXEffect**        ppEffect,
        const char**         ppCompilationErrors);
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The method fills the ppEffect pointer with data. However, this would require
Python to send a reference to an object. Since Python doesn’t handle references, this
is impossible, but there are workarounds. The only thing that really has to be
returned is the error string. The ICgFXEffect instance is handled as a member
variable inside the PyCgFXEffect. Therefore, the method can be written like this:

const char* PyICgFXEffect::PyCgFXCreateEffectFromFileA(
        char* pSrcFile,
        DWORD Flags)
{

const char* errors;
CgFXCreateEffectFromFileA((LPCSTR)pSrcFile,

Flags, 
&m_pICgFXEffect,
&errors);

return errors;
}
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8. Discussion and Conclusions

8.1 The Result
The primary goal of this thesis was to examine the possibility of applying effects to
a Python scene. This has been successfully implemented by wrapping the CgFX
format so that it could be used together with Python. However, there was not enough
time to make the Effect class completely general. The one that is supplied in
appendix A shows that effect rendering in Python is possible, but it does not handle
all parameters and cases. To achieve the goal of this thesis, an extensive study of
shader programming, the Cg language, CgFX, and the way Python interacts with
other languages has been done. This report is a result of this study.

8.1 What Types of Effects Were Renderable?

A secondary goal of this thesis was to implement an Effect class which is able to
render all of the effect types in chapter 5. However, time showed to be the largest
hindrance, because some of the effects demand extensive modifications to the
application, or in this case, the Effect class.

Cartoon shading, environment mapping, and bump mapping where implemented
successfully and is renderable using the Effect class. 
The Hemispheric lighting was written for the Direct3D version of the effect format.
There was not enough time to convert it. Vertex displacement was not implemented
since no effects capable of doing this were supplied with the Cg Toolkit. Vertex
displacement also requires a slightly different approach when handling the vertex
streams from the application. An effect can be created from existing Cg programs,
but again, there was not enough time to do this.

Per-fragment lighting and procedural textures were impossible to implement with
the current version of CgFX. This is because CgFX does not support pixel shader
version 2.0 in OpenGL, which is required to render these effects.

8.2 The Beta Version of CgFX

As mentioned several times before Nvidia has not released an official version of
CgFX. The Interface for using CgFX is buggy, and lacks documentation. A lot of
time was spent on trying to figure out the way the interface works. However, since
Nvidia's CgFX format and Microsoft’s effect format is supposed to be identical,
some documentation could be found for the Microsoft version of the format. But the
formats are not exactly identical, most effects written in Microsoft’s format does not
compile without adjusting them to CgFX. This is mostly differences between the
two shader languages; HLSL and Cg. For example the way a function is called can
differ in the order or number of arguments. The CgFX format itself lacks some of
the abilities that Microsoft’s format has, for example; to specify meshes, background
colour and defining values with a #define keyword. There are no significant
differences, but several small differences will make it quite hard to locate errors
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since the error output from the compiler is not nearly as good as for example most
C++ compilers are.

There are also differences in the way the effects are integrated into an application.
Microsoft’s interface, the ID3DXEffect, is more complete compared to
ICgFXEffect. It is obvious in this example: The pass description for a CgFX effect
contains no information on what data to send to the vertex shader. For example, it
does not tell whether the application should send binormal and tangent data when
rendering an effect which need this data. The result is that the application must be
more specifically designed for particular effect.

8.3 Alternative Approaches

The effect approach was chosen early in the thesis, but this is only one way of
integrating shaders into Python or any scripting language. Microsoft's Direct3D9
effect format could have been wrapped using SWIG, but since this requires
wrapping a large part of the Direct3D9 API, it is a much harder task to do. Another
approach is wrapping the Cg interface to work with Python, this is already done and
a version called PyCg can be found at
[http://www.csit.fsu.edu/~mason/?section=projects:personal:pycg].

The difference in wrapping Cg instead of CgFX is that more control over the Cg
language is possible. An application would be able to handle the rendering more
effectively, but at the same time the shader programs would be more specific to the
application.

8.4 Future Improvements

The single largest improvement is to write a more general Effect class, and fully
integrate it into the Python rendering system used at the Department of Computer
Graphics. When, or if, an official version of CgFX is released, adjusting the whole
Python effect interface to adapt to the new version would be a natural improvement.
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Appendix A: The Effect Class
This is the source code for a simple effect class.

from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
from OpenGL.GL.ARB.texture_cube_map import *
import sys
from Numeric import *
from LinearAlgebra import *
from PyICgFXEffect import *
from Pynv_dds import *
from types import *

class Effect:

# contains the matrices that should be set by Begin()
parametersToSetAtBeginDict = {}
# A dict which manages the parameter descriptions in the effect
parameterDict = {}

def __init__(self, filename= 'default.fx', **kwords):
self.effect = PyICgFXEffect()
self.parameterDict = {}
self.matWorld = identity(4,typecode=Float)

#create the effect
errors = self.effect.PyCgFXCreateEffectFromFileA(filename, 0)
print errors

self.effect.PyCgFXSetDevice('OpenGL',0)

effectDesc = self.effect.GetDesc()

# iterate over the number of parameters in the effect and save them in the parameterDict
for i in range(0,effectDesc.Parameters):

pDesc =  self.effect.GetParameterDesc(i)
if pDesc.Semantic in [ 'WorldIT', 'World', 'ViewIT', 'WorldViewProjection' ]:

self.parametersToSetAtBeginDict[pDesc.Name] = pDesc
self.parameterDict[ pDesc.Name ] = pDesc

self.effect.SetTechnique(0)
self.effect.Validate()

self.ddsimage = CDDSImage()

# Set standard values
for attr,val in kwords.items():

setattr(self,attr,val)

def __setattr__( self, attr, val ):
if not self.parameterDict.has_key(attr):

self.__dict__[attr] = val
return 

#extract the description to use for setting the value
pDesc = self.parameterDict[attr] 

# Is it a matrix?
# Only matrices and textures are set in this version
if pDesc.Type == CgFXPT_FLOAT:

if self.parametersToSetAtBeginDict.has_key(attr):
del self.parametersToSetAtBeginDict[attr]

self.effect.SetMatrix(pDesc.Index, val, 4, 4)

# A texture
elif pDesc.Type == CgFXPT_TEXTURE:

texture = glGenTextures(1)

# Load the texture
self.ddsimage.load(val)

if self.ddsimage.is_cubemap():
glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, texture)
self.ddsimage.upload_textureCubemap()

elif self.ddsimage.is_volume():
glBindTexture(GL_TEXTURE_3D, texture)
self.ddsimage.upload_texture3D()

elif self.ddsimage.get_height() == 1:
self.ddsimage.upload_texture1D()

else:
glBindTexture(GL_TEXTURE_2D, texture)
self.ddsimage.upload_texture2D()
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self.effect.SetTexture(pDesc.Index, texture)

def __getatt__( self, attr):

pDesc = self.parameterDict[attr]
if pDesc.Type == CgFXPT_FLOAT:

return self.effect.GetMatrix(pDesc.Index, 4, 4)
 

def Begin(self):

# Set those matrices which are not already set
for p in self.parametersToSetAtBeginDict.values():

# Get the matrices from opengl
matView = glGetFloatv(GL_MODELVIEW_MATRIX)
matProjection = glGetFloatv(GL_PROJECTION_MATRIX)

if p.Semantic == 'World':
transp = transpose( self.matWorld )
self.effect.SetMatrix(p.Index,  transp, 4, 4)

if p.Semantic == 'WorldIT':
inv = inverse(self.matWorld)
self.effect.SetMatrix(p.Index, inv, 4, 4)

if p.Semantic == 'WorldViewProjection':
wv = matrixmultiply( self.matWorld,matView )
wvp = matrixmultiply(wv, matProjection )
transposewvp = transpose(wvp)
self.effect.SetMatrix(p.Index,  transposewvp, 4, 4)

if p.Semantic == 'ViewIT':
inv = inverse(matView)
self.effect.SetMatrix(p.Index,  inv, 4, 4)

return self.effect.Begin(0)

def Pass(self, p):
self.effect.Pass(p)

def End(self):
self.effect.End()
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Appendix B: PyCgFXEffect.h
#include  <stdio.h>
#include "ICgFXEffect.h"
#include "Python.h"
#include "Numeric/arrayobject.h"

#define CgFXPT_UNKNOWN 0
#define CgFXPT_BOOL 1
#define CgFXPT_INT 2
#define CgFXPT_FLOAT 3
#define CgFXPT_DWORD 4
#define CgFXPT_STRING 5

#define CgFXPT_TEXTURE 6
#define CgFXPT_CUBETEXTURE 7
#define CgFXPT_VOLUMETEXTURE 8
#define CgFXPT_VERTEXSHADER 9
#define CgFXPT_PIXELSHADER 10

// Complex type
#define CgFXPT_STRUCT 11
    
// force 32-bit size enum
#define CgFXPT_FORCE_DWORD      = 0x7fffffff

class PyCgFXEFFECT_DESC
{
public:

UINT Parameters; // Number of parameters
UINT Techniques; // Number of techniques
UINT Functions; // Number of functions

};

class PyCgFXPARAMETER_DESC
{
public:

LPCSTR Name; // Parameter name.
UINT Index; // Parameter index 

// Usage
LPCSTR Semantic; // Semantic meaning

// Type
UINT Type; // Parameter type
UINT Dimension[CGFX_MAX_DIMENSIONS]; // Elements in array
UINT Bytes; // Total size in bytes

// Annotations
UINT Annotations; // Number of annotations.

};

class PyCgFXANNOTATION_DESC
{
public:
    LPCSTR Name; // Annotation name
    UINT Index; // Annotation index (cast to LPCSTR)
    LPCSTR Value; // Ska egentligen vara LPCVOID 

    // Type
    UINT Type; // Annotation type
    UINT Dimension[CGFX_MAX_DIMENSIONS];        // Elements in array
    UINT Bytes; // Total size in bytes

};

class PyCgFXTECHNIQUE_DESC
{
public:
    LPCSTR Name; // Technique name
    UINT Index; // Technique index (cast to LPCSTR)

    UINT Properties; // Number of properties
    UINT Passes; // Number of passes

};

class PyCgFXPASS_DESC
{
public:
    LPCSTR Name; // Pass name
    UINT Index; // Pass index (cast to LPCSTR)

};
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class PyICgFXEffect
{
public:

PyICgFXEffect();
~PyICgFXEffect(void);

const char* PyCgFXCreateEffectFromFileA(
        char* pSrcFile,
        DWORD Flags);

const char* PyCgFXCreateEffect(
        char*               pSrcData,
        DWORD             Flags);

const char* PyCgFXCreateEffectCompiler(
        char*              pSrcData,
        DWORD Flags);

const char* PyCgFXCreateEffectCompilerFromFileA(
        char* pSrcFile,
        DWORD Flags);

const char* CompileEffect(DWORD Flags);

void PyCgFXSetDevice(const char* pDeviceName, DWORD pDevice);
void PyCgFXFreeDevice(const char* pDeviceName, DWORD pDevice);
const char* PyCgFXGetErrors();
void PyCgFXRelease();

void SetTechnique(int pTechnique);
char* GetTechnique();

// Validate current technique:
bool Validate();

// Returns the number of passes in pPasses:
int Begin(DWORD Flags);
void Pass(int passNum);
void End();

// Descriptions
/* Return description of effect */
PyCgFXEFFECT_DESC GetDesc();
/* Return description of the named/indexed parameter */
PyCgFXPARAMETER_DESC GetParameterDesc(int pParameter);
/* Return description of the named/indexed annotation */
PyCgFXANNOTATION_DESC GetAnnotationDesc(int pParameter, int pAnnotation);
/* Return description of the named/indexed technique */
PyCgFXTECHNIQUE_DESC GetTechniqueDesc(int pTechnique);
/* Return description of pass for given technique */
PyCgFXPASS_DESC GetPassDesc(int pTechnique, int pPass);

ULONG AddRef();
ULONG Release();

// Get/Set Parameters

void  SetFloat(int pName, float f);
float GetFloat(int pName);

void  SetVector(UINT pName, const float* pVector, UINT vecSize);

void  SetMatrix(UINT pName, const float* pMatrix, UINT nRows, UINT nCols);

void  SetDword(int pName, DWORD dw);
DWORD GetDword(int pName);

void  SetBoolValue(int pName, bool bvalue);
bool  GetBoolValue(int pName);
void  SetString(int pName, LPCSTR pString);
char* GetString(int pName);
void  SetTexture(int pName, DWORD textureHandle);
DWORD GetTexture(int pName);

void  SetVertexShader(int pName, DWORD vsHandle);
DWORD GetVertexShader(int pName);

void  SetPixelShader(int pName, DWORD psHandle);
DWORD GetPixelShader(int pName);

void OnLostDevice();
void OnResetDevice();

private:
ICgFXEffect* m_pICgFXEffect;
ICgFXEffectCompiler* m_pICgFXEffectCompiler;

};
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Appendix C: ICgFXEffect.h
/*********************************************************************NVMH3****
File:  ICgFXEffect.h

Copyright NVIDIA Corporation 2002
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THIS SOFTWARE IS PROVIDED
*AS IS* AND NVIDIA AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.  IN NO EVENT SHALL NVIDIA OR ITS SUPPLIERS
BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS)
ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF NVIDIA HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

******************************************************************************/
#ifndef __ICGFX_EFFECT_H
#define __ICGFX_EFFECT_H

#include "cgfx_stddefs.h"
#define CGFX_MAX_DIMENSIONS 4

//////////////////////////////////////////////////////////////////////////////
// Types /////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////

typedef enum _CgFXPARAMETERTYPE
{
    CgFXPT_UNKNOWN = 0,
    CgFXPT_BOOL,

CgFXPT_INT,
    CgFXPT_FLOAT,
    CgFXPT_DWORD,
    CgFXPT_STRING,

    // Ref counted objects; Can be accessed as objects or as strings
    CgFXPT_TEXTURE,
    CgFXPT_CUBETEXTURE,
    CgFXPT_VOLUMETEXTURE,
    CgFXPT_VERTEXSHADER,
    CgFXPT_PIXELSHADER,

    // Complex type
    CgFXPT_STRUCT,
    
    // force 32-bit size enum
    CgFXPT_FORCE_DWORD      = 0x7fffffff

} CgFXPARAMETERTYPE;

typedef struct _CgFXEffect_DESC
{

UINT Parameters; // Number of parameters
UINT Techniques; // Number of techniques
UINT Functions; // Number of functions

} CgFXEFFECT_DESC;

typedef struct _CgFXPARAMETER_DESC
{

LPCSTR Name; // Parameter name.
LPCSTR Index; // Parameter index (cast to LPCSTR)

// Usage
LPCSTR Semantic; // Semantic meaning

// Type
UINT Type; // Parameter type
UINT Dimension[CGFX_MAX_DIMENSIONS]; // Elements in array
UINT Bytes; // Total size in bytes

// Annotations
UINT Annotations; // Number of annotations.

} CgFXPARAMETER_DESC;

typedef struct _CgFXANNOTATION_DESC
{
   LPCSTR Name;                        // Annotation name
   LPCSTR Index;                       // Annotation index (cast to LPCSTR)

LPCVOID Value; // Annotation value (cast to LPCVOID)

    // Type
   CgFXPARAMETERTYPE Type;             // Annotation type
  UINT Dimension[CGFX_MAX_DIMENSIONS];                     // Elements in array
   UINT Bytes;                         // Total size in bytes

} CgFXANNOTATION_DESC;

typedef struct _CgFXTECHNIQUE_DESC
{
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    LPCSTR Name;                        // Technique name
    LPCSTR Index;                      // Technique index (cast to LPCSTR)

    UINT Properties;                    // Number of properties
    UINT Passes;                        // Number of passes

} CgFXTECHNIQUE_DESC;

typedef struct _CgFXPASS_DESC
{
   LPCSTR Name;                        // Pass name
    LPCSTR Index;                       // Pass index (cast to LPCSTR)

} CgFXPASS_DESC;

typedef enum _CgFXMode
{

CgFX_Unknown,
CgFX_OpenGL,
CgFX_Direct3D8,
CgFX_Direct3D9

} CgFXMode;

//////////////////////////////////////////////////////////////////////////////
// Base Effect ///////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// base interface. extended by Effect and EffectCompiler.
//////////////////////////////////////////////////////////////////////////////
struct ICgFXBaseEffect
{

virtual ULONG AddRef() = 0;
virtual ULONG Release() = 0;

    // Descriptions
/* Return description of effect */
virtual HRESULT GetDesc(CgFXEFFECT_DESC* pDesc) = 0;
/* Return description of the named/indexed parameter */
virtual HRESULT GetParameterDesc(LPCSTR pParameter, CgFXPARAMETER_DESC* pDesc) = 0;
/* Return description of the named/indexed annotation */
virtual HRESULT GetAnnotationDesc(LPCSTR pParameter, LPCSTR pAnnotation, CgFXANNOTATION_DESC* pDesc) = 0;
/* Return description of the named/indexed technique */
virtual HRESULT GetTechniqueDesc(LPCSTR pTechnique, CgFXTECHNIQUE_DESC* pDesc) = 0;
/* Return description of pass for given technique */
virtual HRESULT GetPassDesc(LPCSTR pTechnique, LPCSTR pPass, CgFXPASS_DESC* pDesc) = 0;

// Get/Set Parameter
virtual HRESULT SetValue(LPCSTR pName, LPCVOID pData, UINT Bytes) = 0;
virtual HRESULT GetValue(LPCSTR pName, LPVOID pData, UINT Bytes) = 0;
/*
virtual HRESULT SetValueTranspose(LPCSTR pName, LPCVOID pData, UINT Bytes) = 0;
virtual HRESULT GetValueTranspose(LPCSTR pName, LPVOID pData, UINT Bytes) = 0;
*/

virtual HRESULT SetFloat(LPCSTR pName, FLOAT f) = 0;
virtual HRESULT GetFloat(LPCSTR pName, FLOAT* f) = 0;
virtual HRESULT SetVector(LPCSTR pName, const float* pVector, UINT vecSize) = 0;
virtual HRESULT GetVector(LPCSTR pName, float* pVector, UINT* vecSize) = 0;
virtual HRESULT SetMatrix(LPCSTR pName, const float* pMatrix, UINT nRows, UINT nCols) = 0;
virtual HRESULT GetMatrix(LPCSTR pName, float* pMatrix, UINT* nRows, UINT* nCols) = 0;
//virtual HRESULT SetMatrixTranspose(LPCSTR pName, const float* pMatrix, UINT nRows, UINT nCols) = 0;
//virtual HRESULT GetMatrixTranspose(LPCSTR pName, float* pMatrix, UINT* nRows, UINT* nCols) = 0;

virtual HRESULT SetDword(LPCSTR pName, DWORD dw) = 0;
virtual HRESULT GetDword(LPCSTR pName, DWORD* dw) = 0;

virtual HRESULT SetBoolValue(LPCSTR pName, bool bvalue) = 0;
virtual HRESULT GetBoolValue(LPCSTR pName, bool* bvalue) = 0;

virtual HRESULT SetString(LPCSTR pName, LPCSTR pString) = 0;
virtual HRESULT GetString(LPCSTR pName, LPCSTR* ppString) = 0;
//virtual HRESULT SetTexture1D(LPCSTR pName, DWORD textureHandle) = 0;
//virtual HRESULT GetTexture1D(LPCSTR pName, DWORD* textureHandle) = 0;
virtual HRESULT SetTexture(LPCSTR pName, DWORD textureHandle) =0;
virtual HRESULT GetTexture(LPCSTR pName, DWORD* textureHandle) = 0;
/*
virtual HRESULT SetCubeTexture(LPCSTR pName, DWORD textureHandle) =0;
virtual HRESULT GetCubeTexture(LPCSTR pName, DWORD* textureHandle) = 0;
virtual HRESULT SetVolumeTexture(LPCSTR pName, DWORD textureHandle) = 0;
virtual HRESULT GetVolumeTexture(LPCSTR pName, DWORD* textureHandle) = 0;
*/

virtual HRESULT SetVertexShader(LPCSTR pName, DWORD vsHandle) = 0;
virtual HRESULT GetVertexShader(LPCSTR pName, DWORD* vsHandle) = 0;

virtual HRESULT SetPixelShader(LPCSTR pName, DWORD psHandle) = 0;
virtual HRESULT GetPixelShader(LPCSTR pName, DWORD* psHandle) = 0;

};

struct ICgFXEffect : public ICgFXBaseEffect
{

// Set/get current technique:
virtual HRESULT SetTechnique(LPCSTR pTechnique) = 0;
virtual HRESULT GetTechnique(LPCSTR* ppTechnique) = 0;
// Validate current technique:
virtual HRESULT Validate() = 0;
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// Returns the number of passes in pPasses:
virtual HRESULT Begin(UINT* pPasses, DWORD Flags) = 0;
virtual HRESULT Pass(UINT passNum) = 0;
virtual HRESULT End() = 0;

    virtual HRESULT CloneEffect(ICgFXEffect** ppNewEffect) = 0;
/*
virtual HRESULT FindNextValidTechnique(LPCSTR pTechnique, CgFXTECHNIQUE_DESC* pDesc) = 0;
*/

virtual HRESULT GetDevice(LPVOID* ppDevice) = 0;
virtual HRESULT OnLostDevice() = 0;
virtual HRESULT OnResetDevice() = 0;

};

struct ICgFXEffectCompiler : public ICgFXBaseEffect
{
    // Compilation
    virtual HRESULT CompileEffect(DWORD Flags, ICgFXEffect** ppEffect, const char** ppCompilationErrors) = 0;
};

HRESULT CgFXCreateEffect(
        LPCSTR pSrcData,
        DWORD              Flags,
        ICgFXEffect**    ppEffect,
        const char**        ppCompilationErrors);

HRESULT CgFXCreateEffectFromFileA(
        LPCSTR               pSrcFile,
        DWORD                Flags,
        ICgFXEffect**        ppEffect,
        const char**         ppCompilationErrors);

HRESULT CgFXCreateEffectCompiler(
        LPCSTR                pSrcData,
        DWORD                 Flags,
        IcgFXEffectCompiler** ppEffectCompiler,
        const char**          ppCompilationErrors);

HRESULT CgFXCreateEffectCompilerFromFileA(
        LPCSTR                pSrcFile,
        DWORD                 Flags,
        IcgFXEffectCompiler** ppEffectCompiler,
        const char**          ppCompilationErrors);

HRESULT CgFXSetDevice(const char* pDeviceName,LPVOID pDevice);
HRESULT CgFXFreeDevice(const char* pDeviceName, LPVOID pDevice);
HRESULT CgFXGetErrors(const char** ppErrors);
HRESULT CgFXRelease();
#endif
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