Master of Science Thesis
Department of Computer Science
Lund Institute of Technology

Haptic hardware support in a 3D game engine

Henrik Aamisepp [d98ha@efd.Ith.se]
Daniel Nilsson [d96dn@efd.1th.se]

May 2003

Supervisors: Lennart Ohlsson, Lund Institute of Technology
Charlotte Magnusson, Lund Institute of Technology

Abstract

The aim of this master thesis is to find out if it is possible to integrate haptic hardware
support in the open source 3D game engine Crystal Space. Integrating haptic support
would make it possible to get a haptic representation of 3D geometry in Crystal Space
and therefore take advantage of all the benefits a 3D game engine provides, when
building haptic applications. An implementation of the support should be as low-cost
as possible by taking advantage of available open source haptic API alternatives.

The thesis report presents an evaluation of available haptic APIs and comes up with a
design and an implementation. The solution has been implemented as a Crystal Space
plugin by using modified parts of the e-Touch open module API. The plugin makes it
possible to utilize the Phantom haptic device to touch and feel the 3D environments in
a Crystal Space application. Two demo applications have also been constructed to show
the capabilities of the plugin.

Contents

Contents
1 INtrodUCHION cooeeeiiiiiiiiiiiecctteeccttee e s 1
1.1 BaCKGIOUNd ... 1
T2 GOLS o 1
1.3 DOCUMENT STIUCTULE ..ot 2
0 5 - 2 1L U 3
2.1 Introduction t0 RAPLCSc.cviuiuiiiiiiiii it 3
2.2 HiStOLY Of RAPTICS ..ttt 4
2.3 The PRANTOM c...oiuiiiiiiiiii ettt 5
2.4 Haptic £ENAAEIINEG.ovvviiiieieieieieicicitittt ettt ettt ¢
2.5 Haptic APT .. 10
251 GHOST APL ..ottt ettt ettt 10
2.5.2 € TOUCK AP ..ottt 11
2.5.3 Reachinn APT ..ottt 12
3 Evaluation of haptic APIScccceeiviiuiiiiiiiiiiiiiniieccineec e 15
3.1 GHOST L.ttt 15
3.2 €T OUCH. L.ttt 16
3.3 CONCIUSIONS ...ttt 18
T €3 s o Tl s Ve b L P 19
4.1 Introduction to GAME ENGHICS......c.oviuiuiuieiriiieiicieieiee ettt eeeeas 19
4.2 CLYStAl SPACE ...ttt 19
4.2.1 The MaIn LIOOP ..ttt 20
4.2.2 THE 3D WOLI ..o e ees e e 20
4.2.3 RENAEIING. ..ottt ettt aes 21
4.2.4 Collision detection and dyNAMICSc.cccuevrueeiueiiieeiieecieieiecieecieeeeieesee e 22
4.3 Map creation and Valve Hammer EdIitor ... 23
L B 1T T o PPN 25
5.1 TTASK et 25
5.2 Problems and SOIUHONSc.c.cueuiuiiiuiiiiiiiiiiiieee e 25
5.2.1 Representing the touchable Wotldccoceiviiinicniiiiccceeceene 25
5.2.2 Static and dynamic ODJECEScuicuieiiciieiicrcrc e 27
5.2.3 Synchronizing graphics and Dapticsccveurienienicinieieieeneneeeeeseeeeeereeeens 28
5.2.4 Calculating fOLCESuiuiiiiiieiiiciici et 28
5.2.5 FHICHOMN ...ttt 29
5.2.0 VISCOUS ODJECES ...cvuvuieiiiiiiieieieinicieieiesti ettt ettt ettt ettt b e 31
5.2.7 BASIC GEOMEILY ODJECLS w.ueuvuiiiniieiiiciiieiniieintieieeetseeeineee ettt beseenees 31
5.2.8 Different cOOLdINAE SYSTEIMSvuvuiueeieeiieeiieeiriieirieeireeeireee ittt eeesesecseeeeseeaenes 32
5.3 PLOZGIAM STIUCTULE ...ttt 32
5.3.1 GHOST and e-Touch parts USedc..cccveuriernieinicinieinieriereeinieineeeiseeesseeeseeeensseenes 32
5.3.2 ClaSSES AN STIUCTSuvevrieeirieiieeirieeiieetreee ettt cae et 33
5.4 Threads and PrOCESSES.....cceueuiuiuiiiiiieiiiiiittt ettt 36
5.4.1 Crystal Space graphics LOOPc.vveuiciniecinieiieiicricreiree et 36
5.4.2 GHOST SEIVO LOOP woreiriiiiiiicinicinientcnte ettt 36
5.5 RESTICHOMNS ...ttt 36
6 Demo applicatioNS.....ccvvuveiiiiiiiiiiiiiiiiiiiiiiec e 39
0.1 Demo application L. 39

Contents

0.2 Demo applCAtION 2......c.cocuiiiiiiiiiiiiiiiiiiiiiit et 40

T SUMIMALY ..uvvrrreieiiiiiiiiiiiireteeeeeisiiiiiiseeeeeessessssssssssseeesssssssssssssssssessssssssssssses 43
7.1 RESULLS -ttt 43

7.2 FULULE WOTLK ..o 44

7.3 CONCIUSIONS ...ttt eneneaes 46
Appendix A: Haptic pluginccoueeeeeiiiiiiiiiiinniiiicciiininneecccennnsnneeeee 49
AT REQUILEIMICIIS ..o 49
AL1.T HardwWare feqUILCIMEIIESc..vueveeieiiiieieeieeiseeeteee e saeeseessseae e seeeseassa e saesse s sseeseeceenenes 49

ALT.2 SOftWALE TEQUITEIMEIITS ...ttt sacees 49

A2 Loading the PIUGInc.ccciiiiiiiiii e 49
A.3 Using the plugin methods ... 50
A.4 Changes to Include files.........cooviiiiiiie e, 51
Appendix B: Using the demo applicationsee 53
B.1 REQUILEMENLS ...ttt 53
B.2 Using the demo applications.......c.ccciiririininininiricieeeeececcceiceece e 53
B.2.1 Using demo applcation T....c..ccvciicinieinieieienieneeineeneenseesneeesseeesseeesseeesseeesseeesees 53

B.2.2 Using demo applCatiON 2.........covucuiuciiueinieeiieeirieirieineeeireieiseeeiseie e eee s seences 53
Appendix C: Creating haptic Worlds........ccccoevuviiiiiiiiiiiiiiniiiiiiinniiieicnenee, 55
C.1 MUlth PALt ODJECES ottt 55
C.1T INEEOAUCHOMN ot 55

Cl1.2 COTIICTS .ttt 56

C.1.3 D0015 and WINAOWS ...eoiiiiiiciieiecie et 56

C.L4 LALGE ODJECLS wvovreirieiiieieieieieeieitie ettt bes 57

C.2 Class-names and KeYS.......ccccciuiiiiiiiiiiccccecee e 57
Appendix D: Dictionarycooovvevvneeeeeiiiiiiiiiiiiiineecciinnneeeeeee s 59
REfEIENCES «uuunrrrriiiiiiiiiiiitiiiiiiiiniiiree e aaaes 61
TAEEIAtULE. ..o 61
TURLS ettt 601

VI

Chapter 1 - Introduction

1 Introduction

1.1 Background

At the Department of Design Sciences at Lund Institute of Technology there is a
division for rehabilitation engineering called Certec. Among other things they do
research on how to make computers accessible to blind and visually impaired people
through the use of haptic technology. This means that they try to make it possible to
use computers by using the sense of touch to navigate through a 3D interface. The
force feedback hardware that is available in stores today cannot provide the accuracy
that is needed for such a task. However there is available hardware that can be used,
such as the Phantom haptic device from Sensable Technologies, Inc. The problem is
that this hardware 1s very expensive and is therefore not available to a great extent. This
in turn means that there are only a few APIs available for creating haptic environments
and they do not always provide the same possibilities to easily create good 3D
applications as for example a game engine would. The APIs are not designed to be
integrated with other systems that can provide this functionality either.

The wish is that it should be possible to build large 3D environments that the user can
navigate in and use the haptic device to touch the surroundings. These kinds of
environments are very common in modern 3D computer games and thus it would be
desirable to have support for haptic devices in a 3D game engine. This would make it
possible to create 3D environments using existing 3D map editors, or perhaps even to
use existing 3D game maps that can be downloaded from the Internet.

This master thesis is a collaboration between Certec and the Department of Computer
Science at Lund Institute of Technology. The idea is to add support for haptics in the
open source game engine Crystal Space, by using parts of available haptic APIs, such as
e-Touch from Novint Technologies, Inc. or GHOST from Sensable Technologies Inc.
It is required that the solution should support the Phantom haptic device, but it would
be an advantage if there also was supportt for other force feedback devices.

1.2 Goals

The main goal of this master thesis is to investigate if it is possible to integrate haptics
in the Crystal Space game engine. The investigation should be based upon an evaluation
of different haptic APIs and how well they are suited to be integrated in Crystal Space.
A software implementation will be constructed to show the possibilities of a system
that integrates haptics with a game engine. The implementation should be able to give a
haptic representation of 3D geometry in Crystal Space. The development process
should be used to gather knowledge about the structure of the existing APIs and
identify the difficulties that are associated with the integration of haptic and graphic
APIs.

Chapter 1 - Introduction

1.3 Document structure

The first part of this document handles the concepts of haptics and game engines.
There are introductions to these topics as well as an in-dept study of different tools that
are of interest to this master thesis. The second part of the document deals with the
work that has been made in this master thesis project along with a presentation of
results and conclusions. To explain how the developed software should be used there
are also three appendices at the end of the document.

An introduction to haptics 1s given in chapter 2. This chapter also contains a
description of the Phantom haptic device and an overview of haptic rendering. A study
of different haptic APIs is also contained within this chapter.

Evaluations of the different APIs are made in chapter 3. The advantages and
disadvantages of the APIs are weighed against each other and a conclusion is made
about what parts are suitable for an implementation.

The concept of game engines 1s explained in chapter 4. This chapter also contains an
overview of the Crystal Space game engine. The end of the chapter gives a short
description of map creation and the Valve Hammer Editor.

Chapter 5 covers the design and implementation of the haptic plugin. The problems
that occurred during the development process are presented along with our solutions.
There is also a part on restrictions that had to be made.

The demo applications made to show the functionality of the plugin are described in
chapter 6. The chapter gives a description on what the demos display and there is also a
short overview of their design.

Chapter 7 contains the summary of the master thesis project. The results that have been
accomplished are presented and evaluated. There is a part about suggestions of future
improvements. Finally conclusions are drawn about the complete project and ideas on
how the haptic and graphic APIs could have been designed differently to be easier to
integrate.

Appendix A contains a description on requirements, methods and how to load the
plugin in a Crystal Space application.

Appendix B gives a briet description on how to use the demo applications and their
features.

Appendix C 1s a guide on how to construct worlds and objects that can be used
together with the haptic plugin.

Appendix D contains a small dictionary.

Chapter 2 — Haptics

2 Haptics

2.1 Introduction to haptics

Haptics originates from the Greek word haptesthai ("to touch") and is a science that
studies the sense of touch. In the computer world, haptics deals with using the sense of
touch to control and interact with a computer application. To be able to do this, special
input/output devices, such as joysticks, wheels, data gloves or more advanced devices
are connected to the computer.

The feedback from these devices is delivered as felt sensations to the uset's hand or
other parts of his body. The user can then interact with this feedback and control the
application according to the sensations he experiences. By using a haptic device, three
dimensional virtual objects do not only have to exist as graphics, but they can also be
represented in haptics as physical objects. This opens up a lot of possibilities for many
different kinds of applications. For example, haptics have been utilized to train people
in surgery and operation of machines in hostile environments. Additional examples of
the use of haptics include the entertainment business, where haptics has been used to
give the player force feedback of the events occurring in a computer game. Haptics can
also help to guide blind and visually impaired people in computer applications.

Three different concepts are often mentioned in connection with haptics: force
teedback, tactile feedback and proprioception. Force feedback devices are often
mechanical devices that can deliver forces to the user through electric motors. With
tforce feedback one can get the feeling of weight or resistance in a virtual world. The
device that is used should be able to produce an equivalent or scaled force to that of
what a real object would deliver if it was touched. Force feedback can usually stop a
user’s motion, while tactile feedback cannot.

Tactile feedback is more about making the user sense different types of surfaces,
textures and vibrations through the skin. Often one or more fingers are used to feel the
tactile sensations. To achieve the effect of tactile feedback, pneumatic or electronic
solutions are used. For example, when a data glove is used as a feedback device, small
airbags in the glove’s fingers are filled and deflated to get the feeling of a vibration or a
texture. Another solution to achieve tactile feedback is to use a surface with small pin
arrays that can be raised and lowered to give the user feelings of different textures.

The last concept is proprioception. Proprioception is an automatic sensitivity
mechanism that is utilized by the body to send messages through the central nervous
system. The messages are sent from the central nervous system to different parts of the
body to inform how it should react to stimuli and with what strength. One could say
that proprioception is the sense of position of the body in relation to gravity as well as
our movement through space [19]. With computers it is more difficult to get a good
representation of proprioception than it is with tactile feedback or force feedback.

Chapter 2 — Haptics

This master thesis will make use of a haptic device that only utilizes force feedback, the
Phantom haptic device. A place to find recent research articles and gain more
information about haptics is the Haptics-e homepage [21].

2.2 History of haptics

One may think that the development of haptic devices and the applications adherent to
them originates from the development of virtual reality, but this is actually incorrect.
The first devices that one may state as haptic devices come from the teleoperation
systems of the 1950s and 60s. In a teleoperation system, the user controls and
manipulates objects from a remote location. These systems often use bilateral Master-
Slave Manipulators (MSM), in which a master device follows and interacts with a
remote slave device. A classic example of the field of application for MSM is within
dangerous or unhealthy environments, like the handling of nuclear waste or underwater
operations. In these cases some type of a mechanical arm is used as the master unit and
a smaller similar reproduction of this is used as the slave device. These systems used to
be all mechanical, but they were later made electrical which enabled the operator to
work further away from the site. It also allowed the introduction of so called
servomanipulators, which could give force feedback to the slave device.

A project started 1n 1967, which used MSM to join interactive computer graphics with
torce feedback, was the GROPE (I, 11, III) project. This project, whose goal was to
create a three dimensional real-time system to simulate forces when different substrate
and molecules interacted and docked with each other, turned out to last for 20 years.

Another research area that made progress in haptics during the 1960s and 70s, but
today 1s not as popular as it used to be, is exoskeleton research. An exoskeleton is a
device that looks similar to a robot, but the user is situated inside it and is able to
control the legs and arms of the exoskeleton. These machines made it possible to lift
and move heavy loads and simultaneously get a reduced force feedback. However
problems with unstable control, danger of leaking hydraulic and limitation in functional
anatomy of the human arm have made the research area less popular.

During the 1960 there where also research in the area of sensing gloves, which use
pneumatic bladders to produce feedback for independent fingers. They were made
more sophisticated during the 1980s. One of the gloves developed in the late 1980s was
Teletact. This glove first supported 20 inflatable air pockets, but it was later refined,
with the new name Teletact 11, in the early 1990s to support 30 air pockets.

The 1990s saw the introduction of desktop force feedback joysticks and force feedback
wheels for games and entertainment. These devices serve their purpose quite well, but
they are limited in their degree of freedom and sensitivity, making them hard to use for
more advanced applications. If one only wants to simulate the vibration of a steering
wheel in a racing game or the recoil of a gun in a shooting game though, they work just
fine.

The Virtual reality field appeared first in the late 1970s. This started a development of
special purpose tactile and force feedback devices. However it was not untl the
beginning and middle of the 1990s that the first commercial haptic VR devices where

Chapter 2 — Haptics

mntroduced. Some of the companies responsible for these devices were Immersion Co.
(Impulse Engine) [20] and Sensable Technologies, Inc. (Phantom) [15]. These two
companies are still today two of the leading companies in haptic technology. For a
more complete history of haptics, see G. C. Burdea (1996) [7] or R. J. Stone (2000) [10].

2.3 The Phantom

The Phantom was originally designed and built at MIT in 1993 by Thomas Massie and
Dr. Kenneth Salisbury. They were looking for a way to reach and feel three dimensional
data. It began as a thesis and ended as the company Sensable Technologies, Inc. that
today has customers worldwide.

The Phantom is a desktop unit that looks like a mechanical robot arm that is holding a
pen. When holding the pen (stylus) in the hand it is possible to touch, feel and
manipulate computer models with six degrees of freedom. The Phantom utilizes point
interaction, which means that the user will sense the virtual environment through a
single point. This makes the sensation somewhat like touching objects with the end of a
stick. It is possible to connect several Phantom devices to a computer and thereby get
multiple interaction points.

There is an entire family of Phantom devices with different sized workspaces and
different values for maximum exertable force. Three different DC motors inside the
Phantom deliver the force. In this master thesis we have used both the Phantom
desktop device, which is the smallest of the Phantom family devices, and an older
version of the Phantom family, the Phantom Premium 1.0. The desktop model easily
connects to the computer via the parallel port and in addition to that it has a very
portable design. The Phantom Premium 1.0 model has a somewhat larger workspace
and a bit larger maximum exertable force. The Premium model also requires a certain
interface card to connect the Phantom to the computer. Both models provide force
teedback in three degrees of freedom and position sensing in six degrees of freedom.
The pitch-, yaw- and roll angles of the Phantom stylus are only measurable and cannot
be controlled with force feedback. Besides that the stylus features a switch that can be
used in the same way as a mouse button. Further information about the Phantom
device can be found at Sensable’s homepage [15].

Figure 2.1 The Phantom haptic device. The left picture shows the Phantom desktop model and the right picture
shows the Phantom Preminm 1.0 model.

Chapter 2 — Haptics

2.4 Haptic rendering

One of the difficulties when using haptics is that the update frequency needs to be very
high. A usual acceptable frame rate for a graphics loop is 60-80 Hz, whereas a haptics
loop needs a cycle rate of about 800-1000 Hz. This update rate is required because it
allows the motors that deliver the force to change fast enough, so that the user can get
a consistent object representation and a stable haptic device. Otherwise surfaces can be
represented too soft or even worse, the haptic device can start to vibrate.

Haptic programming interfaces often separate the work of the haptics loop from the
work of the application and the graphic presentation. By putting them in two different
processes, the haptics loop can be given a higher priority and the high cycle rate can be
met. This means that when creating a haptic API one needs to think about
synchronizing the two processes. For synchronization from haptics to graphics this 1s
usually not a big problem because the haptics loop runs faster than the graphics loop.
However if something is moved in graphics, for example the camera, the haptics needs
this change in position more often than the graphics.

A haptic rendering algorithm consists of two parts: collision detection and a collision
response. Both of these calculations need to be very fast to maintain the high update
rate that is desired. A simple example to describe the concept of haptic rendering is the
rendering of a haptic sphere (see Figure 2.2). Let us say that the sphere is situated at the
origin of the virtual world and that the device used can only interact with it through a
single interaction point, the end point of the haptic device. When the user moves the
haptic device around without touching the virtual sphere no forces are delivered, but
when the user penetrates the sphere the device will produce opposing forces to resist
turther penetration.

Figure 2.2 Haptic rendering of a sphere. The reaction force is proportional to the penetration depth.

If one assumes no friction, the magnitude of the force will be proportional to the depth
of penetration and the direction of the force will be in the direction of the surface
normal. The force calculation can then be modeled like the following equation (similar
to Hook’s law):

F=k-x 2.1)

where k represents the stiffness coefficient and x represents the penetration depth. A
low value for the stiffness constant makes the object feel soft and a high value makes it
feel hard.

By adding a second damping term, as seen below, depending on the velocity one can
get a stiffer surface. But due to the nature of haptics it is not possible to have an

Chapter 2 — Haptics

infinitely stiff surface. This means that it will always feel a bit soft even if one wants to
represent a completely stiff material.

F=k-x+b-V 2.2)

Here V is the velocity vector for the user point and b is a damping constant. Using too
high values for the damping constant may however cause unwanted vibrations. The
concept of haptic rendering seems simple when looking at the example with the sphere
above, but the rendering of several and more complex 3D polygon objects requires
more sophisticated algorithms that are described below.

A haptic algorithm consists, as mentioned before, of both collision detection and
collision response. Collision detection algorithms have been studied in computer
graphics for several years, but these algorithms are not directly suitable to haptic
rendering. However, numerous concepts like space partitioning algorithms, local
search approaches and hierarchical data structures can be used. Space partitioning
algorithms encloses objects in smaller subspaces for fast detection of first contact.
Local search approaches searches only the neighbor primitives for collision and
hierarchical data structures are used for arranging links between the primitives that
make up the object.

To create collision detection for haptics, one has to check if the cursor has moved
through any of the polygons of the objects between loops. When using a haptic device
that only has one interaction point, the check can be done by comparing the line that is
created from taking the previous position of the haptic tool and the current position of
the haptic tool and see if this line intersects any of the polygons in the object. This will
however take a lot of time if the object has many polygons. If one for example uses a
space partitioning algorithm, like an octree, for the object and only check the polygons
that are close to the haptic cursor, the time can be severely reduced. An octree is a
simple but powerful tree structure that divides 3D objects or 3D wotlds into smaller
volumes to simplify the handling of what is of interest for the collision detection. A tree
1s built up for each object before starting the main graphics loop by first surrounding
the object by a box, which will become the root of the tree. The object is then divided
into half along the x-, y- and z-axis to create eight smaller boxes. These boxes become
children of the root. This iteration continues until a condition is filled, for example
when a certain number of polygons remain within a box or a certain depth in the tree
has been reached. Of course the iteration also stops if there are no more polygons in
the current box. Only the polygons enclosed within the box that contains the haptic
cursor needs to be checked. This way the octree provides a structure to handle real-time
collision detection with large data sets.

Chapter 2 — Haptics

\

Figure 2.3 An octree dividing a sphere one time into eight boxes. Only the part of the sphere contained within the
same box as the baptic device needs to be checked for collision.

After the collision detection has taken place the collision response or the force
generation occurs. If a polygon model 1s used to represent the object, then as said
before, the force will be in the direction of the normal and proportional to the
penetration depth of the currently active polygon. There are however still some issues
to take care of.

In graphics it is possible to make a polygon visible from different sides depending on
the order of its vertices. This also applies to haptics, where the polygons can be made
touchable on the front-face, back-face or both. This means that the list of vertices
should be ordered correctly to get the feedback in the correct direction.

Another issue is, knowing which polygon is active when sliding from one polygon to
another in an object. Using the projection of the polygon neighbors as borders for
changing the active polygons can create a jerk in the force. This happens because the
penetration depth can be different after the change has been made. A solution to this is
to use an edge plane between the polygons. An edge plane is a plane created from two
polygon vertices that the polygons have in common and the average of the normals of
the two polygons (See figure 2.4). Using this technique will make the penetration depth
consistent when moving from one polygon to another.

Polygons Polygons
:% Edge plane
Penetration depth before and after. Penetration depth before and after.

Figure 2.4 Not using edge planes may cause the penetration depth to become different when moving from one
pobygon to another. This will canse a sudden change in the resulting force. Using edge planes reassures that the
penetration depth is consistent when moving between polygons.

On top of this one may want to keep the edges smooth. Interpolating forces between
neighboring polygons, in a similar way to Phong shading in computer graphics can
achieve this. If the distances from the cursor to the edge planes are known, the normal
direction can be interpolated and normalized. Not using interpolation will result in
sharp edges, while using interpolation, and modifying the size of the area where
mterpolation should occur, will make the objects feel rounder than they actually are.

Chapter 2 — Haptics

Interpolation can be used to create smoother objects without having to use additional

polygons.

Figure 2.5 Interpolation of normals to get smooth edges. For example, if the haptic tool is at position A, the
normal is interpolated from the normals of triangles 1 and 2.

There are quite a few ways to imitate different material properties in haptics. One way
1s to distribute tangential forces that relate to the surface of the geometry. Similar to the
shading of bump mapping, the magnitudes of the force vectors vary depending on the
current height of a simulated ridge or a valley. An additional way to create haptic
textures for an object is to change the height of the surfaces with combinations of sin
and square waves. Another way of creating material properties is to use friction. To
create the feeling of friction, a force proportional to the normal force and in the
opposite direction of the movement is added. This model is known as the Coulomb
triction model. There are of course also other friction models that may be better suited
for haptics. There are of course several more methods to use when creating materials
and if one combines some of these methods, fairly realistic materials like sand, ice,
watet, plastic, wood etc can be imitated.

So far, objects have been assumed to remain static but one would also like to be able to
move, rotate and scale haptic objects. Transformation in haptics can be accomplished
easier than in graphics when using a haptic tool that has a single interaction point.
Instead of modifying the vertices of the object, the haptic tool is transformed to the
object space. This saves a lot of computation time and keeps the force calculation fast,
because the octree containing the polygons of the object can still be used. If the object
has been rotated or scaled the forces calculated are inconsistent with the wotld
coordinates. Therefore when an object has been scaled or rotated the calculated force
has to be re-scaled or re-rotated.

The objects have also been assumed not to be deformable. However in reality when
one applies force to an object it can sometimes change its form. For example, a lump of
clay deforms easily when force is applied. A way to solve this is to split polygons into
six new polygons. The new vertices act as base points along with the old vertices for
the deformation. When the user pushes into the polygon with the haptic tool, all points
are moved a certain amount depending on where the tool is situated on the polygon.
More problems arise when using deformable surfaces because vertices must be allowed
to move. If there are no restrictions on how the polygons are allowed to move, a
polygon can collapse on itself. Another problem is that the preprocessed octree that is
used for culling can be invalid.

To get a better understanding of haptic rendering one can consult the article about
haptic rendering in virtual environments [11] or the e-Touch programmer’s guide [3].

Chapter 2 — Haptics

2.5 Haptic API

A haptic API 1s an application programming interface that can be used to easily create
3D objects that can be touched. Such an API usually has some primitive shapes like
boxes, spheres and cones etc, which can be created by given the appropriate
parameters. They also generally have the possibility to create objects that are built up
with haptic renderable polygons or triangles. This is good because it makes the
transition from a graphic representation to a haptic representation easier, since the
objects can be represented in a similar way. In general the APIs also have support for
displaying all objects as both graphics and haptics. The graphic support can be more or
less built into the API.

Three different APIs that are of interest for this project are described in the following
three subchapters. In chapter 3 these APIs are evaluated to conclude which API that
best suits our needs.

2.5.1 GHOST API

GHOST (General Haptics Open Software Toolkit) is a software development toolkit
developed by Sensable Technologies, Inc. for creation of haptic environments and
manipulation of the properties, objects or effects within them, without focusing on
difficult force rendering. GHOST can be used with either one or multiple haptic
devices and it supports the complete family of Phantom haptic devices. The GHOST
SDK 1s available for Windows XP, Windows 2000, Windows N'T and Red Hat Linux
7.2 platforms and supports dual processors. The toolkit is written in C++ and is object
oriented and extendable through subclassing. The cost of a GHOST API license 1s
about 2500 €.

The key concept for creating haptic environments with GHOST is the haptic scene
graph. The scene graph 1s a hierarchical collection of nodes (see figure 2.6). The top
node of the tree is always the root. After that follows the intermediate nodes
(gstSeparator), which represent ways of grouping objects, scaling and orientation or
adding dynamics to the subtrees. The leaves (gstSphere and gstTriPolyHaptic) of the
tree represent geometry or interfaces. The haptic device is added as a leaf in the tree
(gstPhantom). When the user moves the haptic device contact point into objects or
effect areas, GHOST automatically calculates the correct force that the device should
deliver.

Another feature of GHOST API is the possibility to use dynamic nodes to add objects
that are affected by the force applied from the user. In other words, when utilizing
dynamic nodes the haptic device can be used to move around haptic objects.

The possibility to set surface properties for an object in GHOST is somewhat limited,
but it 1s possible to set damping, friction and spring constants for objects. Another way
may be to expand an effect class.

GHOST does not automatically start a graphics loop and render the objects in the
scene graph. If the developer wants graphics in the application he is free to use any
graphics library of his choice, but GHOST does provides some classes for using GLUT
and OpenGL.

10

Chapter 2 — Haptics

Root (gstSeparator)

gstSeparator

gstSeparator

gstTriPolyHaptic

gstPhantom gstSphere

Figure 2.6 An example of a GHOST scene graph.

For a more in-depth guide on how to use the GHOST SDK API and a complete
reference guide, see the GHOST programmer’s guide [2] and the GHOST API
reference [4].

2.5.2 e-Touch API

e-Touch is another API for haptic application development. It can be used to create
three dimensional applications that include not only haptics, but also graphics and 3D
sound. The API supports the whole family of Phantom haptic devices and the DELTA
haptic device from Force Dimension. An advantage of e-Touch is that it is a free open
module API. Open module is very similar to open source where the code is free, but
open module provides an opportunity to make some profit for submitted expansions.
Although the code is free, e-Touch utilizes GHOST to communicate with the Phantom
haptic drivers and therefore GHOST needs to be installed anyway.

The e-Touch API is written in C++ and makes use of the OpenGL graphics toolkit. At
the moment the API is available for Windows XP, Windows 2000 and Windows NT

4.0. It also supports dual processor symmetric multiprocessing.

e-Touch API consists of glue and modules. Glue is the foundation components for the
API and the modules are built upon these. The modules provide an additional set of
objects that make it easier to add functionality for application developers.

An application written using e-Touch divides application space into two parts, wotld
space and personal space. The wotld space is where the touchable objects and other
data are stored. The personal workspace is used for storing various controls and
indicators that are specific to the application. It provides a dashboard and window
system with buttons, sliders and knobs, that are controllable by touch. To switch
between the two spaces, the user only has to move the haptic cursor towards himself
until a wall is felt. Once the user pushes through this wall he enters the personal space.
However it 1s not necessary to use the personal space in an application developed with
the use of the e-Touch API.

The central object in an e-Touch program is the user. The user holds references to all
the other objects that are vital for force and graphic rendering, like the force rendering
process, the graphic rendering process, the current touch tool and the different spaces.
It is also the user object that i1s called to start an e-Touch application. To make the

11

Chapter 2 — Haptics

objects able to be rendered either graphically or haptically one needs to declare a
subclass for each object, one for graphic rendering and one for force rendering. When
rendering occurs, the current active space examines its collection of touchable objects
through a touch tool class and asks each of the objects to render themselves. The
rendering will then examine both the graphic rendering subclasses and the force
rendering subclasses of the objects to draw and sum up the correct force respectively.

Additional information about the e-Touch API can be found at the e-Touch homepage
[16] or in the e-Touch programmer’s guide [3].

=== E

Figure 2.7 A simple e-Touch application showing personal and world space.

2.5.3 Reachin API

The Reachin API is yet another C++ object oriented API for developing haptic
applications. It has been developed by Reachin Technologies AB. The API is available
for Windows N'T4 and Windows 2000 with Service Pack 5 or higher and it can take
advantage of dual processors. Reachin synchronizes the graphic and haptic rendering
with the use of Python, VRML and OpenGL. It supports the whole family of Phantom
haptic devices, Immersion’s Laprascopic Impulse engine and Magellan/SpaceMouse.

The API is quite expensive. A license that 1s locked to one node, which means that it
can only be used on a single computer costs 11600 €. If one wants to have a floating
license that can be used on several computers it gets even more expensive. A floating
license costs 13980 € and a license setrver that is also needed costs 5790 €.

The wotld is built up from a VRML file with added tags for haptics. With these tags,
stiffness, material, texture, dynamics, deformability etc can be added. The information
read from the VRML file is translated into a scene graph with different nodes. Node is
the main class that every class inherits from in Reachin. The graphic and haptic wotld is
rendered from the scene graph.

12

Chapter 2 — Haptics

The Reachin API is a much more complete API than both e-Touch and GHOST. It
supports all the kinds of features that are available in e-Touch and GHOST, like
primitive haptic objects and objects built upon polygonal models. Except for this the
API has its own dynamics system and different haptic effects that can be applied. The
most impressive features are however that it is possible to apply different haptic
textures to objects and that the API supports deformable surfaces.

There are already some pre-defined textures that can be applied to objects but there are
also possibilities to make one’s own. One way to do this is to use an image as a height
map over the surface. The image should be in grayscale, or else the blue color
component will be used as the height information. The highest parts of the surface are
represented by black color while the lowest parts are represented by white color. This
means that the closer to white it gets, the lower the surface will feel like.

Black color on the surface represent a complete plane surface and the closer to white it
gets the deeper into the object it will feel.

Deformable surfaces are supported in Reachin by surrounding the geometry definition
in VRML with special Reachin based tag. A special dynamic stiffness can be set for this
tag making it possible to get a different feedback when deforming the surface. This
teature makes it easy to create applications where it is possible to carve or mold
something.

The Reachin homepage [22] gives further information about the Reachin API.

13

Chapter 3 — Evaluation of haptic APIs

3 Evaluation of haptic APIs

In this chapter an evaluation of GHOST and e-Touch will be made and a conclusion
will be drawn whether e-Touch API, GHOST API or another solution will be used.
Reachin API will not be evaluated because the decision has been taken that its software
license costs too much to be used in this project.

3.1 GHOST

In this project we have used GHOST version 3.1. However, version 4.0 of GHOST
has recently been released. The new version does not provide any speed improvements,
but it does provide a new gstDevicelO class that can be used to create non-GHOST
controlled servo loops. It should also include several bug fixes and make it easier to
directly access the Phantom. This version was not available at Certec so we have not
been able to try if this would have been easier to use for integrating haptics in Crystal
Space or give other evaluation results.

A drawback for GHOST is of course that a software license costs money. However to
buy a license is not as expensive as buying a Reachin API license. A GHOST license
costs 2500 € compared to a Reachin license that costs beyond 11000 €. A haptic API
that has a reasonably cost or is completely free of charge would obviously be best
suited for this project.

One problem with GHOST is that because it is not a free API, the source code is
closed. This means that it 1s not possible to make changes where the haptics loop 1s
calculated. For example, it is not possible to change the way collision detection, culling
or force calculation 1s made. One way to introduce self-calculated forces however is to
use a special force field node that is calculated in every update. This way it is possible to
assign any forces at any time. Actually this is how e-Touch is originally constructed.
The e-Touch driver class uses a scene with only a gstPhantom node and a
gstForceField node. This is why, as mention before, e-Touch is not really a completely
independent API.

There is no support for assigning different haptic materials to surfaces. However in
GHOST there is support for dynamic objects. This means that one can add a dynamic
object with certain properties like weight, friction etc in the scene graph and then move
them around with the haptic devicee. GHOST makes all the necessary dynamics
calculations to get a realistic feeling of moving the objects. The dynamics calculation
seemed to work pretty good when we tested it. However there is a dynamics engine
plugin in Crystal Space that would be nice to utilize for the dynamics calculations. It
makes more sense to use this to update the haptic position than to update all dynamic
objects in Crystal Space with the positions calculated from GHOST. This way also
gives a more general solution with haptics and dynamics detached from each other.

A problem we noticed with GHOST happened when we moved objects that were built

up with polygons, t.e. gstlriPolyHaptic nodes. Although moving standard primitive
objects like spheres and boxes worked fine. The problem that occurred was that when a

15

Chapter 3 — Evaluation of haptic APIs

gstTriPolyHaptic object was moved towards the tool position of the Phantom, no
collision and force response took place. For example, we tried building a cube from
twelve triangles and created a gstTriPolyHaptic node from it. A similar scene graph was
built but instead of using a gstTriPolyHaptic node a gstCube node was used. If gstCube
was used and the position of the cube was updated, it was possible to feel all six sides
perfectly. If gstTriPolyHaptic was used instead one could not feel the side of the cube
that was moving towards the Phantom (see figure 3.1). This is obviously some kind of
synchronization problem in GHOST SDK that we could not change. The support at
Sensable was contacted but they had no solution to the problem. Maybe there 1s some
way to work around this, but it must be seen as a fairly big disadvantage.

O O
—_— — —_—
Cube moving right. No collision or The cursor has
Cursor moving left. force response. passed through
the cube.

Figure 3.1 No collision or force response when using gstTriPolyHaptic to represent the cube that moves towards the
Phantom cursor.

3.2 e-Touch

One of the main problems that we observed in e-Touch was the difficulty to disconnect
the haptics part, which we wanted to take advantage of, from the graphics part. As
mentioned before the central object in e-Touch is the user class. This class starts both a
graphic manager part and a haptic manager part. But if one only wants to use the
haptics part it 1s not just to remove the start of a graphic manager. Some graphics calls
were buried deep down in the code so it took a lot of time to understand and remove
this. Hopefully the graphics part will be better disconnected from the haptics part in
future releases of e-Touch.

Another issue that can be said to be of concern is that e-Touch is still in the beta
stadium. The current release used in this project is version 1.0.0 beta 3. When looking
through the code one notices a few hacks and comments at certain places. This means
that everything may not yet have been thoroughly tested and structured in the best way.

As it stands now e-Touch currently works on Windows NT, Windows 2000 and
Windows XP platforms. GHOST on the other hand also supports the Red Hat Linux
platform. This is kind of a disadvantage for e-Touch because Crystal Space also
supports the Linux platform and the plugin could then perhaps have been made to
support more platforms.

There is very sparse documentation about e-Touch. There is a programmer’s guide that
describes how to install and build e-Touch. It also describes the open module concept
and how haptic rendering works. But there are no good programming examples or any
good explanation how the classes are connected. To just get a perception of this one
has to examine the source code, which is somewhat annoying. There is also a reference

16

Chapter 3 — Evaluation of haptic APIs

manual that should describe the different methods and classes, but this is actually just a
reference built from the class comments in the code. These comments are also very
simple and sometimes during our evaluation, parameters to methods had to be assumed
and tested.

However, if one gets an overview of the API there is a big gain because when one finds
how everything sticks together, one can make changes to the servo loop and the force
calculations. In GHOST it is impossible to change how objects or polygons are culled
ot how the forces for them are calculated. Using e-Touch one has the possibility to pick
out and use only the interesting haptics parts. As mentioned before, these parts could
have been detached from the other parts of the API to a greater extent.

One of the key advantages of e-Touch is that its algorithm for calculating forces from
polygonal objects is faster than the one used in GHOST. In an article about the active-
polygon polygonal algorithm used in e-Touch and presented in 2001 [6], Tom
Anderson and Nick Brown show measurements of the haptic load peak and the haptic
load average when using e-Touch versus GHOST. The haptic load program that comes
with GHOST 3.1 was used for the measurements. This program measures how high
the load is on the process that handles the haptic calculation. Four different objects
were used in the test. They had different numbers of polygons and some had more
complex topology. For all the objects the active-polygon polygonal algorithm had both
lesser average haptic load and lesser peak haptic load. Even if this measurement 1s done
with GHOST 3.1, the new version 4.0 has not changed anything in its haptic rendering
algorithm. However, the preprocessing load times were almost always longer when e-
Touch was used. This is the price one has to pay for getting a lower haptic load.

A difficulty we noticed with e-Touch was that when one built objects with polygons
that did not share vertices, but overlapped each other like in the case of a corner of a
wall with thickness, it was possible to feel through the small opening between the walls
(See tigure 3.2). This problem was not noticed when using GHOST. Although in some
cases this could be useful, for example in a dynamic environment where a box stands
on a floor and the user wants to be able to put the haptic tool under it and lift it. A
solution to getting walls with thickness to work is to move the vertices so they meet at
the inner and outer corners. This way it is not possible to push through the walls. On
the other hand it could be time consuming to edit all objects that have the same kind of
problem. The problem lies within the active-polygon polygonal algorithm and by
somehow changing how the polygonal haptic objects are built or rendered one might
overcome this problem. However this probably means major changes to the API.

—
Possible to Not possible to
push through. push through.

Figure 3.2 Wall corners seen from above. Problems when vertices are not shared.
e-Touch has no support for dynamic objects and no support for applying different

materials to surfaces. If one wants these properties they have to be implemented in the
computePointForce method of the object force renderer. Some examples of this are

17

Chapter 3 — Evaluation of haptic APIs

demonstrated in a few demos that come with e-Touch. One demo shows dynamics by
using balls attached to rubber strings and another one demonstrates different textures.
But one should have in mind that all physics and texture calculations have nothing to
do with the API and have been implemented especially for the demo applications.

3.3 Conclusions

Due to some decisive issues it was decided that we were going to use parts of the e-
Touch API for our solution. Two major factors were the main reasons. One was that e-
Touch was open module and when using e-Touch one had the ability to pick out
important parts, change parts and see how things were implemented. We noticed that
not all parts were of interest and we saw that it would probably work to pick out
classes, make some changes to them and get them to work together with our
implementation.

The other main reason was the fact that the haptic polygon algorithm in e-Touch was
taster. Knowing that we had a fast haptic rendering algorithm, we knew that we would
be able to use objects with more polygons and possibly utilize more graphic etfects in
Crystal Space, without the servo loop taking to much time.

This choice of solution gave us a way to avoid having to implement the haptic
rendering algorithm ourselves but we would still be able to add or modity code 1n it.

18

Chapter 4 — Game Engines

4 Game engines

4.1 Introduction to game engines

When creating a 3D game one needs software that handles the virtual environment and
renders it to the screen. There is also need for software that handles for example
physics and collision detection. These tasks are handled by the 3D game engine. One
can say that the game engine is what powers the game. It is a platform upon which the
game 1s built and it provides functionality that is common to all games, such as the
things mentioned above and also the access to various hardware devices, for example
keyboard, mouse, joystick, graphics accelerator, network card and so on.

The advantage of a 3D game engine is that it 1s not necessary to create a new game
engine for every new game. Instead a developer can reuse the same game engine over
and over again. This saves the game developer from a lot of work when creating new
games, but also makes it easier to enhance or add features to the game engine itself.
The game engine performs a lot of time consuming tasks, so every enhancement that
can be made to the engine may provide for new possibilities for the game developer.

4.2 Crystal Space

The game engine that is used in this project is called Crystal Space. It is a free 3D game
development kit written in C++ and it is being developed as an open source project.
Crystal Space has most of the features that are needed in a 3D game engine, but it is
still under development, which means that it is constantly being improved with new
features. Since it is an open source project with hundreds of people working on it all
around the wotld the documentation of the system sometimes is worse than desirable
which can make Crystal Space a quite difficult system to use. However it is the open
source development approach that makes Crystal Space worth looking at in the first
place. Crystal Space falls under the GNU copyleft license for libraries, which means
that anyone is allowed to use it in their products and even to sell their products using
Crystal Space provided that Crystal Space itself remains free. This approach makes the
Crystal Space development kit desirable to game developers because it is free of charge
and since it is open source they can even make changes in the game engine itself to
customize it to their own game.

As mentioned above Crystal Space has many features. For example, it supports six
degrees of freedom, colored lighting, mip-mapping, sectors and portals, mirrors,
procedural textures, particle systems, OpenGL rendering, collision detection and
physics, and it also has a flexible plugin system.

The remains of this chapter will provide an explanation to how the Crystal Space game
engine functions. The default main loop is explained and also how it controls the
execution using the event system. How a 3D environment is built up using meshes and
also how this environment can be rendered to the screen are other topics that will be
given an explanation here. There is also an explanation of the collision detection system

19

Chapter 4 — Game Engines

as well as the dynamics system that are used in Crystal Space since they are important to
our project. To get a more comprehensive knowledge about Crystal Space one should
examine the user’s manual [1]. The game engine is updated fairly often so it can also be
useful to check out the homepage [13] for the latest news. There 1s also a Crystal Space
developer homepage [14] with a forum and mailing lists.

4.2.1 The main loop

Crystal space is an event driven game engine, which means that it uses events in the
communication between different parts of the engine to inform when something has
happened. Each part of the game engine listens to events that are important for that
part and then takes the appropriate actions to deal with the event. A Crystal Space
application 1s built around a default main loop that controls the event handling. The
loop is started when the application has been set up and is then active during the entire
execution of the application. In a graphics application, an iteration of the loop would
typically result in a new frame that is rendered to the screen.

During the iteration, any event that has occurred since the last iteration can be taken
care of. The application can register an event handler to the game engine, allowing the
application to communicate with different parts of the game engine through events that
are posted to the system event queue. For example, if the user decides to shut down the
application using a keyboard command the application will be notified of that through
an event in the event queue. This provides an opportunity for the application to take
the appropriate actions and shut itself down in a safe way, but it can also broadcast a
termination event to the other parts of the game engine thus providing for a safe exit of
the entire system.

The graphic rendering is also controlled by the default run loop. In every iteration, the
loop broadcasts events to all parts of the game engine and to the application that
mitializes the rendering of the frame. When the application is notified of this it
calculates any camera movements or changes in the environment that has occurred
since the last frame and then tells the game engine what should be rendered. The game
engine then processes the information and finally renders the picture to the screen.

4.2.2 The 3D world

In 3D games an important part is of course the 3D world in which the game takes
place. In Crystal Space all the geometry in a world is built up by mesh objects. A mesh
1s a collection of convex polygons that are defined by their vertices. To create a mesh
object it is therefore needed that all vertices of the object are defined and assigned to
convex polygons to create the surface of the object. Only one side of a polygon is
visible and in Crystal Space the vertices of the polygon are oriented clockwise. The
other side 1s culled away by the 3D renderer to minimize overdraw. Except for using
polygons as building blocks of meshes, Crystal Space also supports Beziér curves to
represent curved surfaces. There are a few different types of mesh objects that are
suitable for different purposes. Most important are the thing and the sprite mesh object
types which are most suitable for static and dynamic objects respectively.

The mesh objects are only the visible content of the world. The wotld itselt consists of

larger building blocks called sectors. A sector is basically a region of space that
tunctions as a container for mesh objects. If the designer of the world does not define

20

Chapter 4 — Game Engines

sectors manually Crystal Space will place all geometry in a single large sector. Using
more than one sector can often enhance the performance of the wotld since each
sector 1s handled separately from the others by the renderer. For example, if the world
consists of a building with several rooms in it one probably will not be able to see parts
of all rooms from where one is standing. Using different sectors for every room can
cull away entire rooms from the rendering process making a noticeable performance
difference. If only one sector was used all objects in the entire building would have to
be considered by the renderer (See figure 4.1).

1 I
Sector Sector Sector

< < \\ Portal
AN

Figure 4.1 Using sectors can cull away lots of objects from being rendered. Even entire rooms can be culled away.

When several sectors are used they will have to be attached to each other. For this
purpose Crystal Space uses portals, which functions as gateways between different
sectors. A portal can be assigned to a polygon of a mesh object and directed to any
sector in the wotld. Normally a portal connects two sectors that are located next to
each other, but they can also point to sectors somewhere else in the world creating
some kind of teleportation effect. They can even point back to the same sector creating
a mirror. When a sector is rendered and the renderer comes across a portal the game
engine makes a recursive call to render the sector seen behind the portal. Rendering
portals will be explained in more detail in the next section.

4.2.3 Rendering

When the information about what should be rendered has been collected from the
application, the 3D renderer has to perform some important tasks before the picture is
shown on screen. As mentioned above only one sector is handled at the time, so if the
current sector contains no portals these tasks are done only once.

First of all the vertices of all the objects in the current sector are transformed from
world coordinates to camera coordinates. The game engine then loops over all
polygons of all the objects contained within the sector and does the following for each
polygon. The back-face culling algorithm 1s run on the polygon to find out if it has its
front turned against the camera or if it can be discarded. If it faces the camera the
polygon is clipped against the view plane and also against the view polygon which is a
2D polygon defining the scope of the camera. Clipping against the view plane removes
polygons that are behind the camera. A texture is mapped onto a visible polygon and
the resulting 2D polygon is then drawn onto the screen.

If the polygon should turn out to be a portal instead of a regular polygon it is not
drawn onto the screen. Instead the sector behind it should be drawn, so a recursive call
to the routine explained above is made using the portal polygon as the new view
polygon. The sector behind the portal is then drawn in the same way as the first sector.
By using the portal as the view polygon everything that is not visible through the portal
will be culled away.

21

Chapter 4 — Game Engines

4.2.4 Collision detection and dynamics

Crystal Space provides collision detection based on the Robust and Accurate Polygon
Interference Detection algorithm (RAPID). This algorithm is applicable to all types of
polygonal models and thus, can handle objects of all shapes and sizes. RAPID
represents an object as a tree structure, which is created by dividing the object into
smaller and smaller boxes. The tree structure is used to speed up the search for
colliding objects. There is also another collision detection system in Crystal Space that
can be used called OPCODE. However this has not been utilized in our applications.

When collision detection is made, two objects at a time are tested against each other.
This test is made by traversing the trees for both objects, searching for overlapping
boxes. If there are one or more ovetlaps, there is a collision between the objects and we
also know which parts of the objects that collide. Crystal Space saves the colliding
polygons in a list that can then be used by the application to determine what should
happen to the two objects after they have collided.

To do collision detection in Crystal Space a certain collider object can be created for
each mesh object that can possibly be involved in a collision. The collision test is then
mnitiated from the application by sending two colliders at a time as parameters to a
method in the collide system. Testing two objects that are far apart for collision is not
needed and since the RAPID algorithm does not cull away such objects before
traversing their trees, it is up to the Crystal Space application to cull away them from
the collision detection to minimize the calculations. For example, this can be done by
first testing the bounding spheres of the objects for ovetlapping. If the bounding
spheres do not overlap then the objects themselves cannot possibly collide and
therefore collision detection 1s unnecessary.

Another way to get collision detection is to use the dynamics plugin. This plugin is
based on ODE (Open Dynamics Engine) [17], which is a free library for simulation of
rigid body dynamics. A big advantage with the dynamics system is that it takes care of
both the collision detection and the collision response. The collision response 1s what
should happen with the objects after they collide, for example if they should stop,
bounce or perhaps rotate. Rigid body objects are created for the geometry and are then
added to the dynamics system. The bodies can be made either static or dynamic. This
makes it possible for the dynamics engine only to do force calculations on the objects
that can actually move. The objects that are made dynamic are included in the
calculations that are done by the dynamics system every time it is updated from the
application. If an object 1s affected by gravity or involved in a collision with another
object a force is calculated by the dynamics system and then applied to the object. A
new position for the object is then calculated and the object is moved. Friction, density,
clasticity and a mass should be assigned to every dynamic object for realism. As
mentioned earlier the objects may be affected by gravity. The gravitational force is set
in the dynamics system and is then applied to all dynamic bodies within that system,
causing them to fall down.

The dynamics system is so far quite limited because one can only add objects that are
shaped like boxes, spheres, cylinders and planes. This makes it hard to make it useful in
a dynamics simulation where objects of other shapes are used. Hopefully this will
change in a not too distant future.

22

Chapter 4 — Game Engines

4.3 Map creation and Valve Hammer Editor

To create 3D wotlds for computer applications some kind of tool is needed. In our
project we use the Valve Hammer Editor, formerly known as Worldcraft. Valve
Hammer Editor is intended to be used for creating maps for Half-Life, but since
Crystal Space comes with a program that converts maps from the Valve Hammer
Editor map format to the XML format that 1s used by Crystal Space it is very suitable
to use this editor. Creating a world without using some kind of map editor would be
almost impossible. Constructing a very simple map consisting of only a few objects
would of course be possible, but it requires defining each vertex and each polygon by
hand. A large world containing a lot of objects is simply too complex to be created
without a graphic editor.

With Valve Hammer Editor it is possible to create a lot of different objects. Of course
there is support for basic geometry like cubes and cylinders, but one can also combine
these to make complex objects. There are also possibilities to manipulate vertices and
edges if the basic geometries are not enough. Use of predefined objects is also
supported and since there are a lot of people creating maps for different games there
are a lot of objects available to download from the Internet.

Apart from ordinary objects Valve Hammer Editor also supports entities. Entities can
be things that are placed within the map, but have no geometry or mass. This could for
example be a light, a sound or a starting point for the player. An entity can also be
assigned to an existing object making it possible to attach certain information to that
object. The information is saved in the map file and can then be retrieved by either the
game engine to correctly render the object or by the application to determine what
should happen when the user encounters the object.

As mentioned above, Crystal Space does not use the same map format as is used by
Valve Hammer Editor. Therefore a small program named map2xml is needed to make
the conversion of the map from the Valve Hammer Editor format to the Crystal Space
XML format. When the map is used by an application for the first time, or when the
map has been changed, the “-relight” option must be used on the command line to
recalculate the light maps.

When using Valve Hammer Editor we found that there was a problem when using the
vertex manipulation tool. Sometimes the objects created with the use of vertex
manipulation simply disappeared when the map was saved. It seems that the problem
lies within Valve Hammer Editor and not in the conversion between the different map
formats. In any case one should be aware of the problem when using the vertex
manipulation tool.

When creating a world that should be used together with the haptic system there are a
tew things one has to think about when creating the map. Appendix C contains more
information about these issues and also a guide on how to use Valve Hammer Editor to
create maps that work well together with the haptics.

23

Chapter 5 — Design

5 Design

When we started to look at how to integrate haptics with the game engine, we decided
quite fast that a plugin to Crystal Space was the best way to do it. Implementing the
haptics part as a plugin divides up the functionality in a very nice way so that the
haptics does not affect other functionalities in the game engine.

This chapter 1s a detailed description of the design of the plugin, but it also presents the
problems that we encountered in the development stage and how we chose to solve
them.

5.1 Task

The intention with the plugin is that it should provide a haptic representation of the
geometry contained within the Crystal Space engine making it possible to feel the
environment by using the Phantom haptic device. It should also be able to handle
movement of the camera and changes in the environment such as movements of
dynamic objects. When the camera is moved in the application the Phantom should
give the sensation of moving with the camera. The Phantom workspace can be thought
of as being attached to the camera and oriented in the same direction. When an object
1s moved in the application, for example due to gravity, and collides with the Phantom
pointer, the movement should be felt through the Phantom. This should also work in
the other direction, that is, if the user presses the Phantom pointer against an object
that is a dynamic object, the object should start to move if the force is sufficient.
Furthermore there should be a possibility to set different haptic properties for objects.
By moditying these properties the user will be able to feel a variety of sensations.

5.2 Problems and solutions

5.2.1 Representing the touchable world

One of the first big problems that had to be solved during the development of the
plugin was how to represent and store the haptic objects that build up the touchable
wotld. Since Crystal Space has no support for haptic devices the mesh objects used in
the game engine are not designed to be used to represent touchable objects. The e-
Touch API however, uses mesh objects that contain their own algorithm for calculating
torces, which is exactly what we need for our plugin. The e-Touch classes contained a
lot of code that we had no use for in our plugin. Among other things, it contained code
tor showing the objects graphically in an e-Touch environment, but since we are using
the game engine for graphics, we decided to remove all such unnecessary code. The
concept of using a special force renderer class for each object was also removed and the
force algorithm was moved into the object class itself.

Our solution to the problem of how to represent the touchable world was to create a
world consisting of touchable objects that we kept inside the plugin and then
synchronize this with the world used for the graphic representation by the game engine.
Using this approach, all mesh objects loaded into the game engine have to be copied.

25

Chapter 5 — Design

This means that a new haptic object has to be created for each object in Crystal Space.
Since Crystal Space supports mesh objects constructed from polygons with more than
three sides and the mesh objects we wished to use in our plugin only uses triangles, it
was not as easy as we thought. To solve this problem we had to create the haptic
objects from scratch, which means that all vertices had to be copied and then each
polygon had to be converted into one or more triangles and added to the new haptic
object.

So far we have only solved the problem of creating the objects. The other problem still
remains, that is, how to store these object inside the plugin. The haptic calculations
need to be very fast because the Phantom device has to be updated once every
millisecond. Since the forces are calculated inside the haptic objects, a way to cull away
objects that are far from being touched by the Phantom, to reduce the amount of
calculations, would be a good thing.

To store the objects we decided to use an ordinary vector which is very easy to use and
which allows for random access by indexing. To get an efficient culling of objects we
decided to use an octree to store indices into this vector. An octree is a space
partitioning structure used for efficient culling of objects. The general structure of an
octree is described in chapter 2.4. However the content of the octree described in
chapter 2.4 differs from the content of the octree used for culling away haptic objects
from the force calculations. As mentioned eatlier this octree contains indices into the
vector holding the haptic objects. It therefore has to span the entire haptic world. The
leaf nodes of the tree are either empty or they contain a list with one or more indices.
The reason that we use indices to represent a certain haptic object in the octree 1s that
each object can span several different tree nodes. Having the tree containing the actual
mesh objects could mean that an object would have to be copied several times, which
in turn would result in a huge waste of memory space. By traversing the tree, checking
the position of the Phantom against the span of the nodes, the objects that are close to
the Phantom cursor can easily and efficiently be found.

A problem that we encountered when we had first implemented our octree was that a
very large object had to be represented in a lot of tree nodes that actually did not
contain the object. This problem occurs because we check the bounding boxes of the
objects against the bounds of the tree node to find out which objects that overlap with
the node. The problem is easiest to understand when considering the outer walls of a
building containing the entire world. If the walls are created as a single object the
bounding box of this object will overlap with every node in the octree, even though the
walls are actually only contained within the outermost octree nodes. The reason that
this is a problem is because when this happen, no tree nodes will become empty and
therefore the tree will grow to its maximum size. This means that the tree becomes less
efficient and that is against the whole idea of using an octree.

To solve this problem we decided to give the designer of the world the opportunity to
mark large object by assigning a certain name to them. The objects that are marked are
then left out of the octree. Using this approach they are never culled away from the
torce calculations, but since they would have been represented in every node of the
tree, they would not have been culled away anyway.

26

Chapter 5 — Design

The optimal depth of the tree of course depends on the amount of objects within the
world. A wortld containing a lot of objects needs a larger tree than a world containing
only a few objects. However a maximum depth of five or six will probably be
appropriate for most wotlds. The biggest problem with creating a tree that is very deep
1s that the time to create the tree grows rapidly with each new level. This means that the
pre-processing time will grow very fast and that the amount of memory acquired
becomes much larger.

5.2.2 Static and dynamic objects

There are two different kinds of objects that build up a haptic 3D environment. Those
are static and dynamic objects. The static objects are those that always stay in the same
position. Static objects could be walls of buildings, stairs or furniture for example. Since
the static objects never move they are relatively easy to take care of. Dynamic objects
however are objects that can be moved in some way. A dynamic object could be a ball
or a car for example. When using dynamic objects, an application will not be as fast as
if only static objects were used. Moving an object involves a lot of calculations and it is
not as easy to cull away dynamic objects from the force calculations.

In the beginning of the project we thought that adding support for dynamic objects to
the plugin would be a too difficult and time consuming task for us to do, so we were
prepared to create a plugin that would only be able to handle static objects. Some time
mnto the implementation of the plugin though, we found that this probably was not
such a difficult task after all, so we decided to add support for dynamic objects. Being
able to use dynamic objects allows for the creation of much more realistic worlds and
provides the developer with lots of possibilities when creating applications. Another
idea is that the plugin should be able to be used with the dynamics system plugin that
comes with Crystal Space.

When an object is moved 1n a Crystal Space application its transform is automatically
updated. The transform of an object holds information about how much the object has
been moved, rotated and scaled from its original state. This information is the same for
the corresponding haptic object so it does not have to keep track of its own transform.
When computing the forces from an object the Phantom position is transformed to the
local coordinate system of the object. This makes it possible to move objects in the
application and to feel the movements through the Phantom device. For example, this
can be used by a dynamics system simulating gravity. If an object is affected by gravity
it will fall to the ground if nothing holds it up. When touching the object with the
Phantom one can actually feel the object falling.

But there 1s also another possibility of moving objects, and that is to push on them
using the Phantom. This works in the opposite direction, that is, if one pushes an
object one wants to see it move on the screen. To solve this task we used the fact that
the dynamics system in Crystal Space uses forces to move an object. In other words,
when a force is applied to an object and the force is large enough, the object moves in
the direction of the force. This fits very well with the Phantom device since the force
with which the user pushes on an object can be fetched from the device. By fetching
this force and applying it to the corresponding object in the dynamics system, the user
can see the object move as he pushes on it. But it is not enough to see the object move.
One would also like to feel it move as one pushes on it. This however, takes care of

27

Chapter 5 — Design

itself since an object that is moved in Crystal Space can be felt moving with the
Phantom, as described in the previous paragraph.

We do not use any algorithm to cull away dynamic objects from the force calculations.
Storing them in an octree as with the static objects would result in the octree having to
be updated every time an object is moved, which would be quite inefficient. During the
construction of the haptic world the plugin checks if the objects should be considered
as movable and if so it does not add them to the octree. Instead these objects are kept
in a vector and are considered for collision every time the force calculations are made.
Objects that are considered to be movable by the plugin are movable things and sprites.

5.2.3 Synchronizing graphics and haptics

Because of the method we used to represent the haptic world separately from the
graphic world, we faced the problem of having two different sets of meshes that
needed to be synchronized. The plugin would not be very useful if what the Phantom
device 1s touching is not what is shown on the screen.

Chapter 5.2.2 described how the objects can be moved by the application and by the
Phantom respectively and how these movements were communicated between the two
parts. But there are other things except for the objects that can move and the most
important is the camera. We wanted to be able to create a world were we could walk
around, touching things that were located in different parts of the world. This means
that the position of the Phantom workspace had to follow the camera position in some
way.

The plugin uses a small GHOST scene graph, where the Phantom node is located
under a gstSeparator node (see figure 5.5). This separator node can be used to translate
and to rotate the workspace of the Phantom. The Phantom position is relative to its
workspace, so when moving the location of the workspace, the position of the
Phantom follows. This behavior 1s what we took advantage of when creating the plugin.
By setting the workspace of the Phantom to follow the camera movements the
developer can build the application so that when the user steers the camera, for
example by using the keyboard, he also steers the Phantom in the same way.

5.2.4 Calculating forces

The force calculations are performed once every servo loop and are initiated by a call
from the servo loop to a callback function that is implemented in the plugin. The first
thing the plugin does when this call comes is to find all static objects that should be
considered for exact collision detection. The position of the Phantom stylus is passed
as an argument to the callback function and it is this point that is used when traversing
the octree. If the leaf that contains the point is empty there are no nearby static objects,
except if the developer has tagged certain objects like outer walls as large objects, to do
collision detection on. If the leaf on the other hand contains a list of indices, this list is
used to get the haptic objects and to invoke their force calculation algorithm. This
algorithm performs the exact collision detection, and if there is a collision, calculates
the normal force, which is proportional to the penetration depth of the cursor. It also
depends on the stiffness coetficient that can be set for the haptic objects. The force is
then applied to the Phantom, creating the illusion that the user is touching the surface

28

Chapter 5 — Design

of the object. If the point should collide with more than one object, the forces from all
these objects are added.

Pos 2
Figure 5.1 The normal force is proportional to the penetration depth.

The procedure for calculating forces for dynamic objects 1s a little different from the
procedure mentioned above. The main difference is, as mentioned before, that the
dynamic objects are not contained within an octree. Instead all dynamic objects are
considered for the exact collision detection. Since the dynamic objects move around,
the Phantom position has to be transformed into the object’s local coordinate system
before the force calculation algorithm can be applied. This is done by using the
transformation matrix contained within the Crystal Space representation of the object.

Finally the force from the dynamic objects is added to the force from the static objects
and the resulting force is then sent to the Phantom device. The force sent to the
Phantom can only be represented as a single vector so it is important to have summed
up the forces acting on the stylus to a single force before delivering it to the device.

5.2.5 Friction

If the forces are calculated without taking friction forces into account the objects
become very slippery, making it difficult to feel the shape of the object. Friction is also
very important when trying to create a realistic feel to an object. Because of this we
decided to make an attempt to add friction to our force calculations.

Friction is a force acting between two bodies opposing their relative movement.
Usually, we distinguish between static friction and kinetic friction. Static friction is the
trictional force working on a body at rest, opposing setting it into motion, whereas
kinetic friction is the frictional force working on a body that is already in motion. In
general, static friction is larger than kinetic friction [18]. As seen in figure 5.2, as the
applied force increases, the friction grows until it reaches its maximum value. In this
area the object remains stuck in its original position. As the applied force grows larger
than the maximum value the object slips and starts to move. The friction now decreases
until it reaches the kinetic friction value and the object continues to slide.

The friction force is proportional to the normal force, which is the force that presses
the two objects together. The equation is written:

F,=p-N (5.1)

where p is the friction coefficient and N is the normal force [8]. Keeping the normal
torce constant and increasing the applied force will cause the friction to change in the
way shown in figure 5.2.

29

Chapter 5 — Design

b
pgex
M

Static fiiction Kinetic firiction ol F

Figure 5.2 The friction (1) varies with the applied force. When the static friction reaches its largest value (u) the
object starts to move. At this point the friction will normally decrease to a constant value (uz).

The friction model that we chose for the plugin can be explained with two points
connected by a spring (see figure 5.3). The first point is the stick-point, which 1s the
point on the surface of the object where the Phantom cursor first touched down. The
other point is the position of the Phantom cursor. Depending on the distance between
the two points the model has three different states [9].

W

X
Figure 5.3 The virtual spring that connects the stick point (W) and the position of the Phantom (X).

The first state is when the cursor moves within a very small radius of the stick-point. In
this case the friction force will be zero. This state is needed because there are small
vibrations in the position of the Phantom cursor, due to small involuntary hand
movements. When the distance between the two points exceeds a certain value the
force is set proportional to the distance. In this state the model acts like a spring,
pulling the Phantom towards the stick-point. The sensation is that the Phantom is stuck
in one position. Stretching the spring beyond its maximum will cause the transition into
the sliding state. In this state the stick-point is moved along with the cursor and a
constant friction force is applied.

Since the cursor is not restricted to the surface of the object it touches, but actually
moves around just under the surface, we use the surface contact point when calculating
the friction and not the actual position of the cursor. The surface contact point is the
point, on the surface, that is closest to the cursor. By doing this we assure that the
triction force 1s always a tangential force.

sCP1 Fy RCP2
o -+

- ___
Pos 1 .
Pos 2

Figure 5.4 The friction force is calenlated by the use of the surface contact point (SCP) and not the actual cursor
position. This is to matke sure that the friction force is parallel to the surface of the object.

30

Chapter 5 — Design

As mentioned above the friction force should be proportional to the normal force and
thus the resulting friction force is scaled using the normal force calculated from the
penetration depth.

5.2.6 Viscous objects

We wanted to try to implement some other type of object than the solid objects that
were part of the e-Touch API. We chose to implement support for liquid objects in the
plugin. When moving around in water for example, the movement is damped due to
the viscosity of the fluid. The damping force is proportional to the velocity of the
object, so implementing this effect seemed to be a problem that was not to difficult to
solve.

We decided to implement the force calculations in a way similar to the sliding part of
the friction calculation. That is, by using a point sliding along behind the cursor. The
difference is that with friction the distance between the two points is kept constant to
ensure a constant friction force. In this case however, the distance continues to grow as
the velocity of the cursor increases, causing the damping force to grow with it.

A solid object and a liquid have so different characteristics that we decided to create a
new kind of object to represent liquids. The object is created as a triangle mesh but
instead of pushing the Phantom out of the object when it penetrates the surface, a
smaller force is applied opposite the direction of movement, making it possible to
move around inside the entire liquid object.

We decided to reserve the Crystal Space name “liquid” for this type of objects. This
means that an object named “liquid” is recognized by the plugin and a liquid object is
created. To be able to create liquids with different characteristics it is also possible to
decide the viscosity of the object. Read more about this in appendix C.

5.2.7 Basic geometry objects

Optimizing performance 1s a key issue when working with haptics, so the use of mesh
objects 1s not really the best choice for objects with basic geometry such as boxes,
spheres and cylinders that can be represented by their sizes, instead of by a mesh of
triangles. A box can be created from the length of its sides, a sphere by its radius and a
cylinder by height and radius. Such an object is easier to work with than a triangle mesh
and the force calculations are easier and faster than for a mesh object.

To take advantage of this fact, we decided to take the box, sphere and cylinder objects
from e-Touch and rebuild them so that they would fit into our plugin, as we did with
the triangle meshes in the beginning of the project. When this was done we found that
there were some difficulties in creating the objects in the correct position in the world.
The problem occurred because the objects loaded from a map-file have their vertices in
wortld coordinates, meaning that they all have their origin in the origin of the world. We
decided that we would keep having the world coordinates for static objects and use the
object’s transform from Crystal Space for dynamic objects. Because of this the basic
geometry objects can only be used for dynamic objects.

31

Chapter 5 — Design

5.2.8 Different coordinate systems

A problem that we struggled with during a big part of the development process was
that Crystal Space, e-Touch and GHOST does not use the same coordinate system.
The problem is that Crystal Space and GHOST uses a right-handed coordinate system
while e-Touch uses a left-handed coordinate system. Because of this the haptic world
had to be built as a mirror of the graphic wotld. To solve this we simply decided to
change the sign of the z-value on all coordinates and force vectors that were
communicated between parts that used different coordinate systems. This does not
affect the way the world has to be constructed.

The problem however, became greater when we decided to add support for moving
objects. Moving them in the right direction was not very hard but getting them to rotate
correctly took quite some time to figure out. After a lot of testing, we eventually found
the correct series of transformations that had to be made to get the Phantom position
correctly transformed into the local coordinate system of the object and the calculated
forces correctly transformed back to the world coordinate system.

5.3 Program structure

5.3.1 GHOST and e-Touch parts used

After the evaluation of GHOST and e-Touch we decided only to use a small part of
their functionality and to implement the rest ourselves. For example, the part of the
plugin that keeps track of all the haptic objects and the part that manages the force
collection from the objects are not taken from the APTs.

As in e-Touch, we use a small GHOST scene graph to be able to communicate with the
Phantom device. The scene graph contains a gstPhantom node, which is needed to be
able to retrieve the status of the Phantom and also to be able to change its status. In
our case it is the position of the stylus that is retrieved from the Phantom device and it
1s the position of the Phantom workspace that needs to be changed when the camera
moves around in the 3D environment. There is also need for a gstForceField in the
scene graph. The force field is needed to be able to send forces directly to the Phantom
because GHOST is not used for the haptic calculations.

Root (gstSeparator)

gstSeparator gstForceField

gstPhantom

Figure 5.5 The small GHOST scene graph used in the plugin to communicate with the Phantom.
Other things that we also use from e-Touch are modified versions of the haptic objects

classes. These classes are used to represent the objects and they contain the force
calculation algorithms. To make these classes fit into the rest of our plugin we

32

Chapter 5 — Design

examined them thoroughly. We then removed as much code as possible that was not
needed for the force algorithm to work and made a few changes to create a more
suitable interface. There are also other parts of the e-Touch API that are used but they
have not been modified in any way.

5.3.2 Classes and structs

With this section we wish to show how we have divided the functionality of the plugin
into different classes. Here is a small description of each class and a UML class-diagram
to show how the different classes are connected to each other. The e-Touch classes
used in our implementation have all been modified in some way. However to get an
overview of their original functionality one can also have a look in the e-Touch
reference manual [5].

iPhantom

The iPhantom struct serves as the interface of the plugin to the Crystal Space
application. To fit into the Crystal Space Shared Class Facility (SCF), this interface 1s
derived from the iBase class. Since it is an interface, iPhantom contains no member
function implementations and no constructor and thus, cannot be instanciated. The
functions declared by this interface are implemented in the csPhantom class.

csPhantom

This class holds the implementations of the functions declared in the iPhantom
interface. It 1s through these functions that the application communicates with the
plugin. For example, the application can set the list of mesh objects that should be
represented as haptic objects by the plugin. It can also start and stop the servo loop.
When the servo loop is up and running there are functions that can be used to fetch the
position of the Phantom stylus and to change the position and orientation of the
Phantom workspace according to the camera movements in the application.

World

The Wortld class can be seen as a container of all the haptic objects. It is responsible for
creating and keeping a haptic representation of the 3D environment used by the
application. To keep track of the static objects contained in the wotld, an instance of
the Octree class is used. Wotld also collects the forces from the haptic objects.

Octree

The octree 1s used for culling away objects that are not in the proximity of the
Phantom, thus providing a performance increase and making it possible for the plugin
to handle a larger amount of objects. The Octree object is responsible for storing the
root of the tree and providing access to the tree. The octree itself actually consists of
Node objects.

Node

The node objects are what build up the octree. Every node that is not a leaf of the tree
has eight child-nodes. Each node represents a certain volume of space inside the world
and the children of the node each represent an eighth of this volume. A leaf of the tree
1s either empty or it contains a list with one or more indices representing haptic objects.
An object 1s added to the list if its bounding box overlaps with the node.

33

Chapter 5 — Design

etObject

The etObject is the base class for all haptic objects in e-Touch. To create a new kind of
haptic object this object should be used as the super class. The class has been slightly
modified in our plugin compared to the e-Touch implementation. Every etObject has a
certain stiffness. This has been utilized in the plugin along with an added property for
triction. All graphics properties have been removed from the original e-Touch version.

etHapticTrisurface

The etHapticTrisurface class is what represents a general haptic object. The
etHapticTrisurface class is derived from the etObject class. It contains a triangle mesh
defining the shape of the object and also an algorithm to efficiently calculate forces that
are caused by the Phantom position being inside the object.

etOctTree

The etOctTree class is used by the etHapticTrisurface for the collision detection part of
the force calculation. By turning the triangle mesh into an octree structure, the collision
detection can be made very efficient. It basically works in the same way as the octree
used for culling away static objects. However this octree is used to cull away triangles
on a single object.

etBox

The etBox class 1s a sub class of etObject and describes a simple box only by its size
and not by different polygons. Because of its simpler structure the culling and force
calculations are easier than if using an etHapticTrisurface. The etBox 1s currently only
used for dynamic objects.

etSphere

The etSphere class is another primitive shape that is a sub class of etObject. It can be
used to represent a haptic sphere and 1s only represented by its radius. The etSphere is
currently only used for dynamic objects.

etCylinder

The etCylinder class 1s also a primitive shape that is a sub class of etObject. It can be
used to represent a haptic cylinder. It is represented by its radius and its height. The
etCylinder is currently only used for dynamic objects.

gstForceField

A possibility to determine the way that the forces are calculated within the servo loop is
given through the gstForceField class. By subclassing this class and overloading a
member function that is called in the servo loop, developers can implement their own
algorithms for how to calculate the force. For example, this allows the developer to
design the haptic objects, the data structures to hold these objects and so on.

ForceField

As mentioned above the gstForceField class can be subclassed to give developers the
possibility to calculate the forces to the Phantom in their own way. For this we use the
ForceField class, which overloads the member function also mentioned above. This
tunction starts our own force calculations by calling a method in the Wotld class, which

34

Chapter 5 — Design

keeps track of all the haptic objects. It then returns the calculated force which is then

sent to the Phantom.

Class diagram

<<interface>
iPhaniom

+startf): void
+stop(): void
+setheshList{meshist:const iheshList*): void

gstForceField

+setWork spacePosition(x:double y:double, z:double): void

+rotateWorkspace(a:double, x:double,y:double z:double): void ForceField

+setForcesOn(forcesOn:bool): void
+gefValidConstructon(): bool
+1sColliston(): bool

+ForceField{w:World*)

-tcalenlateForceFieldForce(a_phantom:gstPHANT oM*): gstVector
-tcaleulateForceFieldForce(a_phantom:gstPHANT oM* a_torques:gstVector&): gstVector

+getStylusSwitch(): bool
+getGimbalAngles(): csVector3
+getStylusPosition(): csVector3

+getDynamicForcelist(): std::Hststd: pair<int,csVector3> > L
World
+World()
csPhantom +World(
= - +setMeshlist(csMeshList:const iMeshList*): void
:ZsPsgintutml:(n%areut Base) +calenlateForces(point etVector): efVector
N St;n() — 3 +getDynamicForcelist(): std::list<std: pairint, csVector3» >
+st0p(): :Sid +setForcesCnfon:bool): void

+setMeshList(meshList-const iMeshList*): void Il
+setWorkspacePosition(x:double y:double z:donble): void
+rotate Workspace(a:donble z:double,y:double z:double): void
+setForcesOn(forcesCn:bool): void

15

I

+getStylusSwitch(): bool WorldOctree

+getV alidConstructon(): bool

+isCollision(): bool +boxes: std::vector<csBox3>

+getStylusPosition(): csVector3

+getGimbalAngles(): csVector3
+IniHalize(iobject_regiCbjectRegistry*): bool
+zetDynamicForcelst(): std::hist<std:pair<int,csVectordz» =

-+ WorldOctrea()
+getBox(nbrint): csBox3

+WorldOctree(bonndB ozes:std: vector<csB 0z 3> minhlaxVec std:ivector<doublex)

+getNearbyObjects(x:donble,y:double,z:double): std:lst<int=

i

b

Node

+Node{o:WorldCctree® mmuinX :double max¥ double minY :double max ¥ double minZ. donble mas? :double index std: list<int= d:int)
+~Node()
+getNearbyObjects(z:double y:double,z:double): std::Hst<inr~

etOctTree

+etOctTreal)

+~etQctTree()

-+addTriangles{a_triangles:const ftem_list_type&): void

+getColliston(a_start:const etVector&,a_end:const etVector&): ftem._type

-+getCollision(a_start:const etVectord,a_end:const etVector&,a mangleTem TrangleTest&): ftem_type
-rdraw(): void

-+getNodeContainingP oint(a_point:const efVector): const Node#*

+getCenter(): efVector

-+getSize(): etVector

HorEachltem(a_itemListTest IremListOperatond): void

etHaptic Trisurface

+etHaptcTrsurface()

+~aﬂ{apncTnsquace()

+ereate(a_vertices:std: vector<etVector,a_coordinates:std: vector<int» a_isVertexhergeEnabled:bool=false): void
+Hinit(a_] 15VartaxMaTgaEnabled bool=false): void

+setVertices(a_vertices:const std:ivector<etVector>&): void

+addTrangle(a_index(int,a_index]dnta_indexZ:nt): void

+riangles(): const std:vector<PolySurf: Trangle#>&
+getOctTree(): const etOctTree®
+computePointForce(]_position:etVector): etVector
+cull{]_posifon:etVector): bool
+setRawStiffness(new Stffness:double); void
dclearEdgelata(): void
#clearTrianglesAndVertces(): void

#processEdges(): void

HinitOctTree(): void

etLiquid Trisurface

-retLiquid Trisurface()
~eLL1qu1dTnsurfaca()
-tereate(a_vertices:std:ivector<etVector a_coordinates:std::vector<int>a_isVertexMergeEnabled:bool=false): void
-Himit(a_: JsVea'texMecgeEnabled bool=false): void
+sefVertices(a_vertices:const std: vector<etVector>d&): void
+addTrangle(a_index(:int a_index]:int,a_index2:int): void
+addTrangle(a_point0:PolySurf: Vertex® a_point] PolySurf:Vertea®* a_point2:PolySurf::Vertex®): void

+getOctTree(): const etOctTree®
+computePointForce(l_position:et¥Yector): etVector
+eull(]_positon:etVector): bool
+setViscosity(v.double): void

#clearEdgeData(): void
AclearTrianglesAndVertices(): void
AprocessBdges(): void

AinitOctTreal): void

*

etObject

+setPriction(newFriction:double): void
+computePointForce(]_position:etVector): efVector
+setR awStiffness(new Stiffness:donble): void
AetObject()

AetObject(other:const etOhject&)
Hoperator=(other:const etObjectfs): etObject&
A-atObiject()

+setLastStylusP osition(pos:etVector): void
+getLastStylusPosition(): efVector
+setLastPrictionForce(force:etVector): void
+getLastFrictonForcel): etVector
+getLastStickPoint(): etVector

+setLastStick Point(sp:etVector): void
+getLastSCP(): efVector
+setLastSCP(scp:etVector): void

i

+addTdangle(a_point0:PolySurf:Vertex* a_point] PolySurf:Vertex* a_point2:PolySuzf: Vertex*): void E—

etBox

+etBoxl)
+etBox{other:const efB oxd:)

+aperator={other:const etBoad): etBox&

+clone(): etBox*

+eullf]_position:etVector): bool

+computeP ointForce(l_positon:etVector): efVector

etSphere

-+etSphere()
-+etSphere(other:const etSpheradr)

-ttriangles(): const std:vector<PolySuif: Triangle*=& 7

operator=(other:const etSphered): etSphered
+clone(): etSphera®

+cull(]_position:efVector): bool
+computePointForcef]_positon:etVector): efVector

etCylinder

+etCylinder()
+etCylinder(other:const etCylinderdr)

+operator=(other:const etCylinderf): etCylinderd
+clone(): etCylinder*

+cullf]_position:etVector): bool

+computeP ointForce(]_position:etVector): etVector

Figure 5.6 The diagram shows the most important classes used in the plugin. Some e-Touch classes of lesser

importance that have not been modified are left out.

35

Chapter 5 — Design

5.4 Threads and processes

When the plugin is used together with Crystal Space there are two different processes
running parallel to each other. There is the graphics loop that is run by the game engine
and the servo loop, which is needed to update the haptic device with forces. As
mentioned before the Phantom needs a very high update rate whereas the demands on
the frame rate are not that high. The servo loop is therefore run at a fairly constant
speed while the graphics are run without a minimum frame rate, which in practice
means as fast as possible.

To communicate with each other the two loops use shared variables that are protected
through the use of semaphores for mutual exclusion. The semaphore ensures that only
one thread at a time is able to read or write a shared variable. If one thread is inside a
critical region and the other one should try to take the semaphore at the same time, it
will have to wait until the semaphore is released again before it can access the shared
variable.

5.4.1 Crystal Space graphics loop

The graphics loop 1s controlled by the game engine and is started after the initialization
of the application. Every loop of this thread results in a new frame that is shown on the
screen. The frame rate is not controlled by the game engine. Instead every frame is
drawn as fast as possible. This results in a frame rate that can vary relatively much
depending on the amount of computations that has to be made to update the graphics.
A typical frame rate when the haptic plugin is running lies somewhere between 50 and
70 trames per second. Every frame the loop calls the SetupFrame callback function,
where the application programmer can control what happens in the application. For
example, he can update the position of movable objects or the camera.

5.4.2 GHOST servo loop

To keep the haptic device updated at a sufficient speed, the plugin uses a process
running at a speed of about 600-1000 Hz. This rate is controlled by the process and if
the computations should happen to slow the loop down below 600 Hz, the loop is
stopped for safety reasons and no forces are sent to the Phantom. The loop is also
stopped if the forces become larger than what the Phantom can handle or if its motors
overheat. Every loop, the position of the stylus is checked against the haptic objects
and all forces are collected and sent to the haptic device.

5.5 Restrictions

Since this project has a limited time span it has not been possible to implement all the
functionality that we would have liked to have in the plugin. A few things simply had to
be left out. This chapter contains descriptions of functionalities that we have
considered for the plugin, but that we have thought to be of lesser importance or to
difficult to do and therefore have decided not to implement.

One thing that has been left out is the ability to dynamically add and remove objects

during program execution. As mentioned eatlier the world is converted into a haptic
wotld before the start of the Crystal Space graphics loop. If a mesh object 1s added or

36

Chapter 5 — Design

removed during the setup of a frame it will become visible in graphics but cannot be
touched. This is a typical feature that could be implemented in a future version of the

plugin.

The plugin features, as described in chapter 5.2, the ability to add stiffness and friction
to objects. However it does not support more advanced haptic texturing techniques or
effects. For example, there 1s no support for haptic textures built upon techniques like
distributed tangential forces similar to bump mapping in graphics or height changes
with the help of sine- and square waves. Another feature that could be of interest is the
addition of an effect class that would implement different haptic effects like magnetism,
flypaper or inertia. This feature would help to guide a visually impaired person i a 3D
wortld or a 3D GUL

As mentioned earlier there is support for some primitive haptic shapes like boxes,
spheres and cylinders. These shapes are up to now only supported for dynamic objects.
To arrange so these primitive haptic shapes also are available for static objects requires
a transformation of all objects. As it is implemented now only the dynamic objects uses
an extra transform because these objects needs to be able to move. For the static
objects the world coordinates are used directly for creating the object’s coordinates.
This makes it faster and simpler during creation and during force calculation, but it
makes the structure a bit messier.

Another matter of interest that could easily be added to the plugin is that there are
some functions in the core class gstPhantom that have not been transferred to the
plugin. These functions give information like calibration status, what state the Phantom
1s in, what Phantom 1s used and which driver is used, workspace dimensions etc.
Nevertheless we made the decision that we were just interested in the most essential
information in the plugin and therefore so far only that has been implemented.

The most difficult thing to add in the haptic plugin is support for deformable surfaces.
As stated before, this would require the vertices of the haptic surfaces to be able to
move. Since this is not supported in the e-Touch API, the API would most certainly
need to be rewritten to support this or a completely new API with another haptic
rendering algorithm would have to be used or implemented. However this project does
not have the time-span to develop such an API.

37

Chapter 6 — Demo applications

6 Demo applications

The next two subchapters describe the two demo applications that were made to
demonstrate the capabilities of the haptic plugin. They give an overall description of
how the demos were designed and an explanation of what haptic capabilities that are
shown with the demos. It is assumed that the reader has some knowledge of how a
normal Crystal Space application works.

6.1 Demo application 1

The first demo application shows how to use the haptic plugin in a first person game or
a first person like application. This means that the user is able to walk around in a large
3D world and touch and feel the objects within the world with the Phantom. The
keyboard is used to move an avatar around in the world. The position of the stylus is
shown as a green sphere that turns red if the user touches an object. Of course it also
turns red if the user walks into an object using the keyboard with the stylus position in
front of him. This way the user can feel the collision with the object.

Figure 6.1 Screenshots of demo application 1 showing two different maps.

The demo application was designed in a similar way to a demo that comes with the
Crystal Space API called walktest. However it does not have all the features of the
walktest demo. The demo application 1s divided into two classes.

The Demol class is used for all the initialization of plugins and the updating of the
frames as in a usual Crystal Space application. It handles the communication with the
haptic plugin by calling different methods of the haptic plugin interface. First it
converts the entire Crystal Space world to a haptic representation. Then it starts the
plugin’s servo loop. When the haptic world needs to be updated due to a movement,
this class calls the suitable method with the appropriate parameters. In the SetupFrame
method, the updates of the haptic objects are made additional times during a rendering
of a frame to make the haptics feeling somewhat smoother when moving the avatar.
Otherwise the haptics will only be updated at the same rate as the graphics.

39

Chapter 6 — Demo applications

The CollisionDetection class initializes colliders for all Crystal Space objects and is used
to check for collisions every frame when moving the avatar. Actually it also tests for
gravity every frame by trying to move the avatar down in an accelerating motion and if
it collides with the ground it is moved back before updating the frame. The method
that handles collision also makes it possible to step up upon low objects. For example,
this makes it possible to climb stairs in a 3D world. The CollisionDetection class uses
the RAPID plugin to verify collisions.

The demo shows that it is easy to load different maps in the Crystal Space format and
use them with the haptic plugin. To get the proper haptic result one must however
think about some factors that are presented in appendix C when designing the maps.

The demo also shows how tags for the objects have been used to set different stiffness
and friction for the objects to get a more realistic feeling of materials. It also
demonstrates the use of a special liquid object with a tag for viscosity. This object was
designed to see that other objects could be inherited and implemented from the
etObject class.

Because the plugin does not rely upon other plugins in Crystal Space it should work
with all the available plugins and features that can be loaded or used in Crystal Space.
However as mentioned before it only represents the meshes that are of type
1PolygonMesh as haptic objects. For example, as shown on one of the levels in the first
application, a particle system is used. This system can of course only be seen and not
touched.

6.2 Demo application 2

The second demo application demonstrates how the haptic plugin can be used in a
basic game that takes advantage of the dynamics system plugin in Crystal Space. The
game 1s a 3D labyrinth game where the player pushes a ball around the labyrinth and
tries to find the exit in as good time as possible. To stop or help the user along the way
there are some dynamic objects that the player can move or use to get passed difficult
areas. The Phantom is used to push the ball and the dynamic objects around the
labyrinth. The labyrinth is seen from above and the user is able to steer the camera in
the x- and z-direction. The player cannot go outside the boundaries of the map with the
camera. In the same way as in the first demo application, the position of the stylus is
shown as a green sphere that turns red when collision occurs. If the ball gets stuck or
has landed 1n an impossible situation there 1s a possibility to restart the game at the start
position. The demo supportts that different labyrinths are loaded.

The demo has a quite simple design because all the dynamics calculations are made by
the Crystal Space dynamics plugin. Only one class is used, Demo2. The Demo2 class
converts the world to a haptic world in the same way as in the first demo application.
There are some differences though. When the world is converted to a haptic world the
objects are either added to the dynamics system as static objects or as dynamic objects.
This 1s handled by setting the Crystal Space mesh object name as dynamic_box,
dynamic_sphere or dynamic_cylinder (See appendix C). If a mesh object is tagged with
this it is added as a dynamic rigid body to the dynamics system. All other mesh objects
are considered static and added as static rigid bodies. After the haptic world and the

40

Chapter 6 — Demo applications

corresponding dynamics system have been created the servo loop and Crystal Space
default graphics loop is started. In each calculation of a frame in the Demo2 method
SetupFrame method, several steps in the dynamics system are taken. The dynamics
system needs to be updated more often than the graphics to get a proper simulation.
When one step is taken in the dynamics system the haptic plugin workspace is also
updated. This prevents some vibrations because the haptics is then updated more often

than the graphics.

5 __‘:;‘:a. :1
Figure 6.2 Screenshots of demo application 2 showing two different labyrintbhs.

To be able to apply the correct force to the object that the Phantom is currently
pushing or poking at, the plugin method getDynamicForceList is used. This method
returns a list with indices to the currently active dynamic objects. The indices and
forces are used to add the correct forces to the correct dynamic rigid bodies in the
dynamics system. In every step in the dynamics system a new list is obtained and forces

are added.

This demo application shows that the haptic plugin can easily be integrated in a 3D
game. The Crystal Space dynamics system can be used to create a dynamic environment
for the Phantom where one can feel weight and friction and have the ability to move
around and rotate objects in a reasonably realistic way. This way more interesting haptic
games can be created. Although due to the limitation that only primitive objects are
supported by the dynamics plugin the ideas to games where the dynamics plugin can be
used becomes a bit limited. Obviously one can always implement a specific dynamics
system for the game that is being created or simply just move the meshes around as one
wants. The haptics will work fine anyway because the limitation does not lie in the
haptic plugin. Probably the dynamics plugin will work with more general mesh objects
in the future and thus provide more options.

41

Chapter 7 — Summary

7 Summary

The intention of this master thesis project was to investigate the possibilities of adding
haptics to a 3D game engine, and thus be able to take advantage of the fact that a game
engine is a very versatile instrument for creating 3D applications. A part of this project
was also to implement software, demonstrating the possibilities of having haptics
integrated in a game engine.

In this chapter we will evaluate the solution that we have implemented, discuss what
could have been made differently and suggest improvements. Future additions and
modifications to the plugin are also presented and discussed. At the end of the chapter
we present the conclusions that we have made in this master thesis project. There will
be a discussion about the problems of integrating haptics in a game engine.

Since we have worked with a game engine and a haptic API, which have not been
designed to be used together, we will also discuss how these parts could have been
designed differently to better take advantage of each others benefits and to be easier to
Integrate.

7.1 Results

The work on this master thesis project has resulted in a haptic plugin for the Crystal
Space game engine. With the plugin it is possible to construct a virtual 3D environment
which is touchable with the Phantom haptic device. The plugin allows the user to
navigate in the virtual environment as in common first person 3D games.

The plugin constructs a haptic copy of the 3D wortld that is loaded by the game engine.
This makes it possible to load a world in the same way as in any other Crystal Space
application. The objects can either be created directly in the code or they can be loaded
from a map file. However, downloading map files constructed for 3D games like Half-
Life or Quake will probably not work very well with the haptic plugin. This 1s due to
incompatibility between the way that the Phantom cursor is implemented as a single
point and the way that 3D worlds are usually constructed when haptics are not
mvolved. This was one of the things that we wanted to be able to do when we started
on the project, but we realized pretty quickly that this was not possible within the scope
of this project. The problems associated with constructing a wotld for the haptic plugin
are explained in appendix C.

It is also possible to use dynamic objects as a part of the application. These objects are
taken care of by the plugin, which makes it possible to touch objects as they are
moving. It should be noted that the haptic objects do not have to be updated explicitly.
All movements that are made in the application are handled automatically by the plugin.
We also want to point out that the plugin works quite well together with the dynamics
system in Crystal Space. This provides the possibility to use a realistic physics model to
control the dynamic objects in the world. Another benefit with the dynamics system is
that it takes care of all collision detection between the different objects. Not using the

43

Chapter 7 — Summary

dynamics system when using moving objects requires that collision handling is
implemented in the application.

There are a few different types of haptic objects that have support in the plugin. For
static objects the plugin uses triangle meshes, but for dynamic objects it is also possible
to use boxes, spheres and cylinders that are not constructed from meshes. This will
enhance performance somewhat for dynamic objects. When we added these primitive
shapes for the dynamic objects we realized that it would be a good idea to be able to
use them for static objects as well, but as we already had a working system for this and
we knew that it would be a big change, we did not put a high priority on this. This is
one of the improvements that we suggest could be added in the future.

The surface of a touchable object 1s very important for how the object is perceived. By
changing the stiffness and the friction of the objects it is possible to create a world that
1s a bit more realistic than if all objects feel exactly the same. There is a problem with
the friction model though. When pushing down on a surface quite hard and only
moving around slowly, the friction force constantly changes direction due to
involuntary hand movements. This causes the Phantom to start to vibrate which is not
what we want. The problem may lie within the friction model itself or in how the
different parameters are set. We have however, despite a lot of testing, not been able to
tully remove this problem from the plugin. We still feel that the problem is not so
severe that we have to remove the possibility to use friction, but it is something that
could be improved in the future.

It 1s fairly easy to add new types of haptic objects by subclassing the etObject class. For
example, we added objects that feel like liquids to the world. The viscosity for these
objects can be set for each object, which allows the developer to use water or some
other kind of liquid in the world. The liquid object is constructed as a triangle mesh, so

it is added to the map file as any other mesh, except that it requires to be named
differently.

The licensing cost of the haptic system was something that we wanted to minimize in
this project. We did not however manage to completely get r1d of software that requires
some licensing cost. The drivers for the Phantom device and a small part of the
GHOST API still have to be used to be able to send data to the device. We would have
liked to avoid this and to have a completely free solution, but since this would have
required implementing our own Phantom drivers we decided, at an eatly stage, not to
deal with this problem.

7.2 Future work

A performance improvement for the plugin would be not to use mesh objects for basic
geometry like boxes, spheres and cylinders that can have easier and more efficient force
calculations. To do this, the static objects would have to be created from shape, size
and position, just as the dynamic objects are currently, and not from the world
coordinates. This means that they would have to use a transform to change the position
of the cursor into the local coordinate system of the object to do the force calculations.
The way that the octree is constructed, will probably also have to be modified slightly.

44

Chapter 7 — Summary

The mesh objects should however not be removed completely from the plugin. It must
still be possible to construct more detailed objects than the basic shapes.

Haptic texturing is a nice feature that would be great to have in the plugin. An idea on
how to do this is to use a grayscale picture that describes the height differences through
the different shades. The point, on the surface of the object, that is touched by the
cursor could be mapped onto the texture with a function depending on the shape of
the object. If the cursor is mapped onto the highest possible part of the texture, the
force should be the same as if a texture was not used. Mapping the cursor onto a lower
value would mean that the cursor is transformed, out along the surface normal, by the
amount collected from the texture and the forces are then calculated as usual. This
would make it possible to move in under the actual surface of the object without
getting a force. Hence it would feel like a hole. Instead of mapping the cursor position
onto a picture, it could be mapped onto a mathematical function to get some other
kind of surface structure.

It would also be nice to have some kind of effect class that can be used for applying
different effects to haptic objects. This could for example be magnetism that attract or
repel the cursor when it comes close to the object. It might also be any other form of
torce field or even vibrating effects, whatever the imagination can come up with. These
effects could be created as objects without visible geometry. This should make it
possible to place them anywhere in the world, whether it is in an empty space, as may
be the case with a constant force field, or if it 1s aligned with some geometry, to create a
magnetic object for example.

Since there are some problems with the friction model, as described in chapter 7.1,
some work could also be done in this area. We have tried to tune the parameters of the
model but we have not fully succeeded, so it might be the case that a new friction
model has to be implemented to get 1id of the problem entirely.

As we have mentioned before, it is not possible to run the plugin with just any map
downloaded from the Internet and get a good result when touching the objects. As we
also have mentioned, the problem occurs because the Phantom cursor is a single point
that is possible to move in between objects where there are no visible gaps. We have a
couple of ideas on how to solve this problem, or how to make it better anyway. The
first one and probably the easiest, is to implement the cursor as a small ball or some
other kind of geometry that is not just a single point. This would make the cursor
unable to fit into very small gaps. Using this approach would probably slow down the
force calculations to some extent due to more difficult collision detection, but that
would probably not be a big problem. The other way would be to recompute the haptic
object so that the gaps between different parts are removed. This would involve
reconstructing the triangle mesh by dividing up surfaces and merging vertices so that
each object consists of only an outer hull and that there are no polygons, or parts of
polygons, extending into the hull. If this is even possible would have to be investigated.
This approach would probably only slow down the startup stage of the application and
not the actual force calculation, making it quite interesting from a real-time perspective.

Adding and removing objects during the execution of an application would be a good
teature. This could probably be added rather effortlessly by adding the object to the

45

Chapter 7 — Summary

dynamic list if it is a moving object or inserting the object in the octree at the correct
position if it is a static object. Some new functions in the octree would have to be
added and the way that the dynamic objects are stored will have to be modified to some
extent.

7.3 Conclusions

During this master thesis project we have found that it is possible to integrate support
for an advanced haptic device in a game engine. Our solution of implementing a haptic
plugin for the Crystal Space engine works satisfactory and shows that it is possible to
walk around in a virtual 3D environment and touch and feel the surroundings with the
Phantom device.

Since the documentation of the APIs that we have worked with was very poor, we had
to use the implementation process to gather knowledge about the APIs. This means
that a lot of trial and error work had to be made to find solutions for problems that
occurred. Because of this we were not able to make a complete design in an eatly stage
of the implementation process and therefore our implementation is perhaps not the
optimal solution for the problem. Our solution does however work, so this only
strengthens our beliefs that an integration of haptics in a game engine can provide a
good platform for creating haptic applications.

As we implemented the plugin we came across a few problems that were difficult or
even not possible to solve. This was because the functionality that we needed was not
present in the APIs or the APIs were not compatible with each other in some areas. We
would therefore like to take up how the APIs could have been designed differently to
make the integration easier.

One problem that was possible to solve but took quite some time to get right was that
Crystal Space and e-Touch use differently oriented coordinate systems. Perhaps this
does not seem like a big problem but it is very annoying and the code gets a lot more
difficult to understand. This is a good example of what can happen when the different
parts are not designed to be used together and there are no standards established.

A feature that would have been nice to have in Crystal Space 1s a more advanced thread
class. With the existing thread class it is not possible to determine the period and it
does not support the use of semaphores for mutual exclusion. Had these features been
available, it perhaps would have been possible to solve the problem of the graphics
loop and the haptics loop running at different speeds. By adding a loop between these
it might be possible to smooth out the differences by dividing up the updates from
Crystal Space into smaller pieces and instead sending them to the servo loop at a higher
rate. In this way the Phantom would be updated more often and it would feel smoother
when walking into a wall for example.

There are also a few things that could be different in the e-Touch API. For example, it
would be good if the force calculations used a cursor in the form of a sphere or some
other geometry and not just a single point. This would make it much easier to use maps
that can be downloaded from the Internet. It would also be good if the force algorithm

46

Chapter 7 — Summary

worked on polygons other than triangles. Then it would be easier to copy or subclass
the mesh objects in Crystal Space.

These suggestions for better design of the different APIs would provide a better
starting point for a project of this kind, since it would give more alternatives on how to
design the system. We have however found that it is possible to get a working system
even without these features implemented so they are not essential in any way. The
processing power of modern PCs is already sufficient for running this kind of system
with a satisfactory result, but with even more powerful computers the result would be
even better. It is first and foremost the difference in the rates of the graphics and the
haptics loop respectively that would be reduced and the result would be an overall
smoother feeling in the applications.

The possibilities of creating good quality graphics with a game engine exceed the
possibilities provided by the haptic APIs. A game engine also provides a good way of
creating and maintaining static as well as dynamic 3D worlds. The camera can easily be
moved around the world and by using plugins for collision detection or physics it is
possible to introduce a realistic feeling in the application. Hence there are definitely
some good aspects with using a game engine as the base for creating haptic
applications.

47

Appendix A — Haptic plugin

Appendix A: Haptic plugin

A.1 Requirements

A.1.1 Hardware requirements

To be able to use the Crystal Space haptic plugin one needs a reasonable fast computer
and a 3D accelerated graphics card. A minimal setup would be a Pentium or Athlon
processor at 500 Mhz and a TNT2 or Geforce 256 card. However to get a standard or
better performance it is recommended to use a 800 Mhz+ processor and a Geforce 2
card or better. Ideal is obviously to have a computer with dual processor so the haptic
and graphic rendering can be divided between them. Of course one also needs to have
one of the haptic devices from the Phantom family.

A.1.2 Software requirements

The plugin should work fine under Windows N'T, Windows 2000 and Windows XP.
To be able to run it one must have installed the Phantom drivers. In this project we
have used version 3.1.6 of the Phantom drivers. If one wants to edit and recompile the
code, the GHOST 3.1.6 SDK and Crystal Space version 0.96r003 should also be
mnstalled.

Sometimes one might what to be able to have a different workspace for the Phantom
than the default that is set in the windows register. For example, when running demo
application 1 it would probably be better if the Phantom could reach further in front of
the camera than behind the camera. There is unfortunately no other way of changing
this than to edit the register data.

A.2 Loading the plugin

To load the plugin in a Crystal Space application one first have to register it with a small
program that comes with Crystal Space called scfreg that registers the plugin in the SCF
(Shared Class Facility). To register the plugin one first needs to copy the phantom.dll to
the Crystal Space directory. After that the plugin can be registered by running:

scfreg phantom.dll

This will make a new entry in the scf.cfg file. To be able to load it in a Crystal Space
application one needs to include the phantom.h file. It can then be loaded into the
application in two different ways. One way is to load it through the cslnitializer at
initialization time like this:
if (!'csInitializer::RequestPlugins (object_reqg,

CS_REQUEST_VFS,

CS_REQUEST_SOFTWARE3D,

CS_REQUEST_ENGINE,

CS_REQUEST_PLUGIN ("crystalspace.plugins.phantom"”", iPhantom),

49

Appendix A — Haptic plugin

CS_REQUEST_END))

csRef<iPhantom> phantom = CS_ SCF_CREATE_INSTANCE (object_reqg,
iPhantom) ;

This is probably the best way to load the plugin because this gives the opportunity to
override the plugin at the command line or in a configuration file. Another way is:

csRef<iPluginManager> plugin_mgr =
CS_QUERY_REGISTRY (object_reg, iPluginManager) ;
csRef<iPhantom> phantom = CS_LOAD_PLUGIN (plugin_mgr,
"crystalspace.plugins.phantom", iPhantom);

But this way there will be more references to clean up.

Another thing to think about before starting the plugin is the visible representation of
the Phantom position. The Phantom position can be represented as any object that is
movable in Crystal Space. However one should not forget to set the object’s name to
“PHANTOM”. This way the object will be excluded in the conversion from a graphic
to a haptic representation. The object’s position should be set to the Phantom position
every frame, which can be accomplished by using the plugin method getStylusPosition.

A.3 Using the plugin methods

This chapter describes the member functions of the plugin and where to use them in a
typical Crystal Space application. It only describes the functions that are available
through the interface and not the functions or classes that are outside this interface.

SetMeshList (iMeshList* meshList)

After the phantom plugin has been created and all meshes have been loaded and added,
either in code or by loading maps or sprites, this function is the first to be called. The
tunction will build up a completely similar world in haptics. Only meshes that
implement the iPolygonMesh in Crystal Space are added. The meshes added as
wotldspawn or with no tag at all will always be checked for collision with the Phantom.
Meshes added as things will be added to the octree and only checked when they are
close to the cursor. Things tagged as movable or sprites will be added as dynamic haptic
objects.

start ()
Starts the servo loop. This should be called after the SetMeshList function has been
called, but before the csDefaultRunl.oop is started.

stop ()
Stops the setvo loop.

getValidConstruction ()
This function checks if the phantom is correctly initialized. Returns true if this is the
case.

50

Appendix A — Haptic plugin

setWorkspacePosition (double x, double y, double z)

This function updates the Phantom workspace position. This means that the origin of
the workspace will be moved to the point x,y, z. Every time the camera position is
updated in SetupFrame a call to setWorkspacePosition is needed to synch the haptics
with the graphics.

rotateWorkspace (double angle, double x, double y, double z)

This function rotates the Phantom workspace with angle radians around the axis made
up by x,y,z. Every time the camera is rotated in Crystal Space, a call to
rotateWorkspace is needed to synch the haptics with the graphics.

getStylusPosition ()

This function returns the position of the stylus in world coordinates. If one wants to
display a graphic representation of the haptic tool this function should be called every
frame to get its position.

isCollision()
Returns true if the Phantom stylus switch collides with any object.

getStylusSwitch ()
This function can be used if one wants to utilize the stylus switch in an application. It
returns true if the stylus switch is pressed.

setForcesOn (boolean forcesOn)
This function can be used to toggle the forces on or off.

getGimbalAngles ()

Returns a vector with the current gimbal angles for the Phantom. The angles are
returned in radians. The first value represent the rotation around the x-axis, the second
represent rotation around the y-axis and the last represents rotation around the z-axis.

getDynamicForcelist ()

Returns a list containing pairs with indices to the correct mesh objects in the mesh list
and the force that should be applied to them. Only the dynamic objects that are
currently touched are returned.

For function descriptions of other classes used by the plugin, study the comments in
the source code for the corresponding classes. Although general information about this
can be found in chapter 5.

A.4 Changes to include files

During the implementation of the plugin we experienced a few conflicts between files
included from different libraries. Because of this we had to make a few changes to
some of the included files to be able to compile our plugin.

One problem we discovered when we compiled our project was that we got a conflict
between the Standard Template Library (STL) used 1n Microsoft Visual Studio and a
redesigned STL used in GHOST. To solve this we copied the redesigned STL directory
and the GHOST include directory to our project directory. The conflict occurred
because there were two different versions of vector.h and listh. We changed the names

51

Appendix A — Haptic plugin

of these to gvector.h and glist.h in the copied GHOST STL directory. All files that
included these had to be modified to include the renamed files. Changes were made to
the files below.

“vector.h” was changed to “gvector.h” in these files:

gstBoundingBox.h
gstIncidentEdge.h
gstPoint2D.h
gstSpatialObject.h
gstTriPoly.h
gstTriPolyMeshHaptic.h
gstVector.h

bvector.h

hashtable.h

stack.h

“list.h” was changed to “glist.h” in these files:

gstBinTree.h
gstIncidentEdge.h
gstPoint2D.h
gstPolyPropertyContainer.h
gstVector.h

This way GHOST could use the STL files it required and we could use the Microsoft
Visual Studio STL in our plugin.

When we designed our octree we used a class in Crystal Space for bounding boxes
called csBox3. This class had a method to test if a box is adjacent to another box. The
problem with this method was however that it was only considered adjacent when the
boxes where ovetlapping each other in some way. This was not what we wanted
because if the octree divided the world exactly at the side of an object’s bounding box,
this method used by our octree, would only return the object if the cursor was at the
surface or penetrating the surface. The problem with this was that it could cause
unwanted vibrations for the Phantom. These vibrations occurred since the position of
the stylus is quite sensitive, so a change between being in an octree node that contained
the object and one that did not, could easily happen. So for example when the user
touched the side of the object he got pushed back by a force into the octree node that
did not contain the object. Then he tried to reenter quickly and this caused vibration.
(See figure 5.5). To solve this we added a method in the csBox3 class that returned true
if the two boxes where close enough to each other.

Octree node, Octree node,
that contains Y 4« that contains
one object. 4 N %4 no object.

™ Object with its
bounding box.

Figure A.1 An object that has ifs bounding box: side exactly in the same plane as a neighboring octree node caused
vibrations for the Phantorm.

52

Appendix B — Using the demo applications

Appendix B: Using the demo applications

B.1 Requirements

The two demos have the same requirements as the haptic plugin. To check out these
requirements see section A.1.1 and A.1.2,

B.2 Using the demo applications

This section will describe how to run the two applications and how to use some of their
features.

B.2.1 Using demo application 1

The first demo application is run by executing the Demol.exe file. There are a few
startup parameters that can be used. The first parameter is the name of a level that will
be loaded and used by the demo. Other parameters that can be of interest are the —
video option. To use an OpenGL hardware accelerated card with the demo this option
should be set as -video=opengl. Another thing that can be useful when running the
demo 1s to recalculate the light maps. This needs to be done at least the first time the
level is run or if the level has been modified in some way. The following example runs
the level bighouse in OpenGL and recalculates the light maps.

Demol.exe bighouse -video=opengl -relight

When demol starts up the user is situated in the wotld loaded from the command line.
The user can now move around the world using the arrow keys on the keyboard. The
arrow keys left and right rotates the user. The forward and backward keys are used to
move the user forwards and backwards. The page down and page up key can be used to
tilt the camera up and down. At the same time the user can feel the surroundings by
moving around the Phantom stylus.

There is an option to temporarily turn off and on the forces by pressing the ‘f” key. The
application can be shut down by pressing the ‘esc’ key.

B.2.2 Using demo application 2

The second demo application is run by executing the DemoZ2.exe file. The demo?2
application also supports parameters to load different levels and set different options in
the same way as the first demo. The following example runs the level labyrinthl in
OpenGL and recalculates the light maps.

Demo2.exe labyrinthl -video=opengl -relight

The demo?2 application starts with the camera looking at the ball from above in its start
position. By using the arrow keys the player is able to move the camera sideways and
torwards and backwards. Pushing the left or right arrow key moves the camera
sideways. Pushing the up or down key moves the camera forwards or backwards. The

53

Appendix B — Using the demo applications

object of the game is to use the Phantom to roll the ball through the labyrinth and
reach the exit position in as fast time as possible.

It 1s not just a matter of finding the correct way. There can be things in the way
stopping the ball from entering certain areas. These objects must be removed with the
Phantom. They can either be lifted away or pushed in a proper direction. Certain
objects can also help the player to overcome holes in the labyrinth by filling them with
these objects. When the player finds the way through the labyrinth and the ball reaches
the x-marked goal position the game is finished. The time taken for this will be
displayed for the player.

If the ball gets stuck in a situation that it is not possible to get out of by using the Phantom,

the game can be restarted by pressing the ‘t’ key. The application can be shut down by
pressing the ‘esc’ key.

54

Appendix C — Creating haptic worlds

Appendix C: Creating haptic worlds

There are a few things that one has to have in mind when constructing a wotld for the
haptic plugin. These things mostly concern creating an object from different parts of
geometry, without being able to push through the object where the different parts are
joined together. However, there are also some possibilities to create a more realistic
teeling world, which can be taken advantage of when creating the map. All these issues
will be described in this appendix.

C.1 Multi part objects

C.1.1 Introduction

When creating multi part objects, it is very likely that it will be possible to push through
the object where the different parts are joined together, even though the graphics does
not show a hole through the object. This problem occurs because of the way that the
haptic objects are constructed in the plugin or because of the way the forces are
calculated. Since the Phantom cursor is a single point it can easily move between two
adjacent objects.

There are two ways of creating a multi part object. One way is to simply create the
different parts and then put them in their correct positions. This way we will actually
get a different object for each part even though, on screen, it may look like they are
joined together to create a single object. The other way is to actually group the parts
together creating a single object. Both ways create the same visual result but the haptic
result can be very different and both ways are actually useful, but for different types of
joints.

When the haptic objects are created inside the plugin, an algorithm is used, which joins
vertices together if they are located in the same position. For example, two different
parts that share an edge will be joined together at this edge, making it impossible to
push through it using the Phantom. However, this algorithm only works on a single
object, so the parts have to be grouped together in the map. This approach can be used
when joining parts where the adjacent edges are of the same length and their vertices
are in the same positions.

If the adjacent edges should be of different lengths or if one part sticks out of the
surface of the other part so that the vertices are not in the same position, the objects
have to overlap. This will only work with objects that are not grouped together as a
single object and the reason for this is the way that the forces are calculated. If two
different objects overlap the forces will be calculated separately for each object and
thus the resulting force will correspond to touching both objects. If overlapping is used
within a single object the force calculation algorithm of that object will not be able to
handle it and it will be possible to push into the object where the two parts intersect.

The rest of chapter C.1 will describe a number of difficulties related to building a map
for the haptic plugin. Of course, all different situations that can occur will not be

55

Appendix C — Creating haptic worlds

presented, but there will be given some basic methods of solving problems, that will
work in a number of situations that are similar to the ones described here. The
examples used here mostly concern building some kind of house, but the solutions are
not restricted to be used only with walls, floors and ceilings, but with all kinds of
objects that present the same type of difficulties.

C.1.2 Corners

Walls are very common in a 3D environment and are a good example because they are
often joined together with each other, or together with the floor and ceiling, creating
corners. Corners can be made in three different ways.

The easiest way 1s to make the two walls overlap in the corner and keep them as two
different objects. This way however, causes a problem with the graphics and that is
when two surfaces overlap in the same plane, there will be a problem with the z-buffer
causing a flicker as the pixels are sometimes taken from one surface and sometimes
from the other surface. This phenomenon is called z-fighting. However, in a corner this
problem only occurs on the outside so it can still be used if the outside of the corner is
not visible.

Another way is to position the walls so that they share one edge, leaving a square
indentation on the outside of the corner, and then group the two parts together. This
will cause them to be joined together at their common edge. If the indentation on the
outside is not desirable it can be filled with a thin square part of the same height and
with as the walls. This part will share vertices with both walls and therefore not create

any gﬁp S.

The third way 1s the most time consuming but also the one that creates the best visible
results and we recommend that it should be used where it is possible. By making a 45°
angle at the end of each wall using the vertex manipulation tool and grouping the walls
together, they will form a perfect corner since both their inner and outer edges will be
joined together.

]

A B C

Figure C.1The figure shows three different ways of joining two walls together in a corner. Method A differs from
the other two in that the walls are not grouped into a single object, but are simply two objects overlapping. 'The
crossing lines in the corner show the surfaces where so called 3-fighting occurs. All three ways will prevent the Phantom
cursor to be pushed through the walls at the joint.

C.1.3 Doors and windows

When creating holes through objects, for example when making doors and windows,
there are a couple of ways to get a good result. Figure C.2 shows three different ways of
constructing a wall with a window that looks good in Crystal Space. However, it is only
method B and C that will work with the haptic plugin. The reason for this is that all
adjacent parts share their entire edges, which is not the case if method A is used.

56

Appendix C — Creating haptic worlds

Figure C.2 The figure shows three different ways of constructing a window. Method A will canse the Phantom
cursor to be able to push through the wall at the joints marked with crossing lines. Method B and C will work fine
becanse all different parts share edges with their neighbors.

C.1.4 Large objects

To speed up the haptic calculations the plugin is able to handle large objects without
adding them to the octree containing the rest of the static objects. The reason for this is
that an object that covers a large share of the world space will become part of a lot of
nodes within the octree and possibly cause the octree to become much larger than
optimal. To prevent this from happen, the object can be marked with a certain class
name in the map (see chapter C.2). One should have in mind that it is the bounding
box of the object that 1s used for the octree and that the bounding box is aligned with
the coordinate axes.

Figure C.3 Objects that are of different shapes and sizes may still have equally large bounding boxes. This can be
good to remember when constructing large objects. Since the bounding boxes are aligned with the coordinate axes,
objects that are diagonal to the coordinate axes get larger bounding boxes than objects of the same shape that are axis
aligned. If the bounding box: covers a large amount of the world space it is wise not to add it to the octree.

It is also important to remember that the bounding boxes are created from a single
object. This means that two walls that are put together by ovetlapping, and are not
grouped together to a single object, will each get their own bounding box. A single wall
object may very well be considered as a small object, especially if it 1s aligned with the
coordinate axes. Therefore it can be good to use overlapping for some objects,
providing that z-fighting can be avoided so that the graphics are not ruined.

C.2 Class-names and keys

When creating a map it is possible to customize it to make it more efficient and more
realistic from a haptic viewpoint. To take advantage of this, the objects have to be
assigned class names and keys, describing what kind of an object it is and what
properties it has. This information can be added by converting an object into one of the
entities listed below and then assigning the different keys. It is not necessary to use any
of these entities, but this will result in that there will be no optimizations and only the
default values will be used for the key values.

57

Appendix C — Creating haptic worlds

Here is the list of the entities that get special treatment from the haptic plugin:

Class name: worldspawn

Using this entity will cause the object to be considered for collision detection every
loop of the force calculations. In other words, it is not put into the octree. This
entity should therefore be used for very large objects, taking up a lot of space. If no
keys are used together with this entity it is equivalent to not using an entity at all.

Class name: thing

The thing entity should be used for all objects that should be part of the octree.
This entity will most likely be the most common entity in any map since it should
be used for all smaller objects and walls.

— Key name: cs_name

This key 1s used to define a custom name for the thing. With the haptic
plugin there are a few names that are reserved and should be used with care.

— Value: liquid

If the name liquid is assigned to a thing a certain liquid object will be created,
so this name should only be used when it is intended that the object should
teel like a liquid.

The tollowing three tags are only used for dynamic objects that should not be
represented as mesh objects.

— Value: dynamic_box

If the name dynamic_box is used the object will be added as a box in the
plugin.
— Value: dynamic_sphere

If the name dynamic_sphere is used the object will be added as a sphere in
the plugin.

— Value: dynamic_cylinder

If the name dynamic_cylinder is used the object will be added as a cylinder in
the plugin.

— Key name: viscosity

This key can be used to create liquids of different viscosity. The viscosity value
will only have effect if it is used together with the cs_name liquid.

Class name: All class names
These keys work together with all kinds of entities.
— Key name: stiffness
The stiffness of an object determines if the object feels hard or soft.
— Key name: friction

This key determines the amount of friction for the object.

58

Appendix D — Dictionary

Appendix D: Dictionary

Avatar - An interactive representation of a human in a virtual reality environment
Beziér curves - Curved lines or paths described by mathematical equations.

Bump mapping - A technique to simulate bumpy surfaces by varying the surface
normals and still maintain a flat surface.

First-person game - A 3D game played from a first-person point of view. This means
that the player is able to navigate in the world and see what is around him, but he is
generally not able to see a representation of himself.

GLUT (OpenGL Utility Toolkit) - An independent window system toolkit for
writing OpenGL applications.

GNU copyleft license - A software license giving all users the freedom to redistribute
and change the software. GNU (GNU’s Not Unix) is an acronym for the Free Software
Foundation (FSF).

Light map - A pre-calculated two-dimensional texture map designed to provide
lighting effects to another texture.

Mip-mapping - Using multiple images, with different resolutions, of a texture map to
present textures at varying distance from the viewer’s perspective.

Object space - The local coordinate system of a three dimensional object.

OpenGL (Open Graphics Library) - An operating system independent low-level
graphics library specification.

Particle system - Dynamic simulation of a group of moving objects. Often used for
simulating things like, fountains, fire, smoke, snow, rain etc.

Phong shading - A lighting model that uses interpolation of vertex normals to
calculate smooth shading of surfaces.

Procedural textures - Programmable graphic textures that can be rendered in real-
time.

Python - An interpreted, interactive, object-oriented programming language that is
portable to many different operating systems.

SCF (Shared Class Facility) - A library intended to separate C++ class
implementations from the programs that use them.

59

Appendix D — Dictionary

STL (Standard Template Library) - A collection of predefined algorithms and data
structures for C++.

View plane - The plane, onto which the image 1s projected. The view plane is
orthogonal to the direction in which the camera is pointing.

VRML (Virtual Reality Modeling Language) - A markup language for describing
mnteractive 3D objects and worlds.

World space - The coordinate system of a three dimensional world.

60

References

References

Literature

[1] J. Tyberghein, A. Zabolotny, E. Sunshine, T. Hieber, M. Ewert, S. Galbraith,
2003, “Crystal Space Open source 3D Game Toolkit Documentation”, Edition 96.003.1
for Crystal Space 96.003.

[2] 2000, “GHOST SDK Programmer’s guide’, version 3.1, Sensable Technologies,
Inc.,Woburn MA

[3] 2001, “e-Touch Programmer’s Guide”, beta release 1.0, Novint Technologies,
Albuquerque NM.

[4] 2001, "GHOST SDK API Reference’, version 3.1, Sensable Technologies, Inc.,
Woburn MA.

[5] 2001, “e-Touch reference manual’, version 1.0.0 beta 3, Novint Technologies,
Albuquerque NM.

[6] T. Anderson, N. Brown, 2001, “The ActivePolygon Polygonal Algorithm for Haptic Force
Generation”, Novint Technologies, Albuquerque NM.

[71 G. C. Burdea, 19906, “Force and Touch Feedback for Virtual Reality”, John Wiley &
Sons, Inc., New York NY.

[8] N. Reistad, 1998, ”Naturvetenskaplig problemlisning’, 2nd edition, Lund Institute of
Technology, Lund.

9] A. Gosline, 2001, “Evalnation of Friction Models with a Haptic Interface”.

[10] R. J. Stone, 2000, “Haptic Feedback: A Potted History, From Telepresence to 1irtual
Reality”, Chester House, Sale.

[11] M. Basdogan, M. A. Srinivasan, 2002, “Haptic Rendering in Virtual Environments”,
Handbook of Virtual Environments, Lawtrence Earlbaum, Inc., London.

[12] Jan Skansholm, 2000, “C++ Direk?”’, Studentlitteratur AB, Lund.

URLs

[13] “Crystal Space 3D,
http://ctystal.sourceforge.net/drupal/

[14] “SourceForge.net: Project Info - Crystal Space 3D SDK”,
http://soutceforge.net/projects/ crystal

61

References

[15] “Sensable Technologies - Ieading provider of touched based applications and tools for your 3D
deszgn and product development process”,
http:/ /www.sensable.com

[16] “e-Touch”,
http:/ /www.etouch3d.org/

[17] R. Smith, “Open Dynamics Engine - ODE”,
http://opende.sourceforge.net/

[18] E.W. Weisstein, “Frictzon - from Eric Weisstein's World of Physies”,
http://scienceworld.wolfram.com/physics/Friction.html

[19] “Haprik”,
http://www.nada.kth.se/kurser/kth/2D1413 / AGI102-haptik-OH.pdf

[20] ”Immersion Corporation”,
http:/ /www.immersion.com/

[21] “Haptics-e The Electronic Journal of Haptics Research”,
http:/ /www.haptics-e.org/

[22] “Reachin - The leading haptic software solution company”,
http://www.reachin.se/

62

