
Abstract 
In this master’s thesis we discuss how to solve or reduce the problems that occur when 
synchronizing clients in a networked environment. Irregular latency and jitter make it 
hard to predict where a game object will be in the nearest future. The problem is 
interesting because even though the bandwidth to the internet has increased for people 
all over the world, we still have latency and jitter in the network. Networked 
multiplayer games have grown in popularity, and from being played only against 
neighbours in a directly connected network we have started to play over the internet 
with our friends within the same geographical location. But there is still a problem when 
players want to play across continents. Too big latency and jitter will make existing 
games unplayable. A solution to these kinds of problems would benefit both the game 
developers and all the players that are playing against each other. 

 

The main purpose of this thesis is to find out how these kinds of problems could be 
reduced, or in the best case be solved. The overarching theme of the solution is 
prediction, where prediction is based on two parts. The first part of it is extrapolation, 
i.e. how to make a good guess where an object will be located in the future. 
Extrapolation methods that are discussed are basic linear and quadratic expressions, 
based on the laws of Newtonian physics, Richardson extrapolation and Catmull-Rom 
splines. The other part of the prediction problem is to decide how an object should 
move from one place to another. Linear paths make objects go in straight paths between 
positions and this could look strange in some applications. By using some areas from 
mathematics behind the splines (like cubic splines, hermites and Catmull-Rom splines) 
we can make the movement smoother. This removes problems like objects suddenly 
teleporting from a place to another. To get a generic extrapolation algorithm we have 
discretizised mathematical expressions to get FIR-filter coefficients. With the FIR-filter 
coefficients, we can change extrapolation algorithm by just changing the coefficients 
that the algorithm will use. 

 

To be able to test the ideas and algorithms, we have developed a game called shuffle 
puck and a simulation utility called Cursorsimulation. In these tools we can tune 
parameters and simulate a networked environment. Our work has showed that the best 
method to use in terms of a small deviation error is to use linear extrapolation and linear 
interpolation. The smoothness that we will get by using other methods like Catmull-
Rom is expensive because it will give a greater deviation error. We have evolved a 
concept of predictors and replicators that are responsible for how a game object will 
move in an asynchronous networked environment. We have shown that this will work, 
but will not be as good as the existing methods as client side prediction, that is common 
in modern games.    



  



  

Table of contents 
 

1 Introduction.................................................................................................................... 1 

1.1 Background ............................................................................................................. 1 

1.2 The problem ............................................................................................................ 1 

1.3 Terminology............................................................................................................ 2 

1.4 Outline..................................................................................................................... 2 

2 Prediction ....................................................................................................................... 3 

2.1 Introduction to prediction........................................................................................ 3 

2.1.1 Prediction in computer games .......................................................................... 3 

2.1.2 Movement patterns make sense........................................................................ 4 

2.2 Interpolation and extrapolation methods................................................................. 4 

2.2.1 Extrapolation .................................................................................................... 4 

2.2.2 Dead reckoning................................................................................................. 4 

2.2.3 Interpolation ..................................................................................................... 5 

2.2.4 Interpolation with polynomials......................................................................... 5 

2.2.5 Splines .............................................................................................................. 6 

2.2.6 Kalman filter..................................................................................................... 7 

2.2.7 Richardson extrapolation.................................................................................. 9 

2.2.8 Digital filters..................................................................................................... 9 

2.3 Prediction applied ..................................................................................................... 11 

2.3.1 Evaluation of prediction schemas................................................................... 11 

2.3.2 Extrapolation with digital filters..................................................................... 17 

2.3.3 Tradeoffs......................................................................................................... 20 

3 Architecture ................................................................................................................. 21 

3.1 Twisted.................................................................................................................. 21 

3.1.1 Overview ........................................................................................................ 21 

3.1.2 Asynchronous networking.............................................................................. 21 

3.1.3 Protocols ......................................................................................................... 22 

3.1.4 Perspective Broker.......................................................................................... 22 

3.1.5 Deferred – A delayed object........................................................................... 23 

3.2 The model and its purposes................................................................................... 23 

3.3 Predictors and replicators...................................................................................... 24 

3.4 Bandwidth usage and communication .................................................................. 24 



  

3.5 Time synchronization............................................................................................ 25 

3.6 The impact of different framerates........................................................................ 25 

4 Evaluation .................................................................................................................... 26 

4.1 Introduction ........................................................................................................... 26 

4.2 Shuffle puck – a prototype .................................................................................... 26 

4.2.1 Network handling ........................................................................................... 26 

4.2.2 Data structures ................................................................................................ 27 

4.2.3 Graphic handling ............................................................................................ 28 

4.2.4 Message objects.............................................................................................. 28 

4.3 Evaluation of extrapolation with interpolation ..................................................... 29 

4.3.1 Extrapolation methods.................................................................................... 29 

4.3.2 Interpolation methods..................................................................................... 29 

4.3.3 Cursorsimulation ............................................................................................ 29 

4.3.4 Time history.................................................................................................... 29 

4.3.5 Latency and jitter............................................................................................ 29 

4.4 Network handling in commercial games............................................................... 36 

4.4.1 Unreal ............................................................................................................. 36 

4.4.2 Quake-series ................................................................................................... 37 

4.4.3 Pros and cons using the techniques in existing games ................................... 38 

4.4 Future work ........................................................................................................... 38 

4.5 Conclusions ........................................................................................................... 39 

Appendix A..................................................................................................................... 41 

A. 1 Coefficients of Newtons’ interpolation polynomial............................................ 41 

A. 2 Richardson extrapolation..................................................................................... 41 

A. 3 Derivation of a position....................................................................................... 42 

A. 4 Hermite geometry................................................................................................ 43 

A. 5 Coefficients of a cubic spline .............................................................................. 44 

Reference ........................................................................................................................ 45 



Introduction 

 1 

1 Introduction 

1.1 Background 
Today’s market of games has a wide variety of genres running on different platforms. 
We can see games on consoles, computers and cellular phone etc. But since the middle 
of the 1990’s when internet grew in popularity and accessibility the game developers 
have tend to focus more on making a multiplayer part of their games. In this thesis we 
will look at the problems programmers face when it comes to developing multiplayer 
games that use a networked environment. The primary discussions are about 
extrapolation and interpolation. The way we are going to solve extrapolation and 
interpolation is by going from standard linear methods to cubic polynomials, where 
splines are one area. We are going to use ideas from the control theory like Kalman 
filtering and FIR (Finite Impulse Response) filters. The methods discussed in this thesis 
could also be applied to other topics that involve controlling an object, where there is a 
delay between sending a command and until the receiver reacts to that signal. 

 

A shuffle puck game has been implemented in Python with the use of Twisted, a 
network API for writing asynchronous applications in Python. Using an asynchronous 
approach gives rise to some new problems that we don’t face when it comes to a 
synchronized approach. The main problem is that we get non-uniform updates and 
many extrapolation and interpolation algorithms require that updates are in a uniform 
matter. We briefly discuss some of the concepts that Twisted use. To be able to get 
results we have also developed a utility called Cursorsimulation, which can simulate a 
network and where we can make movement paths. Cursorsimulation will use these 
paths in conjunction with extrapolation and interpolation algorithms to produce a result. 

 

1.2 The problem 
Today, people around the world can and do play computer games over an internet 
connection with each other. This fact makes a game programmer have to consider new 
problems that did not exist at all when it comes to single player game programming. 
Problems like how players exchange data with each other, securing for cheats, 
synchronizing the game states in the game, etc. In this thesis we are going to focus on 
how to synchronize game players that are playing in the same virtual world, i.e. we will 
try to make it possible to show a player’s movement and actions instantaneous on the 
other participants’ computer screens. The main reason for the synchronization problems 
in a networked environment is that the packets sent between participants have a travel 
time. Another problem is that there is no guarantee that packets arrive in a given amount 
of time: the packets arrive in a non-uniform way. 

 

This is an interesting problem both for game developers and for the actual players that 
spend a lot of time playing networked computer games. Networked games have grown 
from just being a game that we are playing with a neighbour to play on the internet with 
friends that are in the same geographical area (same country). However, if we try to 
play games with players on other continents, we will get horrible results using the 
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existing algorithms used in computer games. The high latency that arises between 
continents makes it almost impossible to have an internet tournament with players from, 
e.g. Sweden, Australia, China and USA. An investigation of how and if it is possible to 
solve these kind of problems would have made all participants in the gaming 
community happy. 

  

What could then happen if we don not take care of the problems with the delays? The 
delay may be acceptable in many games, but in realtime games as first person shooters, 
the delay can have a devastating effect on the games’ playability. Consider two players 
playing against each other. The game takes place on a server that both players connect 
to. One player has an average packet delay of 50 ms, and the other player has about 200 
ms average delay of the packets. The decisions of the game are made on the server, i.e. 
it is the server that has the true game state. If the player with the lower packet delay 
fires a bullet towards the other player and hits him, then he will get a response from the 
server that he hit him much faster than the other player will. When the player with the 
higher packet delay receives the message from server he could already be out of sight 
from the other players’ point of view, but get hit anyway, i.e. he will get a feeling that 
he has been shot from behind a wall.  

 

1.3 Terminology 
This is an explanation of the terms used in this report. 
Entity: An object in the modelled world. 
State: A snapshot of all entities and their variables that exist in the modelled world. 
State update: An operation that updates the variables and object states in the game. 
Message: A message for communication between the server and clients. 

 

1.4 Outline 
This report is structured so that we in chapter two start with a theoretical part where we 
get the knowledge of why and how extrapolation and interpolation are used. We also get 
experience with splines, Kalman filtering, Richardson extrapolation and digital filters. 
With this knowledge we are able to discuss and evaluate different algorithms and 
approaches. This is the main topic for the last part of chapter two. In chapter three we 
describe the general structure and concepts of a networked multiplayer game. We start 
the chapter by introducing Twisted, which as mentioned earlier, is an asynchronous 
framework for networked applications written in Python, which has been used in the 
test application, called shuffle puck that we have developed for this thesis. Chapter four 
is the last chapter in which we summarize the evaluation of the project. Here we find a 
section where we can read how shuffle puck is implemented and why we have used the 
chosen approach. To get true results from the different interpolation and extrapolation 
methods there is a section about a utility called Cursorsimulation that has been 
developed for this thesis. Furthermore we will find a section about how some of today’s 
games try to solve the latency and jitter problem. Last in chapter four we will find the 
conclusions of this project and how this thesis could be continued.   
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2 Prediction 
In this chapter we are going to look at the theory that we are using to be able to 
minimize the effects of the latency in the network. Most of the sections are related to 
extrapolation and interpolation. So after a general description of how prediction works 
and why we should use prediction in computer games we will discuss the basic concept 
of interpolation and extrapolation. After that we will look at more specific algorithms 
that we could use. One section is about Kalman filtering where we have an example that 
shows how Kalman could be used for our problem. We do some calculations to get 
acquaintance of how the methods will perform and look when they are plotted. Last in 
this chapter we will derive FIR-filter coefficients that are used in a generic extrapolation 
algorithm. 

2.1 Introduction to prediction 
Prediction is a concept that allows us to guess how things are going to be in the future. 
It is used in many areas: some implementations rely on complicated mathematics; some 
are based on human guesses and quite often combinations of both. Prediction is, from a 
mathematical view, a concept for finding a set of points in the future based on the 
knowledge of the points in the past. The quality of the prediction often depends on how 
much information you have about the past. If we for example should predict the path of 
a car we would probably get better result if we knew the cars velocity, acceleration and 
at what time it was at the last position, than if we only knew it’s position. 

 

2.1.1 Prediction in computer games 
Why do we need to do prediction in computer games? Well, in almost every game we 
have a game loop where we are doing similar things in each frame. The most common 
loop is: 

 
• Receive messages from other players 
• Do game logic calculations, like, handling input, collision detection etc. 
• Send an update to the server (and to other players) with your new state 
• Render the graphics onto the screen 

 

Within each frame it is very likely that there are missing or delayed messages from 
other players. If we just ignore that the messages were missing or delayed we would get 
jerky movements of the other players’ entities in the game. What prediction does in 
these cases is that it tries to make a good guess where the players were supposed to be 
in the particular frame. The result heavily depends on what kind of prediction algorithm 
we are using and what kind of movement the player was doing. We should be aware 
that prediction does not make jerkiness to go away; it will most probably just make it 
better. To be able to get rid of jerkiness we will have to use a smoothing algorithm, i.e. 
interpolate between the predicted points. 
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2.1.2 Movement patterns make sense 
Objects that are easy to predict, and with good result, are objects that are moving in a 
linear way, like an airplane in a flight simulator. It’s not likely that an airplane will do 
an instant 180 degree turn. It’s more likely that it will travel in the air with 
approximately the same speed and only do small angular corrections. On the other hand, 
in games like for example football games or 3D-shooters the players tend to do more 
irregular movements. Here is it very possible that a player is running forward, and then 
suddenly changes direction. The uncertainty and non-uniform movements makes 
prediction very hard to do. 

 

2.2 Interpolation and extrapolation methods 

2.2.1 Extrapolation 
In the previous section we talked about the concept of prediction. Extrapolation is the 
mathematical way to express the part of the prediction where we guess the new position 
for an object. When doing extrapolation, time is often involved. For example an, object 
on the computer screen has in 2D one y- and one x-coordinate and when we extrapolate 
a new position we have to scale it by the amount of elapsed time that has passed. 
Extrapolation is always easier to do when the time step is uniform. When that is not the 
case we have to use dividing differences to get the correct result. 

 

2.2.2 Dead reckoning 
The concept of the dead reckoning algorithm is that everyone participating in a virtual 
world is using the same algorithm to extrapolate, i.e. predict where the entities in the 
world will be in the future. From the beginning the dead reckoning evolved from the 
United States military, they had need for doing simulation on their vehicles. And for 
this they developed the Distributed Interactive Simulation (DIS) protocol [1]. 

 

In dead reckoning an entity not controlled by the player is known as a ghost. The entity 
that represents the player is controlled by the player itself. The player uses dead 
reckoning on it own entities to be able to decide when the extrapolation has too much 
deviation from a specified threshold. A message that contains information about 
position, velocity and acceleration is sent to the other players when a threshold is 
exceeded, so they can restart the extrapolation with new values. The deviation that the 
player calculates is based on the information of the last message he sent to the other 
players and the true state of the entity. In this way both the owner of the entity and the 
other players are going to extrapolate the entities in the same way. Because of that dead 
reckoning concept uses extrapolation it also suffers from jerkiness. The propagation of 
the error depends on the entities’ velocity and on the rate that messages with state 
information arrives. Accuracy is gained by sending more messages, but with more 
messages the bandwidth usage will increase. 
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2.2.3 Interpolation 
Interpolation is the way of how to calculate what the value at the points in between the 
known points should be. There are several ways to do this. It can be achieved by going 
from easily calculated linear expressions to more advanced higher order polynomials. 

 

C0 continuity 
Continuity in between points is achieved by going from one point to the next point. But 
depending on whether the nth derivative on the start point and the end point in each 
curve segment is the same, we get different kinds of smoothness conditions. 
Smoothness condition is defined as a class Ck. A curve s(t)  is said to belong to the class 
Ck[a, b] if it has k derivatives s’(t), s’’(t), …, sk(t) and all of them are continuous [2]. 
When we have C0 continuity we just connect our interpolated segments and we do not 
have any continuous derivative.  

 

C1 continuity 
By the same definition of Ck as in previous section we get our first smoothness 
condition if we have a continuous first derivative between the end point in the adjacent 
segment and the start point in the next segment. This is a condition we need to enforce 
to be able to get a smooth curve between interpolation points. This is illustrated in the 
figure below. We can see that P3 = Q0 (C0 continuity) and that P3’ = Q0’. Interpolating 
polynomials always have this condition fulfilled, but because we only want to use 
polynomials of lower degrees, we have to use a chain of different polynomials in 
between the predicted points. This leads us to splines that we will discuss in section 
2.2.5. 

 
Figure 1: Illustration of C1 smoothness condition 

 

2.2.4 Interpolation with polynomials 
When we only know a few points of a curve we can try to find a polynomial that 
interpolates our known points. By going for a higher degree of the polynomial we can 
get more natural results than by using straight linear paths. The most common way to 
find a polynomial is to use Lagrange’s- or Newtons’ interpolation formula. Newton’s 
interpolation formula is more effective than the Lagrange version mainly because of 
that if you want to calculate a higher order polynomial you have to redo all the 
calculations from the beginning with Lagranges’ method, whereas with Newton’s 
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method you can use the previously calculated values. We will use Newton’s method. 
When calculating the polynomial we state that our expression should be of this form 

 

( ) ( ) ( )( )212110 xxxxCxxCCxP −−+−+=   (eq. 2.1)  

 

To get our polynomial we have to solve the equation for the Ci coefficients (see 
appendix). When it is done we have a polynomial that we can use for any point in 
between the interpolation points. We can of course also use the polynomial to calculate 
points that lay outside the known end points. One might think that adding more degrees 
to the polynomial will gain better prediction. That is not the case. Higher order 
polynomials often lead to very big fluctuations between the interpolated points, the most 
famous example which is called Runges phenomena [3]. This is the reason why we stick 
to second order interpolation polynomials for prediction. 

 

2.2.5 Splines 
The main idea with splines is to use different polynomials to approximate a curve or a 
function in an interval. Assume that we have a curve in an interval [a, b] and that we 
have divided the interval with joint points a ≤ x1 < x2 < … < xn ≤ b. Then the easiest 
way to approximate the curve is to draw straight lines between the points in the interval, 
i.e. the same method as we proposed in the section on interpolation with polynomial. 
This is illustrated in the figure below where a sinus curve is represented by straight lines 
between the points. 

 

 
Figure 2: Spline with linear path in between segments 

 

If we instead use a polynomial of higher degree we will get curves between the joint 
points. And it’s also possible to get C1 continuity at the joint points. Doing this with a 
polynomial with degree three is called a cubic B-spline or just simply cubic spline. 
When we are computing cubic splines we are working with four points, a start point P0, 
an end point P3 and two points in between, P1 and P2. The two points in between are 
also called control points or influence points and in computer games they can represent 
the velocity of an entity. The figure below illustrates a typical cubic spline. 
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Figure 3: Illustration of a cubic spline and its control points 

 

Catmull-Rom splines 
A Catmull-Rom spline is a spline that interpolates all the points we give to it. These 
types of splines are perfectly smooth, i.e. C1 continuity is fulfilled at all its points. The 
derivatives at the points that are not end points are easy to calculate. The derivatives in 
these points are parallel to a line drawn between its adjacent points. In the figure below 
we can se that the tangent at P1 is parallel to the vector P0 P2.  

 

 
Figure 4: Visually showing Catmull-Rom tangents calculations 

 

How are the tangents at the end points in the picture above calculated? They are 
calculated using an end formula that is 

 ( )2143
2
1

++ +−=′ iiii PPPP   (eq. 2.2)  

This formula works for both the start point and the end point of the curve. 

 

2.2.6 Kalman filter 
In many processes we can not do measurements exactly. Measurements could be limited 
by the tools we are using; it could also be that there is disturbance from our 
environment that affects the process. In 1960 Rudolf E. Kalman and Richard Bucy 
developed an algorithm for control theory [4]. This algorithm, which goes under the 
name Kalman filter, makes use of imprecise data in a linear system that is affected by 
Gaussian noise in the process. With that imprecise data a Kalman filter can estimate the 
state variables of a process. It can be shown that of all existing filters, it is the Kalman 
filter that minimizes the variance of the estimation error [5]. Kalman is widely used in 
navigation systems, radar tracking, sonar ranging and satellite orbiting control to give a 
few examples. 
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To be able to use the Kalman filter we need to establish a model of the process we are 
interested in. This model is described by a linear system (if it is not linear we have to 
linearize it). A linear system can be described by two equations: a state equation and an 
output equation. The state equation tells us about the dynamics of a system, and the 
output equation gives us a measurement of the states. Often we only measure one of the 
states. We get this linear system 

 tttt wBuAxx ++=+1   (eq. 2.3) 

 ttt zCxy +=  (eq. 2.4) 

In the state equation A is a state transition matrix, x is a state vector of the states that we 
are going to estimate, B is a matrix for the input to the process, u is the input and w is 
the noise of the process. The noise has to be Gaussian noise with zero mean. What this 
means is that the noise should not drift in any direction. This kind of noise is also 
known as white noise.  

 

When we have decided what state variables to use and have setup a model we could 
start using the Kalman filter and calculate an estimate of x (we denote estimated values 
by the hat sign, so x̂  is the estimated vector). To compute the Kalman filter we have to 
calculate five equations. Two of them are updating equations. They are responsible for 
projecting the current state and error covariance estimates forward in time to be able to 
obtain the estimates for the next time step. These estimates are also called a priori 
estimates. Basically what they are doing is prediction of the new states. The other three 
equations are responsible for feedback. A feedback that transforms the a priori estimate 
into an improved a posteriori estimate, i.e. these equations is the corrector equations. 
We have the following equations [6] 

 

 ttt BuxAx += ˆ  (eq. 2.5) 

 QAAPP T
tt +=  (eq. 2.6) 

 ( ) 1−
+= RCPCCPK T

t
T

tt  (eq. 2.7) 

 ( )tttt xCyKxx −+=+1ˆ  (eq. 2.8) 

 ( ) ttt PCKIP −=+1  (eq. 2.9) 

 

Here we used the bar as notation that it is extrapolation from an earlier state. This 
notation should in fact have index t+1, but because it’s only used as a temporary 
variable we denote the index with t only. We have introduced Q and R into the model. Q 
is a covariance matrix for the process noise and R is a covariance matrix for the 
measured noise. They are defined as 

 

 ( )T
tt wwEQ ⋅=  (eq. 2.10) 

( )T
tt zzER ⋅=  (eq. 2.11) 
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P in the equations is a covariance matrix of the error in estimating x. The Kalman gain 
is denoted by K. We can see that if the measurement noise is large, Q will be large and 
then the Kalman gain will be small and it will not contribute with a large value to the 
estimation of the estimate of the next x̂ . Now we have described the Kalman filter. To 
use a Kalman filter we initialize the variables and then repeat the Kalman filter 
equations in every time step. 

 

2.2.7 Richardson extrapolation 
Finding derivatives can be done in several ways. Richardson extrapolation is a method 
that gives a better estimate of the derivative than we would have obtained using only 
dividing differences to calculate the derivatives. Assume that the value of a function 
F(h) can be calculated for different values where h≠0 and we search for the limit of the 
function when h  0. For central differences this can be calculated as 

 ( ) ( ) ( )
h

hxfhxfhF
2

−−+
=  (eq. 2.12) 

Where h is any value not equal to 0. Our problem is now to find the derivative of the 
function 

 ( ) ( )hFxf
h 0
lim
→

=′  (eq. 2.13) 

which written as Richardson extrapolation will be 

 ( ) ( ) ( ) ( ) ( )4

3
2 hhFhFhFxf Ο+

−
+=′  (eq. 2.14) 

We now have an estimate of the derivative with a truncation error O(h4). Without 
Richardson extrapolation we would have got a truncation error of O(h2) instead. We got 
the expression by using Taylor series. See the appendix for calculations more in detail.  

 

2.2.8 Digital filters 
Digital filters are filters that work with discrete time intervals. The idea with digital 
filtering is to use some constants that are multiplied with the signal and added in each 
time step of the filtering process. The results of the calculations are the output from the 
filter. Depending on how the designers of the filter choose the constants we get different 
behaviour of the filter. The most common way to design filters is to make them cut off 
frequencies that are not desired, where low pass, high pass and bandwidth filter being 
the most well known ones.   

 

FIR filter 

FIR means Finite Impulse Response, i.e. the input to the filter is finite. The reason why 
it is finite is because of that there is not any feedback in a FIR filter. So if you put an 
impulse as input signal (a single input value of one followed by many zeros), the output 
will return to zero as soon as the single non-zero value has passed through the filter. The 
filters is made of multipliers, adders and delay elements (see figure 5 below that shows 
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a FIR filter in a block diagram). In a FIR filter the word tap is often mentioned. A tap is 
a pair of a coefficient and a delay. The order N of a FIR filter is the number of taps used 
in the filter. The higher order of a filter the more memory it will use. And it will do 
more calculations, but higher order of the filter also gives the filter designer more 
possibilities to achieve the desired result. Thus there is a trade off between simplicity 
and effectiveness. 

 
Figure 5: Illustration of a FIR-filter 

 

So the output y(u) of the filter is 

 ∑
=

−− ⋅=⋅++⋅+⋅=
n

i
ininnnn xhxhxhxhy

0
0110 K  (eq. 2.15) 

Basically what a FIR filter does is producing a weighted average of its N most recent 
input samples [7]. 

 

IIR filter  

An IIR filter works in a similar way as a FIR filter. The big difference is that it uses 
feedback from the output signal to the input in the next computing step. So when the 
filter is subjected to a signal, then its output need not necessary become zero when the 
entire signal is through the summation of the filter. The response of a signal in an IIR 
filter is infinite. Because of the recursion we have to be careful when designing an IIR 
filter. An incorrectly built filter can make the filter unstable and cause the output signal 
to escalate.  
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2.3 Prediction applied 
Now that we have discussed the theory that we are using in our prediction methods, we 
are going to actually use the theory and the ideas to evaluate how we could use them in 
practice. In the following sections we will discuss the drawbacks and the benefits using 
the prediction methods in a computer game. 

 

2.3.1 Evaluation of prediction schemas 
When we evaluate how a method works in practice, we are going to use two functions, 
sinus and logarithmic, that simulates the true positions. These functions are a good 
choice for simulation. The sinus wave with that few points (one every natural number), 
makes prediction hard. The logarithmic function is quite smooth and easy to predict. To 
be able to have some numbers to look at we have in each plot calculated the error of a 
mean value as shown for sinus below 
 

 ( ) π3,)()sin(
01.0

1 01.0

01.0
=−⋅

⋅
= ∑

⋅

=

nxivx
n

mv
n

i
iierr ,  iv = interpolated value 

  (eq. 2.16) 
 

In the plots we notice that we do not start our predicted path until we have a few true 
positions. This is due to that we can not calculate any extrapolation without any true 
positions. When implementing a computer program, we could just initialize the 
predicted start point to the first position. This would give a strange start of the object, 
but it is just a matter of very little time before it is running as it should. 

 

Basic prediction 
The most basic form of prediction is the point to point method. This method renders the 
object in the same position until a new state message arrives. When a new message has 
arrived, the entity is moved to the new position that the message states and will now 
render the entity at that position until the next state message arrives. This method 
requires a lot of messages if it is to be able to have a fairly good result. Because of that a 
server sends updates at a specified frequency. Which is much lower than the players’ 
framerate. This method is not used very often in computer games with a lot of moving 
objects. Due to that this method doesn’t use any kind of prediction it will always render 
a player too late in terms of a synchronized world. The message has a time ∆t from that 
it was generated to that the player receives it, and the player will always be rendered too 
late with that amount. 

 

A better idea is to use a linear prediction method. From Newtonian physics we know 
that s(t) = v·t. By using this and the last known position we can extrapolate a new 
position. We have this linear expression 

 ( ) tvptp ii ⋅+=  (eq. 2.17) 
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The major drawback with this method is that it assumes that the object has constant 
velocity. If the actual velocity is not constant, then we are going to get a deviation from 
the actual position and the predicted position. The magnitude of the deviation depends 
not only on the objects velocity. It also depends on ∆t. Using this method leads to 
objects that moves in straight lines and suddenly changes position, direction and 
velocity. Using this method which obviously gives us C0 continuity gives the following 
plots and value’s. 

 

 
Figure 6: Quadratic prediction and linear interpolation 

 

If the problem with the linear prediction were that we had constant velocity as a 
requirement for making good prediction, then we could add one more term, the 
acceleration, to the equation and get a higher order polynomial. Doing so gives us 
following equation (see appendix for derivation). 

 ( ) ( )2

2
1 tatvptp iii ∆+∆+=  (eq. 2.18) 

Will this work? Well, the short answer is sometimes. Again it depends on how big ∆t is. 
Small intervals between real state updates make this method perform slightly better than 
using only linear prediction. But when ∆t grows, we can get horrific results due to that 
the acceleration is multiplied with the squared time and the end result is even worse 
than using only linear prediction. 

 

Catmull-Rom prediction 
As we described earlier in this chapter, the Catmull-Rom spline gains perfectly smooth 
curves, i.e. C1 continuity is achieved, but this is only the case when we already know 
the points that we interpolate between. Consider that we have a set of points and we 
calculate a Catmull-Rom spline. The derivative in the last point will be calculated with 
the end point formula. We know that the derivative in the last point only depends on the 
last three points. But if we now add one more point and recalculate our Catmull-Rom 
spline we won’t get the same derivative in the last but one point. This is because our 
tangent is now calculated as the normal tangents in a Catmull-Rom spline. I.e. using the 
approach with continuous use of end point formula makes our spline end up with C0 
continuity. 
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A common way to draw smooth Catmull-Rom curves is to only draw the segment in 
between the two middle points. To use this approach in a computer game, the game 
must have regular updates with very small delay in between the position updates. 
Otherwise the players are going to notice the delay that they are exposed to. In the 
picture below we can see how it would look like when following a sinus curve by using 
Catmull-Rom interpolation between quadratic predicted positions. As we expected with 
this approach we can see that there isn’t any interpolation done between the last two 
predicted points. 

 

 
Figure 7: Catmull-Rom interpolation between points 

 

Can we use Catmull-Rom to extrapolate the positions then? Yes, if we enforce that the 
derivative should be the same in the second last point as it was when it was the last 
point itself. This approach is described in detail in the coming section about 
extrapolation with digital filters. 

 

There is a mathematical concept that is called hermite geometry [8]. It is basically the 
same as a Catmull-Rom spline, but it is calculated using a start point and an end point. 
And instead of using points in between for specifying the curves’ shape, the hermite 
geometry uses the derivatives at the start and the end points for this. Knowing that, we 
can use same derivatives the end point and the start point in the next segment of the 
spline.  

 
Figure 8: Quadratic prediction, (left) and hermite interpolation 
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Basically our problem is to calculate the end derivatives. We use the same formula as 
the end formula that we described in the section about Catmull-Rom and C0 continuity. 
This method makes quite a smooth and nice interpolation between the points. The 
results of the sinus and logarithmic plot are seen in figure 8. The math behind the 
hermite geometry can be found in the appendix. 

 

Cubic spline 
As illustrated in figure 3, a natural cubic spline interpolates its start and endpoint, but 
not the two points in the middle. We could make use of this with a little different 
approach than before. The idea is based on an algorithm that Nick Caldwell, MIT, 
proposed in an article at GameDev.net [9].  

 

We use the same notation of the points P0, P1, P2, and P3 as before. But now point P1 
represents the direction and velocity with which the object leaves the start point. P2 sets 
the direction and final velocity that the object is supposed to have at its end point. I.e. 
we have tangential lines between P0, P1 and P2, P3 that the spline should follow at the 
start and at the end of the curve. 

 

If we knew everything about the state in the start position and the end position, then it 
would have been a straight forward calculation of a cubic spline. But due to the 
latencies in a networked computer game, we won’t know exactly what the states look 
like and the exact locations of the points. We have to extrapolate a new position again. 
However we can make use of the points that were extrapolated in our cubic spline. The 
following equations system yields a cubic spline which intersects with its start point and 
end point [10]. 
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    , 10 ≤≤ t  (eq. 2.19) 

 

The equation system has to be solved for each coefficient (see appendix). We notice that 
it is the same equations for both dimensions, thus if we have a third dimension we 
would just have added another set of the same equations. How can we use this 
knowledge to smoothing the deviation that occurs when predicting?  We have to track 
both the true positions in the states and the predicted positions. The predicted path is 
based on the two last true positions. So we are using linear extrapolation to get a new 
predicted position (we could of course also use any extrapolation method here, but for 
the sake of simplicity we use linear extrapolation). When we get a position update from 
the network we start a new linear path prediction. We can calculate where we expect 
our entity will be when we received next position from network. Right now we assume 
that the updates from the network arrive in uniform time steps. As start point for our 
cubic spline we will use the position that our entity is at the moment we get a position 
update. And as end point we will use the predicted position at time tupdate, i.e. we will 
move along a cubic spline between predicted points, and not the true points. By doing 
this we will fluctuate around the true positions and the magnitude of the fluctuations 
depend on how good the prediction is. The advantage of doing it this way is that we will 
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get rid of jerkiness when we get new position updates i.e. we get C1 continuity as we 
wanted.  

 

But how do we know where the two control points in the middle should be? The first 
control point gets the position where our entity should be in 1/3∆t seconds (∆t is now 
tupdate – tnow) if we continued our last prediction path. And the second control point 
should be placed in a similar way. But here we do the prediction with start from the end 
point and with the same, but negative, velocity from our last prediction. We place the 
second control point where it should have been at time 2/3 ∆t. 

 

 
Figure 9: Linear prediction and cubic spline interpolation 

 

In the above figures we can clearly see that when we have bad prediction, we get larger 
fluctuations and also greater curves in between predicted points. One major drawback 
with this method is that it will always make two turns between two predicted points, and 
the turns are quite noticeable when the prediction is bad. So this idea is most likely to be 
best suited for games where we do not have too much irregular movement. 

 

Kalman filtering 
The first thing we have to do to be able to use a Kalman filter is to decide which states 
we are going to use in the process model and what our input to the system is. If we 
choose to use a Kalman filter to follow the path of an object, we could make use of the 
object’s actual position, velocity and acceleration. When we try to calculate the new 
position, we use that  

 2
1 2

1 dtadtvpp tttt ⋅+⋅+=+  (eq. 2.20) 

and for the velocity we have the following relation 

 dtavvt ⋅+=+1  (eq. 2.21) 

These two equations define the state vector x of the system. Identifying these equations 
in the linear system gives a new relation that in matrix form will be 
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The measured output should be only the position i.e. not a vector containing both 
position and velocity. This is because we can only measure the position of the object. 
The output equation will be 

 

 [ ] ttt zxy +⋅= 01  (eq. 2.23) 

 

Now that we have a state model of the system we could continue using the Kalman 
filter by computing the Kalman filter equations. Let us say that an object in a game is 
travelling 300 pixels/s and that we have a jitter that makes the packets in the network 
have an average fluctuation of about ±20 ms. The jitter of the latency makes the 
uncertainty of the measurements of the object’s position be ±300·0.02 
pixels/measurement = ±6 pixels/measurement. This is the measurement noise zt in 
equation 2.23 above. Let us further say that the object is commanded to an acceleration 
that is 20 pixels/s. This leads to a process noise, wt, that is ±200·0.02 
pixels/measurement = ±0.4 pixels/measurement.  
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Figure 10: Kalman filtering example of an object following a path 

 

In the picture above we have simulated these conditions in Matlab. But to be able to 
distinguish the difference between the true and the estimated position in the picture we 
had to lower the acceleration input. In the picture, acceleration is set to 1 pixel/s. The 
picture really shows the power of Kalman filtering. We clearly see that the estimated 
position is a lot better than the measured position is. 
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2.3.2 Extrapolation with digital filters 
The FIR filter concept can be used to express the above algorithms in the same manner, 
i.e. a weighted sum of input signal and constants. If we discretisize the equations to 
handle only the positions we get equations in the same format as the FIR filter equation. 
If we start with the simplest case, the linear prediction, then we know that the next point 
can be calculated using the last position and velocity in this equation 

 tvxx ii ∆+=  (eq. 2.24) 

With uniform time step we get that ∆t = 1. And the velocity is (xi – xi-1). Thus we get 

 ( ) 11 2 −− −=−+= iiiii xxxxxx  (eq. 2.25) 

However if we do not have uniform time step we have to take care of it by using 
dividing differences. Then we get a modified version of the above equation, like this 
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( ) ( )1
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+= ii
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i xx

tt
tt

xx  (eq. 2.26) 

We can verify this by a simple example. Let us say that we have the following situation 

 
Figure 11: Linear extrapolation example 

 

If the situation is that we have our last point, xi = 4 and we get our next update at t = 4, 
then we know from the linear equation with uniform steps that the next points should be 
at x = 7 as shown in the figure above. We use the modified version to show that we also 
get the same answer 

 ( )
( ) ( ) 713434

25.2
5.244 =⋅+=−

−
−

+=x  (eq. 2.27) 

We get the expected result. Now we continue to show how to express the extrapolation 
methods discussed above in a similar manner. 

 

When it comes to our prediction with velocity and acceleration we can approximate the 
acceleration by using the difference of the last two known velocities. I.e. a = (vi – vi-1), 
then we can write our formula in this way 

 ( ) ( ) 2
11 2

1 tvvtxxxx iiiii ∆−+∆−+= −−  (eq. 2.28) 

With uniform time step and a and v substituted into the equation as positions gives 

 ( ) ( ) ( )( ) =−−−+−+= −−−− 2111 2
1

iiiiiii xxxxxxxx  

 21 2
12

2
5

−− +−= iii xxx  (eq. 2.29) 

For Catmull-Rom we have the end point formula for the tangent in the last point, that is 
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 ( )21
' 43

2
1

+− +−== iiii xxxkP  (eq. 2.30) 

When we know the tangent in the last point, then we can use that to extrapolate the next 
point, which will be 

 21 2
12

2
5

−− +−=⇔+= iiii xxxxxkx  (eq. 2.31) 

In this case we do not have to consider what ∆t is, because the derivative will provide us 
with an average step size to use. 

 

We can do the same for Richardson extrapolation. But we would not use central 
differences as we did in the theory part. The simple reason is that we do not know the 
point in the future, i.e. the f(x+1). Instead we are going to use the backward difference, 
which is basically the same thing as central difference. The only difference is that we 
use two points instead of three points. This gives a slightly more inaccurate estimate of 
the derivative. The expression for backward difference is 

  

 ( ) ( ) ( )
h

hxfxfhF −−
=  (eq. 2.32) 

 

If we substitute that into the expression for Richardson extrapolation and we use 
uniform time step, i.e. h=1, then we get 
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Now that we have this expression we could use the same formula (eq. 2.31) as the one 
we used in Catmull-Rom above to solve where our next extrapolated point will be. After 
substitution and summarizing the terms we get that 
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−− +−= iii xxxx  (eq. 2.34) 

To be able to use this approach with a non-uniform time step we have to substitute h in 
the Richardson equation with t0 – t1 and t0 – t2 depending on which backward difference 
we evaluate. We get that the derivative is 
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Solving this analogous to equation 2.31 we get that the expression for Richardson 
extrapolation with uniform time steps is 
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             (eq. 2.36) 
We conclude that we can write many extrapolation methods in the same fashion, i.e. as 
a weighted sum of input signals. We can write this as a linear system in matrix form 
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Table 1: FIR-filter coefficients 

 

In equation 2.37 above, we have just shifted the old input signals one step further in the 
vector and added the new input signal to it. Then we have to apply our coefficients that 
make our filter unique. 

 [ ] tn xhhhy ⋅= L10          (eq. 2.38) 

 

The problem is to find the coefficients hi. If we are able to do so, then we can 
extrapolate with different algorithms such as those described above. In table 1 above we 
have summarized the results of the coefficients and algorithms that we have described 
in this section. 
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2.3.3 Tradeoffs 
When it comes to actually choose a method that is suitable to use in a computer game, 
we have to consider the variables in the environment and how the objects actually 
move. A rule of thumb is that, the faster the response in a network is, i.e. the shorter the 
roundtrip latency is, the less the importance of choosing a prediction algorithm is. In a 
network which is stable, i.e. one that does not have much packet loss, we could make 
more use of algorithms that are more dependent of a uniform time step, such as the 
Richardson extrapolation method. In chapter 4.3 we will get results from simulations 
and discuss this topic in more detail. 

 

When the delay increases we have to be careful when we are using polynomial 
equations. Consider a simple function like f(x) = x2. If we have got this equation from 
the last three measurements, ti-2 = 1, ti-1 = 0 and ti = 1, then it is very likely that we will 
get a good extrapolation value in the next time step, ti+1, which should in this case result 
in ti+1 = 4. But because we use a quadratic expression, we can easy imagine how fast 
this could turn from being a good, to a very bad guess. As a side effect of that the 
distance has a quadratic growth is that the object also will get a higher velocity. And as 
a result we will have objects that start slow at every new state update, and then 
accelerate until we get a new state update, only to slow down again.  

 

The choice of prediction algorithm could and should also be based on what kind of 
objects in a game it is supposed to be used with. An object that follows the laws of 
physics can and should be modelled and predicted by the use of these laws. To predict 
the trajectory of a football is a good example of this. 
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3 Architecture 
In this chapter we will discuss architecture and design of computer games. We will first 
start with an introduction to the asynchronous network framework called Twisted. This 
is followed by a brief description of different models. We introduce the concept of 
predictors and replicators that we are using in the shuffle puck game. We end this 
chapter with discussions about how bandwidth, time synchronization and framerate of 
games will affect the playability of the game. This chapter is required to be able to 
understand how shuffle puck is implemented. 

3.1 Twisted 
In this section we briefly discuss how Twisted works. This section goes into some of the 
features of Twisted that are used in the test application, shuffle puck, which is discussed 
both in this and the next chapter.  

 

3.1.1 Overview 
When it comes to writing networked applications, it often seems that programmers more 
or less write the same code for networking, but with small adjustments depending on the 
application. Twisted offer APIs to the programmer for different kinds of protocols. 
There are protocols such as HTTP, FTP, DNS, IMAP4, and SMTP included in Twisted, 
so if the programmer wants his application to use an FTP-connection, he would just use 
the FTP protocol from Twisted.  

 

Twisted’s abstraction level is high. When writing an application that use TCP, there are 
methods that is called when something happens in the network. Basically programmers 
write a protocol which should know how to make an incoming connection and how to 
behave when loosing a connection. It should also be able to know how to send and 
receive data within an application. The high abstraction level makes it both easier and 
faster to develop programs. 

 

3.1.2 Asynchronous networking 
When writing networked applications the developer has some different approaches to 
choose between. He could choose to spawn a new process for every connection, he 
could choose to handle each connection in a separate thread or he could choose to 
manage all the connections in one thread. Spawning processes in operating systems 
takes a lot of the computer’s resource, so that’s generally not a good idea when it comes 
to handling network connections. Threading is not very expensive, but with threading 
comes other problems, like handling shared data, i.e. preventing deadlocks etc. The last 
of the above proposals, manage all connections in one thread, often leads to an 
implementation where functions is registered and is called upon events. That is more 
commonly known as asynchronous or event-driven programming. That is the way 
Twisted handles connections. Twisted have an event loop called reactor. It is the main 
loop that runs all the time the program is running. It’s the reactor that listens to the 



Architecture 

 22 

network and delivers the data to the relevant protocol object. The reactor maintains this 
in a non-blocking way. 

 

3.1.3 Protocols 
A Protocol in Twisted is the class that handles incoming and outgoing data. It is the 
reactors responsibility to serve the protocol with this data. When a developer 
implements a new protocol he just subclass the twisted.internet.protocol.Protocol class 
and overrides the methods in it with his own implementation. An implementation of a 
game server protocol that responds with a welcome message when a player connects, 
and handles incoming data for a game server could be implemented in Twisted like this: 

 
Figure 11: A server protocol in Twisted 

 

The server responds to the client with the self.transport.write() method. It’s the 
transport that represents and wraps the physical connection of the framework which is 
talking to the network. 

 

3.1.4 Perspective Broker 
The concept of Perspective Broker, abbreviated PB, is that a programmer may write 
programs that can serialize objects over a network connection and there is also the 
possibility to do method calls on remote objects. PB reminds of the RPC technique, but 
there are some differences when it comes to how a programmer can access remote 
objects. Twisted uses a method that depending on what prefix the programmer gives a 
remotely accessible method provides different kinds of access and views of the objects. 
The easiest way is to subclass pb.Root for doing the object remotely accessible and 
gives the name of the methods the prefix remote_. If it is important to be able to tell 
who is calling the remote method the programmer could do this by adding another 
prefix, view_ to the methods. A programmer could mix the prefixed methods with 
arbitrary method names to make a distinction between what is allowed to call remotely 
and what is not. This is the main difference between RPC and Twisted’s PB.  

 

When it comes to return objects i.e. copy objects so a local copy will be available, 
Twisted has two facilities. It can copy the entire object structure or it can keep a cached 
version of the object and only update it with new information. When copying objects, 
i.e. returning them from methods or using them in arguments, the objects are serialized 
before they are sent. And when the caller receives the object it is unserialized again. 
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Due to security reasons it is not possible to just copy every kind of object. A 
programmer has to define which objects are allowed to be copied. Standard primitives 
such as integers, dictionaries, strings and so on are an exception of this. The security 
restriction exists because it must not be possible for an outside program to get access to 
important data and programs. If it were possible, a remote object could get access to the 
whole file system for example and read secret information. 

 

3.1.5 Deferred – A delayed object 
As mentioned earlier, Twisted is an asynchronous non-blocking framework. Twisted 
solves the non-blocking part with something called Deferred. When an application is 
waiting for data it is not allowed to stop executing the application in a non-blocking 
environment. If for example an application is doing a remote method call and the 
network traffic is going slow it could use the CPU to perform other actions instead of 
just be idle in the meantime. In situations like this Twisted returns a Deferred instead. 
Programmers can attach a callback function to a Deferred, and as soon as the result is 
available to the Deferred, the attached callback function will be executed. A Deferred 
always returns a result. If something goes wrong an error is generated. This error can 
also be registered together with a callback function that executes when an error has 
occurred. 

 

Multiple callbacks can be added to Deferred. The result of the preceding callback is 
given as argument to the next callback. This makes it possible to chain method calls in a 
matter similar to pipes in UNIX [11]. 

 

3.2 The model and its purposes 
When it comes to making a multiplayer game you have to decide which model you are 
going to use. Is it a client/server solution where the clients run all simulations in their 
own applications and the server only acts like a message replicator? Or should the client 
be as thin as possible and let the server handle all calculations? In both of these models 
the communication is only between the server and the client, i.e. there is no 
communication at all directly between the clients. We could also think of a model that is 
implemented as a peer to peer network, where all clients talk to the other clients and run 
a complete simulation of the whole game. In the shuffle puck application that has been 
developed we have chosen to go for a client/server solution where the server is the one 
that has the authority regarding all the participants in the game. 

 

The main purpose of shuffle puck is to be able to test how both known and unknown 
algorithms work in practice. The algorithms themselves most often have various 
behaviours depending on parameters in the game. Parameters that affect their behaviour 
could for example be clients’ framerate, the servers’ framerate, how often packets are 
sent, what kind of movement pattern the objects have etc. In this application it is 
possible to tune parameters like these and study the behaviour according to that. 
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3.3 Predictors and replicators 
In shuffle puck we have implemented something that we call predictors and replicators. 
The clients in the game have one unique predictor for every object in the game and it 
has got a replicator for the object that it controls, i.e. the paddle. The server has both 
predictors and replicators for all the players in the game. For the ball it only has a 
replicator. The basic idea with a replicator is that it gets a value, and then it replicates 
that value as soon as possible to all the other participants that listen for those kinds of 
values. In the shuffle puck application a client for example sets a new position- or 
movement-value into the replicator that belongs to the paddle. The replicator 
immediately put this value into Twisted’s send method, and the value is sent to the 
server. When the value reaches the server it is put into the predictor that represents the 
client who was the source of the value. Sending values from server to client is the same 
procedure. The ball as we stated earlier only got an associated replicator at the server. 
This is because we used the client/server model where the server is the one that has 
valid information about the game and the ball isn’t owned by any player. So the values 
of the ball object are directly read by the server and then put into its associated 
replicator and the rest of the procedure is the same as in the example above. 

 

 
Figure 12: Illustration of predictors and replicators 

 

By using predictors we gain advantage when it comes to evaluating how different 
prediction algorithms work in practice. We can just exchange one predictor with another 
predictor that uses some other prediction algorithm. But we have to bear in mind that in 
some cases, like the clients’ paddles, we use two predictors from that we have sent the 
movement to that we render the result of the movement. This introduces more 
uncertainty than it would have if we used only client side prediction of the objects in the 
game. This uncertainty can be reduced by the server only using predictors that give the 
last value that was set to the predictor. Due to this reasons it is not possible to change 
predictors at the server in the shuffle puck application. 

 

3.4 Bandwidth usage and communication 
Because this thesis deals with delays and how to synchronize virtual worlds and not 
how to minimize bandwidth usage, we have not put any effort in reducing the 
bandwidth in shuffle puck. Usually developers design their own application protocol 
and pack messages into bytes which are sent between the involved participants. In 
shuffle puck we use message objects for communication. There are different kinds of 
message objects for the actions in the game, depending on its purpose. All messages 
that are used are inherited from a base class Message. That base class contains a 
timestamp of the actual time when the object is instantiated. Because the messages that 
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are to be sent are objects, we have to serialize them, and this is done by using Python’s 
pickling concept. Pickling in Python yields either an ASCII string or a binary 
representation of the object. 

 

3.5 Time synchronization 
When both the client and the server run on the same computer, the clock they are using 
is the same. This makes the clocks perfectly synchronized. When running at different 
computers the result will be incorrect. To get this to work, a time synchronization 
protocol has to be implemented. It is possible to use shuffle puck on different 
computers, but there is not any time synchronization protocol implemented, so the result 
will be useless if doing so. There exist a few time synchronization protocols today that 
could be implemented to solve the problem. 

 

3.6 The impact of different framerates 
The framerate in a game is usually not a fixed value: it constantly gets higher, and then 
suddenly drops again. The main reason for framerate drops is when a game is rendering 
a lot of objects or is doing some other heavy calculations that takes a lot of CPU power. 
Dropping framerates affects the prediction, mostly due to that the algorithms often use 
the time, ∆t, that is the time that has elapsed between an event really occurred and to 
that the event is evaluated.  A greater ∆t usually results in an increased prediction error. 
Shuffle puck has a quite stable framerate, mostly due to so few objects involved in the 
game. To be able to evaluate behaviour at different framerates, we have implemented 
the possibility to change the framerate on demand, both for the clients and for the 
server. 

 

When we are lowering the framerate for the server, problems occur with collision 
detection. For example when the ball moves more pixels than the width of the players’ 
paddle in one frame, then it is possible that no collision occur at all. In shuffle puck the 
width of a paddle is 20 pixels, so when the framerate of the server is lower than 20 
frames per second we are starting to get this kind of problem. The problems them selves 
can be solved by using better collision detection algorithms, but no such algorithms are 
implemented in shuffle puck. 
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4 Evaluation 
In this chapter we will describe the details of how the shuffle puck application, that has 
been mentioned several times in this report is, has been implemented. We will get 
numerical results of the linear, quadratic, Richardson and Catmull-Rom extrapolations 
methods in conjunction with linear and Catmull-Rom interpolation. These results have 
been generated with the Cursorsimulation utility, which will be described in this 
chapter. We have a section about how commercial games deal with the latency and jitter 
problems. And we end this chapter a summarized conclusion of the whole project and 
some proposals of what could be done in a further thesis on this topic. 

4.1 Introduction 
To be able to evaluate this project we have used three steps. First we have studied the 
theory, mostly interpolation and extrapolation methods. Then we have tried to combine 
the theories to get a good solution of the prediction problem. And to be able to see the 
how the algorithms works in real time we have implemented the shuffle puck game 
where we could check if the algorithms really worm as good in practice as some of 
them are told to do in theory. To get valid results we have also implemented a utility 
called Cursorsimulation to do simulations for us. 

 

4.2 Shuffle puck – a prototype 
As stated in the previous chapter, shuffle puck is a client/server solution. Each client is 
supposed to be a light weight version of the server. But due to that the server is the 
authoritative of the game and does not need to render objects we have to make different 
versions for the involved objects, depending on if it is an object in the server or in the 
client. In the class diagram, figure 13, we can see that we have solved this by 
subclassing the Ball, Bat, and Network-Server/Client classes. The similarities between 
the server and the clients make the class diagram appear mirrored.  

 

4.2.1 Network handling 
When we start the server it will first initialize all the objects with default values. The 
server has network objects that it will use for communication with the other clients. 
These objects are of the class NetworkServer, which is listening for and handling 
incoming UDP messages. Those messages are unpickled so they may be handled as real 
objects of the subclass Message. If a message is not recognized an exception will be 
generated. This could have happened e.g. when an UDP packet got lost.  

 

Messages and network handling that is not time critical is handled by a TCP connection. 
For this we have implemented communicator classes. In the class Communicator we 
have subclassed Twisted’s pb.Root class, i.e. we have used the remote object concept 
Perspective Broker that we discussed in chapter 3.1.4. In shuffle puck we use this 
course of action to change the frame rate of the server and to connect the clients to the 
server. 
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 Figure 13: Class diagram of shuffle puck 
 

When a client starts its application it would not get connected to the server 
automatically. The client will initialize the network objects in the same way as the 
server does, but the client does not have any methods that the server can call. When the 
client tries to connect to the server it first tries to get the access to the server’s 
Communicator object and call the server’s remote connect method. Again we are using 
Twisted’s deferred concept for this. If everything is working as it is supposed to do the 
server accepts the client and adds it to the game. If something went wrong the deferred 
will call an Errback method instead. 

 

When a connection is initiated between a client and the server they start to send 
messages to each other. UDP messages are not sent directly by the client object or the 
server object. Instead UDP messages are sent by the replicators that are connected to the 
objects in the game (see chapter 3.3). The client only knows about the server, so it only 
has to send messages to the server. In addition the server knows about several clients 
and therefore has to send messages to all of them. When the server receives a message it 
updates the predictor that is associated with the sender’s replicator. The client uses the 
same approach when it is receiving messages. A client checks the origin of the message: 
if the origin is unknown, then it is a new player that wants to participate in the game, 
and then the client adds this new client to its data structure of the players that are 
participating in the game. 

 

4.2.2 Data structures 
Python is a very nice programming language when it comes to using lists and 
dictionaries. It offers a lot of possibilities to access unique elements and subsets of 
elements. You can also, for example, put an object of an arbitrary class, an integer and a 
string in the same list. This freedom can make development both faster and easier than 
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it would have been in some other programming language where you have to use the 
same type in lists, like Java. But it also puts demand on the developer to be structured 
and to know what he is doing. In shuffle puck we have used dictionaries to store the 
Player objects in both server and client. The key in those dictionaries are a tuple of the 
player’s IP address and its port number. By using this approach we can have more than 
one player from the same IP. 

 

The predictors uses ring buffers to store the last n messages. The messages are stored as 
PlayerState objects. The underlying data structure for the ring buffer is an ordinary 
Python list. When a new message arrives to the predictor it will update its ring buffer 
with the new message and delete the oldest in it. The PlayerState objects are used to be 
able to get information about the variables in the previous update states. We could get 
information about what time the message was constructed, what the position, velocity, 
acceleration and angle were at the actual time etc. 

 

4.2.3 Graphic handling  
All the graphics are rendered using Pygame, which is a set of modules designed for 
writing multimedia applications and games in Python. Pygame also supports input 
handling from users. In shuffle puck we have two clients running in the same Pygame 
window. This has been the source of some problems during development. The main 
loop of shuffle puck runs as fast as the computer allows it to do. Then the two clients 
run and render their applications respectively. The clients can have different framerates. 
This is accomplished by just letting a certain amount of time elapse, until each client 
does a loop in the game. Objects in the game are updated and rendered with new 
positions that are the positions that the predictors give to them. So what we actually see 
at the computer screen is the values that predictors give to us and not any internal 
computation of the objects positions.  

 

Collision detection is achieved by using Pygames’ Rect.colliderect(rectstyle). What this 
method does is that it checks if two rectangles overlap each other. To be able to decide 
from which direction we got collision between the ball and a paddle we have made four 
very small Rects inside the rectangle that represents the player’s visible paddle. The 
small rectangles are located at the edge of all four directions of the paddle. Collision 
detection in shuffle puck is achieved in two steps. First we check if two rectangles 
overlap, i.e. if the ball and a paddle overlap. If that is the case, then we go further and 
test which of the other small rectangles the ball does collide with. When we know this it 
is easy to change direction of the ball. This way to do collision detection works fine as 
long as the framerate is so high that the ball can not travel through the paddle. If that is 
not the case, then we get the problem that we described in chapter 3.6. 

 

4.2.4 Message objects 
A Message object is a superclass for the messages that are sent between the clients and 
the server. As soon as we instantiate a Message object the time is saved. There are 
different subclassed messages depending on whether it is a message from the server to a 
client or it is a message from a client to the server. For example it is only the server that 
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sends out the ball position and therefore it’s only needed by the server. Earlier we said 
that messages are pickled, i.e. made to an ASCII- or binary representation of the 
objects. It is the subclassed Message objects that we are pickling before they are sent 
over the network, and they are unpickled when they are received on the destination side 
of the network.  

4.3 Evaluation of extrapolation with interpolation 
In this section we are going to present results of how four extrapolation methods are 
working together with two interpolation methods. To get the results we have written 
another Python program called Cursorsimulation, which gives the user the freedom to 
draw any type of time stamped curve. In Cursorsimulation we can simulate any type of 
curve, i.e. any type of steering behaviour that we could imagine a player to do. 

4.3.1 Extrapolation methods 
The extrapolation methods we have used are linear-, quadratic-, Catmull-Rom- and 
Richardson-extrapolation, i.e. the extrapolation methods that have been discussed in 
chapter 2. All four methods use the FIR-filter concept, with the coefficients presented in 
chapter 2.3.2. 

4.3.2 Interpolation methods 
As interpolation methods we have used linear interpolation, which interpolates between 
the extrapolated points and a Catmull-Rom interpolation, which also makes use of the 
points in the history. Interpolation with Catmull-Rom gives smoother paths than using 
linear interpolation, but as a side effect it can gain bigger deviation from the true path, 
resulting in a greater average error. 

4.3.3 Cursorsimulation 
In Cursorsimulation we draw the curves that we are going to use in the simulation 
process. When we draw a curve, Cursorsimulation stores information about the actual 
position of the mouse pointer and the actual time when the mouse pointer moved over a 
certain pixel. Because of this it is possible to simulate both slow and fast objects, and 
objects that move smoothly or very irregularly. 

4.3.4 Time history 
We thought that it would be interesting to know if we could gain advantage by taking 
care of the time stamps of the network occurrences in the past. By using only the last 
time stamp we will get a faster response when we get a deviant behaviour of the 
network traffic. This could lead to a greater diverge from the true path if the wider gap 
in the network occurrences was just the result of a missing packet. In Cursorsimulation 
it is possible to set how many of the time stamps in the past it will make use of, when it 
is computing a new predicted time stamp. The greater the usage of history, the more 
regular the update steps in terms of time. The time averaging technique could be seen as 
an averaging filter of the time steps. 

4.3.5 Latency and jitter 
It is interesting to have the possibility to tune the latency to see how the well the 
prediction algorithms will work at different levels of latencies. Most of the algorithms 



Evaluation 

 30 

perform better when we have a regular update frequency, so to get as fair results as 
possible we have implemented in Cursorsimulation both a latency- and a jitter-setting. 
The latency is static and must be the same during the whole simulation, but the jitter is 
multiplied by a random factor, so the outcome of using both latency and jitter is a 
simulated network update that will be a good simulation of a real network. Let us say 
that we set our latency to 50 ms and our jitter to also be 50 ms. Then we would have 
simulated network updates that is in the range [50, 100] ms. This is a very common 
scenario of network behaviour in existing games today. We’ve chosen to only add the 
jitter and not to subtract any jitter. With this approach we would not get any unnatural 
negative updates. 

4.3.7 The test 
In our test we have made three different curves, one that is subjected to acceleration, 
one where the path is following a zigzag motion and the last curve that is a smooth path. 

 

Figure 14: Accelerated path     Figure 15: Zigzag path 
 

 
 

 

 

 

 

 

 
Figure 16: Smooth path 

 

The black rings in the figures are an example of when network updates arrive from a 
server to a client. In Cursorsimulation these black rings represent these updates. I.e. this 
is the only moment when the client actually gets knowledge about the true position from 
the server. So based on these rings our prediction algorithms will first try to extrapolate 
where the object will be when the next update comes and at what time that will happen. 
When that has been done the algorithms will do interpolation between these 
extrapolated points. And the main goal is to have the predicted path stay as close as 
possible to the true path. We are going to look at these three curves and see how they 
work in a few different situations. We start with the accelerated path. 
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From the results of the accelerated path simulations we have generated scatter plots in 
Matlab, one where we evaluate the extrapolation methods and one where we evaluate 
the interpolation methods. Let us start with the plot (figure 17) of the extrapolation 
methods. 

 
Figure 17: Scatter plot of extrapolation methods for an accelerated path 

 

The first thing we notice in these plots is that there are not any particular characteristics. 
The measurement points are uniformly distributed independently of the extrapolation 
method. When we are calculating the average error (see table 2) we can see that the 
Quadratic, Linear and Catmull-Rom methods perform almost equally well and that the 
linear extrapolation method has an average error that is approximately 20 pixels lower. 
If we look at the latency column, we can see that lower latency gains better result than 
higher latency, just as expected. Stepping to the jitter column we can see we have a 
wide spread spectrum of results when there is not any jitter at all. The reason for this is 
that the Catmull-Rom interpolation method will make bad results when it’s using the 
adjacent points that are too close to each other. 

 

 Linear Quadratic Richardson Catmull-Rom 

Avg. error 212.1534 235.5711 227.4747 234.8008 
 

Table 2: Average error for an accelerated path 
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When the jitter increases, error will also increase. The last column, where we plot the 
error versus the usage of the time history, we can see that the average error will be 
lowered and more gathered when we are only using the last known time steps. 

 
Figure 18: Scatter plot of interpolation methods for an accelerated path 

 

If we are looking at the error when we are using linear versus Catmull-Rom 
interpolation we can again see that there is not any specific characteristics. The 
reasoning from the extrapolation scatter plot above (figure 18) holds for this scatter plot 
as well. But we can notice that the linear interpolation method has slightly better overall 
results in the interpolation scatter plots. 

 

Now we will look at the plots from the zigzag path. The zigzag simulation had the exact 
same simulation parameters. The only thing that differed was the actual path. The 
extrapolation scatter plot can be seen in figure 19. When studying the picture we can see 
that Catmull-Rom is the worst of the extrapolation methods. This could be explained by 
the smooth curves that Catmull-Rom tries to do when doing both interpolation and 
extrapolation. We can also see that for small latencies we get almost the same result for 
all extrapolation methods. But when the latency is increasing the error interval error will 
be very widespread, from about 50 to 250 pixels. The jitter will also have widespread 
distribution. One thing to notice about this kind of path is that with no use of time stamp 
history we get a rather small error, then the error will increase and then fall back a bit 
again when we use more and more information of the history. 

 

From table 3 we will see that the linear method outperforms the Catmull-Rom 
extrapolation method with a factor two. The other two extrapolation methods are placed 
in between the worst and the best method. 
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Figure 19: Scatter plot of extrapolation methods for a zigzag path 

 

 

 Linear Quadratic Richardson Catmull-Rom 

Avg. error 56.5043 68.3348 82.4640 106.3748 
 

Table 3: Average error for a zigzag path 
 

In the interpolation scatter plot of the zigzag path we can verify that it is the Catmull-
Rom interpolation that is involved in the bad result.  

 

The last path we are going to look at is the smooth path. Again we have made our 
simulation test with the same parameters as with the two tests we have discussed before. 
In our extrapolation scatter plot, figure 21, we can, for the third time see e.g. that no 
measurement points are drifting in any particular direction, i.e. once again our 
distribution is approximately spread between the different extrapolation methods. In the 
latency column we see that Catmull-Rom extrapolation is the most gathered among the 
measurements when the latency is low, but when we have increased the latency the 
situation has changed in the other way. Now Catmull-Rom is in the top of the plot, i.e. 
the most error prone of them all. The jitter behaves as expected; it is more error prone 
when we have greater jitter in the system. We still have the same problem with Catmull-
Rom interpolation and small movement steps, which can be seen in the column where 
we do not have any jitter. 
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Figure 20: Scatter plot of interpolation methods for a zigzag path 

 

 
Figure 21: Scatter plot of extrapolation methods for a smooth path 



Evaluation 

 35 

The lower cluster is from the linear interpolation and the upper, more widespread 
cluster is from the Catmull-Rom interpolation. When it comes to the result of using the 
time history, we see that it is not as effective in this smooth case as it was in the 
accelerated case. This is mostly due to that the time steps are more uniform, so 
averaging them would not help much. From table 4 we can see that for smooth curves, 
Richardson extrapolation is the best extrapolator, even though there is not much 
difference between the different extrapolation methods. 

 

 

 Linear Quadratic Richardson Catmull-Rom 

Avg. error 36.3881 39.0206 34.4070 39.6724 

 
Table 4: Average error for a smooth path 

 

In our last scatter plot we can again see how the two interpolation methods will 
perform. In this case it is clear that we will have better results when we are using linear 
interpolation instead of Catmull-Rom interpolation. This shows in all the columns.  

 
Figure 22: Scatter plot of interpolation methods for a smooth path 

 

Now we have seen and discussed three different paths, all with unique features. The 
first was the accelerated path, where we would perform better if we were using time 
stamp information from the past. In the next path, the zigzag path, we saw that the linear 
methods, both for interpolation and extrapolation outperformed the other methods. And 
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in the last path, which was the easiest to follow, we did not get much difference in the 
different prediction methods. We noticed that we did not gain as much advantage using 
time history, when the time between then time steps were more uniform. The best 
overall prediction method was the linear prediction. But we have to bear in mind that 
the paths in the linear way will make straight lines between the interpolated points, and 
this could look strange in a computer game. 

 

We also have to bear in mind that even though we got poor results in terms of error 
when we were using other prediction schemas than the linear, we could get smooth 
paths that followed the curve very well, but it predicted too far or too short from where 
it was supposed to be. So instead of getting the error by being of the path in a 
perpendicular way, they will get their error by predict its next position right on the path, 
but to far (or short). 

 

4.4 Network handling in commercial games 
Here we will discuss how two of the most well known multiplayer games do their 
network handling. Both titles have several releases, like for example Quake that has also 
been released as Quake2 and Quake3. This section should be seen as a general approach 
for all releases within a game.  

 

Most games rely on linear extrapolation paths. This works quite good if the update 
interval between packets is rather small (Quake 2 uses 0.1s between the updates). Lately 
there has been some effort in doing prediction schemes that gain a better result than just 
doing linear extrapolation. Unlagged is a project that has attacked this kind of problem 
[12]. Hitscan weapons, i.e. weapons that hit its destination directly, have to be aimed 
ahead of the target when no compensation is done at all. This problem is compensated 
in Unlagged by remembering where every player has been, back to about a second to 
go. Unlagged is doing hit test against where the potential targets were seen, rather than 
doing hit test based on where they actually are at the moment. The technique is called 
"backward reconciliation": during the hit test players are moved back to where your 
player saw the other players when you fired. Unlagged is used in Quake3 and 
Wolfenstein Enemy Territory mods. 

 

4.4.1 Unreal 
Unreal uses a client server model where the server is the one which has control over the 
game. A subset of the true game state (that the server has) is replicated to the clients. 
The clients use this subset to predict the game flow by executing the same code as the 
server. In this way the Unreal engine minimizes the amount of data that has to be 
exchanged between the server and the clients. 

The loop in the engine consists of as server sending updates to all the clients with 
information about the actual game state. The first thing the clients do in the loop is to 
send its requested movement to the server and as soon as the client receives a new game 
state from the server it renders the world and the objects in it. To take care of the 
problem with limited bandwidth, the Unreal engine tests which objects that is relevant 
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for the client to get an update about. Objects that are not visible or audible are example 
of things that are unimportant to send game state updates to clients. If a lot of objects 
are relevant, then Unreal uses a technique that prioritizes which objects that are the most 
important to update. Here things like movements and projectiles are considered as more 
important than decorative thing in the background for example. After a certain amount 
of time has elapsed a "tick" function is called in the engine. It is only when this function 
is called that the server and the clients exchange data. So a value that has changed to a 
new value and then changed back to the same old value within a tick would not be 
exchanged between server and clients. 

The prediction techniques are not actually in the network code in Unreal. Instead it is 
implemented using scripts, known as UnrealScript. This script uses an approach that can 
be described as a lock-step predictor/corrector algorithm. The movement the player 
does is translated into physic equations that finally summarize the movement into a 3D 
acceleration vector. The client sends the 3D vector and the actual time in a message to 
the server. Right after doing so, it calls one of its own functions that move the player 
according to the information that has been sent to the server. The server immediately 
replicates this to the other clients in the game. Now it could have happened that the 
client could not move all the way he told the server that he wanted to do, because of the 
server that is the authoritative about all the objects in the game. When the server notices 
this, it sends another message to the client that calls a function that adjusts the position 
of the player. The client updates the location to exactly the position that is in the 
adjustment message from the server. But, because of the message is delayed the client 
will re-run old movements (that are stored in a linked list) that are newer than the 
timestamp in the update message, based of the new adjusted position [13].  

 

4.4.2 Quake-series 
In DOOM (which is the predecessor to the Quake-series) the networking was achieved 
by a peer to peer approach. With this approach every player in the game run a full 
simulation of the world. This approach has the shortcoming in the overall bandwidth 
requirement, which is O(n2). It is also sensitive for packet loss and latencies. During 
usage, such weakness will halt the simulation for a resync recovery procedure. In 
Quake, ID-software introduced a client/server solution where the client was a dumb 
client that only updated its own local copy of the current scene, according to the 
messages it received from the server. The Quake client responds to LOS (Line Of Sight) 
changes immediately; all other messages such as movement are sent and processed by 
the server. This approach introduced a delay in the players’ movements. The next step 
was to let the player to be able to respond to movements directly. This concept is called 
POV latency compensation and was introduced in QuakeWorld. When this was 
introduced there was a need to make the client smarter. For instance, there had to be 
some client side collision detection, so that a player was not able to run through walls 
etc. Quake 2 used the same approach as QuakeWorld, but had more client side handling, 
which mostly consisted of subjects related to graphic rendering. 

 

All the networking is achieved by using UDP, both reliable and unreliable packets. The 
reliable messages are queued until the client gets a confirmation from the server that it 
has received the last reliable packet. The server uses sequence numbers to be able to 
decide if it got all the reliable packets or not. If a reliable packet gets lost, then the next 
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packet will include not only the messages that were lost, but also more messages that 
eventually have been added to the reliable queue [14].  

 

In Quake 3 ID-software used another approach when it comes to network handling. 
They replaced the previous network packet structure with a single packet type. This new 
packet holds the information about the clients’ necessary game state. The game state 
that the server sends is a delta compressed packet that is made from the differences from 
the last state that the client has acknowledged and the true state that the server is 
processing. Extrapolations are then done, based on the information from the information 
in the last state. The good thing with this approach is that the server never has to wait 
for an acknowledgement and the overall latencies are much lower. The flaw is that it is 
more bandwidth consuming because of that the server is constantly sending out new 
packets instead of just sending new packets when it did not get acknowledge messages 
from the clients. Another drawback with this approach is that the server has to buffer a 
lot of data. It has to keep track of which states each client has acknowledged and buffer 
all the other states that the clients has not responded to [15]. 

4.4.3 Pros and cons using the techniques in existing games 
Linear extrapolation has both benefits and drawbacks. The benefits are that even though 
the algorithms do not produce the correct result, it would not get too bad either. 
Consider using a quadratic polynomial, it can be good in a small interval, but it can very 
quickly get really bad, just because of that it's quadratic. So when update intervals are 
small, then a linear path will produce quite good result. The drawback is that it doesn’t 
make use of old information. This will give bad extrapolation in curvatures. Here a 
higher order polynomial would get a better extrapolation polynomial that would follow 
the curve better. The Unlagged method makes use of a history queue of the players' 
states, up to 17 states which are about 850 ms of a history. By going back in time to see 
if a player aimed correct at a target makes a fair decision if he hit his target or not. But 
the result is that the targeted player will get a feeling that he was shot behind walls, i.e. 
the same problem as we got without latency compensation, but with the difference, this 
is fair for all participants, i.e. it do not just favour the one with low network latency. 

 

4.4 Future work 
To be able to use a Kalman filter in the way it is supposed to, our noise has to be 
Gaussian noise. The lack of this information in a computer game makes our approach to 
do Kalman filtering slightly incorrect. So an investigation of a better way to estimate the 
Gaussian noise could make the whole prediction better. This could maybe be 
precalculated depending on the type of the game, or by using some steps in the past time 
to calculate the error depending on the deviation of the object. 

 

Because we only implemented shuffle puck to use a single prediction method a time, we 
can get the problems like the one explained in chapter 3.3. We would probably get a 
better prediction result if we used some kind of adaptive approach to choose prediction 
method by the application itself. It could for example be that we started our prediction 
by using some more advanced approach, like prediction with a polynomial for a certain 
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amount of time. When a time threshold has elapsed the application automatically 
changes to another prediction algorithm. 

  

The concept in shuffle puck to use predictors and replicators could have been enhanced 
to implement intelligence in the program, so it could automatically adjust the packet 
flow between the participants. For example, when the application thinks that it is easy to 
predict an object, then the predictors tell the replicators that they does not need a high 
rate of packets, and vice versa when the application has problems doing prediction for 
an object. 

 

When we are doing smoothing between extrapolated points and especially when we are 
enforcing C1 continuity we can under some circumstances get wide curves. This will 
give us a farther distance for out object to travel and that leads us to a higher velocity. 
This is the problem related to the arc length of a curve. 

 

A time synchronization protocol could be implemented so that the application could be 
tested in a real networked environment under real circumstances. 

 

4.5 Conclusions 
Prediction is a really hard problem to solve. We do not know when we get a new 
message from the network that updates our state variables. And we cannot be really sure 
where the object’s position will actually be when we get the next update. These two 
sources of uncertainty is the major problem. When we have succeeded fairly well with 
our extrapolation step we got a new problem. Should we just change to that position, or 
should we try to smooth out the movements? This is often a question of how far we 
have deviated from an accepted threshold value. If the distance is too great, then it may 
be better to just set the new position instead of trying to interpolate to it. This would of 
course result in an object that snaps to a position, but it could be worth doing like that in 
a worst case scenario. 

 

Even though consumers get Internet connections with more bandwidth available, the 
problem with prediction is something that still is interesting. As we have seen in this 
report, the bandwidth is only a small factor of the problem. The main problem is the 
delay in the network. And we will always have latency in networks. The speed of light 
limits how fast a packet can travel between computers. It takes about 200 ms for the 
light to travel around the world. So doing prediction is necessary. 

 

Dead reckoning is the most widespread approach to solve the prediction problem. This 
is probably mostly due to that it is an easy, straight-forward idea, which is easy to 
implement and with relatively good results.  
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We have also seen that ideas and approaches from control theory also be useful in 
computer games. Further investigation of regulator structures like P, PI and PID would 
probably give us more knowledge of how to use these concepts in a computer game. 

 

Throughout this report we have discussed and returned to a few extrapolation and 
interpolation methods. These methods have been discussed both in a theoretical aspect 
and from a practical view. In the theoretical part we have derived FIR filter coefficients, 
so that we could use the same method for doing extrapolation by just changing the 
coefficients. There are many mathematical ways to get the derivatives at specific 
coordinates in curves. By discretizising such functions we get the FIR coefficients, and 
they will works almost equally good independently of what steps we have to do to get 
the derivative. In Cursorsimulation we have evaluated and verified some parts from the 
theory. What was somewhat surprising was that the linear methods performed the best 
throughout almost the entire test, both when we were doing extrapolation and 
interpolation. But just because of that we should not drop the other algorithms. As 
stated before in this report we should try to make use of the laws of physics as much as 
possible when we have a chance to do so. If we develop a baseball simulator, then we 
could predict the trajectory of the ball by using the law of the physics. The result would 
be very smooth and with almost no error at all. 

Our solutions and ideas fit as a complement when there are very temporary delay spikes 
in the network, and using other strategies when the network is working as it should do. 
For instance, one could use a simple extrapolation algorithm and do dead reckoning 
comparisons between the server and the clients. If a client (or the server) suddenly 
notices that it has not got any updates from the other, then a more advanced prediction 
schema, preferably with use of an algorithm that use C1 continuity. 

 

By developing the shuffle puck game we have tried the concept of predictors and 
replicators in an asynchronous environment. It works, but the overall result is not near 
the result of using dead reckoning with client side prediction, which is the most 
common way of doing prediction in computer games. The main problem is that a player 
can not affect the motion of a player as long as the network traffic is not flowing. If the 
delay gets too big, then the player will get the movement from the predictor, which in 
turn does the prediction based on what algorithm the actual object use. This can also 
make a player’s object to move even though he is not pushing his object in any 
direction. This can happen if a player starts moving an object, then at some time before 
he has released his move button the network latency grows big. If he releases the move 
button, the corresponding message would not reach the moving object’s responsible 
predictor. The end result is a moving object even though it is not intended to move.  

 

As a final word, prediction schemes can be useful in networked games, but they cannot 
reduce the latency directly. But we can use prediction to reduce the impact of the 
latency and the jitter. 
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Appendix A 

A. 1 Coefficients of Newtons’ interpolation polynomial 
We stated that the polynomial should be of the form 
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We can determine coefficients C0, C1 and C2 of the requirement 
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We get this equation system 
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Solving for each coefficient we get 
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A. 2 Richardson extrapolation 
Central difference is written as and can be evaluated with Taylor series as below 
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Calculate F with a twice as big value and we get 
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By subtracting the equations one from another gives us an estimation of the truncation 
error of the term b1h2. 
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solving for b1h2 gives 

 

 ( ) ( ) ( )42
1 3

2 hhFhFhb Ο+
−

=  

 

If we put this into the expression for F(h) we get 
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and we get 
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A. 3 Derivation of a position 
We know from Newtonian physics that 
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So integrating the acceleration twice gives us our position 
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We get C by solving v(t) when t = 0. I.e. 
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Now we integrate the velocity to find the position. Again we are solving for the constant 
of the integration. We get 
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A. 4 Hermite geometry 
P0, start point 

P3, end point 

 

u, interpolation value over the interval [0, 1] 

 

We write a cubic parametric polynomial as 
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Because of that we are only interested in P0 and P3 we have that u=0 and u=1, that give 
us following conditions 
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The derivative of the cubic parametric polynomial gives us a quadratic polynomial that 
is 
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So derivates at P0 and P3 is 
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In matrix form we can write this as 
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To find the constants ci, we solve the equations 
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where MH, is the inverse of M. MH is called the Hermite geometry. 

 

This interpolation polynomial using Hermite geometry is the defined by 
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A. 5 Coefficients of a cubic spline 
We have in a graph space that our cubic spline is written as 
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By solving for each coefficient gives us 
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We can see that when t=0 we get x0, y0. And when t=1 we have to summarize all 
coefficients, and we end up with the last point x3, y3. 
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