

Evaluation of Java 3D for mobile platforms with M3G

Master of Science thesis

Jonas Nilsson [e97jn@efd.lth.se]
Fredrik Nygren [d98fn@efd.lth.se]

September 2004

Supervisor:
Calle Lejdfors

Department of Computer Science, Lund University

The thesis was done in cooperation with
Telescope Software AB

 ii

 iii

© Copyright Jonas Nilsson and Fredrik Nygren, Lund, 2004

 iv

 v

AbstractAbstractAbstractAbstract
On the 22

nd
 December 2003 the final release of JSR-184, the Mobile 3D Graphics API was made. The

API is designed to be a lightweight API for delivering 3D graphics to the J2ME platform. Given the
popularity and performance requirements of mobile 3D gaming we investigated this API from a gaming
perspective by first implementing a game engine for the Java 3D API for J2SE and one for the JSR-184
API to find out the strength and weaknesses of JSR-184. This report documents our observations from
this work. We concluded that the API can be used for 3D games but in connection with CLDC 1.1 lacks
some helpful features. Further we also noted unexpected behavior from the Nokia RI and Sun’s WTK
implementations of the API indicating that the specification might in some parts be ambiguous.

 vi

 vii

Table of contentsTable of contentsTable of contentsTable of contents

Abstract .. v
Table of contents... vii
1 Introduction ... 1

1.1 Java on mobile phones .. 1
1.2 Goal of thesis.. 1
1.3 Structure/layout/contents of this document.. 1
1.4 An introduction to scene graphs .. 1

1.4.1 Java 3D and M3G specific .. 3
2 J2SE and Java 3D.. 5

2.1 Java 3D.. 5
2.1.1 Overview ... 5
2.1.2 The classes of Java 3D... 6
2.1.3 Rendering Modes ... 8
2.1.4 Java 3D from a scene graph perspective.. 9
2.1.5 A simple example.. 10

2.2 Game implementation .. 10
2.2.1 Engine structure ... 10
2.2.2 Classes of the game engine .. 11
2.2.3 Connection to Java 3D ... 13
2.2.4 Remaining issues .. 13

2.3 Conclusions.. 14
3 J2ME ... 15

3.1 The J2ME language .. 15
3.2 The Java Community Process and Java Specification Request.. 15
3.3 CLDC ... 15
3.4 MIDP.. 16

3.4.1 Introduction... 16
3.4.2 MIDlet applications.. 16

4 M3G.. 19
4.1 Why a new 3D API for Java? ... 19
4.2 Overview.. 19

4.2.1 Hints ... 19
4.2.2 Representation of objects .. 19

4.3 The classes of M3G .. 21
4.3.1 Object3D... 21
4.3.2 Transformable .. 22
4.3.3 Transform.. 22
4.3.4 Group.. 22
4.3.5 World .. 23
4.3.6 Node ... 23
4.3.7 Appearance .. 23
4.3.8 Light.. 23
4.3.9 Material ... 24
4.3.10 PolygonMode... 24
4.3.11 CompositingMode ... 24
4.3.12 Fog.. 24
4.3.13 Texture2D... 25
4.3.14 Image2D.. 25
4.3.15 Camera.. 26
4.3.16 Mesh, VertexBuffer and VertexArray ... 26
4.3.17 MorphingMesh .. 26
4.3.18 SkinnedMesh ... 26
4.3.19 IndexBuffer and TriangleStripArray... 27

 viii

4.3.20 Sprite3D.. 27
4.3.21 Background ... 27
4.3.22 Loader ... 27
4.3.23 AnimationController, AnimationTrack and KeyframeSequence 28
4.3.24 RayIntersection .. 28
4.3.25 Graphics3D ... 29

4.4 Rendering modes.. 29
4.5 M3G from a scene graph perspective ... 30
4.6 A simple example.. 30
4.7 Differences from Java 3D.. 31

5 M3G game implementation .. 33
5.1 Modifications of the game engine .. 33
5.2 Final structure of the engine.. 35
5.3 Connection to M3G... 36
5.4 Remaining issues .. 36

6 Observations of using M3G... 37
6.1 Billboards and Sprite3D.. 37
6.2 Transparent textures ... 39
6.3 Arc functions.. 41
6.4 Mipmap images.. 41
6.5 Wireframe rendering... 41
6.6 Fog .. 42
6.7 Lights and influencing bounds... 42
6.8 Perspective correction ... 43
6.9 Picking... 44
6.10 Loader ... 44
6.11 Animations... 45
6.12 VertexBuffer and VertexArray.. 45
6.13 Vectors... 45

7 Final conclusions .. 47
8 Future work.. 49
9 Glossary ... 51
Appendix A Quaternions... 53
Appendix B J2ME CLDC 1.0 and 1.1 ... 55

B.1 CLDC 1.0 (JSR-30) ... 55
B.1.1 Inherited classes.. 55
B.1.2 Added classes.. 55
B.1.3 Exception and error classes .. 56

B.2 CLDC 1.1 (JSR-139).. 56
Appendix C Simple Java 3D example source code ... 57
Appendix D Simple M3G example source code... 59
Appendix E References and literature ... 63

E.1 References .. 63
E.2 Literature ... 63

 1

1111 IntroductionIntroductionIntroductionIntroduction

1.11.11.11.1 Java Java Java Java on mobile phoneson mobile phoneson mobile phoneson mobile phones

Traditionally the mobile phone software has been a rather static collection of applications implemented for
a specific operating system. With Java becoming a standard on mobile phones, developers have got the
opportunity to create applications that are no longer restricted to a limited set of devices without
recompilation and modification of its source code. Further its similarities with the widely used Java for
desktops, J2EE and J2SE, provides for a large potential base of programmers capable of developing
applications for mobile phones using Java.
In the last few years one of the fastest growing areas in the field of mobile phones related to experiences
and mobile entertainment is gaming and 3D graphics. For example Nokia introduced the mobile game
platform/phone N-Gage and Sony Ericsson ship virtually every new mobile phone with support for
mophun™ and/or Java gaming experience.
As a natural step in the evolution of Java for mobile phones an expert group led by Nokia formed a
specification for how 3D could be handled. This specification was to be known as JSR-184 and had its
final release on the 22nd of December 2003 [1].

1.21.21.21.2 Goal of thesisGoal of thesisGoal of thesisGoal of thesis

“Our view is that the large majority of 3D applications on mobile phones for the coming 2 to 4
years will be related to games & game related markets such as character depiction. Games being
one of the most complex applications for 3D, any API defined for games would probably meet
most market requirements exactly as DirectX, developed for PC games, has enabled the
development of 3D applications even beyond gaming. If there is a generic 3D JSR, then game
related 3D specifications would take place within the generic 3D JSR.”

Expert group, JSR-178 Mobile Game API [2]

The goal of this thesis is to evaluate the JSR-184 Java API for 3D graphics or M3G (Mobile 3D Graphics)
as it is also known. The approach will be made from a practical viewpoint. With gaming on mobile
phones becoming a bigger and bigger market and that 3D gaming is by many seen as one of the more
popular and also demanding uses of common 3D APIs the observations was decided to be based on
experiences resulting from implementing a simple game. It was also decided that prior to developing a
game engine for M3G a game engine should also be made for the implementation of Java 3D on J2SE.
This approach was thought to help showing possible effects resulting from creating and using a much
more restricted API suitable for a more restricted platform. Java 3D for J2SE was chosen as the
comparison platform due to its similarities with M3G: it is scene graph based, influenced by OpenGL and
written exclusively for its target Java platform as opposed to a wrapper.

1.31.31.31.3 Structure/layout/contents of this documentStructure/layout/contents of this documentStructure/layout/contents of this documentStructure/layout/contents of this document

Chapter 2 starts by introducing Java 3D for the J2SE platform that throughout this document will be
referred to as Java 3D. Then it continues to give a brief overview of the game engine developed for this
platform. Next chapter 3 provides short introduction to the parts of the J2ME platform that we used in
addition to M3G. An overview of M3G is then cared for in chapter 4. Chapter 5 introduces the game
developed for J2ME and M3G along with some comments on how implementing it was different from
the implementation of the engine for Java 3D. In chapter 6 the more apparent observations of M3G we
made from our work are presented. The document is then wrapped up in chapter 7 and 8 summarizing
our results and with thoughts of future work.

1.41.41.41.4 An introduction to sAn introduction to sAn introduction to sAn introduction to scene graphscene graphscene graphscene graphs

All graphics engines need some sort of management for its data. For a simple scene a list might be enough
but for more complex worlds an effective organization is needed. A scene graph has this effective structure
to store objects in a virtual world. Usually it is treelike but it does not have to be, as long as the graph is

 2

acyclic it is a valid scene graph. And with no cycles in the graph the only path from the root of the tree to
a leaf is unique and decides the properties of its leaf.

The scene graph approach provides a higher-level organization for the programmer when creating and
manipulating the virtual world. Not only does it make work easier for the programmer, it also speeds up
graphical and sound rendering since the renderer has an organized structure to traverse when rendering so
it can effectively cull things outside the viewing and hearing area. Some renderers can even optimize the
scene graph if the programmer tells it to do so.

A scene graph consists of group nodes and leaf nodes where the group nodes are abstract and holds
position, orientation and scaling while the leaf nodes are physical and specify geometry, light or sound. A
group node has exactly one parent but can have any number of children where a child inherits the
properties from the parent node. Any positioning, orientation or scaling in a group node is relative to the
accumulated values from all ancestors all the way back to the root node of the tree. A child can be another
group or a leaf node. Each group node in the tree is the root in its own subgraph (branch graph) and by
affecting this group node all of its descendants are affected. This can be very useful when wanting to move,
hide or in any other way manipulate related objects. If the leaf nodes are grouped together in a branch
they can be treated as if they were a single object.

Another useful thing with the scene graph is bounding volumes. Since each physical object is a leaf with its
unique properties, it is easy to add some sort of bounding volume to the leaf nodes for collision detection.
Here it is natural to group leaf nodes together under a group node when they are related to each other.
Imagine a car, for example; it can be made up of a body, two doors and four wheels. Each of these parts
has its own geometry and bounding volume. They are all children of the “car”-node which holds the car’s
position and the bounding volume of the entire car enclosing all bounding volumes of the children, see
figure 1.1.

Each car part’s position is related to the center point of the “car”. If a door of the car is opened the
rotation of the door is changed and the bounding volume of the car, and perhaps the door as well, is
recalculated. If it is possible for the car to lose the door and it does, then the door should be removed from
the “car”-node since it should not be positioned relative the car’s position any more and neither should it
be part of the bounding volume of the car, see figure 1.2.

Car

Wheels

FL

Leaf nodes

Transforming nodes

Grouping node

Figure Figure Figure Figure 1111....1111 Structure of an intact car with its parts and bounding volumes.

Bounding volumes

FR BL BR L R

BV BV BV BV BV BV

Doors

Bounding volume
for the entire car

BV
car

Abstract path to or
towards the root

F = front
B = back

L = left
R = right

BV = bounding volume

 3

A further benefit is that the structure of a scene graph is very similar to the way 3D worlds are modeled in
3D modeling programs. This makes it easy to load scenes created in such a program straight into the scene
graph.

A scene graph is a simple and convenient way to create a 3D world, but one shall have in mind that to be
able to modify, add or remove objects in this 3D world it is necessary to find a reference to the
corresponding object in the graph, therefore another structure is often needed parallel to the scene graph
to access the objects unless the scene graph provides a way for labeling its objects.

1.4.11.4.11.4.11.4.1 Java 3D and Java 3D and Java 3D and Java 3D and M3GM3GM3GM3G specific specific specific specific

These two focus on scene graphs with n-tree structure, n-tree meaning that a node can have any number
of children.

In these implementations of scene graphs a leaf node has, if it is a geometry object (Shape3D in Java 3D or
Mesh in M3G), references to one or more geometries and one to an appearance. The geometry reference
references the geometry of the physical object and the appearance reference references properties for how
an object will be rendered, such as which material to use, how to shade and which textures to use. Since
the referenced objects are not part of the scene graph, various leaf nodes can reference the same object
without causing cycles in the scene graph.

The camera is also inserted in the scene graph but it works a little different in Java 3D and M3G, see
sections 2.1 and 4.2 in for details.

Car

Wheels

FL

Leaf nodes

Transforming nodes

Grouping node

Figure Figure Figure Figure 1111....2222 Structure of a car that has lost the right door. The right door is not covered by the bounding volume for
the car anymore.

Bounding volumes

FR BL BR L R

BV BV BV BV BV BV

Door

Bounding volume for the car
without the right door

BV
car

Abstract path to or
towards the root

F = front
B = back

L = left
R = right

BV = bounding volume

Lost door

 4

 5

2222 J2SE and Java 3DJ2SE and Java 3DJ2SE and Java 3DJ2SE and Java 3D
J2SE is the Java 2 Platform, Standard Edition from Sun Microsystems. In this thesis the J2SE version
1.4.2_03 have been used together with Java 3D version 1.3.1 [3].

2.12.12.12.1 Java 3DJava 3DJava 3DJava 3D

Java 3D is an API developed by Sun Microsystems for writing 3D graphics applications using the Java
programming language. It was designed with several goals in mind, focusing on high performance. It is an
object-oriented API which uses a tree structured scene graph to connect graphics elements. The API relies
on existing technologies such as DirectX [4] or OpenGL [5] to perform native rendering while it gives the
developer a high-level interface to work with. Another aim with Java 3D was to have a platform
independent API for 3D graphics.

2.1.12.1.12.1.12.1.1 OverviewOverviewOverviewOverview

javax.vecmathjavax.vecmathjavax.vecmathjavax.vecmath com.sun.j3d.loaderscom.sun.j3d.loaderscom.sun.j3d.loaderscom.sun.j3d.loaders javax.media.j3djavax.media.j3djavax.media.j3djavax.media.j3d

VirtualUniverse

Locale

View

PhysicalBody

PhysicalEnvironment

Screen3D

Canvas3D

SceneGraphObject

Node

NodeComponent

Leaf
Transform3D

Matrix classes Tuple classes Loader

Appearance

Geometry

Material

Texture

Various other components

Behavior

Fog

Light

Shape3D

Sound

Various other leafs

TransformGroup

Other objects

Various other groups

BranchGroup

ViewPlatform

Group

Figure Figure Figure Figure 2222....1111 Simplified class model of Java 3D.

 6

2.1.22.1.22.1.22.1.2 The classes of Java 3DThe classes of Java 3DThe classes of Java 3DThe classes of Java 3D

This section shortly describes the most important classes of Java 3D. Since Java 3D consists of more than
400 classes, only the most important are mentioned here. The descriptions of them only covers the basics
and are not intended to explain all details, for more detailed descriptions; see the official Java 3D API [3].
For an example of a simple scene graph see figure 2.3

PackagePackagePackagePackage javax.mjavax.mjavax.mjavax.media.j3dedia.j3dedia.j3dedia.j3d

VirtualUniverseVirtualUniverseVirtualUniverseVirtualUniverse
The top-level container for a scene graph. Each scene graph must have a VirtualUniverse as a root but
multiple VirtualUniverses are allowed in the same application, i.e. an application can have more than
one scene graph as long as no node appears in more than one of the scene graphs. Objects in one
VirtualUniverse can not be visible in and not interact with objects in another VirtualUniverse . A
VirtualUniverse can only have Locales as children.

LocaleLocaleLocaleLocale
Serves as a container for subgraphs and is a child of a VirtualUniverse . A Locale has a high-resolution
position in the virtual world and holds one or more BranchGraphs as children. The idea with high-
resolution is that Locales are positioned with 256 bits to be able to handle huge worlds while other nodes
in the scene graph only uses floats (32 bits). In this way two low-resolution objects can be positioned far
away from each other by letting them belong to different Locales .

ViewViewViewView
Is the central object for coordinating all viewing parameters. The View exists outside the scene graph but
references and is referenced by the ViewPlatform which is a Leaf in the scene graph. The View holds all
parameters needed to render the scene on one or more canvases from the point of view of the
ViewPlatform .

PhysicalBodyPhysicalBodyPhysicalBodyPhysicalBody
Contains information about the physical characteristics of the end-user’s body like the position of the left
and right eye and left and right ear. Left and right eye position can be used to render the same scene from
two slightly different positions and these two renderings can then be displayed on separate screens on a
pair of glasses with one screen for each eye to create an illusion of depth. The left and right ear positioning
are used for panning sounds so they appear to originate from their position in the virtual world.

PhysicalEnvironmentPhysicalEnvironmentPhysicalEnvironmentPhysicalEnvironment
Specifies the physical environment in which the view will be generated.

Canvas3DCanvas3DCanvas3DCanvas3D
Provides a drawing area for 3D rendering, can be rendered to on- or off-screen.

Screen3DScreen3DScreen3DScreen3D
Is the screen a canvas is drawn on and contains the screen’s physical properties. In most cases the
Screen3D references a physical screen (display device), for example a screen of a desktop computer. The
Screen3D has to be obtained via the getScreen3D method of the Canvas3D but if the Canvas3D is a
canvas for off-screen rendering this method will return a memory image whos properties must be set
before it is possible to draw to it.

Transform3DTransform3DTransform3DTransform3D
Transformations in the scene are represented by a 4 x 4 matrix and include the rotation, scaling and
translation operations.

SceneGraphObjectSceneGraphObjectSceneGraphObjectSceneGraphObject
A common superclass for all scene graph component objects.

 7

NodeNodeNodeNode
An abstract class for nodes in the scene graph.

GroupGroupGroupGroup
A node for grouping objects together. It can have any number of children which will be rendered in an
unspecified order.

BranchGroupBranchGroupBranchGroupBranchGroup
A BranchGraph serves as a root for a subgraph. It can be thought of as a complete scene graph where the
BranchGraph serves as the root. BranchGraphs are the only nodes that can be attached to the Locale but
they can be attached as subgraphs in another subgraph (branch graph) as well. Further on, a BranchGraph
node can be optimized for rendering speed with a compile method call (will also compile any subgraph in
this subgraph). A BranchGraph may be inserted in the scene graph which will make it live and renderable.

TransformGroupTransformGroupTransformGroupTransformGroup
A node which positions, orients and scales all of its descendants.

LeafLeafLeafLeaf
Is an abstract class for scene graph nodes that can not have children. Leafs can specify lights, geometry
and sounds. A Leaf can reference NodeComponents .

BehaviorBehaviorBehaviorBehavior
Makes the base for interaction and animation. The purpose of this class (and its descendants) is to modify
the scene graph or objects in it in response to stimulus like keys being pressed, mouse movement,
collisions, the passage of time, other events or combinations of these. The actions taken are only limited by
the capability of the scene graph objects.

FogFogFogFog
An abstract Node which has a set of attributes to control fog, including color and an influencing bounding
region.

LightLightLightLight
Abstract class defining light. Lights have a color, a state (on or off) and a bounding region. If an object
intersects the bounding region it is lit by the light. Lights can be ambient, directional, point or spot
lights.

Shape3DShape3DShape3DShape3D
Specifies a geometric object. It references two components; this shape’s Geometry and its Appearance .

SoundSoundSoundSound
Abstract class for sound. Each sound node references sound data and holds properties for its sound source.
A Sound object can also have a activation volume (a bounding object) and when this intersects with the
activation volume of the ViewPlatform the sound is possible to hear. Sounds can be BackgroundSound ,
PointSound or ConeSound .

ViewPlatformViewPlatformViewPlatformViewPlatform
Is a movable “platform” on which the View sits to observe the virtual universe, i.e. it specifies the location,
orientation and scale of the viewer. In a scene graph there can be multiple ViewPlatforms and Views but
each pair draws on its own Canvas3D . A ViewPlatform is referenced by the View object that specifies all
necessary information to render the view from the position of the ViewPlatform .

NodeComponentNodeComponentNodeComponentNodeComponent
Superclass for scene graph component nodes.

 8

AppearanceAppearanceAppearanceAppearance
Defines rendering states for one or more Shape3D nodes. The appearance defines among other things
colors, textures (and texture coordinates), material and how lines, points and polygons should be rendered.

GeometryGeometryGeometryGeometry
Is an abstract class specifying the geometry required by a Shape3D node. Geometry has four subclasses;
CompressedGeometry , GeometryArray , Raster and Text3D , each object of any of these classes defines a
visible object or a set of visible objects.

MaterialMaterialMaterialMaterial
Defines material and defines the material properties when lighting is enabled. It specifies ambient, diffuse,
specular, emissive color and shininess. If Material is not defined for an Appearance , lighting will be
disabled when rendering all nodes using that Appearance .

TextureTextureTextureTexture
Abstract class which defines the texture properties of an Appearance when texture mapping is enabled. All
texture objects must be created as a Texture2D , a Texture3D or a TextureCubeMap .

Texture2DTexture2DTexture2DTexture2D
A texture which uses two coordinates for mapping textures.

Texture3DTexture3DTexture3DTexture3D
A texture which uses three coordinates for mapping textures.

Package Package Package Package javax.vecmathjavax.vecmathjavax.vecmathjavax.vecmath
As a part of the Java 3D API is a package for storing and manipulating vectors and matrices.

Matrix classesMatrix classesMatrix classesMatrix classes
The matrix classes represent 3 x 3 or 4 x 4 matrices which can be made of floats or doubles. The matrix
classes are mainly for rotation calculations.

Tuple classesTuple classesTuple classesTuple classes
Classes to represent 2-, 3- or 4-element values where each value can be a float, double, byte or integer. The
tuple classes themselves are abstract but their subclasses are not. The subclasses represent colors, points,
vectors, texture coordinates and quaternions.

Package Package Package Package com.sun.j3d.loaderscom.sun.j3d.loaderscom.sun.j3d.loaderscom.sun.j3d.loaders

LoaderLoaderLoaderLoader
An interface for loading graphical objects and/or entire scenes. Implementations included in the Java 3D
API are LoaderBase (abstract implementation of Loader), Lw3dLoader (implementation that loads
scenes in the LightWave 3D format) and ObjectFile (implementation for loading Wavefront obj-files).
Various other implementations of the Loader interface are available on the Internet.

2.1.32.1.32.1.32.1.3 Rendering ModesRendering ModesRendering ModesRendering Modes

Java 3D supports three different types of rendering modes: immediate mode, retained mode and
compiled-retained mode. Each successive mode allows Java 3D more freedom when optimizing the
rendering.

Immediate ModeImmediate ModeImmediate ModeImmediate Mode – is the lowest level of rendering which gives the developer most possible control at some
cost of rendering speed. Using immediate mode the developer can either use or ignore the scene graph
structure and if using pure immediate-mode the application has full control of the rendering which means
that the application must manually clear the 3D canvas, call the render method for desired geometries
and swap buffers. Immediate mode can be used independently or mixed with one or both of the following
modes:

 9

Retained ModeRetained ModeRetained ModeRetained Mode – is a higher level of rendering, still with a great flexibility but Java 3D is continuously
rendering the scene graph. It means that as soon as an object is inserted into the scene graph it is rendered.
The Java 3D renderer compiles the scene graph in a limited way when inserted in the scene graph. It is
possible to set capability of certain parts of the scene graph to make them accessible after the compilation
but if not, the renderer is free to do what ever it can to optimize for performance. The structure is
unchanged but for example geometries can be rearranged for better performance.

CompiledCompiledCompiledCompiled----Retained ModeRetained ModeRetained ModeRetained Mode – gives Java 3D most freedom to optimize the scene graph. It allows Java 3D to
completely reconstruct the scene graph, with a fully equivalent functionality, to achieve maximum
rendering performance. Like in retained mode Java 3D does the rendering automatically and it is not
possible to access the scene graph without setting appropriate capabilities.

2.1.42.1.42.1.42.1.4 Java 3D from a scene graph perspectiveJava 3D from a scene graph perspectiveJava 3D from a scene graph perspectiveJava 3D from a scene graph perspective

All nodes of the Java 3D scene graph extend the Java 3D class Node except the root node of the scene
graph which is of the VirtualUniverse class and a set of Locale objects beneath it.

A BranchGroup is a node that can be a parent of several other nodes. Contrasting to BranchGroup the
Leaf class can have no children – it serves as a leaf of the scene graph tree. Although Leafs may not have
children they can however have references to NodeComponents . NodeComponent and its subclasses
constitute things such as geometry, material, texture and other things that need not be exclusive to a part
of the scene graph. A NodeComponent may in other words have several nodes referencing to it. Actually,
NodeComponents are not part of the scene graph at all, only referenced by it. Since they are so closely
coupled to the scene graph they are sometimes shown in the illustrations of Java 3D scene graphs.

The Java 3D scene graph also differentiates between two kinds of subgraphs (branch graphs); the content
subgraph and the view branch graph. The content subgraph defines all contents of the virtual universe –
geometry, textures, lights, sounds etc. The view branch graph defines how the universe is viewed – viewing
location and direction, field of view and so on. An example of a Java 3D scene graph is illustrated in figure
2.2.

The TransformGroup node shown in figure 2.2 is used to specify translation, rotation and scale of all
nodes underneath it. Should several TransformGroup nodes lie after one another in the scene graph the
nodes beneath them will be transformed by them all.

VirtualUniverse

BG

S S

Geometry Appearance Geometry

BG

TG

View Canvas3D Screen3D

Physical Environment Physical Body

NodeComponents

Shape3D node TransformGroup node

BranchGroup nodes

View platform

Locale

Figure Figure Figure Figure 2222....2222 Java 3D scene graph illustration. Triangles represent leaf nodes and dashed arrows references.

 10

2.1.52.1.52.1.52.1.5 A simple exampleA simple exampleA simple exampleA simple example

Appendix C shows how to create a simple scene using Java 3D. Most things should be pretty self-
explanatory for anyone proficient in the concepts of programming 3D graphics except maybe for the part
concerning SimpleUniverse . Briefly SimpleUniverse is a utility class for Java 3D to allow easier setup
of the camera etc.

Figure Figure Figure Figure 2222....3333 Screenshot from the simple Java 3D example in
Appendix C.

2.22.22.22.2 Game implementationGame implementationGame implementationGame implementation

The game engine implemented in J2SE with Java 3D was intended to be an engine with a general
structure for any kind of 3D game. The design was made with a later transfer to J2ME and M3G in mind.
The game made in J2SE is a game where a spaceship is flown in a tunnel. The game uses collision
detection at triangle level, a physics engine to behave realistic and real-time lighting.

2.2.12.2.12.2.12.2.1 Engine structureEngine structureEngine structureEngine structure

The center of the game engine is the GameEngine class. All movements in the game are controlled by the
GameEngine but performed by the MotionMaster . The MotionMaster has a CollisionMaster to detect
collisions and report them back to the GameLogic via the MotionMaster and the GameEngine .

In each cycle in the game loop, the MotionMaster updates the positions for all objects that should move
then asks the CollisionMaster to check for collisions. The CollisionMaster finds all collisions by first
checking each movable object that has moved for collisions with static objects (at triangle level) and then
for collisions with other movable objects (using the bounding volumes). A static object can use the same
geometry for collision detection as for visualization but can use a separate, non-visible geometry with fewer
triangles for faster the collision detection. At the end it has a collection with colliding objects and starts
moving them all backwards in time until the first collision that occurred is found. It returns the first
colliding object (one movable object collides with a static object) or objects (if two movable are colliding
with each other or if different collisions occur in an extremely short time interval) to the MotionMaster .
The MotionMaster calculates the physical response and applies it to the colliding objects. Then the
MotionMaster continues to move all moving objects with consideration to their physical properties
(possibly changed for the previous colliders). If more collisions are detected it moves new colliders (can be
the same objects as before or new) back and repeats the procedure until the time of the cycle has passed
and no collisions are left.

 11

The GameLogic is not a part of the core game engine but is a game-specific implementation that defines
the game rules and behaviors of movable objects in the game. Further, the game engine has a Level class
containing a level in the game and it holds all static and dynamic objects. A level is loaded through the
FileMaster class which uses a BoundsCalculator to calculate and attach bounding sphere and one or
more oriented bounding boxes (OBB) around each dynamic object loaded. The FileMaster also reads
physical properties from the file and attaches them to the DymnamicObject as a PhysicalProperties
object. The GameEngine also has objects for handling sound (SoundMaster), user input (UserInput) and
one window (FJWindow) to hold a canvas.

The reason why the built-in bounding volumes were not used for collision detection is that they did not
support OBBs but only axis aligned bounding boxes (AABB), bounding spheres and polyhedral bounding
volumes. Since these are not rotated when their corresponding objects are, it is not the best collision
detection system and we decided to do our own bounding classes; FJBounds with the two subclasses
FJBoundingSphere and FJBoundingBox , where FJBoundingBox is an OBB to fit more tightly around
the object. If a graphical object is loaded from file, each separate mesh in the object is surrounded by a
FJBoundingBox and then a FJBoundingSphere is created which encloses all the FJBoundingBox of the
object.

More classes exist but the ones mentioned above are the most important, see figure 2.4 for an overview of
the basic structure.

2.2.22.2.22.2.22.2.2 Classes of the game engineClasses of the game engineClasses of the game engineClasses of the game engine

GameEngineGameEngineGameEngineGameEngine
This is the central class of the engine. It creates the KeyboardListener , MotionMaster and sets up the
application window. It also creates the universe and adds the contents to it as received from Level . The
main loop of the application is located in this class.

GameLogicGameLogicGameLogicGameLogic
This is a subclass of GameEngine and is not an actual part of the core engine. The intention is that this
class defines the actual game and its specific rules and behavior.

GameEngine

GameLogic

MotionMaster

Level

WorldObject

DynamicObject

PlayerObject CameraObject

Trigger PhysicalProperties

FileMaster

FJCanvas3D FJWindow

UserInput

KeyboardListener

CollisionMaster

GridCollisionWorld BoundsCalculator

StaticColliderGeometry

SoundMaster

Figure Figure Figure Figure 2222....4444 Class model showing an overview of the engine structure. Note that this is not an exact representation of
all classes and their connections.

 12

MotionMasterMotionMasterMotionMasterMotionMaster
The MotionMaster handles the movement and rotation of the world’s objects. In each game loop its
method move is called with the elapsed time and the MotionMaster then propagates this time to all non-
static objects. The objects then have the possibility to be moved based on simple physics by calling another
method of MotionMaster , doPhysics . In cooperation with CollisionMaster it is also one of the core
classes of the collision detection and collision handling system.

CollisionMasterCollisionMasterCollisionMasterCollisionMaster
Checks for collisions between objects are made by this class.

GridCollisionWorldGridCollisionWorldGridCollisionWorldGridCollisionWorld
The GridCollisionWorld is basically a three-dimensional grid with references to static objects
intersecting its sectors. It has methods to parse the static objects of the world and place a reference to them
in the grid sectors they intersect. This can then be used to speed up collision detection since a moving
object only needs to be checked for collisions with the object(s) that are in the same grid section. It is not
an optimal solution but for the simple engine of this thesis it is adequate. In a “real” engine this might be
replaced with octrees or other more sophisticated methods. We chose this approach due to its simplicity
given our timeframe and that the focus of the thesis is not strictly collision detection which in itself is an
active area of research.

StaticColliderGeometryStaticColliderGeometryStaticColliderGeometryStaticColliderGeometry
Objects of this class are what is actually stored in the GridCollisionWorld . They contain a triangle and a
normal to be used for collision detection and what WorldObject the triangle belongs to.

BoundsCalculatorBoundsCalculatorBoundsCalculatorBoundsCalculator
This class has methods to calculate bounding spheres and oriented bounding boxes for objects.

FileMasterFileMasterFileMasterFileMaster
The main part of this class parses our text file which contains information on where the player’s start
position is, what objects to load in the world and where to place them etc. The loader for converting from
3DS files [6] to a format that can be placed directly in the scene graph is called from this class.

WorldObjectWorldObjectWorldObjectWorldObject
A world object in our engine is an object that is part of the world with a few exceptions such as lights. The
WorldObject has a transform to specify its position, rotation and scale in the world. It also has a String
containing its optional name to easily identify objects. Typical use of WorldObject is to store our static
geometry. Dynamic geometry and objects are instead stored in its subclass DynamicObject .

DynamicObjectDynamicObjectDynamicObjectDynamicObject
The DynamicObject class provides methods for translating and rotating objects after their creation. It has
methods and attributes to simplify collision detection and collision handling. A reference to a
PhysicalProperties object is also part of this class to allow objects reacting to physical laws. Typical
uses of DynamicObjects are via the subclasses PlayerObject and CameraObject .

LevelLevelLevelLevel
A level is in our engine a collection of objects and attributes needed to describe an “isolated part of the
world”, such as static and dynamic objects, lights, specification of maximum view distance etc.

FJCanvFJCanvFJCanvFJCanvas3Das3Das3Das3D
This class exists to allow subclassing of the methods preRender and postRender of Java 3D class
Canvas3D . These methods in Java 3D are intended to be subclassed. They are called, as their names imply
before and after the Java 3D rendering to allow setting up objects prior to render or to draw graphics on
top of the rendered image to name a few examples. The letters FJ simply stands for Fredrik and Jonas to
distinguish the name from Canvas3D , maybe EngineCanvas3D or a similar name would have been better.

 13

FJWindow3DFJWindow3DFJWindow3DFJWindow3D
The intention of this class was to allow for a proper fullscreen mode, double buffering, control over 2D
graphics etc, but these features were never implemented. As it is now all it does is provide a “virtual”
fullscreen mode where it simply creates an undecorated window that covers the entire screen.

FigureFigureFigureFigure 2222....5555.... Screenshot from TunnelRacer.

2.2.32.2.32.2.32.2.3 Connection to Java 3DConnection to Java 3DConnection to Java 3DConnection to Java 3D

Most parts of the game engine are depending on the javax.vecmath to use Point3f and Vector3f ,
classes that represent points and vectors in 3D space, especially the collision system and WorldObject and
its subclasses with PhysicalProperties use them.

Further, each WorldObject holds a reference to a TransformGroup to be able to control it in the scene
graph. The TransformGroup objects are created by the FileMaster when loading objects from file.
Overlay also uses a TransformGroup to position the graphical overlay used in the game.

Different subclasses of Light are created by FileMaster as it loads light information from a file. The
Light objects are added to the Level object. The FileLoader uses very few classes from the
com.sun.j3d.loader package to load graphical objects. The main reason is that the loaders included in
Java 3D were outdated and an external loader (called Inspector3DS/Loader3DS [6]) loading 3DS-files was
downloaded from Starfire Research for loading graphical objects. The scene is loaded by first reading a text
file which contains paths to the 3DS-file to load, which object or objects they should belong to as well as
possible physical properties. Other things for the scene graph are also specified in this text file; player’s
start position, cameras, light sources and triggers etc.

Finally the FJCanvas class extends Canvas3D, and quaternions, Quat4f, are used to interpolate
rotations.

2.2.42.2.42.2.42.2.4 Remaining issuesRemaining issuesRemaining issuesRemaining issues

The TunnelRacer game is far from complete. The structure of the game engine was designed to support
triggers, moving physical objects both with and without intelligence and moving light sources, but due to
limited time these things were never implemented, neither was OBB used for collision detection.

There are still (at least) three known bugs in the game; the spaceship can get stuck when colliding with
static objects, it can fly through thin things if flying at high speed and the camera lock on the spaceship
sometimes shudders. The first two are in the collision detection system and the first one of these is
probably caused by the part that finds the time of the collision or in the back-stepping process that undoes
the moves to get objects back to where they were before the collision. The second of these two is because
the CollisionMaster only checks if objects are intersecting with each other when they are at a certain

 14

position. When things are moved the path they move along is not checked for intersections with other
objects or moving paths, only the final position of a move. If the spaceship is moving with steps that are
longer than the spaceship it can fly through a wall if it is thin enough.

Further, when colliding, consideration is taken to the normals of the surfaces that the DynamicObject
collides with and a resulting force pushing the object away is calculated, but no care is at the moment
taken to other forces which would effect the rotation of the spaceship.

The third known bug, the shuddering motion, is experienced when the camera is following a moving
object. The reason for this is currently unknown but it is likely that either the camera or the moving object
gets an erroneous transform.

By pressing the F key the TunnelRacer game goes into fullscreen mode. But the fullscreen mode is actually
done by resizing the window to be the same size as the screen and remove its window borders to make it
look like it is a “real” fullscreen. This solution is due to a bug in Java 3D that causes problems with
fullscreens.

2.32.32.32.3 ConclusionsConclusionsConclusionsConclusions

The use of scene graphs in Java 3D simplified the development by reducing the need for a custom storage
structure. Its outdated loaders however, complicated loading graphical objects into the application thus
adding to development complexity and time.

Further the collision detection portion of Java 3D was not satisfactory for our needs forcing us to develop
our own.

Java 3D contained almost all functionality that we needed and provided much more than we actually
used. When creating our oriented bounding boxes we wanted to create eigenvalues and eigenvectors but
there where no such functionality built into the matrices of Java 3D. We therefore used JAMA (Java
Matrix Package) [7] for this. Java 3D’s deficiencies in creating fullscreens must also be seen as a drawback
when creating 3D games.

 15

3333 J2MEJ2MEJ2MEJ2ME
J2ME stands for Java 2 Micro Edition [8] and is the Java platform for devices with little memory and
processing power compared to typical desktop computers, mainly handheld devices like PDAs and
mobile phones. It has its own virtual machine and the J2ME platform is made up of a small subset of
J2SE. The J2ME specification was defined through the Java Community Process [9], see 3.2, and is
deployed on millions of devices. J2ME exists for different configurations, each with a minimum of class
libraries and suited for devices with similar characteristics, see 3.3. Further, a profile is required to provide
a complete runtime environment for a J2ME device. The different profiles are suited for a specific
configuration and do not work on another one.

3.13.13.13.1 The J2ME languageThe J2ME languageThe J2ME languageThe J2ME language

To be able to fit J2ME into the memory of limited devices, only subsets of the most important classes
were kept; these were from the packages java.io , java.lang and java.util . If a class is kept with the
same name, being in the same package as in J2SE, then it must have the identical set of public and
protected methods corresponding to the J2SE specification. Packages added specifically for J2ME are
located in javax.microedition.* and add special functionality for the restricted platforms.

For more details concerning J2ME, CLDC and differences to J2SE, see section 3.3 and Appendix B.

3.23.23.23.2 The The The The Java Community Process and Java Specification RequestJava Community Process and Java Specification RequestJava Community Process and Java Specification RequestJava Community Process and Java Specification Request

The Java Community Process, JCP [9], was founded in 1998 and is an open community devoted to the
Java platform. It develops and revises different aspects of the Java platform. The members of the JCP are
the ones creating Java Specification Requests, JSR. JSR is a document either proposing a new specification
to the Java platform or a significant revision of an existing Java specification. The next versions of J2EE,
J2SE and J2ME are all specifications in development under the JCP program. 3D graphics specifications
for J2ME was developed under this program as well, hence the identification JSR-184. Sun has not
completely relinquished control of the Java platform, they are functioning as supervisors of the Expert
Groups forming the specifications.

3.33.33.33.3 CLDCCLDCCLDCCLDC

An important concept of the J2ME architecture is that of configurations. A configuration defines a
minimum platform for devices with similar capabilities. It defines the Java language, virtual machine and
class libraries that can be expected to be available on similar devices. Currently J2ME only has two
different configurations: Connected Device Configuration, CDC [10], and Connected Limited Device
Configuration, CLDC [11]. The CDC can be thought of as addressing devices that are too limited to
support the full J2SE edition but are more powerful than those addressed by CLDC. Current version of
CLDC is at time of writing 1.1. It adds among other things floats that was absent in version 1.0. The
devices targeted by the CLDC 1.1 are those with limited resources such as memory and processing power.
These devices have the following characteristics:

• has at least 192 kilobytes of total available memory for the Java platform

• has a 16- or 32-bit processor

• has low power consumption

• has some kind of network connection

Typical devices targeted by CLDC are mobile phones even though they now sometimes possess resources
that would have previously made them targeted by CDC. CLDC 1.1 has few requirements and
assumptions about its target devices. It does not for instance require that the device have some sort of
input device like a keyboard or that it offers persistent storage for application data. The requirements and
assumptions have been deliberately kept to a small number in order to be as generic as possible. More
specific requirements are instead specified in profiles which extend a configuration.

 16

Figure 3.1 shows how J2ME CDC and CLDC are related to J2SE. The relation between CLDC 1.0 and
1.1 can be thought of as if the CLDC bubble in figure 3.1 symbolize CLDC 1.0 then it should expand
very little, both inside and outside the J2SE bubble, to symbolize CLDC 1.1. For details concerning
packages and classes in J2ME CLDC, see Appendix B.

3.43.43.43.4 MIDPMIDPMIDPMIDP

3.4.13.4.13.4.13.4.1 IntroductionIntroductionIntroductionIntroduction

The Mobile Information Device Profile, MIDP, is one of the many profiles used to extend the CLDC
configuration. To provide for the extended features that the classes of MIDP gives to the CLDC it also
adds some more requirements on top of those specified by the CLDC such as more memory available for
the Java runtime and libraries.
The current MIDP version 2.0 provides APIs for among other things:

• user interface

• persistent storage

• networking

• timers

• sound

• games

• application delivery and installation

MIDP 2.0 also introduces an application model called MIDlets. In MIDP 2.0 a MIDlet is the basic unit
of execution.

3.4.23.4.23.4.23.4.2 MIDlet applicationsMIDlet applicationsMIDlet applicationsMIDlet applications

An executable application in the MIDlet model has the following basic form:

import javax.microedition.midlet.*;

public class MyApplication extends MIDlet {

// The constructor, initialize things that only nee d to be
// initialized once here.
public MyApplication() {…}

// This method is called when the application is st arted and when it is
// resumed from a paused state.
protected void startApp() {…}

// This method is called when the application is pa used.

Figure Figure Figure Figure 3333....1111. . . . Relationship between the two J2ME configurations and J2SE.

Classes outside J2SE may not use the
java.* name space J2SEJ2SEJ2SEJ2SE

CDCCDCCDCCDC
CLDCCLDCCLDCCLDC

 17

protected void pauseApp() {…}

// This method is called when the application shall end.
protected void destroyApp(boolean force) {…}

}

By extending MIDlet , the class can constitute an executable entry point for an application. A class that
extends MIDlet is required to implement its lifecycle methods startApp , pauseApp and stopApp to
allow for control of the MIDlet ’s lifecycle. When MyApplication is started its constructor is called first as
for an ordinary Java class with the exception that the constructor cannot have any arguments.
When the constructor has returned then at some point later the method startApp is called. The method
startApp is also called whenever the MIDlet returns from a paused state so one-time initializations should
not be done in this method.
The pauseApp method is called when the MIDlet needs to pause, for instance when there is an incoming
call if the MIDlet is running on a mobile phone. In the pauseApp method the MIDlet should release as
much of its resources as possible.
Finally the destroyApp method is called whenever the MIDlet should stop its execution and release all its
resources. The boolean argument indicates whether the destruction of the MIDlet is unconditional. If the
boolean argument is false the MIDlet may ask the system to continue its execution but the system is not
required to grant this request.

 18

 19

4444 M3GM3GM3GM3G
This section introduces the Mobile 3D Graphics API, M3G or JSR-184 [1] as it also is called. 4.1 explains
the reason for M3G’s creation, 4.2 gives a quick overview of its structure and finally in 4.3 the classes of
M3G are introduced.

4.14.14.14.1 Why a new 3D API for Why a new 3D API for Why a new 3D API for Why a new 3D API for Java?Java?Java?Java?

Since most mobile devices have limited memory and processor power Java 3D is unsuitable for these
devices. Therefore a proposal for a more suitable API was put together by an expert group. The need was a
scalable, small-footprint, interactive 3D API for mobile devices that could work as an optional package for
J2ME to allow 3D graphics.

The intention with M3G was an optional package to provide 3D graphics for a wide range of devices.
These devices could be simple monochrome displayed devices with little processing power and memory
and no hardware support for floating point math They could also be very powerful PDAs with high
resolution and high color displays, powerful processors, loads of memory and hardware support for float
point calculations as well as for 3D graphics hardware.

Further on the API shall be flexible, not limited to a special kind of application, simple enough to allow
quick and easy development of complete 3D applications and have a supported file format for effectively
loading 3D content from the device or over the air.

4.24.24.24.2 OverviewOverviewOverviewOverview

M3G is designed to be a 3D API suitable for the J2ME platform and CLDC [11]/MIDP [12]. Since it
uses floats it cannot be implemented on top of CLDC 1.0 but must be implemented on at least version
1.1 of CLDC. It could possibly be implemented on MIDP 1.0 but most devices supporting M3G will
likely also support MIDP 2.0. Care has been taken to integrate it with components of MIDP to allow
efficient rendering to its Image and Canvas but the specification also states that it should be possible to
implement it on top of other GUI APIs than MIDP.

4.2.14.2.14.2.14.2.1 HintsHintsHintsHints

Various parts of the M3G specification [1] inform that some of the settings are hints. A hint means that
the setting is not necessarily adhered to by a particular implementation. What hints an implementation
supports can be queried with the getProperties method of Graphics3D . If a particular implementation
states support of one of the hints it means that the implementation takes note of the setting requested by
the application and acts accordingly. That an implementation does not support a hint does not mean that
it does not support the feature the hint is named after. An implementation could for instance always use
dithering but if it cannot be turned off by the application the implementation should report that it does
not support the dithering hint if queried.

4.2.24.2.24.2.24.2.2 Representation of objectsRepresentation of objectsRepresentation of objectsRepresentation of objects

The base class for a visual polygon object in M3G is the Mesh class. The Mesh class can be seen as the
equivalent of Java 3D’s Shape3D class. They both reference an Appearance class and a class specifying
vertex position, color, normal and texture coordinate. In M3G this latter class is called VertexBuffer -
Geometry in Java 3D. A Mesh is created from one or several submeshes, the basic rendering primitive of
M3G.

The vertex buffer references instances of class VertexArray . Each of these vertex arrays contains vertex
data for color, normal, position and texture coordinates for all vertices of the mesh. In contrast to the
other VertexArray references, a VertexBuffer can reference several VertexArrays specifying texture
coordinates, hence allowing multi-texturing that can be used for shadow-/light maps etc. The
VertexBuffer class also has one property that its Java 3D equivalent does not; a default color. This
default color is used to color all vertices in absence of per vertex colors.

 20

An IndexBuffer is used to specify the indices of the vertices that when connected forms a submesh.

Appearance contains attributes such as how the polygons of the submesh are to be culled, what texture to
use etc. There is one Appearance per submesh.

Mesh

VertexBuffer

IndexBuffer
Submesh

Appearance

VertexArray
Vertex positions (x y z)

VertexArray
Normals

Material

PolygonMode

CompositingMode

Fog

VertexArray
Texture coordinates

Texture2D

Texture2D

Figure Figure Figure Figure 4444....1111 Representation of a mesh.

Image2D

Image2D

Appearance

IndexBuffer
Submesh

VertexArray
Texture coordinates

VertexArray
Colors

 21

4.34.34.34.3 The classThe classThe classThe classes of M3Ges of M3Ges of M3Ges of M3G

This section describes the classes specified by M3G along with the methods they supply. It is intended to
give the reader a feel for M3G and its possibilities. It is NOT intended to replace the M3G specification
and as such does not even come close to fully describe the classes. In cases where further information about
the functionality of a class is sought reading the official M3G specification is recommended [1].

4.3.14.3.14.3.14.3.1 Object3DObject3DObject3DObject3D

As can be seen from the class model in figure 4.2, Object3D is a super class of most classes in M3G, much
like the Object class for ordinary classes which might very well be the reason for its similar name. The
M3G specification [1] classifies it as “An abstract base class for all objects that can be part of a 3D world.”.
Object3D contains methods for setting up and playing animations by use of the AnimationTrack class
(see section 4.3.23). This means that all objects that can be part of the 3D world can be animated with the
classes supplied by M3G.
Another attribute of Object3D is the id attribute. This attribute is an integer, not necessarily unique, that
can be used to find objects that are reachable from an instance of Object3D in the scene graph. Should

Graphics3D Loader Transform RayIntersection Object3D

AnimationController

AnimationTrack

Appearance

Background

CompositingMode

Fog

Image2D

IndexBuffer

KeyFrameSequence

Material

PolygonMode

VertexArray

VertexBuffer

Transformable

TriangleStripArray

Texture2D

Node

Camera

Light

Sprite3D

Mesh

Group

MorphingMesh

SkinnedMesh

World

Figure Figure Figure Figure 4444....2222 Class model of M3G.

 22

more than one object of a given id be reachable then only one of them will be returned meaning that it is
not possible to search for a group of objects using this approach.
A final contribution by Object3D is allowing a reference to an arbitrary Object from the Object3D . The
implementation never uses this reference. It is merely there for the application developer to use. Possible
uses are to store a reference to an object defining attributes other than those needed by M3G for rendering
of an object in the world. This could be perhaps the weight of a truck, its current load etc.

4.3.24.3.24.3.24.3.2 TransformableTransformableTransformableTransformable

Transformable is an abstract class and as its name suggest defines methods for translating, rotating and
scaling an object. Being a superclass of Node and Texture2D these methods are available to all classes
representing renderable objects except for Background and Fog which are not subclasses of Node or
Texture2D .
The transformation specified by a Transformable consists of a translation, rotation, scale and a generic
4x4 matrix. The generic matrix is not to be confused by the 4x4 matrix possible to create from the
translation, rotation and scale components. It is a separate matrix fitting into the transformation by the
following formula

pppp' = TTTT RRRR SSSS MMMM pppp

where T stands for the translational component, R the rotational, S the scale, M the generic matrix and p
is the homogenous vector transformed into p'.
The other methods of Transformable are basic methods for setting, getting and adding to translation,
rotation and scale. Rotation is set by specifying an axis and the rotation around this axis in degrees. Since
rotation varies if the multiplication is done from the left or right two methods to rotate the transformable
are given; postRotate and preRotate both taking an axis and an angle like the method for setting the
rotation.

4.3.34.3.34.3.34.3.3 TransformTransformTransformTransform

Transform is M3G’s equivalent to Java 3D’s Transform3D . It is a generic 4x4 floating point matrix that
represents a transformation. Its methods are few compared to Transform3D although admittedly a lot of
Transform3D ’s methods are just variations on similar methods to take different type of arguments.
Transform has methods for inverting and transposing its matrix but no methods for addition, subtraction
or calculating its determinant.

Also worth noting is that if the elements of the matrix are to be read or written by the application then all
16 elements must be set or read at once. There are no methods to alter just a specific element, column or
row of the matrix.

Even though M3G lacks a specific vector class, Transform can transform a vector if it is represented by an
array of four floats or a multiple of four if more than one vector is to be transformed at once.

4.3.44.3.44.3.44.3.4 GroupGroupGroupGroup

Group contains very few methods and is a scene graph node to store a number of nodes as its children in
an unordered fashion. Apart from the methods adding and removing children of a Group it also has two
methods for picking.

Picking allows a ray to be cast from a point in the scene in a certain direction and return information
about the first Mesh (see section 4.3.16) that the ray intersects. There are two methods in Group that allow
picking. One of the methods limits the ray to originate from a point on the screen and continue to its
corresponding point on the far clipping plane. The more restricted method can also return collision with
Sprite3D (see section 4.3.20). Possible uses for this could for instance be simple collision detection in
games and user-interfaces.

 23

4.3.54.3.54.3.54.3.5 WorldWorldWorldWorld

In all scene graphs there need to be one common root. In M3G this root is described by the World class. A
scene graph can only have one World and with that being the root of the scene graph a World can not be a
child of any node. World is a subclass of Node and Transformable and hence has a node transformation,
but for World this transformation is ignored when rendering.
Apart from its children a World can also have an active camera and a Background . The active camera is
the Camera object used to render the world in retained mode, which is when the Graphics3D method
render(World) is called. The Background defines if and how to clear the viewport and is explained in
section 4.3.21.

4.3.64.3.64.3.64.3.6 NodeNodeNodeNode

This is an abstract class serving as a base class for all scene graph nodes. A Node defines a local coordinate
system and the transformation from this system into the Node’s parent’s coordinate system is called a node
transformation. The Node has three properties that can inherit from or be influenced by ancestors of the
Node in the scene graph: alpha factor, rendering enable flag and picking enable flag.

The alpha factor is a value between 0 and 1 inclusive and is meant to allow for fading in and out of
Meshes. The alpha factor of a Node’s ancestors is multiplied with the Node’s own alpha factor. If the Mesh
has a Material attribute the alpha factor is multiplied with its diffuse color. Should the Mesh not have a
Material attribute the alpha factor is instead multiplied with the VertexBuffer color array if present,
otherwise with the default color. For textured Meshes with texture blending mode REPLACE the alpha
factor has no effect. Since we believe this blending mode is likely to be one of the most commonly used for
textured objects this means that a lot of Meshes cannot use the alpha factor. Add to that the fact that
neither are Sprite3Ds affected by the alpha factor and it quickly looses its appeal. The existence of an
alpha factor would have been more useful if it could have been used for all Nodes .

The two flags rendering enable and picking enable function much as they sound. If the rendering enable
flag is false for the Node or any of its ancestors the Node will not be rendered. The same principle applies
for the picking flag.

A Node also has an integer bitmask called scope that can be used to group scene graph nodes in an
alternative way as opposed to actually placing them under the same Group . Two Nodes are deemed to be
in the same scope if the bitwise AND:ing of the two results in anything but zero. The specification [1]
proposes three uses for scope: visibility culling, lighting and picking. Scope under these circumstances
works by only affecting Nodes in a certain scope. When rendering only Nodes with the same scope as the
camera are rendered, only Nodes with the same scope as a Light are influenced by it and only Nodes with
the same scope as supplied to the pick method can be picked.
An important note about scopes is that they are not inherited from ancestors in the scene graph since they
are supposed to be independent of the scene graph structure.

4.3.74.3.74.3.74.3.7 AppearanceAppearanceAppearanceAppearance

The Appearance classes of M3G and Java 3D have more conceptual differences than VertexBuffer and
Geometry . They both have a Material reference but otherwise they have quite different attributes. The
M3G Appearance class has the following attributes: Material , PolygonMode , CompositingMode , Fog,
Texture2D and layer.
Layer is an integer, not a reference to an instance of a class as the other attributes. The specification of
M3G [1] states that objects with a lower layer number are rendered prior to those with a higher layer
number. The specification suggests use for different layers to be background geometry, sky boxes, lens
flares and halos.

4.3.84.3.84.3.84.3.8 LightLightLightLight

Lights in M3G function like most real-time computer-based light-implementations. There are the usual
four different types of light sources: ambient, directional, omnidirectional (point light) and spot. M3G
allows for the type of a light to be changed at anytime. This feature can be used to switch to a, in terms of

 24

performance, simpler type when the distance between the light and the object it illuminates or the light
and the camera goes beyond a certain length.

The intensity of the light will probably most often be set to a value between 0 and 1 inclusive where 0
corresponds to no light intensity and 1 to full intensity. If desirable it is possible to set the intensity lower
than 0 to create anti lights or perhaps some kind of special effects. Likewise 1 is not the upper limit of the
light which the specification [1] suggests be used to gain more control over highlights.
For an ambient light the diffuse and specular components are ignored, that is their intensities are
implicitly set to zero. For the other three types of lights the ambient component is ignored and the diffuse
and specular components share the same intensity and color.

Lights in M3G only affect Meshes within the same scope as the Light . For an explanation of scope, see
section 4.3.6.

The number of concurrent lights on any one object is implementation dependent but the implementation
must support at least eight lights at once on a Mesh. The only requirement is that the selection of lights is
deterministic when the number of lights illuminating a Mesh is greater than the maximum number
supported by the implementation.

4.3.94.3.94.3.94.3.9 MaterialMaterialMaterialMaterial

The Material is used for lighting calculations and has values defining the ambient, diffuse, specular,
emissive and shininess values of the material. The same Material is used for both the front and back face
of an object. If the Material attribute of Appearance is null then lighting is disabled for the objects using
the Appearance .

4.3.104.3.104.3.104.3.10 PolygonModePolygonModePolygonModePolygonMode

PolygonMode affects, as its name suggests, how to handle polygons. This includes culling, winding,
shading and perspective correction for textures all of which can be considered standard attributes in a 3D
API.

The perspective correction is only a hint and an implementation of M3G need not consider its value.
M3G does not impose a certain technique or algorithm for how to exactly texture map an object all the
way to the rasterization.
PolygonMode also has an attribute to disable local lighting which has the effect that the direction vector
from the camera to the vertex being lit will be approximated with (0,0,-1) which can give faster specular
lighting calculations. As with perspective correction, this attribute is only a hint.

4.3.114.3.114.3.114.3.11 CompositingModeCompositingModeCompositingModeCompositingMode

CompositingMode specifies how compositing should be made at the pixel level. It defines which of the
five blending modes to use (REPLACE, ALPHA_ADD, ALPHA, MODULATE or MODULATE_X2) when combining
the incoming fragment

1
 with the already existing fragment in the frame buffer. Further, it has a depth

offset that adds an offset to the fragment’s depth value before the depth test and write. This can be used
when placing decals – polygons laid on top of another to illustrate for instance bullet holes on a wall, to
avoid parts of the underlying polygon to be rendered on top of the decal. Using CompositingMode it is
also possible to completely turn of depth testing and writing which can be utilized when creating special
effects such as lens-flares or to render a head up display on top of the graphical rendering of the rest of the
world. Alpha threshold is another concept that is defined in CompositingMode and is a lowest value an
alpha component of a fragment must have for it to be rendered. We had to use this to solve some
transparency issues which are described in section 6.2 Transparent textures.

4.3.124.3.124.3.124.3.12 FogFogFogFog

Fog specifies fogging of the object and needs to be referenced by the Appearance of the object to be in
effect. The fact that Fog is referenced by Appearance gives that it is not enough to just place a Fog object
in the scene to create a fog. Initially this might feel slightly cumbersome even though adding the Fog

1
 A fragment in Open GL is similar in concept to a pixel.

 25

reference is easy. However with proper structure of the code possible objects mistakenly not having the fog
reference should be limited and fairly easy to discover at runtime for noticeably sized objects (the reason
for this solution of handling fog is most likely to allow faster rendering).
The usage of Fog is usually to avoid sudden appearing of objects, objects “popping” into view, as they
come in front of the far clipping plane. Introducing a Fog to the world and its objects instead lets them
fade into the users view as they come closer.

Fog is implemented according to OpenGL 1.3 section 3.10 [5] with the exception that the mode EXP2 is
not supported. “If enabled, fog blends a fog color with a rasterized fragment’s post-texturing color using a
blending factor f.” [5]. This factor f is computed with one of

se

ze
f

zdf

−
−=

⋅−=)exp(

where “z is the eye-coordinate distance from the eye, (0; 0; 0; 1) in eye coordinates, to the fragment
center” [5], d can be seen as the density for an exponential fog and s and e the start and end of a linear fog
respectively. The OpenGL 1.3 specification [5] allows for some simplifications of the calculations to
achieve a greater speed, namely that the distance from the eye to the fragment center may be approximated
with the fragment’s z coordinate and f may be evaluated at vertices and then interpolated to obtain values
for fragments.

4.3.134.3.134.3.134.3.13 Texture2DTexture2DTexture2DTexture2D

Texture2D consists of the image to be used as texture map for the object and information of how this
texture is to be applied; wrapping, filtering, blending and transformation. The texture coordinates are not
specified in the Texture2D . Instead they are defined in a VertexArray referenced by the objects
VertexBuffer . This allows for the same Texture2D to be used for different Meshes with different
placing and number of repetitions of the texture.
As its name implies the texture is two dimensional, there is no support for three dimensional textures in
M3G yet. The actual image of the texture is an Image2D and not an ordinary MIDP 2.0 Image , but an
Image2D can be created by supplying an Image to its constructor.
Being a subclass of Object3D the animation facilities of M3G can be used to animate the texture.

For those used to using OpenGL the t coordinate value 0 of the texture coordinates correspond to the top
of the texture, not the bottom as in OpenGL despite M3G being much influenced by OpenGL.

Mipmap levels are generated automatically for the texture and the user of M3G has no option to supply
his own images for the various mipmap levels. Exactly how the mipmaps are generated is up to the
implementer of M3G. There is no requirement for a specific algorithm in the M3G specification [1].
Texture filtering in M3G consists filtering within a mipmap level and filtering between mipmap levels.
For filtering within a mipmap level the available options are BASE_LEVEL, NEAREST and LINEAR. For
filtering between mipmap levels the option are NEAREST and LINEAR. Any of the six combinations can be
used but an implementation of M3G is only required to support BASE_LEVEL combined with NEAREST
filtering. Should a filtering combination be requested that the implementation does not support it may
ignore the request.

4.3.144.3.144.3.144.3.14 Image2DImage2DImage2DImage2D

The Image2D is intended to be used as an image for a texture, background or sprite. What the Image2D
has that Image lacks is the ability to choose from a number of formats for the image. The available formats
are: ALPHA, LUMINANCE, LUMINANCE_ALPHA, RGB and RGBA. As most other classes of M3G it also extends
Object3D which gives it an id and other Object3D specific properties that might be useful. Perhaps the
case is also that by using an image class part of the M3G API it is possible for the implementers to adjust
the implementation to be faster than it would have been if they would have been forced to use the Image
class.

 26

4.3.154.3.154.3.154.3.15 CameraCameraCameraCamera

The Camera class of M3G is very simple especially when compared to Java 3D’s View class. The Camera
class has only five methods apart from those inherited from super class Node. Two to set and get the
transform matrix, one to get the projection parameters and type and two for constructing a parallel or
perspective projection matrix.
The parameters supplied to the methods for creating a parallel or perspective projection matrix consists of
a vertical field of view angle measured in degrees, the aspect ratio of the viewport (its width divided by its
height) and the distances to the near and far clipping planes.

4.3.164.3.164.3.164.3.16 MeshMeshMeshMesh, VertexBuffer, VertexBuffer, VertexBuffer, VertexBuffer and and and and VertexArray VertexArray VertexArray VertexArray

A basic Mesh in M3G is a 3D rigid body polygonal surface. The Mesh consists of a VertexBuffer , at least
one IndexBuffer and an optional Appearance . If the Appearance of the Mesh is null it is not renderable
and picking of it is disabled.

The VertexBuffer class is similar to the GeometryArray class of Java 3D. It holds references to colors,
normals and texture coordinates for the vertices constituting the Mesh. The references are of the class
VertexArray which is simply an array of integer vectors. Since the contents of the VertexArrays relate
to the vertices of the Mesh they must all be of the same length. The length will be decided by the first
VertexArray added to the VertexBuffer .

Unlike Java 3D VertexBuffer also allows specification of a default color to be used by all vertices in
absence of per vertex colors.

4.3.174.3.174.3.174.3.17 MMMMorphingMeshorphingMeshorphingMeshorphingMesh

This class is an extension of Mesh and allows the application to set more than one VertexBuffer for the
object. These additional VertexBuffers are then used with the base VertexBuffer to calculate a mesh
using weighted linear interpolation to allow morphing. To be able to morph the additional
VertexBuffers must have exactly the same vertex attributes with the same dimensions as the base
VertexBuffer . The following formula is used to morph where RRRR is the morphed mesh, BBBB the base mesh,
TTTT

i
 one of the additional meshes and w

i
 the weight value for each morphing, normally values between 0.0

and 1.0 are used but any float values are allowed:

 ∑ −+=
i

iiw)(BTBR

Since each additional VertexBuffer has its own weight they can be morphed independently. To give an
example (taken from [1]); the base meshes can be a face with a neutral expression and the two morph
targets can be meshes based on the base mesh but one with a smiling mouth and one with raised eyebrows.
The face can then be morphed to smile, raise the eyebrows or both at the same time by adjusting the
weights independently.

4.3.184.3.184.3.184.3.18 SkinnedMeshSkinnedMeshSkinnedMeshSkinnedMesh

The SkinnedMesh class is used to create skeleton animation meshes that are highly effective for character
animations. This class is a subclass to Mesh and has all properties a Mesh has but it also has a skeleton added
to it. The SkinnedMesh is created like a normal Mesh (see 4.3.16) but has an additional parameter for the
root of a skeleton graph. The skeleton can be any subgraph with any kind of different Nodes , including
other SkinnedMeshes . The vertices in the VertexBuffer are associated with the Nodes in the skeleton
graph, each vertex can be associated with multiple Nodes. For example (once again from [1]), the mesh
can be a bird and the skeleton can make up the wings. These move independently of each other so the
vertices of one wing are associated with the corresponding node/bone and the other wing with its own
node/bone (simple wings, not joints).
Alternatively, imagine the mesh to be a human body and where an arm has a shoulder, an elbow and a
hand holding a sword. Then vertices of the arm are associated as follows; the “skin” of the upper arm
should be associated with the shoulder node, the “skin” around the elbow with both the shoulder and then
elbow node, and the “skin” of the lower arm only with the elbow node. When the shoulder is rotated,

 27

then the whole arm is turned like if it would be rigid. If the elbow is rotated, then the lower arm is rotated
like expected but the elbow itself is deformed depending on the weight values telling how much the
transforms of the shoulder and elbow should affect the elbow vertices. With the sword being a child to the
hand node it will be moved by the nodes/bones holding it and always be correctly positioned.

Like mentioned before, it is possible to associate a vertex with many nodes/bones. The maximum number
of associations per vertex is only limited by the M3G implementation and this limitation can be queried
via the method getProperties in Graphics3D (minimum is two).

The weight values per vertex are set to integer values and then automatically normalized by the system
prior to solving the transformation equations.

4.3.194.3.194.3.194.3.19 IndexBufferIndexBufferIndexBufferIndexBuffer and and and and TriangleStripArrayTriangleStripArrayTriangleStripArrayTriangleStripArray

The IndexBuffer is an abstract class used to describe how to connect the vertices forming a submesh, the
basic rendering entity of M3G. The only available extension of IndexBuffer in the current revision of
M3G is the TriangleStripArray defining an array of triangle strips. This means that all meshes needs to
be defined as triangle strips. In M3G the indices of a triangle strip may be defined either explicitly or
implicitly. An explicitly defined triangle strip has all indices defined in the array. For an implicit triangle
strip only the first index is defined and the other indices are taken to have the value one higher than its
predecessor index.

4.3.204.3.204.3.204.3.20 Sprite3DSprite3DSprite3DSprite3D

Sprite3D in M3G is similar to Billboard in Java 3D, it is a class representing a plane who’s orientation
depends on the camera. Both can be set to be scaled or unscaled where an unscaled Sprite3D /Billboard
always renders the same size on screen. The way that the camera affects orientation is however not the
same between the Sprite3D and Billboard . Whereas a Billboard is oriented such that it is facing the
camera’s position, Sprite3D is oriented such that it is always parallel to the projection plane, i.e. it is
screen-aligned. The consequences of this are discussed in section 6.1 Billboards and Sprite3D.

4.3.214.3.214.3.214.3.21 BackgroundBackgroundBackgroundBackground

The Background is an object used to tell the renderer how to clear the viewport, if it should be cleared at
all. It allows enabling and disabling of clearing for the color buffer and depth buffer separately. If the
depth buffer clearing is enabled the depth buffer will be cleared to the maximum depth value. As for
clearing the color buffer it can either be cleared simply with a color or an Image2D can be used to set the
values of the color buffer. If an Image2D is used a cropping rectangle can be set to specify which portion of
the image to use for clearing. The contents of the image specified by the cropping rectangle will be
stretched to fit the viewport. By altering the position of the cropping rectangle within the image a simple
skybox effect can be achieved. If the cropping rectangle lies completely or partially outside of the image the
image is either repeated or the viewport portion corresponding to the area outside the image cleared with
the background color. Which of the two behaviors will be performed can be set by the application.

4.3.224.3.224.3.224.3.22 LoaderLoaderLoaderLoader

Loader is used to load M3G files [1] or PNG images into the application. The M3G file format is a file
format specified for M3G and is used to store the M3G objects subclassing Object3D including Object3D
itself. The file format can store both partial and complete scene graphs. Upon loading an M3G file the
loaded content is guaranteed to be valid unless an exception is thrown during the course of loading. If no
exception is thrown during the load process it means that the same content could have been created using

2

0 1

3

Figure Figure Figure Figure 4444....3333 The two ways of specifying the indices of a triangle strip.

Explicit: Explicit: Explicit: Explicit: Strip triangles consists of indices 0, 1, 2, and 3.

Implicit: Implicit: Implicit: Implicit: Strip is of length 4 and starts with index 0.

 28

the M3G API directly but it does not mean that it is renderable. The reason for allowing content to be
loaded even if it is not renderable is so that partial scene graphs, each by itself not valid for rendering can
be loaded and put together into a valid renderable scene graph.

4.3.234.3.234.3.234.3.23 AnimationCAnimationCAnimationCAnimationControllerontrollerontrollerontroller, AnimationTrack and KeyframeSequence, AnimationTrack and KeyframeSequence, AnimationTrack and KeyframeSequence, AnimationTrack and KeyframeSequence

These three classes are used to simplify animations of objects in the world by means of interpolating
keyframe values. The properties that can be animated with the system composed of these three classes are:
alpha, ambient color, color, crop, density, diffuse color, emissive color, far distance, field of view,
intensity, morph weights, near distance, orientation, pickability, scale, shininess, specular color, spot angle,
spot exponent, translation and visibility.

The system works as follows. An Object3D subject to animation has one or more AnimationTracks each
defining a property of the object to animate. Each AnimationTrack has one AnimationController that
defines the speed of the animation, in what time frame it is active and a weight used to blend the
animation with other animations. The AnimationController maps the world time supplied by the
application into a sequence time. The sequence time is a time used to decide where in the animation
sequence the animation is currently at. The sequence time calculated by the AnimationController is
then used to get an interpolated value from the KeyframeSequence of the AnimationTrack . The
interpolated value is used to set the property of the Object3D after multiplication with the
AnimationControllers weight factor.

The method used to interpolate between the keyframe values of the KeyframeSequence can be set by the
application to one of five, namely: LINEAR, SLERP, SPLINE, SQUAD and STEP. If an animation is to have
only part of it smoothed by means of interpolation and at some point in time requires a discontinuous
animation M3G supports multiple keyframes at the same position in time.

The animation can be set to either be played once or to loop after it has performed one iteration.

4.3.244.3.244.3.244.3.24 RayIntersectionRayIntersectionRayIntersectionRayIntersection

Picking is done by sending a ray from one point to another and it can intersect a Mesh or, if the first
method described below is used, a Sprite .
One method sends a ray from a point on the near clipping plane to a corresponding point on the far
clipping plane of a given camera. It represents the point on the clipping planes with a value between (0, 0)
and (1, 1) and returns true if an intersection occurs. The parameters taken by the method are the x and y

Object3D

AnimationTrack

POSITION

AnimationTrack

ORIENTATION

AnimationController

Active time, speed etc.

KeyframeSequence

KeyframeSequence

Figure Figure Figure Figure 4444....4444 Schematic relationship of the various parts of the animation system.

 29

coordinates of the point, a camera and an empty RayIntersection object as well as the possibility to
specify a certain scope for objects to intersect with. Pickable objects for this method are Meshes and scaled
Sprites .
The other pick method takes an optional scope for the intersection test, a start and end point of a ray and
an empty RayIntersection object and returns true if an intersection has occurred. Since Sprite3D s are
facing the active camera they are ignored by this method.

If an intersection occurs when calling any of these methods the RayIntersection object then holds
information about it, like a reference to the intersected object (the intersected object closest to the start
point of the ray), the distance to it, the normal of the intersecting surface specified in the intersecting
Node’s coordinate system, the start and end positions of the ray and the texture coordinates for the texture
of the intersected surface.

4.3.254.3.254.3.254.3.25 Graphics3DGraphics3DGraphics3DGraphics3D

The Graphics3D is the singleton class used to invoke the rendering process. Graphics3D allows rendering
to be made to either a Graphics object or to M3G’s Image2D . Any specific type of Graphics object is
not mandated, just that it is supported by the Java profile that M3G is implemented upon. Selecting the
target for the rendering output is made each frame by a call of the method bindTarget . Once a target has
been bound it should not be accessed by any other means than through the Graphics3D until it has been
released again. Access of a bound target via any other means than the used Graphics3D results in
unpredictable behavior.

When the target has been bound one or more renderings can be requested with calls to the render
methods of Graphics3D . The render methods support rendering of an entire World , a specific Node or
an individual submesh. When all renderings are complete the previously bound target must be released
with a call to releaseTarget . Code fragment 4.1 illustrates the procedure for rendering in M3G using
Graphics3D.

public class MyCanvas extends Canvas
{
 Graphics3D myG3D = Graphics3D.getInstance();

 public void paint(Graphics g) {
 try {
 myG3D.bindTarget(g);
 ... update the scene ...
 ... render the scene ...
 } finally {
 myG3D.releaseTarget();
 }
}

Code fragment Code fragment Code fragment Code fragment 4444....1111

Graphics3D also adds three rendering quality hints. These are antialias, dithering, and true color
rendering. As with all hints of M3G a particular implementation may ignore them.

4.44.44.44.4 Rendering modesRendering modesRendering modesRendering modes

M3G supports two types of rendering; immediate and retained mode. Graphics3D has four render
methods and also has four rendering modes, but the three types of immediate modes are quite similar.

Immediate modeImmediate modeImmediate modeImmediate modessss – renders a branch or an individual node. The three different immediate mode render
methods takes a Transform as an in-parameter for transforming the branch or node to render. The
method for rendering a branch also takes the Node representing the root for the branch as an in-parameter
and the other two methods render a mesh from a VertexBuffer , an IndexBuffer and an Appearance ,
the same properties as a Mesh has. The difference is that one of these “mesh” rendering methods also takes
a scope parameter to allow rendering within a specific scope. All the three methods use the Camera and
Lights held by Graphics3D .

 30

Retained modeRetained modeRetained modeRetained mode – renders a world starting from the root (a World object) of a scene graph. This render
mode uses a Camera and Lights in the scene graph (the World object holds a reference to the active
camera) and renders all nodes in the scene graph where the rendering enabled flags are set for the node and
its ancestors. The only nodes to ignore this flag are the Camera nodes.

4.54.54.54.5 M3GM3GM3GM3G from a scene graph perspective from a scene graph perspective from a scene graph perspective from a scene graph perspective

As seen in figure 4.2 all nodes in a M3G scene graph extends the Node class. To start from the top, the
World node is a subclass of Group and they both represent abstract nodes. These can have several children
and the World node in each scene graph can have a specific Background as well which holds an Image2D
or just a color to render as background. Then remaining Node classes are Camera, Light , Mesh and
Sprite3D which are all leafs in the scene graph. There is one small exception though; the subclass
SkinnedMesh of Mesh which has a skeleton that can be made up of a single Node or a branch containing
all kinds of other nodes. The Camera and Light classes are straight forward and the Mesh has references to
VertexBuffer , IndexBuffer and Appearance to be able to represent visible objects.

For more details of the different classes mentioned above see the corresponding sections in 4.3, The classes
of M3G.

4.64.64.64.6 A simplA simplA simplA simple examplee examplee examplee example

Figure 4.6 below shows a screenshot from a simple application showing how to set up a scene for M3G. It
is not a standalone application; it has to be run together with a MIDlet (see section 3.4.2). The source
code for the part setting up the M3G content can be found in Appendix C.

Figure Figure Figure Figure 4444....6666 Screenshot from a simple
M3G application....

World

Camera

Mesh Sprite3D

VertexBuffer Appearance Image2D

Figure Figure Figure Figure 4444....5555 M3G scene graph illustration. Triangles represent leaf nodes and dashed arrows references.

Node components

Group

 31

4.74.74.74.7 DDDDifferences from Java 3Differences from Java 3Differences from Java 3Differences from Java 3D

With Java 3D having several hundred classes and being aimed for a less limited platform than M3G they
naturally differ quite a lot. Listing all these differences would take up a lot of space and be too big to be
really useful. This section instead lists some of the differences between the two that we feel are the most
important.

In M3G all nodes extend the Node class, even the root class World as opposed to Java 3D’s
VirtualUniverse which does not. It also lacks the Locale class of Java 3D which we feel is not a major
drawback since we never directly utilized its high resolution coordinate system since we only needed one
world coordinate system and the default worked fine. The removal of Locale also makes the API easier to
understand compared to Java 3D which has several concepts like Locale , PhysicalBody and
PhysicalEnvironment that is usually not directly needed for 3D programming. M3G works fine without
them and their absence will probably in most cases not be missed or even noticed for those who have never
used Java 3D or an API supporting these concepts.
Another of the basic classes of Java 3D, TransformGroup is also absent from M3G. Instead the Node class
extends a class Transformable that gives the Node a Transform attribute and defines methods to
transform the Node. This effectively removes the need for the TransformGroup and also allows objects
like meshes and sprites to be transformed without needing to have a special TransformGroup node above
them in the scene graph. The TransformGroup served a very important purpose in Java 3D not only in
allowing transforms of the scene graph nodes but also to allow grouping several nodes under the same
transform. This is a very useful feature when objects composed of several geometrical objects are to be
transformed as a unit. This functionality is in M3G achieved by the fact that all Nodes have transforms
and that the Group class is a subclass of Node, effectively serving as both the BranchGroup and
TransformGroup of Java 3D. Our opinion is that this is a better solution since BranchGroup and
TransformGroup added very few features on their own and should maybe have been made one class in
Java 3D as well. Not having to add TransformGroups everywhere is also a welcome relief. On the
negative side could be the overhead resulting from that objects not subject to transformations still will
have a transform attribute which gives a small potential overhead in memory and execution speed. The
memory overhead will only be a null reference and if the world does not consist of a very large amount of
static objects and very few dynamic this overhead will in the big pictures of things be negligible. As far as
execution goes a potential overhead is that the implementation will check static objects for transforms even
though they will never have one. The impact of this could be limited by the implementation by sorting
the static and dynamic objects upon construction or alteration of the scene graph. Still, as with the
memory overhead, the time wasted performing unnecessary transformation checks is most likely to be
negligible compared to the time needed for all other parts of the rendering process. So, in the end we feel
that the M3G approach feels like the better of the two.

Some other noteworthy differences are:

• M3G handles viewing of a scene with a simple Camera instead of Java 3D’s more complex
solution with a ViewPlatform , PhysicalBody etc.

• M3G does not support a compile method. The compilation of the scene graph is likely one
reason that an application cannot access parts of the scene graph without prior to doing so
notifying the API and getting permission for the access. In M3G the contents of the scene graph
can always be accessed as long as the API is not performing a rendering operation.

• There is no class representing vectors in M3G, this is further commented in section 6.13 and
there is also no class representing quaternions.

• There is no Billboard3D class in M3G despite it being targeted for limited devices and
billboards traditionally having been used to visualize complex objects with a simple mesh. More
comments on this can be found in section 6.1.

 32

• M3G defines its own file format unlike Java 3D that relies on importing content from other file
formats. More comments on this can be found in section 6.10.

• M3G does not have support for anything but the scene graph and means of rendering 3D content
as opposed to Java 3D that incorporated support for sound, wake up conditions triggered on
events and user input; mouse, keyboard etc.

• M3G only represent meshes as triangle strips. Java 3D supports triangle strips as well as triangle
fans, line strips, quads etc.

 33

5555 M3G gM3G gM3G gM3G game ame ame ame implementationimplementationimplementationimplementation

5.15.15.15.1 ModificationModificationModificationModificationssss of the game engine of the game engine of the game engine of the game engine

Originally the same game was to be implemented on both platforms (J2SE with Java 3D and J2ME with
M3G). However when time came to develop it for M3G we did not have access to neither the Nokia RI
[13] nor Sun’s WTK 2.2b [14] and the mobile phone on which we were to implement it was slower than
expected. Since the tunnels in the tunnel racer game require either a lot of triangles, giving slow rendering
and requiring much memory, or big triangles, giving confusing graphics due to bad fog (see section 6.6)
and a less attractive look. These limitations of the phone motivated a different type of game for the phone
than Java 3D. We did however try to keep the structure of the game engine as this is the basis that the
evaluation stems from. This helped us see things possibly missing in M3G or that functioned differently
enough to motivate a different approach in creating a game engine.

The game is a first person game where the player walks around exploring a misty moor which hides
horrible and unknown things, thereof the name; Secret of the Mist.

There were no plug-in for exporting scenes into the format specified by M3G [1] available when the
mobile game was created so the Loader class could not be used. Therefore the one and only scene (level)
created is hard coded and the LevelLoader creates an instance of this hard coded class and receives the
complete scene from it instead of reading a real M3G-level file. With a complete scene means a complete
scene graph with all Meshes and Sprite3Ds with their textures, images and bounding volumes as well as
zones, player/camera properties and separate lists of monsters and pickups. When the appropriate tools for
exporting scenes are available the idea is to let the LevelLoader use the Loader class.

Collision detection was simplified when the mobile game was developed and is detected by traversing a
tree structure where volumes are axis aligned bounding boxes (AABB). The root of this tree is a box
covering all objects in the scene and has its visitable flag set to false . At the next level in the tree are
nodes that are allowed to be visited/entered by world objects, like grass fields, and at the level below things
are not allowed to be visited/entered. One might think that a grass field is not like a room and how can it
have a volume that is allowed to be entered? These bounding volumes can ignore one or more axis and in
the grass field case the y-axis is ignored. All nodes in this tree are of the class CollisionNode .

Moving objects in the game have a CollisionGrid which is a AABB made up of 2 x 2 x 2 subboxes
which are intersection tested with the nodes in the collision tree representing static object. In the Java 3D
version the moving (dynamic) objects had both OBBs for all submeshes and a bounding sphere covering
the whole object but this required more calculations and was therefore not used. The subboxes of the
CollisionGrid hold information about possible intersections. This was a fast and easy way to test for
collisions.

WorldObjectWorldObjectWorldObjectWorldObject
The WorldObject class was removed from the M3G implementation of the engine. The attributes and
methods of this object where not necessary in the M3G engine since all visual objects of the world
automatically has a transform matrix and from that methods to set and get their position. Further the
change of approach for collision detection between dynamic and static objects (explained below) also made
this class less useful.

DynamicObjectDynamicObjectDynamicObjectDynamicObject
In Java 3D our DynamicObject implementation utilized the class Vector3f to represent the forward, up
and left directions for the object and these in conjunction with translation where used to create a
transform matrix as necessary using the relation depicted in figure 5.1. The reason for basing the
orientation on vectors instead of the transform matrix was that we figured that we would more frequently
need to access the vectors than the matrix. This allowed us to quickly move objects along their local
coordinate system for instance to move them forward in the direction they are facing. M3G has no class

 34

representing vectors as Java 3D do so we instead represented a vector as an array of floats which is also
the way vectors are passed as arguments to the M3G methods.

To rotate a vector in M3G the transform method of class Transform can be used. Rotating a vector in
this way would of course imply setting the transform to the required rotational matrix.

If this method is used for adding rotation to an already rotated vector the transform would either need to
be calculated by the application and set via the set method or reset to the identity matrix and then rotated
with the postRotate method. The first option would have the disadvantage of some calculations being
moved from native code to the application and the second would require two method calls besides
transform.

A third way of doing it is to always keep a copy of the original vector and let the matrix of the Transform
be a complete representation of the vector’s transformation. This has similarities to how transforms are
handled by 3D engines to avoid cumulative errors of for instance the vertex positions of their meshes. The
approach would save one method but possibly require each vector to be stored twice depending on how
and when they are used. Doing things this way effectively moves the solution of representing the object’s
rotation from being based on vectors to being based on a transform matrix.

Whether the transform matrix or a set of vectors is used as the base for keeping track of the
DynamicObjects transform we feel M3G lacks one desired method. If at any stage of the implementation
of DynamicObject rotational vectors are required it is desirable to set or get these vectors from the
transform matrix. In Java 3D this can be easily done with the calls getColumn and setColumn but no
corresponding method exists in M3G. (The orientation of a Transformable is retrieved with the
getOrientation method as a rotation axis and a rotation angle around this axis.)
First there is a slight risk for accessing the wrong matrix if one is used to Java 3D since the method
getTransform does not return the “traditional” translation, rotation, scale-matrix but instead the generic
4x4 matrix. The only other method that returns a Transform (in essence a 4x4 matrix) is
getCompositeTransform that returns the generic 4x4 matrix concatenated with the translation, rotation
and scale. So as it turns out there seem to be no way of getting a matrix consisting of just the translation,
rotation and scale components unless prior to the call to getCompositeTransform the generic matrix is
set to the identity matrix. There is however no method setCompositeTransform so the translation,
rotation and scale cannot be set by the application using a matrix as it can in Java 3D.
This means that basing the orientation on the transform could give problems in retrieving for instance a
forward vector unless the generic matrix is the identity matrix. Further it makes the approach of basing the
orientation on vectors even worse since these vectors cannot be used to directly set the translation,
orientation and scale parts of the transform.

forward
up

left

�
�
�
�

⌋

⌉

�
�
�
�

⌊

⌈

−

−

000

0100

0010

0001

left up forward

Figure Figure Figure Figure 5555....1111 Relation between an object’s directional
vectors and its transform matrix.

 35

We finally decided to handle the problem by separating the vectors from the transform hoping not to step
into problems caused by the double maintenance this added. Two variables where used to store rotation
about the x-axis and y-axis respectively – we decided to not allow rolling since this wasn’t needed in our
game. These variables where then used to calculate the forward vector to allow movement of the camera in
the direction it was facing. The direction was set to M3G by first calling

 setOrientation(rotationY, 0,1,0)

and then

 postRotate(rotationX, 1,0,0)

to make the transform matrix’s orientation correspond to the rotations specified by our two angles. It was
not a preferred way of doing it but it worked.

The game we implemented on M3G did not really need to interpolate rotations but for sake of
completion we evaluated that problem as well. In Java 3D we used quaternions (see Appendix A) to
interpolate rotations since there is not a unique way of traversing between Euler angles. Lack of a
quaternion class forced us to redesign our solution given that we did not want to write our own
Quaternion class. This time M3G provided for a simple solution: the animation system. We could simply
use an AnimationTrack to animate the orientation of our DynamicObject . When specifying the
keyframes for KeyframeSequence for orientation these are interpreted as quaternions. Now all we would
need are the quaternions specifying our start and end rotations (keyframes). For this we could use the
getOrientation method of class Transformable . This would give us our angle and axes to create our
quaternion with the formula

 () () azangleayangleaxangleangle ⋅⋅⋅)2/sin(,)2/sin(,2/sin,2/cos

where ax, ay, and az are the x, y, and z components of the rotation axis. Now all we would have to do to
interpolate is set up an appropriate sequence time for the interpolation and call animate of Object3D with
the time for which we want the interpolated orientation.

GameEngine, GameLogic, SoundMaster, UserInput and MotionMasterGameEngine, GameLogic, SoundMaster, UserInput and MotionMasterGameEngine, GameLogic, SoundMaster, UserInput and MotionMasterGameEngine, GameLogic, SoundMaster, UserInput and MotionMaster
To decrease the overhead of the application GameEngine , GameLogic , SoundMaster , UserInput and
MotionMaster were merged into one class GameEngine . FJCanvas3D and FJWindow were not needed due
to differences in functionality between MIDP and AWT.

5.25.25.25.2 Final structure of the engineFinal structure of the engineFinal structure of the engineFinal structure of the engine

As mentioned before the starting point for the mobile phone game was the game for Java 3D but because
of limited resources on the new platform a new kind of game was developed but based on the same engine
structure.

The final engine structure is shown in Figure 5.2.

 36

5.35.35.35.3 Connection to Connection to Connection to Connection to M3GM3GM3GM3G

Level and LevelLoader need awareness of M3G to create objects ready to be placed in the scene graph.
DynamicObject uses M3G since it is closely tied to the representation of an object used for rendering in
terms of for instance transformation and appearance. GameEngine also needed to be adapted to M3G
since it is the class responsible for invoking the rendering. PlayerObject inherits the usage of M3G from
DynamicObject but also adds its own by using the animation system of M3G to swing the player’s sword
as an interpolation between two rotations.

5.45.45.45.4 Remaining issuesRemaining issuesRemaining issuesRemaining issues

When the player attacks he/she hits any monsters that are within a certain radius of the player. Arc
functions could have been used to solve this if they had been present. Picking could also have been used to
solve the problem.

The game is not optimized for garbage collection. That is some variables that are frequently declared
within a time-limited and recurring scope have not been made available in a global scope to avoid them
being declared each time the limited scope is entered.

Handling of pausing the game and releasing resources when for instance the phone on which the game is
running gets an incoming call have not been implemented.

GameEngine/
GameLogic

UserInput

SoundMaster
MotionMaster

GameEngine

DynamicObject

CollisionGrid

Level

CollisionNode

CollisionMaster

Zone

PlayerObject ScaryMonster

LevelLoader

Figure Figure Figure Figure 5555....2222 Class model showing an overview of the engine structure for the mobile phone game.

Item

 37

6666 ObservationsObservationsObservationsObservations of of of of using using using using M3GM3GM3GM3G

6.16.16.16.1 BillboardsBillboardsBillboardsBillboards and Sprite3Dand Sprite3Dand Sprite3Dand Sprite3D

The Sprite3D class can be used to create billboards but the results might not be adequate depending on
how the billboards are to be used. This is a result of the fact that Sprite3D is screen-aligned. Making
Sprite3D screen-aligned might incorporate easier computations within the implementation of M3G but
it has one significant drawback limiting its use for scaled sprites as depicted in figure 6.1 and figure 6.2.
These illustrate how the Sprite3D will render closer to the viewer as the camera rotates resulting in the
perception that the Sprite3D moves.

Figure Figure Figure Figure 6666....1111 View of a Sprite3D tree.

Figure Figure Figure Figure 6666....2222 Viewer standing in same position rotated

approximately 90 degrees.

This will make the Sprite3D less useful for objects appearing close to the viewer so it would not be useful
for trees in a forest that the user is walking around in. If the camera pitches down then the trees would
seem to be lying on the ground since Sprite3D cannot be locked along an axis. Should the forest be far
away, for instance as part of the background, Sprite3D would suffice in this respect. Another problem
with Sprite3D is that it is not affected by lights which in scenes with apparent light differences could
make the Sprite3D seem to self-illuminate or be too dark.

So if Sprite3D will not suffice for billboards what can be done? One option is for the application
developer to create his or her own billboard class. By implementing it using a Mesh it could be lit just like
any other object of the world. The lack of arc functions in CLDC 1.1 could pose a slight problem in
aligning the billboard against the viewer’s position but it is not unsolvable. Options could be
implementing the arc functions or storing typical values in a list and use the closest one as an approximate
value.

Sprite3D

Camera origin

View frustum

Sprite3D

Camera origin

View frustum

 38

Another option that relieves the developer of some of the work in creating a billboard is the method align
in class Node. The align method alters the orientation of the Node for whom it was called and its
descendants. To what they are aligned is specified by the method setAlignment described by the M3G
specification [1] as follows:

public void setAlignment(Node zRef,
 int zTarget,
 Node yRef,
 int yTarget)

Sets this node to align with the given other node(s), or disables
alignment. Alignment can be used, for example, for automatic "look at"
behavior for the camera or a spot light, and to cre ate "billboards"
that are always facing the active camera directly.

Alignment can be set or disabled for one or both of the Y and Z
axes. If it is set for both, the Z alignment is app lied first, followed
by the Y alignment. The Y alignment is constrained by the Z alignment.
If alignment is set for one axis only, it is uncons trained.

Alignment can be disabled for either or both axes b y setting the
respective alignment targets to NONE. If both align ments are disabled,
the orientation is left at its present state. The o riginal unaligned
orientation is not restored.

Parameters:
zRef - the node to use as reference for aligning th e Z axis of this

node, or null to use instead the reference node pas sed as an argument
to the align method

zTarget - the axis of zRef to align the Z axis of t his node with, or
ORIGIN to have the Z axis point at the origin of zR ef, or NONE to not
align the Z axis at all

yRef - the Y axis equivalent of zRef
yTarget - the Y axis equivalent of zTarget

Setting the alignment of a Node via setAlignment is not enough to make the Node align when rendering.
The actual alignment operation is achieved by invoking the method align on Node. Having the
application call align to make the alignment has both advantages and disadvantages.
On the positive side is that it is more flexible. The align calculations are not performed on each call of
render unless requested to do so by the application. Further it can be used to create objects that only align
at certain points in time instead of continuously.
A drawback with requiring the application to explicitly call align is that the application must keep track
of all its aligned objects. The application cannot just inform M3G that an object is to be aligned and then
let M3G handle it from there on, like it can for Sprite3D.
To return focus back to billboards we will quote the recommended settings for setAlignment to create a
billboard as proposed by the M3G specification:

setAlignment(null, Node.ORIGIN, world, Node.Y_AXIS) ;

This will align the Node’s z-axis with the origin of the Node supplied in the align method call and will
after this attempt to align the Node’s y-axis to the world’s y-axis. At a first glance this might seem to be
what we are after but unfortunately it is not. It will provide a billboard behaviour but not the axis aligned
one we wanted in our application. A billboard used to illustrate for instance a tree with its y-position at the
root of the tree and that is aligned in this way will work as expected beyond a certain distance to the
camera. It will not have the unwanted illusionary change of position as possessed by billboards using
Sprite3D as was illustrated in figure 6.1 and figure 6.2.

So far all is good but should the camera close up on the billboard it will loose its alignment with the
world’s y-axis and start to lean away from the camera as illustrated in figure 6.4.

 39

Figure Figure Figure Figure 6666....3333 Tree represented by a billboard.

Figure Figure Figure Figure 6666....4444 The billboard tree viewed up close.

The problem stems from the way the alignment is performed. When the camera closes up to the billboard
the difference in y position of the camera and billboard will start raising the z-axis of the billboard forcing
its y-axis to rotate around its x-axis.

Now granted argues can be made that this problem could be solved by raising the billboard origin to that
of the camera. First, this is not a convenient solution, having to differentiate between the positions of the
world’s objects depending on the context in which they are used; rendering vs. collision detection for
instance. Secondly, this will not work if the camera can change its altitude by means of jumping, flying or
walking up hills. Moving the y-positions of the billboard so that they match that of the camera in those
circumstances would make trees start flying into the sky and sinking into the ground, unless vertex and/or
texture offsets where changed as well – a not so alluring way of handling things.
The behaviour that is actually desired for this usage of a billboard, locked y-axis, is for it to completely
ignore the y-component when aligning the z-axis.

To summarize these observations we feel that a class representing a billboard would have been a useful
addition to the M3G API. Not only would this alleviate the aforementioned problems of achieving
billboards in the current version of the API but they could also be made faster than a custom
implementation by use of native code. Seeing as Sprite3D has very limited use and its functionality could
be achieved through a billboard class, Sprite3D should possibly have been removed from the API and
replaced by a class Billboard3D . With the API already final Sprite3D might be here to stay unless future
versions make it deprecated. An alternative approach is to extend the Sprite3D class with functionalities
that allows for it to be used as a billboard.

6.26.26.26.2 Transparent texturesTransparent texturesTransparent texturesTransparent textures

Upon reading the API documentation for CompositingMode it can quickly be seen that in order to create
a transparent texture the blending mode should be set to ALPHA which corresponds to the function

Cd = C sAs + C d(1-A s).

Billboard
tree

Billboard y-axis Camera / Origin

Billboard origin

Billboard z-axis

Figure Figure Figure Figure 6666....5555 Alignment of z-axis forcing rotation of y-axis.

 40

C
d
 is the destination colour, C

s
 the source colour of the incoming fragment and A

s
 the alpha value for the

incoming fragment. With the compositing mode set to this and by using an image with RGBA-values to
create an RGBA mode Texture2D , a transparent texture should have been created by the following code.

CompositingMode cm = new CompositingMode();
cm.setBlending(CompositingMode.ALPHA);

Image2D image = new Image2D(Image2D.RGBA, loadImage ("/tree.png"));
texture = new Texture2D(image);

Appearance appearance = new Appearance();
appearance. setCompositingMode(cm);
appearance.setTexture(0, texture);

For ordinary Meshes this seemed to work fine in the Nokia RI [13] but when Sprite3Ds where used in
the scene the transparent parts of objects would sometimes obscure the Sprite3D . The result appeared to
be dependent on from which side the transparent object was viewed or probably more accurate which
order the objects were rendered in. Sun’s WTK 2.2b [14] showed similar problems but the transparency
between two Sprite3D worked but not between Sprite3D and Mesh when viewed from certain angles
and positions. The effect is illustrated by the screenshots in figure 6.6 to Figure 6.10.

Figure Figure Figure Figure 6666....6666 Two Sprite3D trees
displaying correct transparency.

Figure Figure Figure Figure 6666....7777 Same trees as in previous
figure but viewed from other direction.
Note how the front tree clips the back
tree despite transparency.

Figure Figure Figure Figure 6666....8888 Transparent Mesh (fence)
obscuring Sprite3D (tree).

Figure Figure Figure Figure 6666....9999 Transparent Mesh obscuring
Sprite3D in WTK 2.2b.

Figure Figure Figure Figure 6666....10101010 Transparent Sprite3D

obscuring Mesh.

This had us confused for quite some time since an alpha value of zero for the incoming fragment should
according to the specified function result in

Cd = C s0 + C d(1-0) = C d.

 41

After reviewing the M3G specification [1] and our code a number of times we decided to investigate the
impact of a value of CompositingMode named alpha threshold. The alpha threshold is explained by the
M3G specification as

“If the alpha component of a fragment is less than the alpha threshold, the fragment is not
rendered.”

Now since our trees where completely transparent in their transparent parts, i.e. their alpha value was 0
the alpha threshold should not have been what was causing us problems since the default alpha threshold
value is 0. Still, had our alpha values not been 0 the transparency would have been expected to look the
same despite in which order the objects were rendered. Nevertheless we decided to try and set it to 0.5 and
surprisingly the transparency problems disappeared completely on both the Nokia RI [13] and Suns WTK
2.2b [14]. The M3G specification and its implementations might not necessarily be what was causing the
error. Possibly the underlying J2ME platform had rounding errors for the float values.

6.36.36.36.3 ArcArcArcArc functions functions functions functions

While not a fault of the M3G API something that could affect its success is the fact that CLDC 1.1 lacks
arc/inverse functions; arcsin, arccos and arctan. These functions are a basic part of mathematics dealing
with geometry. Not having them when developing for an API entirely devoted to visualizing the
developer’s 3D content must be seen as limiting the attraction of developing for the API. Naturally the
application developers have the option of creating their own arc functions or look-up tables but it would
require more work and lack the advantage of being constructed in native code.

6.46.46.46.4 Mipmap imagesMipmap imagesMipmap imagesMipmap images

As mentioned in section 4.3.13 Texture2D the developer may not supply his/her own mipmap images.
With the API documentation [1] not proposing any particular method for creating or storing the mipmap
images it seems to us that support for this could easily be added. Clearly handcrafted mipmap levels
carefully designed by an expert graphical artist using dedicated tools to create the bitmap levels could
supersede the quality likely to result from an automatic generation by an API created to handle 3D
graphics. It would not require a massive amount of methods to implement this feature, just one might
even suffice and it would thus not make the API noticeably bigger.

An implementation of M3G could be made to only support the required point sampling within the base
level filter to save memory and possibly achieve a higher performance. For this particular implementation
the ability for the application developer to explicitly set his or her own mipmaps would obviously be
redundant but not so if multiple levels are actually used. A simple property could be added to the result of
the method getProperties indicating how many mipmap levels the implementation supports.
Alternatively an implementation not supporting multiple mipmap levels could ignore the setting of the
additional levels albeit at the expense of some memory if the application keeps his/her own reference to the
mipmaps thus preventing them from being garbage collected.

6.56.56.56.5 Wireframe renderingWireframe renderingWireframe renderingWireframe rendering

M3G has no support for wireframe rendering. A possible placement for specifying wireframe rendering
could have been the PolygonMode class which could then have had settings for filling the polygons or
drawing them as wireframes. Wireframe rendering can be seen on desktop games used for graphical effects
or provide a certain style to the graphics. Another possible use could be for CAD graphics in 3D. While
we do not feel that this is a feature that absolutely should have been present in M3G, implementing a
wireframe rendering mode is not likely to be very difficult or provide any substantial overhead.

 42

6.66.66.66.6 FogFogFogFog

Our usage of fog enlightened some problems with the approximations that M3G allows an
implementation to make. The effect is illustrated in figure 6.11 through figure 6.13 that are attempting to
show how the fog behaves in a way that is not expected from a real world fog.

Figure Figure Figure Figure 6666....11111111 Linear fog on the
Nokia RI.

Figure Figure Figure Figure 6666....12121212 After walking a few
steps forward but not enough to
have walked into the fog shown in
the previous figure.

Figure Figure Figure Figure 6666....13131313 Turned slightly to the
right from the previous picture.

Without knowledge of the details of the Nokia RI [13] we can of course not say for certain what is causing
this effect but it led to the observation of a problem with the specification [1] allowing the distance from
the eye to a fragment center be approximated with the z value of the fragment in eye-coordinates when
handling fog. Figure 6.14 shows how the problem appears as seen from the eye’s positive y-axis when the

eye is rotating.
In the figure the arrow indicates the direction the eye is facing (negative z in eye coordinates) with the start
of the arrow being the eye’s position. The length of the arrow is the approximated eye to fragment distance
for one of the triangles vertices. The dashed circle is the far distance of the linear fog. In the left part of the
image the top right vertex of the triangle is inside the far distance region of the fog and hence at least
partially visible. In the right part of the image the same situation is illustrated but with the eye slightly
rotated showing how the vertex is now considered to be further away than the far distance thus the vertex
being completely obscured by the fog.

6.76.76.76.7 Lights and influencing boundsLights and influencing boundsLights and influencing boundsLights and influencing bounds

Lights in M3G lack the influencing bounds that exist in Java 3D to ignore lighting of objects that are too
far way to be viewed. At a first glance this might seem like an oversight seeing as the limited platforms on

Figure Figure Figure Figure 6666....14141414 Illustration of consequence of eye to fragment distance approximation by using the
z coordinate in eye coordinates.

 43

which M3G is intended to run can use as many optimizations as possible. A similar effect should however
be possible to achieve by the implementers by not lighting objects that are outside of the view frustum or
too far away from the light for it to have any noticeable effect given that the light’s intensity decreases with
the distance. The application also has a limited control over the situation by placing lights and objects in
different scopes. This way an ambient light could be made to only light up a few close objects instead of
every object in the scene. For lights that change their position in the world the scope solution becomes
more complicated and the influencing bounds solution of Java 3D would have been easier for the
application developers to use. Should influencing bounds have been available in M3G it would have
forced the implementers of the API to implement an intersection testing algorithm. With an algorithm in
place for testing intersecting lights and objects it would seem reasonable to make it generic and allow its
usage for various parts of the API as have been made in Java 3D to allow for a simple form of collision
detection. With the goal of making the API as small as possible and with the lack of influencing bounds
for light being a minor concern the decision to not support influencing bounds is understandable and
quite possibly the correct decision. Maybe in a future revision of the API this could be reconsidered if it
was incorporated along with some form of generic intersection test providing information useable in
collision detection as well.

6.86.86.86.8 Perspective correctionPerspective correctionPerspective correctionPerspective correction

That perspective correction is sometimes necessary for textures is well known for those experienced in how
texture mapping works (if not see for instance [15]) and can also be viewed from figure 6.15 to figure
6.18. The problem is the word sometimes. When is perspective correction necessary? This could be
answered by analyzing the texture, how it is used in the world and most importantly the algorithm the
renderer uses for texture mapping.

As mentioned in section 4.3.10 PolygonMode M3G does not specify a specific algorithm for mapping
textures. While this gives the implementers of M3G the freedom to choose the technique best suiting their
platform it also makes it hard for the application developers to know whether they need to enable
perspective correction on an object or not. Always having it enabled will likely lead to slower renderings
unless the implementation ignores the perspective correction hint. Hardware support for texturing could
also possibly remove the performance impact but initially most devices supporting M3G will likely be
software based. So therefore it is still rather important to only apply perspective correction when necessary.
This brings back the question when it should be enabled. Unfortunately this is probably not a question
that can be easily answered if the same application is to run on several implementations without
modifications. Some implementations’ textures will look fine without perspective correction and gain
performance with it disabled and others will have distorted textures without it. Figure 6.15 to figure 6.18
demonstrate this. The choices for the application developers are to; always enable perspective correction
and possibly sacrifice some speed, always disable it to perhaps gain performance over visual quality, allow
the end-user the option to enable or disable it via some kind of option in the applications user-interface or
to test the application on all targeted platforms and create dedicated versions with the perspective
correction enabled as appropriate.

 44

Figure Figure Figure Figure 6666....15151515 Disabled perspective
correction in Nokia’s RI.

Figure Figure Figure Figure 6666....16161616 Disabled perspective
correction distorting fence in Suns
WTK2.2b.

Figure Figure Figure Figure 6666....17171717 Enabled perspective
correction in Nokia’s RI.

Figure Figure Figure Figure 6666....18181818 Enabled perspective
correction in Suns WTK2.2b.

6.96.96.96.9 PickingPickingPickingPicking

Picking is done by sending a ray from a point to another and see which objects are intersected. It can only
be used for simple collision detection since it only uses an infinitely thin ray and cannot detect if other
parts of the object it is sent from is intersecting than along the ray, neither can collision detection with
sprites be done for other objects than the camera since the sprites are camera aligned.

6.106.106.106.10 LoaderLoaderLoaderLoader

The approach of loading content in M3G is different from Java 3D’s that used a Loader interface to allow
support for different file formats all with the same interface to the application. As all solutions the M3G
approach has its pros and cons. On one hand the custom file format allows a file format perfectly tailored
to suite M3G. All parts of M3G needed for loading can be stored in this format and no content that the
API cannot handle will exist in the file if it constitutes a valid M3G file. The downside is that developers
used to create their 3D content in a specific application must find ways to export the contents from the
application to the M3G file format. This problem is though eased by the fact that the complete
specification of the file format is written in the official M3G specification [1] so developers can write their
own file exporters or converters.

A problem not at fault from the M3G Loader is how to make the 3D content creation applications
handle the specifics of the M3G API like for instance the cropping rectangle of the Background class.
This problem has been solved by companies such as HI Corp. and Superscape by creating plug-ins that
adds functionality to the 3D content creation applications to allow specification of M3G specific features.

 45

6.116.116.116.11 AnimationsAnimationsAnimationsAnimations

The M3G specification [1] is not really clear in exactly how the loop of an animation using the animation
classes is performed. The description of KeyframeSequence in the M3G specification states:

“A sequence using the LOOP repeat mode is interpolated as if the keyframes were replicated
backward and forward indefinitely at a spacing equal to the given duration of the sequence.”

We feel this gives the impression that once the animation has reached the last keyframe it would start
playing backwards. This is however not how it is described later on in the same part of the documentation.
A few sentences later the specification says:

“In a looping sequence with N keyframes numbered [0, N-1], the successor of keyframe N-1 is
keyframe 0, and the predecessor to keyframe 0 is keyframe N-1.”.

Such ambiguities are confusing in an ordinary specification describing something already implemented,
but in those cases a simple test can determine how the functionality really works. In the case of M3G
where the implementation is left to a third party this is unacceptable resulting in a standard that might
function differently between different implementations.

The animation system of the M3G does not allow for any automatic synchronization. If the application
wants to synchronize a specific part of the animation with for instance sound, it needs to know the
sequence or world time for when it wishes the synchronization to take place. If the world time can be used
to synchronize the sound and animation the solution is obvious since the application is the one giving the
world time to the animation system. Sometimes it might on the other hand be more convenient to time
the synchronization by means of the animation’s sequence time. To allow for such situations the
application can ask the AnimationController the sequence time for a given world time.

6.126.126.126.12 VertexBuffer and VertexArrayVertexBuffer and VertexArrayVertexBuffer and VertexArrayVertexBuffer and VertexArray

The decision to store the texture coordinates in an array of integers, VertexArray , is a bit unfortunate
seeing as the texture coordinates for an image range from 0 to 1 which means that it is not possible to
directly use these “proper” texture coordinates if texture coordinates lying inside the image are desired.
The color and normal VertexArrays could also have been ranged from 0 to 1 and still made sense but
the decision to store them all as integers was most likely made for performance reasons. To solve the
problem with the texture coordinates it is possible to use a scale factor. The texture coordinates could then
be entered multiplied by a certain factor to make them integers and entered into the VertexArray . Then
upon setting the texture coordinates in the VertexBuffer the inverse of this factor can be supplied to the
setTexCoords of VertexBuffer .

VertexBuffer does not unlike GeometryArray of Java 3D allow specification of whether you want the
attributes stored as references or as copies. The specification states that the VertexBuffer holds references
to VertexArrays but not if these references are the actual references passed in one of the set methods or if
they are references to copies of the VertexArrays passed in the set methods. Given that for the class
Transformable it is explicitly stated that the Transform passed to its set method is copied it is probably
more likely that the VertexArrays referred to by VertexBuffer are the same instances as those passed in
the set methods. Still the fact that the specification leaves a feeling of uncertainty in this issue must be
considered a slight flaw in the specification. Surely, it is easily tested if the VertexArrays are copies or not
by manipulating the original after passing it to one of the set methods and observe the results. The result
from that test is however only valid for the particular implementation it was tested on and no guarantees
can be made that other implementers of M3G interpreted the specification differently.

6.136.136.136.13 VectorsVectorsVectorsVectors

A vector class with methods to perform basic vector manipulation such as normalizing, cross-products etc.
would have been convenient and opened up for native implementations of vectors as opposed to
implementing them in the application and sacrifice performance. Vector3f of Java 3D does not provide

 46

many methods so the class is not a big burden to write by an application developer but it would likely have
been more efficient to have this in the API so that it instead could have been implemented in native code.
The reason for the exclusion of a vector class in M3G is perhaps that vectors are simple and easy to
implement by the application developer and therefore did not motivate the added complexity and size this
would have brought the API. Had a vector class existed its use would have been expected in places where
the API currently uses arrays of floats as vectors leading to the overhead by using classes and methods
instead of directly accessing data types. Nonetheless during the development of the Java 3D game engine
we found the vector classes useful enough to make their absence in M3G noted.

 47

7777 Final conclusionsFinal conclusionsFinal conclusionsFinal conclusions
The Mobile 3D Graphics API, M3G [1], does in our opinion succeed in specifying a compact API for
rendering 3D component with most basic structures expected from such an API. Not including support
for sound and user-input as in Java 3D is a sound choice as these are cared for by other JSRs and APIs. We
feel however that M3G could have benefited with a few additions and modifications.

One thing that could be added or modified is the handling of billboards. The possibility to lock a
billboard along its y-axis is one feature that should have been added to allow for populating the 3D world
with simple tree objects etc. We would also like to raise the question whether the Sprite3D class perhaps
should have been replaced by a Billboard3D class.

Ability to set and retrieve the translation, rotation and scale components of Transformable as a
Transform or similar is also something we felt missing as this can be used to handle the transformation of
an object in a way that sometimes might feel more convenient or appropriate to a specific application. See
for instance [15] for an example of this.

While not directly within the area the API covers addition of miscellaneous vector math such as addition,
dot product and quaternions would have been beneficial. Enabling quaternions might even not be that
difficult seeing as the API uses quaternions at least to some degree.
Further mathematics related issues missing are the arc functions in CLDC which affects the attraction of
developing for M3G since we suspect that most implementations of M3G will be based on CLDC 1.1.

Transparency of textures is as far as we could see specified in a good way but both the Nokia RI [13] and
Sun’s WTK 2.2b [14] provide unexpected results in this area. We could not find any part of the
specification motivating their behavior so it could possibly stem from a vague or contradicting
specification somewhere that we have missed or be due to rounding errors of the float representing the
alpha threshold.
Continuing on textures not allowing the application to create its own mipmap levels feels to us like an
oversight. While it might be convenient to have the API create the mipmap levels automatically these
automated mipmap images are highly unlikely to achieve the same quality as those created by a
professional graphic artist in a dedicated image editor.

The lack of the possibility to do wireframe rendering in M3G should perhaps be rectified as it has uses and
should not likely induce any major increases in the M3G implementations size or complexity.

 48

 49

8888 Future workFuture workFuture workFuture work
The approach we have taken in evaluating the Mobile 3D Graphics API is of course by no means the only
possible one. Instead of Java 3D a comparison could be made with the 3D API of Microsoft’s DirectX [4]
as another advanced API. Maybe more interesting as an additional evaluation would be how M3G
compares to the other APIs achieving 3D graphics on the same type of platforms as M3G. Examples of
suitable candidates could be Mascot Capsule [16], mophun [17] or OpenGL ES [18].

 50

 51

9999 GlossaryGlossaryGlossaryGlossary
AABB Axis Aligned Bounding Box
CAD Computer Aided Design. Term used for certain types of software used by engineers to

create drawings.
CLDC Connected Limited Device Configuration
Fragment In OpenGL similar in concept to a pixel.
J2ME Java 2 Micro Edition. The Java edition used for devices with limited capabilities such as

memory, processor speed etc.
JCP Java Community Process. Open community developing and revising specifications for the

Java platform.
JSR Java Specification Request. A document proposing a new specification to the Java platform

or a significant revision of an existing Java specification.
JSR-184 A specification of a mobile 3D graphics API.
M3G Mobile 3D Graphics, same as JSR-184.
MIDlet The basic unit of execution for an application programmed according to the MIDP 2.0

application model.
MIDP Mobile Information Device Profile
OBB Oriented Bounding Box
PNG Portable Network Graphics

 52

 53

Appendix AAppendix AAppendix AAppendix A QuaternionsQuaternionsQuaternionsQuaternions
Quaternions were discovered in 1843 by William Rowan Hamilton who was looking for a way to extend
complex numbers to higher spatial dimensions. Like i is added to the real numbers to obtain the complex
numbers and satisfies i2 = -1, Hamilton added i, j, k to the real numbers to satisfy i2 = j2= k2 = ijk = -1 and
obtained the quaternions. A quaternion can be written as a linear combination

q = s + xiiii + yjjjj + zkkkk

and specifies a point in 4-dimensional space. If the real number is set to s = 0 then the imaginary part is
left and can represent a point or vector in 3D space.

If a quaternion has the length 1 then it is called a unit quaternion. It can represent all 3-dimensional
rotations in an easy way. By writing the three imaginary parts together like a vector, a quaternion can be
written like

 q = (s, vvvv) where vvvv =(x, y, z)

A quaternion is then represented by four numbers, a very compact way. All quaternions can also be
written like

 q = cos ø + uuuu sin ø where ø is an angle and uuuu the unit vector

Written this way spherical linear interpolation (SLERP) can easily be done and has a big advantage for
animations in 3D graphics. The interpolation gets smooth and predictable because an interpolation
between two quaternions has a unique path along the surface of the unit sphere.

Another benefit from quaternions is that if rounding errors occur, and accumulate over some time, the
quaternion still represents a vector with a rotation around it, even if it can be slightly wrong. If rounding
errors occur in a matrix representing a rotation, it might not be orthogonal and therefore not represent a
rotation at all anymore.

 54

 55

Appendix BAppendix BAppendix BAppendix B J2ME J2ME J2ME J2ME CLDC 1.0 and 1.1CLDC 1.0 and 1.1CLDC 1.0 and 1.1CLDC 1.0 and 1.1
J2SE and J2EE provide a very rich set of libraries for development for desktop and server machines. All
these libraries are far too big to use on the memory limit constrained devices that targets J2ME. Therefore,
only the most important packages and classes were kept when CLDC 1.0 (JSR-030) was designed. This is
just a brief summery of CLDC 1.0 and 1.1, for more details see [11].

B.1B.1B.1B.1 CLDC 1.0CLDC 1.0CLDC 1.0CLDC 1.0 (JSR (JSR (JSR (JSR----30)30)30)30)

B.1.1B.1.1B.1.1B.1.1 Inherited Inherited Inherited Inherited classesclassesclassesclasses

Inherited classes from J2SE.

System classesSystem classesSystem classesSystem classes
java.lang.Object
java.lang.Class
java.lang.Runtime
java.lang.System
java.lang.Thread
java.lang.Runnable (interface)
java.lang.String
java.lang.StringBuffer
java.lang.Throwable

Data type classesData type classesData type classesData type classes
java.lang.Boolean
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Character

Collection classesCollection classesCollection classesCollection classes
java.util.Vector
java.util.Stack
java.util.Hashtable
java.util.Enumeration (interface)

Inpout/output classesInpout/output classesInpout/output classesInpout/output classes
java.io.InputStream
java.io.OutputStream
java.io.ByteArrayInputStream
java.io.ByteArrayOutputStream
java.io.DataInput (interface)
java.io.DataOutput (interface)
java.io.DataInputStream
java.io.DataOutputStream
java.io.Reader
java.io.Writer
java.io.InputStreamReader
java.io.OutputStreamWriter
java.io.PrintStream

Calendar and time classesCalendar and time classesCalendar and time classesCalendar and time classes
java.util.Calendar
java.util.Date
java.util.TimeZone

B.1.2B.1.2B.1.2B.1.2 Added classesAdded classesAdded classesAdded classes

Two new classes were added to CLDC 1.0, a pseudo-random number generator and a small math library.

 56

Additional utility classesAdditional utility classesAdditional utility classesAdditional utility classes
java.util.Random
java.lang.Math

B.1.3B.1.3B.1.3B.1.3 Exception and error classesException and error classesException and error classesException and error classes

Since compatibility upwards (with J2SE) was desirable, a subset of exceptions was maintained in CLDC
1.0.

Extensions Extensions Extensions Extensions classesclassesclassesclasses
java.lang.Exception
java.lang.ClassNotFoundException
java.lang.IllegalAccessException
java.lang.InstantiationException
java.lang.InterruptedException
java.lang.RuntimeException
java.lang.ArithmeticException
java.lang.ArrayStoreException
java.lang.ClassCastException
java.lang.IllegalArgumentException
java.lang.IllegalThreadStateException
java.lang.NumberFormatException
java.lang.IllegalMonitorStateException
java.lang.IndexOutOfBoundsException
java.lang.ArrayIndexOutOfBoundsException
java.lang.StringIndexOutOfBoundsException
java.lang.NegativeArraySizeException
java.lang.NullPointerException
java.lang.SecurityException

java.util.EmptyStackException
java.util.NoSuchElementException

java.io.EOFException
java.io.IOException
java.io.InterruptedIOException
java.io.UnsupportedEncodingException
java.io.UTFDataFormatException

Error classesError classesError classesError classes
java.lang.Error
java.lang.VirtualMachineError
java.lang.OutOfMemoryError

B.2B.2B.2B.2 CLDC 1.1 (JSRCLDC 1.1 (JSRCLDC 1.1 (JSRCLDC 1.1 (JSR----139)139)139)139)

The CLDC 1.1 expert group only made minor changes to CLDC 1.0 since they were satisfied with it.
More important was to add a few features to keep up with the needs that had arose for the J2ME
platforms. These were mainly; support for weak references, floating point support and improved error
handling.

Data type classesData type classesData type classesData type classes
java.lang.Float
java.lang.Double

Error classesError classesError classesError classes
java.lang.NoClassDefFoundError

Weak referencesWeak referencesWeak referencesWeak references
java.lang.ref.Reference
java.lang.ref.WeakReference

 57

Appendix CAppendix CAppendix CAppendix C Simple Java 3D example source codeSimple Java 3D example source codeSimple Java 3D example source codeSimple Java 3D example source code
import java.applet.Applet;
import java.awt.*;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.geometry.ColorCube;
import com.sun.j3d.utils.universe.SimpleUniverse;
import javax.media.j3d.*;
import javax.vecmath.Vector3f;

/**
 * Demo for Java 3D that creates a scene graph
 * containing a view branch and a ColorCube.
 */
public class HelloWorld3D extends Applet
{
 /**
 * Constructs a scene graph with a view branch and a ColorCube.
 */
 public HelloWorld3D()
 {
 // Fetch the preferred GraphicsConfiguration for the system.
 GraphicsConfiguration prefConfig =
 SimpleUniverse.getPreferredConfiguration();

 // Create the canvas to use, set layout type and attach it to this Applet.
 Canvas3D canvas3D = new Canvas3D(prefConfig);
 setLayout(new BorderLayout());
 add("Center", canvas3D);

 // SimpleUniverse is a utility class that sets up a minimal set of
 // objects on the "view" side, just enough to qui ckly & easily get
 // a Java 3D program up & running.
 SimpleUniverse simpleUniverse = new SimpleUnivers e(canvas3D);

 // Now to the geometrical content of the scene gr aph.
 // Create a BranchGraph object that will serve as root in a branch graph
 BranchGroup branchGroup = new BranchGroup();

 // A TransformGroup to rotate and translate the g eometry object.
 TransformGroup transformGroup = new TransformGrou p();

 // A ColorCube is a simple geometry that is a cub e with each side
 // in a different color.
 transformGroup.addChild(new ColorCube(0.5));

 // The camera is by default positioned at (0, 0, 0) looking along
 // the negative Z-axis so it is necessary to move the geometry object
 // (ColorCube) in front of the camera to see it.

 // First create a transform and rotate it around the X-axis.
 Transform3D transform3D = new Transform3D();
 transform3D.rotX(-Math.PI / 4d); // = -45 degrees

 // Create a temporary rotation around the Y-axis.
 Transform3D temporaryYRotation = new Transform3D();
 temporaryYRotation.rotY(Math.PI / 4d); // = 45 de grees

 // Add the temporary Y-rotation to the X-rotation .
 transform3D.mul(temporaryYRotation);

 // Add a movement along the negative Z-axis 3 uni ts.
 transform3D.setTranslation(new Vector3f(0, 0, -3));

 // Move and rotate the ColorCube.
 transformGroup.setTransform(transform3D);

 58

 // Add the TransformGroup with the ColorCube to t he BranchGroup node.
 branchGroup.addChild(transformGroup);

 // Compile the branch to let Java 3D optimize it.
 branchGroup.compile();

 // Add the branch graph to (the geometry side of) the scene graph.
 simpleUniverse.addBranchGraph(branchGroup);
 }

 // The MainFrame class lets an applet be run as a pplication as well.
 public static void main(String[] args)
 {
 Frame frame = new MainFrame(new HelloWorld3D(), 3 00, 300);
 }
}

 59

Appendix DAppendix DAppendix DAppendix D Simple M3G example source coSimple M3G example source coSimple M3G example source coSimple M3G example source codededede
The following code creates a class Engine that creates a simple M3G scene displaying a textured triangle.
It is to be started by a MIDlet by invoking its constructor and then startApp to set up the scene. Calling
executeOnce will then render the scene.

import javax.microedition.lcdui.*;
import javax.microedition.lcdui.game.GameCanvas;
import javax.microedition.midlet.*;
import javax.microedition.m3g.*;
import java.util.*;

public class Engine extends GameCanvas implements C ommandListener
{
 // Graphics3d context
 private Graphics3D g3d;

 private SimpleExample midlet;
 private Display display;

 // Current scene index
 private World world;
 private Mesh mesh;

 public Engine(SimpleExample m)
 {
 super(false);
 midlet = m;
 }

 /**
 * Creates the M3G content.
 */
 public void startApp()
 {
 setFullScreenMode(true);

 // Create a new 3D graphics context
 g3d = Graphics3D.getInstance();
 display = Display.getDisplay(midlet);
 initWorld();
 }

 /**
 * Creates the 3D world scene graph and its content s.
 */
 private void initWorld()
 {
 try
 {
 world = new World();

 Background bg = createBackground();
 world.setBackground(bg);

 // Create camera
 Camera cam = createCamera();
 world.addChild(cam);
 world.setActiveCamera(cam);

 // Create triangle
 world.addChild(createMesh());

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 }

 /**
 * Application loop, called by run method in startu p MIDlet.

 60

 */
 public void executeOnce()
 {
 if (display.getCurrent() == this)
 {
 render(getGraphics());
 flushGraphics();
 }
 }

 /**
 * Paint graphics.
 * @param g the Graphics onto which to paint the gr aphics
 */
 public void render(Graphics g)
 {
 if (g3d == null)
 {
 return;
 }

 try
 {
 // bind to graphics
 g3d.bindTarget(g);
 // render
 g3d.render(world);
 }
 finally
 {
 // release g3d
 g3d.releaseTarget();
 }

 }

 /**
 * Creates a camera looking along the negative z-a xis.
 */
 private Camera createCamera()
 {
 Camera c = new Camera();
 c.setTransform(new Transform());
 c.setPerspective(100f, 0.8f, 0.1f, 25f);
 return c;
 }

 /**
 * Creates a background with depth clear enable fla g set to true.
 */
 private Background createBackground()
 {
 Background bg = new Background();
 bg.setColor(0x0066ccff);
 return bg;
 }

 /**
 * Creates a triangle Mesh.
 */
 private Mesh createMesh() {

 short mesh_VertexCoordArray[] =
 {
 -1,1,0,
 0,0,0,
 1,1,0
 };

 short mesh_VertexTexCoordArray[] =
 {
 0, 0,
 1, 2,
 2, 0
 };
 int mesh_TriangleStripArray[] =
 {

 61

 0, 1, 2
 };
 int mesh_TriangleStripLengths[] = {3};

 VertexArray positionArray = new VertexArray(
 mesh_VertexCoordArray.length/3, 3,2);
 positionArray.set(0, mesh_VertexCoordArray.length /3, mesh_VertexCoordArray);

 VertexArray textureArray = new VertexArray(
 mesh_VertexTexCoordArray.length/2, 2,2);
 textureArray.set(0, mesh_VertexTexCoordArray.leng th/2, mesh_VertexTexCoordArray);

 VertexBuffer vertexBuffer = new VertexBuffer();
 vertexBuffer.setPositions(positionArray,1,null);
 vertexBuffer.setTexCoords(0,textureArray,0.5f,nul l);

 TriangleStripArray stripArray =
 new TriangleStripArray(mesh_TriangleStripArray,m esh_TriangleStripLengths);

 Appearance appearance = new Appearance();
 PolygonMode polygonMode = new PolygonMode();
 polygonMode.setPerspectiveCorrectionEnable(true);
 appearance.setPolygonMode(polygonMode);

 Image2D image2D = new Image2D(Image2D.RGB, loadIm age("/texture.png"));
 Texture2D texture = new Texture2D(image2D);
 appearance.setTexture(0,texture);

 mesh = new Mesh(vertexBuffer, stripArray, appeara nce);
 mesh.setTranslation(0,0,-1.5f);
 mesh.setOrientation(45,0,1,0);

 return mesh;

 }

 public void commandAction(Command c, Displayable d)
 {
 if (c.getCommandType() == Command.EXIT)
 {
 midlet.destroyApp(true);
 }
 }

 /**
 * Loads an image given by the supplied name.
 * @param name the name of the resource containing the image data
 * @returns the loaded Image or null if load failed
 */
 private Image loadImage(String name)
 {
 try
 {
 return Image.createImage(name);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 return null;
 }
 }
}

 62

 63

Appendix EAppendix EAppendix EAppendix E ReferencesReferencesReferencesReferences and literature and literature and literature and literature

E.1E.1E.1E.1 ReferencesReferencesReferencesReferences

[1] Mobile 3D Graphics API JSR-184 javadoc, M3G version 1.0,
http://www.jcp.org/en/jsr/detail?id=184, Nokia Corporation, November 2003

[2] Mobile Game API JSR-178, http://www.jcp.org/en/jsr/detail?id=178, In-Fusio SA

[3] Java 3D API javadoc, Java 3D version 1.3.1, http://java.sun.com/products/java-media/3D/,
Sun Microsystems, 2001

[4] DirectX, http://www.microsoft.com/windows/directx/default.aspx, Microsoft

[5] OpenGL, http://www.opengl.org/, OpenGL Architecture Review Board

[6] Inspector3DS/Loader3DS, http://www.starfireresearch.com/services/java3d/inspector3ds.html, Starfire
Research, January 2001

[7] ”JAMA: Java Matrix Package”, http://math.nist.gov/javanumerics/jama/, The MathWorks and NIST,
June 1999

[8] J2ME, http://java.sun.com/j2me/, Sun Microsystems

[9] Java Community Process, http://www.jcp.org

[10] Connected Device Configuration, http://java.sun.com/products/cdc/index.jsp, Sun Microsystems

[11] Connected Limited Device Configuration, http://java.sun.com/products/cldc/, Sun Microsystems

[12] MIDP 2.0 javadoc, http://www.jcp.org/en/jsr/detail?id=118, JSR-118 Expert Group,
November 2002

[13] Nokia JSR-184 RI, http://www.forum.nokia.com, Nokia

[14] Sun Wireless Toolkit, http://java.sun.com/products/j2mewtoolkit/, Sun Microsystems

[15] “Interactive Computer Graphics. A top-down approach with OpenGL”, second edition, E. Angel,
Addison-Wesley, August 2000

[16] Mascot Capsule, http://www.mascotcapsule.com/, Hi Corporation

[17] Mophun, http://www.mophun.com/, Synergenix Interactive

[18] OpenGL ES, http://www.khronos.org/opengles/, Khronos Group

E.2E.2E.2E.2 LiteratureLiteratureLiteratureLiterature

“3D games, Real-time Rendering and Software Technology”, volume one, A. Watt, F. Policarpo,
Addison-Wesley, 2001

Java 3D API Specification, version 1.1.2, http://java.sun.com/products/java-
media/3D/forDevelopers/j3dguide/j3dTOC.doc.html, Sun Microsystems, June 1999

“Programming Wireless Devices with the Java 2 Platform, Micro Edition”, R. Riggs et al,
Addison-Wesley, June 2001

GameDev, various articles at http://www.gamedev.net

”Getting Started with the Java 3D API” , tutorial v1.6.2, D. J. Bouvier, Sun Microsystems

Introduction to Java 3D, http://escience.anu.edu.au/lecture/cg/Java3D/index.en.html, Pascal Vuylsteker,
eScience, Computer Science, The Australian National Uniersity

“J2ME in a Nutshell”, first edition, K. Topley, O’Reilly, March 2002

JSR-184 program example from Nokia,
http://www.forum.nokia.com/main/1,6566,21,00.html?fsrParam=1-3-
/main/1,6566,21_10,00.html&fileID=5335

“Linjär algebra”, second edition, G. Sparre, Studentlitteratur, 1994

OBB-Tree: A hierarchical structure for Rapid Interference Detection, S. Gottschalk et al, University of
North Carolina, Chapel Hill, NC 27599

