
Master´s Thesis by Jakob Schyberg:

explosions and other particle effects in interactive environments

 - using Shader-technology

Lund Institute of Technology, Sweden
Institution of Computer Science

in cooperation with SouthEnd Interactive AB, Malmö, Sweden

Abstract
A study on how to create visually appealing particle effects
for interactive 3D-applications such as computer games,
using a shader-application approach. Simplicity and
efficiency are the primary goals. This report is intended to
be written in a platform-independent manner, however,
examples are tested on a Direct X-based platform.
If you are curious on how shader technology can be used to
create particle effects, you are the target reader of this
paper. It should also be interesting for programmers
seeking inspiration within the subject as well as
understandable and informative for those who are
completely new to particle effects.
It is recommended that the reader is familiar with the
shader concept and has experience within 3D computer
graphics development.

Jakob Schyberg,
Registered: D-00,
Lund Institution of Technology, Sweden
jakob.schyberg@southend.se

1

mailto:jakob.schyberg@gmail.com

Table of Contents
 1 Introduction.. 3

 1.1 Goals... 3
 1.2 Comments... 4

 2 Basics and background... 4
 2.1 Particle Systems.. 4
 2.2 Shaders..5

 3 Research: Analyze of Particle Systems.. 6
 3.1 Particle Representation... 6
 3.2 Particle motion..7
 3.3 Particle size... 8
 3.4 Particle color... 9
 3.5 Using Shaders... 9

 3.5.1 Render-to-texture.. 10
 3.6 From 2D to 3D..10

 3.6.1 Rendering the images.. 10
 3.7 3D-objects as particles?.. 14

 4 Creating an application with Particle Effects using shaders...14
 4.1 Separating tasks.. 14
 4.2 Main program... 15

 4.2.1 Vertex declaration... 15
 4.2.2 Particle data values and global data.. 17
 4.2.3 Particle management... 18

 4.3 Vertex and Pixel shader.. 18
 4.4 Particle editor / viewer.. 20
 4.5 Effect representation in a game engine... 21

 5 Creating specific effects... 22
 5.1 Smoke... 22
 5.2 Fire.. 23
 5.3 Explosions...24

 5.3.1 Basic explosion... 24
 6 Discussion and Evaluation... 26

 6.1 Accomplishments..26
 6.2 Evaluation... 27

 7 Acknowledgments.. 28
 8 References.. 29

2

 1 Introduction
Ever since the release of Asteroids from Atari, particle effects have been an essential part of
computer games. Within computer graphics, particle effects are groups of moving objects trying to
imitate natural phenomena like smoke, fire, drops of water, explosions, swarms of insects etc. and
also supernatural phenomena like energy weapons. Stunning and action-filled particle effects may
play a conclusive role when people choose between different games.

No matter what kind of game you are developing, particle effects will make your 3-dimensional
environment look better and full of life. Special effects attract the eye and give the graphics a nice
appeal, especially at a first glance. That is why good looking particle effects in a demonstration
video or trailer of a new game will be of great help when publishing it – we see examples of this
every day in TV-commercials.

This thesis is about creating particle effects suitable for interactive applications such as computer
games. The focus is completely on technology, meaning that it is written for programmers rather
than designers. Although we have tried to create as nice effects as possible during our work, that
was never the main goal. The main goal is, as specified below, to find out good ways of
implementing and integrating particle effects for games using shader-technology, and hopefully
make some nice discoveries on the way, like shortcuts and ways of optimizing. It is important to
remember that computer games are not simulations, they are entertainment. This means that as long
as our effects look good, we do not need our effects to be physically correct as much as we need to
make them optimized.

So, what is shader-technology and why use it? Well, it's the latest thing – but there are also great
advantages that is important to know about. In the “Basics and Background”-chapter, we will make
an attempt to explain what shaders are and why they are good. There you will also find some
background on particle effects. If you are well familiar with these subjects, you may skip this
chapter or parts of it.

The third chapter is focused on how particle effects can be created in theory, independently of what
technology is used to obtain them. It was a research necessary to do before beginning to create
particle system software that uses shader-technology.

Chapter four describes step by step how a program with particle effects can be created using
shaders, and the fifth chapter describes how to create different types of effects.

While we still have your attention, let us introduce the goals of this thesis.

 1.1 Goals
The main question to be answered during this thesis is:

How can we create visually appealing particle effects for interactive environments using Shader-
technology suitable for a game running on Xbox 360?
To answer this question, we will:

● Find and explain advantages and disadvantages of using shader-technology when creating
particle effects.

● Find and describe several ways of how to create particle effects with shader-technology.

● Create a demo application where particle effects can be viewed and edited and use it for
testing.

● Create and describe how to create different effects such as smoke, fire, lightning, rain and

3

explosions.

● Try to answer the following questions along the way:

• What parts of the effect should be calculated in the shader program, and what parts
should be handled by the main application?

• When do we use single-pass and multi-pass shaders, respectively?
• How can we make external forces like wind to have an effect on the particles?

 1.2 Comments
This thesis is based on information from the resources found in the section References (last
chapter), as well as own experimenting and experiences. We have done our best to refer to these
sources through out the text.

In some cases there is added a footnote enclosed to a word or phrase. These footnotes are there for
readers who are not familiar with that certain terminology, containing a short description or a link to
a web page. These links should not be seen as sources, rather a verified link to where the reader can
find more information about this therm. So, if you find a link to Wikipedia, this is not a source we
have been using, however, it contains an appropriate description.

 2 Basics and background
The entire work on this thesis is made at a company called SouthEnd Interactive located in Malmö,
Sweden. They were interested in particle effects for one of their Direct X-based games, and they
introduced the subject. Since they are very concerned with efficiency together with using the latest
graphics technology, they wanted to find a way to use Shader-technology for creating particle
effects, which finally became the main goal of this Master´s Thesis within Computer Science.

Next comes a short background on particle systems, followed by a section containing the basics on
shader technology.

 2.1 Particle Systems
In 1983, William T. Reeves at Lucasfilm described particle systems as “A Technique for Modeling
a Class of Fuzzy Objects” in his article with the same name [6]. The “fuzzy” objects he is referring
to is natural phenomena like clouds, smoke, water and fire, objects that lack well-defined faces. In
this paper, Reeves describes how to model these kinds of objects with help from clouds of primitive
particles, where each cloud´s position and shape change over time.

The models described were designed for creating particle effects in movies, for example it is
described how particle systems were used in the movie Star Trek II, released in 1982. The methods
still have very much in common with today´s particle effects that are rendered in real-time
applications, and anyone who needs inspiration for creating particle effects can read this classic
article.

When it comes to particle systems in computer games, the phenomena became pretty well
established in 1979 when the arcade game Asteroid were released by Atari. A shattered asteroid
where simulated by a collection of moving dots on the screen, a very basic type of particle effect.

Quite a lot has happened since then; thanks to special designed processors dedicated for graphics
calculations in as good as every computer or video game console, some of the real-time particle
effects appearing in computer games could fit just as well in a Hollywood movie.

The technology is constantly evolving, and the concept of calculating entire particle effects using
the graphics processor is rather new, only the latest generation of graphics accelerators are designed

4

for this kind of operations. To make this possible, we use something called shader technology. This
technology was not designed especially with particle effects in mind, instead, the existing shader
technology inspired innovative developers to use it for particle effects, and the technology has now
adapted for their needs. The basics of shader technology is described in the next section.

 2.2 Shaders
In order to create 3D-images on a 2-dimensional computer screen, vertex geometry data are sent
through a rendering pipeline. This task is usually performed by a GPU1 to lower the amount of
work for the CPU2 in a real-time graphics application. The old standard to adjust how this pipeline
handles geometry data has been to adjust different device states to control how vertices and pixels
are processed. This kind of pipeline is called a fixed-function pipeline.
Today, the standard has evolved to a new kind of rendering pipeline that is programmable, simply,
the programmable pipeline. The tasks to be performed for each vertex and each pixel are controlled
through small programs that is downloaded to the graphics memory, such programs are called
shaders.
Shaders are divided into two parts, vertex shader and pixel shader. The vertex shader prepares the
vertices for rasterization, i.e, it manipulates the vertex data before it is interpolated and converted
into pixel data. Standard vertex shader tasks are world and view transformation and Ghourad
shading if used. After that, it is up to the programmer´s imagination to decide what to do with the
vertices before their data is interpolated into pixel data.

The pixel shader is used to calculate the final color of each pixel, for instance through Phong
shading. Many other tasks are possible, but do not forget that it is generally more efficient to use the
vertex shader if possible, since there should always be more pixels than vertices to process. The
pixel shader may however give more accurate results in some cases due to data interpolation, take
Phong shading vs. Ghourad shading as an example.

It is also worth to mention that with Direct3D 10, Microsoft introduces a new type of shader, the
Geometry Shader [3]. It adds more possibilities since this type of shader will have access to all
vertices of each primitive, making it possible to calculate geometric attributes such as a triangle´s
plane.

By using the programmable pipeline, you will have many advantages. Usually, hardware
manufacturers are not optimizing the fixed pipeline any longer. In some cases your fixed pipeline
code will be emulated using the programmable pipeline. The reason for this is that overhead state-
changes3 require communication and coordination between GPU and CPU, reducing the possibility
of parallel processing of data. The programmable pipeline allow the GPU to work independently
with less communication between it and the CPU.

You might also be able to move other tasks from the CPU to the GPU. This may for example be
tasks like changing vertex positions, vertex and pixel color and so on over time. Something that
might come in handy when creating particle effects. It is also possible to let a vertex or pixel shader
render data to a texture, thus letting the GPU handle tasks not directly related to graphics.

In the beginning, vertex and pixel shaders had to be written in assembly code. Nowadays, several
high-level languages are available for shader programming. Examples of those are HLSL – High
Level Shader Language, used with Direct3d4 and GLSL – OpenGL Shader Language, used with

1 Graphics Processing Unit, see http://en.wikipedia.org/wiki/Graphics_processing_unit
2 Central Processing Unit, see http://en.wikipedia.org/wiki/Central_processing_unit
3 “Changing any type of state (vertex formats, textures, shaders, shader parameters, blending modes, etc.) incurs a high overhead.“,
described in [3] page 1.
4 3D-graphics API from Microsoft, see http://en.wikipedia.org/wiki/Direct3D and http://msdn.microsoft.com/directx/

5

http://msdn.microsoft.com/directx/
http://en.wikipedia.org/wiki/Direct3D
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit

OpenGL5. We have been using HLSL, we will however not go into any details on how to use this
language. Information about that can be found in Microsoft DirectX9.0 SDK Documentation[2] and
the MSDN web page6.

If you intend to use HLSL, we recommend you to use an editor that can find errors in your code, so
that you do not have to be prevented by simple errors at run-time. We have been using the FX
Composer by NVidia and it works just fine, however, at this day it does not support previewing
particle effects

For more specific information, please refer to the following sources:

[1] Chapter 8
[3] Chapter 1

 3 Research: Analyze of Particle Systems
Natural phenomena like smoke and fire are visible to the human eye because large concentrated
amounts of particles are moving around in an area. Sometimes they are also emitting energy. This
kind of behavior can not be imitated by static models; each particle has to be simulated in some way
to be able to convince the human eye.

In this chapter, we will talk about two kinds of particles. Physical and virtual particles. With a
physical particle, we refer to the kind of particle that exists in real the world; smoke, dust, water
particles etc. Virtual particles however, are the ones that build up a particle effect in a 3-
dimensional computer application. The difference will become clear in this chapter.

 3.1 Particle Representation
To give you a clue of how we can visualize particle effects on a computer screen, we give you the
following statements:

1. Particle effects can always be visualized using several 2D-images, where each image is a
virtual particle.

Motivation:
Since physical particles are so small, they do not have a visible width or depth. Therefore,
the eye cannot tell if a virtual particle have a depth or not, which is why we may use 2D-
images in multiple layers to create virtual depth in the model.

2. Each virtual particle in a particle system always represent a group of physical particles,
rather than a single one.

Motivation:
A physical particle is so small that it can not be seen by the naked eye by its own. On the
computer screen, we have pixels, which can be seen by their own. Because of this,
independently on how we choose to represent our physical particles in our particle system,
each virtual particle will represent a group of physical particles.

3. One virtual particle in our particle system can cover everything from one to thousands of
pixels on the computer screen.

5 3D-graphics API from Silicon Graphics, see http://en.wikipedia.org/wiki/Open_GL and http://www.opengl.org
6 MSDN web page: http://www.msdn.com

6

http://www.msdn.com/
http://www.opengl.org/
http://en.wikipedia.org/wiki/Open_GL

Motivation:
A 3-dimensional model can be visualized by showing 2D-images facing the viewer, as if the
model were sliced into thin slices. A big cloud of particles can be sliced the same way, each
slice can in this way represent a smaller cloud of particles. To make the model look 3-
dimensional related to the environment, the distance between the viewer and the slices
should be varying. The movement of these clouds will however behave like 2D-images
when moving, that is why transparency is very important. We will explain this in more detail
in chapter 3.6.

The conclusion of this is that particles in a 3-dimensional particle system should not be 3D-objects.
Instead, they should be groups of 2D-images that together look like a 3-dimensional model. The 2-
dimensional properties of each particle can be hidden in several ways; for example, they can be very
small, or have a high transparency factor, etc. The way these 2D-images look vary between different
particle effects, so we need to experiment to create the best size and look for each particle type.

Once we have found a way of representing our particles, we have to move them around and give
them color. Depending of what kind of effect we are trying to create, movement and color can be
generated by everything from random functions to mathematical functions describing natural
behavior.

Movement can for example be described with physical laws, with velocity, acceleration and gravity
for each particle. These functions can also be simplified to save the computer some work. For
example, when using large virtual particles representing clouds of physical particles, rotation is a
good way to create a “whirling” effect. You could also use texture twisting7.

Nice colors can be created with different kinds of alpha blending8. You will find more information
about these things later in this chapter.

 3.2 Particle motion
How particles move is an essential part of a particle effect. A physically realistic way is preferred in
most cases. The most correct way to achieve this is using following method, called a state-based
particle effect:

● Store velocity and acceleration data for each particle every frame (alternatively store velocity
per particle and let acceleration be the same for all particles).

● Update particle position each frame by measuring the time passed between the frames, using
the velocity data for each particle.

● Also update velocity data using the acceleration data each frame. Calculate acceleration data
according to gravity, friction etc.

However, it is also possible to make a good approximation of this kind of motion. Luna [1] suggests
that for particles undergoing constant acceleration, the position at a certain time t, is given by

p(t) = ½ * a * t^2 + v0 * t + p0
where p is the position vector, a is the acceleration vector, t is the time, v0 is the initial velocity
vector and p0 is the initial position vector. The constant acceleration could be approximated with

a = a1+ a2

7 Remapping of texture coordinates to create a whirl.
8 The use of a transparency value as a part of a color. In an RGB-color representation, the actual color of a pixel is

represented with 3 values, (Red, Green and Blue), and then a fourth value is used for the transparency. This value is
called the alpha value, and the method the application handles this value is called alpha blending.
See [1] Chapter 12.

7

where a1 is the acceleration from gravity, such as the vector (0, -9.8, 0) and where a2 is the
deceleration caused by friction, which could be approximated with

a2 = -v0 * f
where f is a constant between 0 and 1 describing the power of air resistance relatively. This is of
course only an approximated value, so be sure to use it in situations where accuracy is not too
important.

By using the formulas above, we may create a completely stateless particle effect. We do not need
to save data for the position, velocity or acceleration of our particles, we only need each particle´s
initial velocity and position. The current position is now calculated only using the current time. This
also means that we can slow down or speed up the effect, or even play it backwards. We may also
trigger an effect in the middle of its progress, without needing to calculate it from the beginning.

In some cases, physically correct movement per virtual particle is not the best choice. Let us take the
example discussed earlier, where we suggested that a larger cloud of physical particles could be
represented as one virtual particle. It is not very likely that every particle in the same cloud moves in
the exact same direction and speed, or that they rotate around the middle point of the cloud. When a
big virtual particle moves like described above, it may look very unrealistic.

Using this kind of movement might still be a good way, but since we are not working with realistic
particles, the solution is not obvious. A lot of fine adjustments and tweaking is necessary to create a
good looking effect when working with bigger particles.

 3.3 Particle size
How do we decide whether to use big or small virtual particles? Previously, (section 3.1 statement
number 2) we claimed that each virtual particle always represent a group of physical particles. But
how large should our virtual particles be? In statement (3), same chapter, we also claim that particle
size may vary from one to thousands of pixels. So when will they be small and when will they be
large?

To find an answer to this question, we need to use some good imagination, and perhaps some help
from a particle editor. Before writing a particle editor of our own using shaders and all the latest
technology, we can find inspiration of how particle effects can be created by using an already
existing editor. There are surely many free examples out there, we have only tried one, and it is a
particle editor included in an open source 3D-engine called Delta3D9. We have only used this
engine for inspiration on particle movement, size and color. No code examples or algorithms are
taken from this engine.

We will not go into details on how to use this editor, but simply describe some experimentation and
the results of it.

The editor allows the setting of particle emittance frequency, particle velocity functions, size
functions and color functions. By choosing an appropriate texture for your particles, sending them in
different directions, letting them grow (or shrink) differently and change their transparency and
color over time, different effects are created. How specific types of textures are made is discussed
later. It shows that some effects turn out especially good with heavily growing particles, some are
better with small. Here are some examples:

Effects using big particles: Smoke, explosion fire, explosion shock wave, dust clouds etc.

Effects using medium sized particles: Fire flames, gunfire, energy weapons, raindrops etc.

Effects using small particles: Fireworks, bug swarms, flying sparkles etc.

9 Read about it and download it at http://www.delta3d.org/

8

So, how does the size of our particles affect the performance? Well, there are two aspects of this.
Larger particles usually means that we don't need to use very many particles, and that may save
resources. However, when using big particles, the risk of overdraw10 is larger, which may become
very expensive.

 3.4 Particle color
The color of the particles have the largest influence on the characteristics of an effect. Smoke
particles need to be gray and rather dark while fire particles need to be bright and a bit yellow/red.
The texture used has a small influence on the particle´s color, it usually only defines the shape of the
particle. Instead, we can easily adjust particle´s color by multiplying the texture with a constant
color specified for each particle. In theory, this means it is indeed possible to use the same texture
for both smoke and fire, the result might not be the best, of course.

Different alpha blending methods are used to create different characteristics. By setting the way of
how our application handles alpha transparency, we can make effects look completely different. If
using alpha blending, when a pixel, p1, is about to be drawn on top of another pixel, p0, the
resulting color of the pixel on the screen, p will be:

p = p0 * blend0 + p1 * blend1,

where p0 and p1 are the colors of the pixels, and blend0 and blend1 are the values that are defined
by the blend state. We have found the following two blending methods useful:

● ONE-blending: Blend0 and blend1 are both 1, which means that the color values are simply
added together. This is useful for light emitting effects such as explosions, flashes and fire.

● Inverted source alpha blending: Blend1 is the alpha value of p1, and blend0 is one minus
blend1, which means that you can see through objects with low alpha value. This is used for
smoke, dust, snow, rain and other effects that do not emit any light.

 3.5 Using Shaders
The programmable pipeline gives us the possibility to perform calculation of particle data on the
GPU. The most efficient way to do this is to only generate and initialize the vertex data in the main
application, send it to a vertex buffer11, and then let the shader program do the particle simulation
while the particles are being rendered. This way we can make the GPU calculate particle position,
color and whatever else you may want to calculate.

Some complications may occur though. Difficulties arise when we want particles to affect the
surrounding world. In the opposite direction it is easier, since shader variables can be set at any
time. Collision detection with the surrounding world can be done using height-map textures etc.
Collision between particles is on the other hand very complicated, since it requires communication
in both directions.

How you represent your particles with vertices may vary between different platforms and APIs. One
possibility is to use four vertices per particle, since each particle is represented by a rectangular
image. Each vertex will then represent one of the four corners of the image. In Direct3D there is
also a primitive called point sprite, which lets you represent a billboarded 2D-image with only one
vertex. This kind of primitive is made especially for particle effects. How you choose to represent
your particles is up to you, and which method is the best depends on what platform and API you are
using.
10 The drawing of pixels on top of already drawn pixels. See http://en.wikipedia.org/wiki/Z-buffering
11 A data stream of vertices working as a render queue, located on a preallocated memory area on the GPU. Vertices

are written to this area before a render call is made, and once the call is made, the GPU gets the input data for the
vertex shader from this queue. We tell the GPU how to interpret the vertex data using a vertex declaration.

9

http://en.wikipedia.org/wiki/Z-buffering

If you want to create more realistic types of effects, you may use multi-pass shaders. This means
that each vertex is processed through the programmable pipeline several times each frame. Each of
these passes are different shader programs with different tasks. The last pass renders the output
from the pixel shader onto the screen as usual. All previous passes however, renders the pixel colors
to a texture in the GPU memory. This way it is possible to save specific particle data, such as
position, velocity and so on in the textures, in order to create a state-based particle effect, as
described in section 3.2. Search the documentation of the API you are using, for information on how
to render pixel data to a texture.

 3.5.1 Render-to-texture
In the article “Building a Million Particle System” by Lutz Latta [4], it is described a state-based
particle system using textures to store particle data. In order to use this method with shader-
technology, Shader Model 3.0 is required.

The idea is to store particle velocity, position and other data of your choice in textures, to be able to
save data between frames. The process to store the information into textures requires one extra
vertex shader and pixel shader. The output from the pixel shader is rendered directly to the texture.

For each texture you want to use this way, you need one pair of vertex shader and pixel shader to
write to it. Let us say that you want to write down position, velocity and acceleration for each
particle, you could use the following set of shaders:

1. One shader that calculates velocity and writes it to a texture. You will need one texture to
read data from, and one to write new updated data to, since it is not possible to read from
and write to the same texture. These two textures are swapped each frame.

2. One shader that reads velocity data and old position data and calculates new position and
writes it to a texture. As with the velocity shader, you need two textures to swap between.

3. One more like the two above, that calculates acceleration and writes to a texture.

4. One shader that reads position data from a texture (in the vertex shader), gives each particle
their corresponding world position, transforms them into screen space and sends them to a
pixel shader that textures them and draws them to the screen.

You may also use one single shader instead of shaders 1-3, that writes to one large texture, and uses
offsets to know which data is position, velocity etc.

In order for the shaders to obtain the correct velocity and position data from the textures for each
particle, texture coordinates must be provided for each particle (vertex).

The reason that this method require shader model 3, is that you have to make texture lookups in the
vertex shader. This has not been supported in earlier models. More information about this can be
found by searching for the command texldl in the Microsoft DirectX9.0 SDK Documentation [2]
(guide for HLSL).
Observe that if you want to use motion blurring or other effects that only require texture lookup in
the pixel shader, you may do this with previous shader models as well.

 3.6 From 2D to 3D

 3.6.1 Rendering the images
We will now explain how we can make 2D-images look 3-dimensional on a computer screen. First
of all we need to select a way to represent our particles with vertices. Using point sprites is one
effective way that lets each particle be represented by one vertex. This way, we only need to

10

transform each vertex to screen space, and the vertex is automatically transformed into the
corresponding pixels on the screen using the entire point sprite texture. The size of the particle is
decided by a size attribute in the vertex data.

Point sprites have some limitations though. For example, they usually can not be rotated. In a more
advanced particle system we might want to represent each particle with 4 vertices. Here is an
algorithm that can be used to convert 4 vertices into a 2D-image billboarded upon the screen:

1. Let vertices be divided into groups of 4, each representing the corners of a quad, or the
corners of two triangles next to each other representing a quad (sending the data to the GPU
as two separate triangles is sometimes more efficient than sending it as a triangle strip). Let
each vertex store information about which corner it represents. Store this data as texture
coordinates.

2. Transform vertices to the correct position in world space. All vertices in a particle should
have the same position for now. We are only interested in the position of the entire particle
in this step. Calculate a size for the particle. See image below.

3. Transform all vertices into screen space (a). All vertices in each particle will end up at the
same spot. With help from the vertex data, move the vertices in x- and y-direction to the
correct corners in the quad. Use the size calculated in step 2. See image below.

Sometimes we need to use asymmetrical particles. In these cases we usually use a texture that is still
symmetrical in one dimension, like a drop of water. To make these particles look good, we want to
rotate the 2D-image towards the camera around the axis of the dimension that is not symmetrical. It
can be done like this:

1. Same as (1) above.

2. Transform vertices to the correct position in world space as above (a). Now, move the
vertices that have different texture coordinates in the dimension of the texture that is not
symmetrical to different directions (b). The vertices of each particle will now represent a
line. See image below.

3. Calculate the vector pointing between the particle´s center and the camera. The direction to
move the particles in the symmetrical dimension of the texture is found by calculating the
cross-product between the camera vector and the direction used in 2. See image below.

11

Transformation of 4 vertices into a billboarded square, as described in step 2-3 above.

Vertices are transformed into 2d-image before they are transposed to screen space.

12

So how can these simple 2D-images look like a particle effect in 3D? Take a look at the following
series of pictures:

13

A cloud of smoke could look
something like the one above.
This is our virtual particle.

The particle is actually a
square-shaped image. Without
its transparent background, it
could look like this.

When we want to create a
cloud of smoke, we place
several images near eachother.

And when we use a transparent
background (and let the clouds
themselves be a bit transparent) it
looks like one big cloud. Imagine how
it would look if all these smaller clouds
were moving...

The particle images are always
facing the camera. When the camera
moves, they rotate. As you can see to
the left, they are also at different
distances from the camera to give a
depth to the effect.

 3.7 3D-objects as particles?
For explosion effects, it is common to let parts of an exploded object to fly away from the explosion
scene. These kind of objects are not 2D-images but of course real 3D-objects. Using shaders, we
may move these objects fairly cheap. We can make them fly away and rotate in a realistic manner.

The only problem we get is collision detection when the object lands on the ground, which
complicates the use of shaders. One way to solve this could be to use a texture that describes the
terrain so that the shader can make a lookup to see if the object has hit the ground. Maybe the new
geometry shader in Direct X 10 will make such things simpler to calculate with a more accurate
result.

 4 Creating an application with Particle Effects using shaders
During the work with this thesis we created an application for viewing and editing of real-time
rendered particle effects. The application uses the programmable pipeline exclusively for all
rendering. Also, the behavior of the particle effects are created with shaders, which means that
movement and color of vertices is completely controlled with shaders. In this chapter, we describe
how this application works.

This program uses the Direct3D-API and .fx-files with HLSL code. Implementation with other
API:s may be done with the same structure.

 4.1 Separating tasks
Our application need to do the following:

• Handle 3D-graphics. In Direct3D this means initialize a Direct3D-device and handle resources
such as textures, vertex buffers and shaders. They all need to be initialized, cleaned up and
reinitialized upon certain events.

• Communicate with the user. Use a GUI that allows the user to change shader programs, textures,
number of particles among other things.

• Load shader programs from file and upload them to GPU.

• Generate input data to graphics pipeline. Declare and initialize vertex data, create vertex buffers,
set the correct shader and send draw calls to the GPU.

The parts of the program essential for the actual particle effect are the shader program and the input
to it. In general, the main application is responsible for creating particle data, and the shader
program´s responsibility is to make sure it is presented on the screen. The rest of the job, such as
moving particles, changing their colors etc, can be made by either of these parts of the program. The
most efficient choice is to let the shader handle all of it.

There are examples of particle effects where particles are created, moved and colored each frame in
the application code. After this, it is sent to the shader, and all the shader does is to simply draw the
vertices to the screen by making the proper transformations. You may wonder why the programmer
bothered to use the programmable pipeline at all. Sure, you have nothing to lose when it comes to
programming your own shaders, but why not use the advantages that it may give when you are at it?

Instead, let us make the work of the main program as minimal as possible. Let us only initiate the
particle data, and let the shader do the rest. Let us define what we need to do before we let the
shader take over the job.

Things that we can not do within the shader:

● Declare and create vertex data and initiate vertex buffer.

14

● Set vertex data values.

● Handle dependencies between vertices. (dependencies between particles could be handled
by reading and writing textures. See the render-to-texture method, described in section 3.5.1)

● Decide how many particles that needs to be used at a certain time, and when each particle
comes to life.

● Set and handle render surfaces, that is, decide whether to render to a texture or to the screen.

In other words, we need to decide how many particles we want to draw and then create them
successively or all of them at once. We need to define how long each particle needs to live and
make sure that we do not draw the ones that are dead. Finally we need to create a set of vertices
containing the proper data for our particles, put them into a vertex buffer on the GPU memory, then
do a render call for this vertex buffer. We call this part of the program a Particle Emitter. From this,
we extract two thumb rules that may be worth to remember:

1. The particle emitter creates particles.
2. The shader program defines the behavior of each particle.

 4.2 Main program
Now that it is clear what we need to do in the main program, let us go through it step by step.

 4.2.1 Vertex declaration
For particle systems with shader-controlled behavior, we need our vertices to contain certain
information. Without this information, it is impossible for the shader program to control each
particle´s behavior in a way that is useful to us.

Already in 1983, Reeves [6] defined a particle structure used when randomly generating a new
particle with the following attributes:

1. Initial position

2. Initial velocity (both speed and direction)

3. Initial size

4. Initial color

5. Initial transparency

6. Shape

7. Lifetime

This model was not primarily created for real-time applications, but was meant to suit several
purposes. We will see that this definition still is very useful.

Lander [5] uses the following particle structure in his article from 1998:

● Next and Previous particle – Pointers to next and previous objects. This is used because they
use a linked list to store particles in, but it could possibly be used for special features too.

● Position – Position vector.

● Previous Position – The position of the particle in the previous frame.

● Direction – Moving direction with speed included.

● Life – How long the particle lives in milliseconds using an integer.

15

● Color – The color of the particle.

● Previous Color – The color in the previous frame. Used for anti-aliasing12. (Note: the
technique that is called anti-aliasing in this article is very similar to motion blurring. It is
described how a gouraud-shaded line is drawn between the new and the old particle position
to create an anti-aliasing effect, which means that the particle leaves a trail. The result is that
the particle looks like a shape with smooth characteristics, instead of just a dot on the
screen).

● DeltaColor – How the color changed since last frame.

Here we understand that much have changed since 1998. First of all, particles were not directly
represented as vertices in this example. It was rather a linked list of objects. We use a specifically
defined particle-struct as well, but to save both work and resources we want to let those objects be
directly transformable into vertex data. This means that it is not possible to refer to other particles
on the system memory, so we need to skip information about next and previous particle. It is
unfortunate, since interesting things could be done with this information, for example when
simulating gravity between physical particles.

Other adaptations must be done when using shaders. For example it is not possible to store data
about previous position and color, color change etc. in the vertex data. Instead we would need to
render this data to a texture on the GPU-memory. In the case with the previous color we do not need
it, as another thing has changed since 1998; we use textures to represent our particles which means
that we can give them any shape we want. If we want them to have a nice smooth shape, we simply
give the texture these characteristics. The anti-aliasing can also be handled automatically by the
GPU.

Current position can not be stored either. Instead the current position is calculated in each frame,
either based on previous position or with an approximation. By using a method we call the render-
to-texture method, we may save position data in a texture on the graphics memory, and get a bonus
in the form of the possibility to use motion blurring13 and other features. More about this method in
section 3.5.1. We may also use the approximation described in section 3.2.

Luna [1] suggests using the following particle attributes:

● Initial Position – Expressed in a 3-dimensional float vector. This is the original position, the
current position is adjusted in the shader program.

● Initial Velocity – Expressed in a 3-dimensional float vector. This is original velocity, the
current velocity may be adjusted in the shader program.

● Initial Size – The size of the particle in pixels expressed in one float. Particles may grow or
shrink over time, but like the attributes above, this contains the original size.

● Initial Time – The time stamp when the particle was created.

● Life Time – How long the particle lives after it is created.

● Mass – Luna[1] describes this as “just another parameter that we can use to customize our
particle system inside the vertex shader”. It is used to add random behavior so that different
particles will behave differently.

● Initial Color – Expressed in a 4-dimensional vector.

If you are not using point sprites like Luna [1] do, you will also need the following attribute:

● Texture Coordinates – should be a 2D-vector with the value (0,0), (0,1), (1,0) or (1,1) to

12 Technique used for smoothing out edges. In this case it is used to give the particle a smooth shape.
13 When you let moving objects leave trails to make movement look more smooth.

16

keep track of in which corner of the particle image this vertex is located in. This data is used
by the shader to map the particle texture on the square. With point sprites, the texture is
mapped automatically with the vector in the middle, the size is decided by the “point
size”-attribute. If you are using the render-to-texture method in section 3.5.1, you need to
include coordinates for these extra textures too.

The attributes above turns out to be a good generalization of what is needed in a particle effect,
since the behavior of a particle can be described by its position, velocity, size and lifetime. Note that
acceleration is not a particle attribute in Luna´s model. This is because Luna uses the approximation
described in section 3.2 where all particles are under constant acceleration, which means that they
do not need to store any individual acceleration data.

When we take a look on how these attributes are used, we will find something interesting. It turns
out that the following model is also very useful in general. We will discuss why in the next section.

● Position – normalized vector of 3 dimensions.

● 3-4 normalized vectors of 4 dimensions.

● 3-4 single floats.

● Texture Coordinates (if necessary) – vector of 2 dimensions.

 4.2.2 Particle data values and global data
Most particle effects are based on randomness. The behavior of each particle is controlled from the
shader through different formulas. Different types of effects use different ways of movement, some
may use oscillating particles, some simply move the particles in one direction, some accelerate
particles and some decelerate them and so on. The only thing that is in common for almost all
effects, is that every particle move differently from all other particles in the effect. That is were
randomness comes in.

The particle attributes declared in the previous section are the variables that generate randomness.
Those values are unique for each particle, and one of the key stones of particle effects is that no
particles are doing the same thing. To make this possible, when initiating the particles in our main
program, we give them all random values.

To make things easy and consequent when programming the shader later on, we only assign values
between 0 and 1. (-1 to 1 works just as fine if you prefer that). When assigning vector values, we
only use normalized vectors.

Due to this method of assigning random values, it is not really necessary to say what these values
are going to be used for. It is up to the shader program to decide what the particles do with their
assigned values, and that is why we suggested a generalized particle structure in the end of the
previous section.

If you are using more than one vertex per particle, you have a dependency between vertices you
have to deal with. It is quite easy, simply let all vertices representing the same particle have exactly
the same vertex data, except for one attribute, telling which corner of the particle the vertex is
located in. This is the texture coordinate attribute mentioned above.

In a particle effect, there will also be a set of variables that applies to all particles. Those can be
handled through global variables in the shader. These variables should be set by the main program
once per frame (unless a default value is used inside the shader). What these variables contain
depends on the effect, but most effects need:

● Time – float with time in seconds.

17

● WorldViewProjection – 4x4 matrix with transformation data used for transforming particles
from object space into screen space.

● AspectRatio – The proportions of the screen to make it possible to draw particles with the
right proportions. (not needed with point sprites)

Some effects might have use of other information such as inverse transform, camera position etc.

 4.2.3 Particle management
Luna [1] suggests that all particles can be stored in a vector on system memory, and then two
vectors with pointers/references to alive and dead particles keep track on which particles should be
rendered and which should not.

Once each frame, all particles referenced in the “alive-list” are written to a vertex buffer and a
render call is made to the effect shader with this vertex buffer as stream source. This method works
well but its efficiency could be compared with another approach that we have found during this
work.

Instead of keeping track of dead or alive particles, we simply write all particles we are going to use
in an effect to a vertex buffer. We then make the render call for all particles, dead or alive does not
matter. This means that the vertex shader is run also for dead particles, so it is important to make
sure that the vertex shader does not send dead particles to the pixel shader. This is made possible by
setting a global time variable in the shader and letting vertices have a life time and a time stamp in
the vertex data.

As long as no unnecessary pixel shader calls are made in this second approach, there should be no
significant loss in performance. By optimizing the number of particles used for the effect we should
instead be able to gain a lot of performance, since the number of overhead state changes is reduced.
When the effect is triggered, we only perform the render call to the shader once per frame, no
upload of vertices to the GPU is needed. How much difference this makes is of course hard to tell.

 4.3 Vertex and Pixel shader
The shader program controls the behavior of particles. The vertex shader will be executed once for
each vertex and this is very important to have in mind when writing a particle shader. If every
particle contains more than one vertex, for example 4 or 6, all vertices that represent the same
particle should have the same vertex data, except for the texture coordinates, as described earlier.

When the vertex shader has done its operations on each vertex, the pixel shader will execute once
for each pixel generated by the vertex shader. This means that it important to remember that:

● Only perform operations in the pixel shader that can not be made in the vertex shader, and
that are absolutely necessary The vertex shader is called between 1-6 times per particle
(depending on how your particles are represented) while the pixel shader is performed once
per each pixel in your particle, which may end up in millions of calls.

● Make sure that dead particles have the size of 0 pixels to avoid unnecessary pixel shader
calls. Big invisible particles requires a lot of performance but does not contribute to the
resulting image

We may handle each vertex as if it was a particle. When you write your shader, use your
imagination and try to define how you think a particle in your effect would act. Then describe it in a
program like this one (pseudo-code):

#Particle effect described in a shader
#Beginning of file: define global variables common for all particles

18

//Variables set from outside the shader
float Time;

float4x4 WorldViewProjection;

texture particleTexture;

Initiate texture sampler;

//Variables that might be useful and may be changed from outside the shader
float scale = 1.0f

float radius = 6.0f

.... and so on

//Structs for input and output from vertex shader
struct vertexInput {

 float3 Pos : POSITION;

 float4 texCoord : TEXCOORD0;

 float psize : PSIZE;

 float4 rand : TEXCOORD1;

 other vertex data

};

struct vertexOutput {

 float4 Pos : POSITION;

 float4 texCoord : TEXCOORD0;

 float4 blend : COLOR0;

 float4 diff : COLOR1;

 };

#Vertex shader, modifies and returns vertex data
vertexOutput VertexShader(vertexInput IN)

{

 vertexOutput OUT;

//The following values are calculated based on the Time variable (in the best suitable order).
//The necessary data is stored in the OUT-object.
 If particle is not dead { //it is very important not to process dead particles
 Calculate particle velocity;

 Calculate particle size;

 Calculate particle transparency;

 Calculate particle rotation;

 Calculate particle position;

 Calculate particle color;

19

 //To make the particle visible on the screen
 Transform position to screen space using the WorldViewProjection-matrix.

 //If you do not use point sprites
 Transform vertices in screen space according to texture coordinates.

 }

 //Setting the size of a dead particle to 0 means that the pixel shader will process 0 pixels.
 else { set all OUT-data to 0. }

//Vertex calculation finished
 return OUT;

};

//The output from the vertex shader is transformed into pixels. The data in the position
//register must be defined in screen space, the vertex data is automatically interpolated into
//pixel data.
#Pixel shader, returns a pixel color which is put on the render surface.
float4 PixelShader(vertexOutput IN) : COLOR

{

 return texture lookup(IN.texCoord.x, IN.texCoord.y) * IN.color;

};

#Declaration of techniques.
//Here it is possible to specify different techniques for executing the shader. Which technique
//to use is specified outside the shader program, here it is only specified which vertex and
//pixel shader that each technique should use and what version of the shader model it should
//be compiled with. It is also possible to set different render states on the GPU.
technique normal

{

//A shader may be divided into several passes. This may be used for different reasons, for
//example when different render targets are used. In the first technique you may want to
//render to a texture, and to the screen in the next. In this example we only use one technique.
 pass p0

 {

 VertexShader = compile vs_3_0 VertexShader();

 PixelShader = compile ps_3_0 PixelShader();

 }

}

#End of shader

 4.4 Particle editor / viewer
The final result of the application described above was a viewer with some editing capabilities. We

20

write the shaders for different effects manually and load them into our program where we can view
them in different modes. With a GUI, we can change number of particles, the time factor, different
render states etc. When using shader effects, it is not recommended to try to create an editor that
completely exclude programming. This could lead to a great loss when it comes to performance.

It is however possible to change global variables and attributes in a shader from an application, and
that is something that you could use to make it more efficient to create effects. A complete particle
editor for shaders should contain:

● Text editor for writing, saving and compiling shaders.

● Boxes and sliders that identify the variables in the shader and let you change them.

● Possibility to change number of particles, time factor, scale, delays etc.

● Possibility to use different kinds of emitters for different purposes. Set particle data etc.

Author´s comment: If you know of such application, or if you decide to write one yourself, I will be
very grateful if you contact me. My e-mail can be found in the preface.

 4.5 Effect representation in a game engine
When integrating particle effects into a computer game, it is a good idea to write information about
the effects to a file. We do not want to specify for each effect, what shader is used, how many
particles we need etc. directly in the program code. Instead, we save this data into a configuration
file.

The file type we have used makes it possible to specify the following for each effect (more than one
effect can be specified in each file, since one special effect in the game is usually built up from
many smaller effects):

● Shader file.

● Technique to use in the shader.

● Texture for particles.

● Number of particles.

● Lifetime for the effect.

● Delay – if the one effect in the file should trigger later that the others.

● Blend state to be used.

● Scale – important to have because it is hard to make an effect have the correct size from the
beginning.

● Time scale – if the effect needs to be slower or faster.

These are just examples of what attributes you might need to change. We also need to think about
the order of rendering in our application. Particle effects are typically one of the last things you will
draw in the scene since they are rather complex and contains a lot of transparency. You also want to
avoid sorting your particles since they are quite many.

For this reason, we do not usually write particles to the z-buffer. Instead, we only use the z-buffer to
see if there is something blocking the particle from being seen. If not, we render it. Since we can not
tell whether a particle has been drawn before, we need to draw them in the correct order. If we want
fire covered with smoke, we need to render the fire first, then the smoke. If we want an explosion of
fire within a ring of smoke, we first need to render the half the ring that is furthest away from the
viewer, then the fire, then the ring of smoke that is closest to the viewer.

21

The rendering order of the effect could be determined in the configuration file by simply rendering
effects in the given order. That is why you need to consider the rendering order already when you
are creating the effect.

 5 Creating specific effects
We have gone through the technical difficulties of creating particle effects. Now we have reached
the really tough part: to create an effect that actually looks good. Fine adjusting the looks of effects
has not been a focus point in this thesis, since we wanted to keep the focus at the technology parts.
However, it is important for a programmer to at least know the basic of how different phenomena
can be created, so we have come up with a pretty satisfying collection of examples. In this chapter
we describe how to create them.

 5.1 Smoke
Smoke can be thick or thin, dark or bright etc. The texture you use has a great impact on the
characteristics of your smoke. The behavior of the smoke on the other hand, is pretty much always
the same. It rises slowly and spreads out. Other factors may affect the smoke, such as wind or when
the smoke rises near a wall, which may complicate things.

We create our smoke effect using the following principles:

● Let each particle represent a cloud of smoke that is small in the beginning and grows larger
over time.

● Let the particle rise slowly, and if you want to use a wind effect, add velocity in the wind´s
direction.

● Let the particles rotate slowly in different directions.

● Let the particles fade in (rather quickly) and fade out slowly over time. They should always
be transparent.

● For smoke, the inverted source alpha blending method is recommended.

● Use random values to decide how the velocity of particles, how they rotate, how fast they
fade etc.

22

Using the texture above, the
particles are transformed from
moving tiles to smoke clouds

In the pictures above, we can see the smoke particles as tiles on the left side (modified to black so
that they can be seen on white paper, in the program they are white with different transparency
values). As you can see, they are slightly overlapping and they have different orientation and
transparency. To the right, we have multiplied the particles with the particle texture´s color values.
The picture to the right is the actual texture. The texture has the alpha value of zero in the outline,
so the background color does not matter.

As you can see, the texture is very dark and thick, and it actually looks like a cloud of smoke.
Because the particles add transparency, we still get a nice effect. Still, this kind of texture is best if
you want real thick smoke, since the particles tend to be quite obvious if you use too few particles.
This is a good way to create a more “comic-style” smoke. If you want more realistic smoke, use a
texture with more transparency like this one:

 5.2 Fire
Creating a continuously burning fire is far more difficult that creating a smoke effect. Fire particles
need to move faster and simulate whirls and other random behavior in the flames. You may
experiment with texture twisting and other methods. For now, we have only created a very basic
form of fire. It uses a round texture that gives it unnaturally smooth edges. The particles moves
quickly upwards with decreasing size, and a whirling motion generated by a sinus-function. Their
speed and initial position on the XZ-plane is random. Finally some dark smoke is added.

23

The fire to the right uses the
texture above, another texture
that is not so symmetrical could
give a better result.

The texture above shows a smoke cloud
that is much thinner than the one above,
which makes the particles more difficult
to see. This is good since it gives the
impression that the smoke pillar is
actually a great mass of smoke particles
rather than a collection of smoke balls.

 5.3 Explosions
Explosions are created through a combination of various effects. We need flames, smoke, bright
flashes etc. Here are a couple of examples of how you can combine effects to create an explosion.

 5.3.1 Basic explosion
1. Flash

To make an explosion look powerful, we need something that brightens up the screen when it
triggers. In this example, we use a bright particle covering a big part of the screen, quickly shrinking
into the center of the explosion. The texture is the same that we used in the fire example above (it
was actually designed for this purpose).

2. Bright core
To give the impression that the explosion is really intense, we need something that moves quickly
out from the center of it. This effect can be done like the flash above, except that it is growing
instead of shrinking, and it uses another texture. Of course these two effect should not happen at the
same time, so timing is essential. We do not use one particle here, instead we use several particles
emitted rapidly each after another.

24

A flash effect to create bright light on
the screen when the explosion triggers.
The texture above is drawn in big scale
over the screen, fastly shrinking into
the center of the explosion.

A rapid series of flashes growing from
the core of the explosion. The texture
above gives a nice sparkling effect.

3. Fire
Now we will add some fire to the explosion. This can be made in more ways than we can imagine,
so let us just try something easy. Here, we let small particles of fire grow from an area around the
center of the explosion. The particles are emitted in random location, with random size, random
colors (mix yellow and red) and with random timing.

Some flames in the fire could also give an extra touch. We use a shader similar to the one we used
for the fire in section 5.2.

25

Small balls of fire growing at
different locations around the
center of the explosion. The color
is randomized, and the texture – it
kind of looks like the smoke
texture but a bit more gray, dont
you think?

A flame burning behind the balls of fire gives a more realistic feel

4. Smoke
Finally, we need smoke. This time we chose to place the smoke particles in a ring. After this we
have enough to call the effect a complete explosion. Of course we could add other features, such as
flying debris, flares and sparkles. The only thing that can hold you back is your imagination.

 6 Discussion and Evaluation

 6.1 Accomplishments
During the work with this thesis we have reached both practical and theoretical achievements. Here
are the most important ones.

A series of particle effects to be used in a sharp project.
The experimentation and programming here at SouthEnd Interactive has resulted in a collection of
particle effects that are to be used in a future software product. Many of them are already in a
complete state while some may need some adjustments to get the right feel. It is very exciting that
the result is something useful.

A well-defined description of the theory behind particle effects with shaders and a contribution to
the many ways of using shader technology for this purpose.
This report will hopefully be of use to those who read it and help them getting started with creating
particle effects. The most important part has however been to describe how shaders can be used for
this purpose. Although shaders has been widely used for particle effects before, this thesis
contributes with one of many ways to use the technology. The result is not revolutionary, it is
however unique in the meaning that everything is made from scratch, and no programs have been
copied or imitated.

A proof of that using shader technology for particle effects is not only efficient, it is also very
easy.
The software created has proven to meet all expectations. All effects run smooth and flawlessly,
both in demo software and in game software. We have not directly compared shader-based software
with other types of software, but we have at least proven that it can be used with great results. What

26

The final version of the explosion

is even more interesting is how simple the technology is to use. Thanks to how easy the technique
has been to learn, the results has been over expectations. The shader technology also provide a great
plug-and-play type of design, where if planned wisely, shaders can simply be replaced to obtain
totally different results. Integration of particle system in larger software has also been very straight
forward.

A great development of personal experience.
Before starting with this work, I – the author, had no experience with particle effects what so ever.
As if that was not enough, I did not have any experience with Direct X/Direct3D development
either. During these 19 weeks I have now created my own particle system together with a
viewer/editor developed from scratch. For me, the work with this master´s thesis has been a far
greater experience than I could have hoped for.

 6.2 Evaluation
In the “Goals”-section in the beginning of this report, we listed some goals with this thesis. Did we
reach those goals? The main goal was to answer the following question:

How can we create visually appealing particle effects for interactive environments using Shader-
technology suitable for a game running on Xbox 360?
This question is answered throughout this entire report since it describes a way of how to create
visually appealing particle effects for interactive environments using shader technology. If the
effects we created is “visually appealing” is of course a matter of taste. They certainly not the most
amazing effects you have ever seen, but the goal was not to create those appealing effects, rather to
describe how to do it.

Some other questions were also asked:

1. What parts of the effect should be calculated in the shader program, and what parts
should be handled by the main application?

2. When do we use single-pass and multi-pass shaders, respectively?
3. How can we make external forces like wind have effect on the particles?

Question (1) is answered in section 4.2 with a detailed description.

Question (2) is also answered, but not as clearly. The answer to this question is that when we want
to use the render-to-texture method described in section 3.5.1, we use multi-pass shaders. Multi-
pass shaders are in theory the same thing as multiple shaders, except that they are collected and
structured into one file. The structure is described as different passes. We may also use multi-pass
shaders when we want to use certain post render effects, such as motion blurring.

The subject of question (3) has unfortunately not been more than briefly examined. We have said
that when using state-based effect, such as the type that writes data to a texture, these forces should
be very easy to apply. Using our framework it is quite simple to apply external forces in some
simple cases, but quick changes of acceleration might give bad results since the approximation is
based upon constant acceleration. Adding a wind direction from a pillar of smoke is no problem at
all.

One of the things that could have been explored more is the possibility to do more physically
realistic particle effects, with more but smaller particles. The render-to-texture method allows
simulation of physical behavior with a large amount of particles, and this would be interesting to
experiment with. From the beginning this thesis were meant to focus on such effects, but it turned
out that the subject of creating effects at all were to complex to begin with.

27

This lead to that the part of creating effects with shaders required a great effort, and the focus
became to create simple and efficient effects with a nice feeling, not focusing so much on
simulating physical behavior of particles. As this nicely match the description of “creating visually
appealing particle effects for interactive environments”, the results still became satisfactory.

 7 Acknowledgments
I would like to thank the following persons for their great help and support during the work with
this thesis:

● Daniel Jeppsson at SouthEnd for his great support with programming and many theoretic
discussions.

● Peter Ekstrand at SouthEnd for creating many of the particle textures, and for valuable
feedback and suggestions for my particle effects.

● Jon Hasselgren and Tomas Akenine-Möller at the Institution of Computer Science for their
helpful suggestions.

● Daniel Olsén at SouthEnd for creating the pictures on page 11.

● Mikael Dahlström at SouthEnd for help with solving math problems.

● My colleagues at SouthEnd for great company and support.

28

 8 References
[1] Frank D. Luna, “Introduction to 3D Game Programming with DirectX9.0c a Shader

Approach”, 2006, Worldware Publishing Inc.

[2] Microsoft DirectX9.0 SDK Documentation

[3] David Blythe, “The Direct3D 10 System (SIGGraph 2006)”, 2006, Microsoft Corporation,
http://download.microsoft.com/download/f/2/d/f2d5ee2c-b7ba-4cd0-9686-
b6508b5479a1/Direct3D10_web.pdf

[4] Lutz Latta, “Building a Million Particle System”, Game Developers Conference 2004, 2L
Digital, http://www.2ld.de/gdc2004/

[5] Jeff Lander, “The Ocean Spray in your Face”, 1998, Game Developer Magazine (issue of
July 1998), http://www.double.co.nz/dust/col0798.pdf

[6] William T. Reeves, “Particle Systems – a Technique for Modeling a Class of Fuzzy
Objects”, 1983, Lucasfilm Ltd, http://portal.acm.org/citation.cfm?id=357320

29

http://portal.acm.org/citation.cfm?id=357320
http://www.double.co.nz/dust/col0798.pdf
http://www.2ld.de/gdc2004/
http://download.microsoft.com/download/f/2/d/f2d5ee2c-b7ba-4cd0-9686-b6508b5479a1/Direct3D10_web.pdf
http://download.microsoft.com/download/f/2/d/f2d5ee2c-b7ba-4cd0-9686-b6508b5479a1/Direct3D10_web.pdf

	 1 Introduction
	 1.1 Goals
	 1.2 Comments

	 2 Basics and background
	 2.1 Particle Systems
	 2.2 Shaders

	 3 Research: Analyze of Particle Systems
	 3.1 Particle Representation
	 3.2 Particle motion
	 3.3 Particle size
	 3.4 Particle color
	 3.5 Using Shaders
	 3.5.1 Render-to-texture

	 3.6 From 2D to 3D
	 3.6.1 Rendering the images

	 3.7 3D-objects as particles?

	 4 Creating an application with Particle Effects using shaders
	 4.1 Separating tasks
	 4.2 Main program
	 4.2.1 Vertex declaration
	 4.2.2 Particle data values and global data
	 4.2.3 Particle management

	 4.3 Vertex and Pixel shader
	 4.4 Particle editor / viewer
	 4.5 Effect representation in a game engine

	 5 Creating specific effects
	 5.1 Smoke
	 5.2 Fire
	 5.3 Explosions
	 5.3.1 Basic explosion

	 6 Discussion and Evaluation
	 6.1 Accomplishments
	 6.2 Evaluation

	 7 Acknowledgments
	 8 References

