
  
MASTER’S THESIS 

 

Generation of smooth non-manifold 
surfaces from segmented image data 

 
 

 
 

Jon Adolfsson and Johan Helgesson 
23 May 2004 

 
  

 



 



 
 

We would like to thank 
 

 Our supervisors 
 

Dr. Detlev Stalling at the Zuse-institute 
and 

Lennart Ohlsson at the Department of Computer Science at the Lund Institute of 
Technology 

 
 

Dr. Martin Seebaß at the Zuse-institute for all help and assistance with the 
thesis work here in Berlin 

 
 

The Department of Orthodontics at the University of Ulm, Germany  for the 
anonymized data sets we have used in our work 

 
 

We would also like to thank the all the people who have helped us with the 
technical problems and the evaluation of our work 

 
 

 



Abstract 
This master’s thesis treats the problem of correctly visualizing scientific data 
sets that contain many different materials. The studied data sets come from the 
medical applications where many different tissues within a patient have to be 
visualized simultaneously. These data sets are often acquired when using MR- 
or CT-scanner, devices more and more common as standard hospital equipment. 
 
At ZIB in Berlin a visualization system called Amira has been developed to 
visualize these kinds of medical data. Amira visualize the tissues by generating 
three-dimensional surface meshes of triangles. Many different tissues can be 
visualized at the same time. Where three or more tissues meet some ambiguities 
arise of how to visualize the connections between the tissues correctly. In the 
current version of Amira all materials are treated in the same way which 
unfortunately leads to ridges and malformations on the surface when hard and 
smooth materials like bone are visualized.  
 
The master’s thesis deals with two different approaches to remove these ridges 
from the surface. The first approach modifies the way the surface construction 
algorithm in Amira works in order to directly generate one of the materials as 
smooth.  The second approach deals with the output surface from the surface 
construction algorithm and removes the ridges by identifying their position and 
applying a low-pass filter. 
 
The master’s thesis was carried out at the Department for Scientific 
Visualization at the Zuse-Institute (ZIB) in Berlin, Germany. The smoothing 
techniques were implemented within the framework of the Amira software 
system, a modular and object-oriented 3d visualization system originally 
developed at ZIB and now also available in a commercial version 
(www.amiravis.com).  
 
 
Keywords: Visualization, Generalized Marching Cubes, Isosurface,  

Non-manifold surface, Surface smoothing 
 
 
 
 
 
 
 
 

 

 



 

1 INTRODUCTION.......................................................................................7 
1.1 BACKGROUND .............................................................................................................7 

1.1.1 Visualization systems .............................................................................................7 
1.1.2 3D reconstruction from medical images ................................................................7 
1.1.3 3D Reconstruction in Amira ..................................................................................8 

1.2 THE PROBLEM............................................................................................................10 
1.3 AN EXAMPLE OF THE RIDGE PROBLEM AND CONSEQUENCES .....................................11 
1.4 GOAL DESCRIPTION ...................................................................................................12 
1.5 CONTRIBUTION..........................................................................................................12 

1.5.1 Changes to the GMC algorithm...........................................................................12 
1.5.2 The smoothing module .........................................................................................13 

1.6 INTRODUCTION TO AMIRA.........................................................................................13 
1.6.1 Overview ..............................................................................................................14 
1.6.2 Features ...............................................................................................................15 
1.6.3 Extending and altering Amira..............................................................................16 

1.7 TERMINOLOGY ..........................................................................................................17 
2 ALTERING THE GMC...........................................................................18 

2.1 THEORY.....................................................................................................................18 
2.1.1 Marching cubes....................................................................................................18 
2.1.2 The GMC-algorithm.............................................................................................21 

2.2 OUR MODIFICATIONS.................................................................................................33 
2.3 RESULT......................................................................................................................40 

2.3.1 The evaluation model...........................................................................................40 
2.3.2 Visual evaluation .................................................................................................41 
2.3.3 Mathematical evaluation .....................................................................................43 
2.3.4 Advantages...........................................................................................................46 
2.3.5 Drawbacks ...........................................................................................................46 

2.4 FURTHER WORK FOR THE GMC.................................................................................46 
3 POST-PROCESSING...............................................................................48 

3.1 INTRODUCTION..........................................................................................................48 
3.1.1 The ridge ..............................................................................................................48 
3.1.2 A simple overview of the smoothing.....................................................................49 

3.2 THEORY.....................................................................................................................51 
3.2.1 Graphs and graph signals....................................................................................51 
3.2.2 Laplacian Smoothing ...........................................................................................51 
3.2.3 Shrinkage effect....................................................................................................56 
3.2.4 Signal processing on graph signals .....................................................................56 
3.2.5 Taubin-filter and filter design ..............................................................................58 

3.3 IMPLEMENTATION .....................................................................................................61 
3.3.1 Selection of vertices .............................................................................................61 
3.3.2 Taubin filter .........................................................................................................61 
3.3.3 Following ridge and normal vector .....................................................................61 
3.3.4 Neighbors on boundary........................................................................................62 

3.4 RESULTS FOR THE TAUBIN-FILTER ............................................................................63 
3.4.1 Visual results........................................................................................................64 
3.4.2 Surface distance ...................................................................................................66 
3.4.3 Curvature .............................................................................................................68 
3.4.4 Advantages...........................................................................................................69 
3.4.5 Drawbacks ...........................................................................................................69 

3.5 FURTHER WORK.........................................................................................................69 

 



4 COMPARISONS.......................................................................................70 
4.1 DATA SET 1, ZAHN MIT KORTIKALIS ..........................................................................71 
4.2 DATA SET 2, KIEFERSTUCK ........................................................................................76 
4.3 DATA SET 3, HUMAN..................................................................................................81 

5 CONCLUSIONS .......................................................................................86 

6 APPENDICES...........................................................................................87 

7 REFERENCES: ........................................................................................98 

 



1 Introduction 

1.1 Background 

1.1.1 Visualization systems 
Visualization of scientific data is becoming more and more important. Not so 
long ago when computers weren’t as powerful as today a simple image viewer 
or a plotting program might be sufficient for getting a good overview of the 
data. Computer simulations are today used in many areas of science such as 
engineering, physics, chemistry and medicine. These simulations produce very 
large data sets that often represent values in two or three dimensional space, 
sometimes also varying in time. Digital data acquisition technologies such as 
magnetic resonance imaging (MR), computed tomography (CT) and emission 
computed tomography (SPECT) also result in very large data sets that are 
similar in structure to those generated by computer simulations. To get an 
overview of such large data sets is hard, if not impossible. Without doubt these 
data sets are best understood visually as the human visual system is capable of 
processing large amounts of information and extract patterns and structures 
from it. Therefore visualization is very important in many areas. Today with the 
capacity of modern 3D graphics accelerators, 3D visualization can be performed 
on huge data sets making new insights possible wherever large data sets are 
produced. As our work will be mainly beneficial in the field of medicine, we 
have chosen to concentrate us with examples from that area.  

1.1.2 3D reconstruction from medical images 
There exist many applications where visualizing three dimensional data sets are 
required tasks. An important application today is the visualization of medical 
data. Results from computed tomography (CT), magnetic resonance (MR) and 
emission computed tomography (SPECT) are used as a base for acquiring stacks 
of pictures of the inner structure of patients. These images are later ordered and 
segmented, meaning that with the help of a segmentation tool the different 
materials in each image are recognized and their boundaries are determined and 
that the pictures are put in the order they were taken. From these segmented 
images, a three dimensional labelfield can be generated, this can be compared 
intuitively as ordering the pictures on top of each other in space with the 
distance separating them corresponding to the distance between the pictures at 
the time of acquisition. Now the data can be looked upon as a volumetric data 
set with all three dimensions. This can be thought of as a three dimensional grid, 
with all the grid points corresponding to one pixel in each picture. Using this 
three dimensional grid a lot of different visualizations techniques are possible 
such as volume rendering and surface rendering.  

Figure 1: The pipeline for 3D reconstruction of the inner structures of a patient 

7 



 
 

 
Figure 2a: Image obtained from MR-scanner 

 
Figure 2b: Segmented image  

 
Figure 2c: Volume rendering of original non-
segmented image data. 

 
Figure 2d: Surface rendering using 
segmented image data 

 
The visualization of medical data can give vital information to for example a 
surgeon when planning minimal invasive surgery or when fitting implants. The 
demand is therefore very high for high quality products in this area. 
 

1.1.3 3D Reconstruction in Amira 
In ZIB in Berlin a software package called Amira has been developed that can 
accurately visualize medical data with multiple materials or tissues. However in 
certain cases ridges can occur on the visualized surface, which is not desirable. 

8 



In this section we will present a brief description of the surface reconstruction 
algorithm which leads us to the formulation of the problem treaded by this 
thesis. The reader might find it valuable to consult the terminology section in 
Appendix A to get a deeper understanding of the description. 
 
In the first step in the reconstruction pipeline is the medical data gathered from 
the patient. The medical data is normally a stack of two-dimensional images 
acquired by a CT-, MR-, SPECT-scanner or other acquisition devise.  The 
images are taken with millimeter distance, allowing good detail for the 
reconstructed three-dimensional surface.  
 
The second step in the reconstruction pipeline is to identify the different 
materials or tissues in the data. This is done during a segmentation step that 
labels the different pixels in the image slides as fat, bone or muscle and so on. 
This step is normally done semi-automatic where the user of Amira uses 
different tools to find the contours around the different regions of materials in 
the image slides. 
 
 

 
Figure 3: One slice of a segmented 3d medical image data set. The contours separate the 
different regions 
 
The labeled image stack is then smoothed in order to obtain weights for how 
probable the labels of the pixels are. This improves the quality and the accuracy 
of the resulting surface model. The stack of labeled images forms a three-
dimensional labelfield. 
 
The last step in the reconstruction pipeline is to generate an isosurface that 
separates the different regions in the labelfield. This is done by dividing the 
labelfield into a uniform grid and calculating surface faces for every grid cell in 
the grid. The size of a grid cell is dependant on the resolution of the acquired 
images. This is called the triangulation of the grid cells. The grid cell has eight 
different corners that can be labeled with different materials. If all corners lie in 
the same region of the labelfield no isosurface passes through that grid cell, but 
if one or more corners lie in different regions an isosurface intersects the grid 

9 



cell, and it needs to be triangulated.  The isosurface is complete when all grid 
cells have been triangulated. 
 

Figure 4: Example of a triangulated grid cell with three different labels at the corners 

1.2 The problem 
The surface generation algorithm in Amira can handle up till eight different 
vertex classes at the corners of the grid cell, thus allowing up till eight different 
materials meet in the same grid cell. During the triangulation the weights of the 
corners of the grid cell are used for determining where the isosurface should 
separate the different materials that meet in the grid cell. When just two 
materials meet in the same grid cell, the problem of reconstructing the surface is 
rather trivial, but problems may arise when more than two materials meet. The 
algorithm doesn’t separate between materials that are known to be hard and 
smooth like for example bone or tooth and other soft materials like muscle or 
fat. This leads to visualizations that look incorrect, for example ridges occur 
where the bone meets two or more other materials. The problem is illustrated 
below. 
 

Figure 5a: Cell face Configuration  computed 
by the surface reconstruction algorithm 
leading to a ridge on the bone surface 

Figure 5b: Cell face configuration not leading 
to a ridge on the bone surface 

10 



1.3 An example of the ridge problem and consequences 
The original request for 
improvements where made by Prof. 
Cornelia Kober, working at the 
Faculty of Engineering and 
Computer Science at the University 
of Applied Science, Osnabrück. In 
her studies of a biting simulation 
[8], teeth are pressed against some 
obstacle and bored into the bone. In 
this context, the unevenness of the 
teeth caused by the ridges causes 
incorrect stress and strain peaks on 
the bone. Removing the ridges 
would therefore be a benefit, and 
make the simulations more 
accurate. Cornelia has until now 
tried remove the ridges by surface 
simplification and overall 
smoothing, a strategy that will lead 
to loss of detail. 

Figure 6: Example of a tooth from the biting 
simulation. Note the ridges where the tooth meets 
other materials.   

Even when taking these measures it is not possible to totally remove the strain 
from the teeth caused on the bone, as shown in the figure 7b. If the ridges had 
not existed at the time of constructing the model it would be possible to respect 
more details of the dental anatomy. 
 

 
Figure 7a: Figure showing the strains in 
the jaw bone during the biting simulation. 
Blue indicate compression and red indicate 
tension.  

 
Figure 7b: A close up on the jaw where the teeth 
have been removed, the indicated tension on the 
jar originates from the ridge on the tooth. 

11 



1.4 Goal description 
At the beginning of the project two different approaches for removing the ridges 
was suggested by the staff at ZIB; altering the GMC itself or to make some 
post-processing of the generated surfaces. The advantage of post-processing 
would be that information about the whole surface can be considered rather than 
just the small part inside a grid cell. Post processing is also easier to guide, one 
can choose exactly what to remove or not. As the surface is already generated, 
one can see the magnitude of the distortions and where they occur before taking 
action. 
 
The second approach of altering the GMC algorithm so that it avoids creating 
ridges for a material selected to be solid and smooth is also a very tempting 
idea. The advantage of this approach is obvious as the surface will be generated 
correctly from the beginning, considering all the original information from the 
normal surface generation, such as weights and labelfields. Avoiding the 
construction of the ridges in the GMC also makes it easier to automate the 
process, as minimal user interaction is needed. Both approaches will be 
considered and compared in this master’s thesis. 

1.5 Contribution 
Our contribution to the Amira visualization system was based on these two 
suggested approaches. We concentrated in doing research in the field of these 
approaches, trying to find the best solution possible for the time at hand. The 
implementation and research were made in a parallel manner. As the knowledge 
of system grew, more sophisticated implementations were possible. During our 
work some older versions were discarded and some were kept in order to extend 
functionality.  

1.5.1 Changes to the GMC algorithm 
The GMC algorithm works correctly for the cases where just two materials are 
present. Therefore it has been altered in order to simulate the behavior of 
reconstruction of just two materials. The one selected to be smooth (the special 
material) and the exterior. While ridges appear when three or more materials 
meet, none will occur using this approach. In order to do so the following 
changes have been made: 
 

• The smoothing process has been altered in order to preserve the labeling 
and the weights for the special material just as if only this material and 
the outer were present 

• The shifting policy when shifting the point on the edges in the grid cells 
has been changed to take in consideration the original weights of the 
special material. 

• The shifting of point on the faces of the grid cells has been altered in 
such a way that the special material always has a straight boundary 

12 



towards the others. It has also been taken in consideration the way that 
the boundary between the two other materials is created. 

• The shifting of the points inside the grid cell has been altered to just 
consider the resulting points from a triangulation similar to the one when 
only the special material and the exterior are present in the labelfield. 

1.5.2 The smoothing module 
We have created an Amira module for post process removal of the ridges from 
the surfaces generated by the original GMC algorithm. It lets the user select a 
material to be smooth and then smooth the surface in the regions where the 
ridges occur. Different by us invented smoothing algorithms as well as already 
existing ones have been implemented. The user can define a number of 
parameters in order to make the smoothing of the surface better and easier. 
There exist parameters for selecting: 
 

• Surrounding depth, defining how far out from the surface boundaries 
the smoothing is about to take place.  

• Filter parameters to allow the user to change the properties of the used 
filter.  

• Marking of boundaries allowing the user to see how the boundary has 
been moved. 

 
There are three algorithms in the module. One of the algorithms simulates a 
low-pass filter, removing the ridges and the general irregularities in this manner. 
Another modified version of this algorithm has been implemented for 
straightening out the boundary, making it less edgy. A third algorithm have 
been invented that gives virtually the same result as the first one for the special 
material, but without distorting the surrounding materials as much as it keeps 
the original form of the boundary. 
 
These two approaches have been successfully implemented and proven to be 
useful in different situations in the use of the Amira visualization system. 

1.6 Introduction to Amira 
Amira, initially developed by the scientific visualization group at the Zuse 
Institute Berlin (ZIB), is a commercial product for visualization and analysis of 
volumetric data in many fields, including medicine, biology, physics and many 
more. Amira also contains several add-ons, amiraMol for molecular 
visualization and biochemical data analysis, amiraDeconv for deconvolution of 
microscopic images and amiraVR, which provides virtual reality interaction. 
Amira also contains support for other techniques as for example stereo viewing. 
In addition to the mentioned add-ons amiraDev is also available, making it 
possible to develop and extend the capabilities of Amira. A demo version of 
Amira is available at www.amiravis.com. 

13 



1.6.1 Overview 
Amira is constructed in a modular and object-oriented way with computing 
modules and data objects being the basic components. When Amira is started 
three windows are invoked, the main window containing the object pool and the 
control area, the console window where user interaction is possible in means of 
typed commands, scripts and text output and a viewer window where the 
visualization results will appear. To import data in Amira the file browser or 
drag and drop can be used. All data sets and modules are represented as icons in 
the object pool. By clicking on them, additional information appears, and by 
right-clicking a pop-up menu appears, showing a list of modules that can be 
connected to the particular object selected. Connecting compute modules to data 
sets makes it possible to perform operations on this data that can be all from 
filtering, aligning of images, to generating surfaces from labelfields. The 
compute modules are also represented by icons in the object pool and the 
relations between the compute modules and the data sets are shown by lines 
connecting them, thus visualizing which modules get their input and output data 
from and to which data objects. Parameters of data objects and modules are 
displayed and can be modified in the control area. All these parameters can also 
be accessed by the Tcl command interface in the console window, allowing the 
user to query and modify them. Objects can not only be modified by the user in 
editors, but also by other components, mainly compute modules. The visual 
results from the main and the console window will be shown in the viewer 
window taking advantage of the latest release of the TGS Open Inventor 
graphics toolkit. 
 
An example 
The picture below shows a screen shot of Amira visualizing a surface 
reconstruction of a data set called lobus, a part of a flee brain.  
 

14 



 
Figure 8: Screenshot of the Amira viewer 

Main window 

Console window

Viewer window 

 
The visualization of the surfaces generated from the lobus labelfield shown in 
the viewer window was obtained in the following way;  
 

• A label field data set was loaded (lobus.labels.am),  
• Then a surface generator module (SurfaceGen) was connected to the 

data  
• The “doit” button was pressed, generating the iso-surface data 

(lobus.surface.am)  
• This data was finally connected with a surface viewer module 

(SurfaceView) which output is shown in the viewer window. 
 

The four objects can be seen in the object pool with lines showing the 
dependencies. While the SurfaceView module is marked, its properties are 
being showed in the control area and can be altered. The console window 
contains some output that the modules generated during the process. 

1.6.2 Features 
Amira comes with various tools for treating and visualizing scientific data. A 
short description of them follows. 
 

15 



Direct volume rendering – meaning that light emission and light absorption 
parameters are assigned to each data point of the volume, then light 
transmission is simulated through the volume, thus making all the data visible. 
This can be done in real-time even with large data volumes with the help of 
modern graphics hardware. Multiple data sets can be rendered simultaneously 
and the result can also be combined with a polygonal model to give better 
understanding of the data. 
 
Isosurfaces – are mostly used to visualize scalar grid fields. Applied to 3D 
images the method provides a quick and at most times sufficient reconstructed 
model using a polygonal mesh. Amira comes with an improved algorithm that 
generates isosurfaces with few triangles, making it possible to visualize large 
3D data sets even on small desktop computers.  
 
Segmentation – the component for segmentation comes with many features such 
as a brush tool for painting, lasso tool for contouring, magic wand for region 
growing, thresholding, intelligent scissors, contour fitting and much more. All 
for making the classification easy. 
 
Surface reconstruction – for visualizing the data when segmented, Amira 
provides a fail-safe algorithm that creates topologically correct polygonal 
surface models using fractional weights and label fields.  
  
Surface simplification – In order to make models processable on low-end 
machines and to reduce the number of triangles, Amira comes with a surface 
simplification tool. 
 
Generation of tetrahedral grids – using a flexible advancing-front algorithm, 
tetrahedral grids can be generated, suitable for advanced 3D finite-element 
simulations.  

1.6.3 Extending and altering Amira  

1.6.3.1 Software structure 
Amira is built to be easy to extend, this is ensured by the modular software 
architecture where related modules are organized into packages. Each package 
has the form of a shared library, which is loaded at run-time. This way only the 
needed code is loaded and this keeps the size of the executable small in the 
memory while keeping the flexibility to add or replace functionality. Extending 
Amira is quite easy as it is written in C++ and requires only a limited number of 
libraries. The 3D graphics is implemented in TGS Open Inventor which gives 
support for multiple platforms and many other advanced features. The user 
interface is built in Qt, giving multi-platform support, thus making it easier to 
port the code. 

16 



1.6.3.2 Modules and data 
Modules are the core of Amira; they contain the actual algorithms for the 
visualization and the data processing. The whole process from treating input 
data to the final visualization of the result is handled by modules, linked to the 
intermediate data. There exist two types of modules, compute modules and 
display modules. Compute modules usually takes some data as input, modifies 
it, and produces an output while display modules normally just visualize their 
input data. Both module types are derived from the common C++ base class 
HxModule. When imported, both data and modules can be seen in the object 
pool. Data objects are persistent in memory and visually represented in the user 
interface. Data is accessed by the modules using the C++ interface of the data 
classes. Modules are loaded into a common process space at runtime, by using 
shared libraries. This way they can communicate like C++ objects in a normal 
C++ program.  

1.6.3.3 About writing modules 
By extending the C++ base class HxCompModule and including a few libraries 
a compute module can be created and integrated in Amira. Accessing input and 
output data is done via an interface, and there exists an API providing various 
functions to the programmer. The API is vast and since Amira itself is a huge 
project it can take quite some time to get going with the module writing, but 
when a basic knowledge of the system has been obtained the development goes 
smoothly. The same goes for creating visualization modules, but the base class 
HxModule can be used instead since a visualization module normally don’t 
produce a data set. After the modules have been completed, they must be added 
to the Amira system. This is done by altering a configuration script that contains 
information about all modules included in the system.  

1.7 Terminology  
Medical imaging contains a wide range of technical terms and expressions that 
are specific for this field. Therefore for readers with little or no experience it 
might be valuable to consult the Appendix A before and during the reading of 
the presented material.    

17 



2 Altering the GMC 
In order to generate smooth surfaces without ridges two approaches are obvious. 
To modify the algorithm so that the creation of such ridges is avoided or to try 
and remove these ridges after the surfaces have been created. This part will treat 
the first approach, to avoid creating the ridges at all. 
 
As seen in the introduction of this report, when 3 or more materials meet in a 
cell the surfaces created by the GMC can contain ridges. The nature of the 
problem is such that to achieve satisfying results, only one of the three or more 
materials can be considered hard and smooth. Therefore, the goal of this 
approach was to modify the module containing the GMC to allow the user to 
select one material that should be considered to be hard and smooth and 
construct the surface of this material in such a way that this is achieved. The 
advantages of this approach are obvious. Correcting the problem as it occurs 
leads to less loss of data and precision, since a ridge removal after the 
construction of the surface may distort the surface in such a way that it does not 
longer correspond with the actual data in an appropriate way. Working directly 
with the GMC gives many advantages, direct access to the labelfield data, 
control of the smoothing of the labelfield data, control of the creation of the 
weights and much more. This makes it easier to create the surface in such a way 
that the deviation from the labelfield data is minimized. 
 
Since the generation of a surface from data containing more than two materials 
could give ridges, the idea is to reconstruct the special material as if only this 
material and the material that defines the outer region existed. Amira allows a 
user to add and remove materials from a labelfield data set. Thus, removing all 
the other materials but the special material from the data set and then running 
the GMC algorithm on the data generate a ideal result which is the result to 
strive for. The drawbacks of this approach are that if a material is treated in a 
way as if it was the only material present in the labelfield, the other surfaces 
will be a bit distorted.  

2.1 Theory 

2.1.1 Marching cubes 
In order to understand the Generalized Marching Cubes algorithm, the GMC, 
some understanding of the Marching Cubes algorithm must be obtained, which 
is the father of the GMC.  
 
Marching cubes, as proposed by Lorensen and Cline in 1987 [4] is an algorithm 
that creates polygonal models from 3D data. The algorithm processes the 3D 
data in scan-line order and calculates triangle vertices using linear interpolation 
creating a surface that approximates the input data. This is done using binary 
classification, meaning that the data is supposed to contain only two materials, 
the inner and the outer material. 

18 



The original marching cubes algorithm consists of two primary steps, first, the 
construction of the surface according to a specified value c and then, to ensure 
image quality when the model is rendered the calculation of surface normals to 
each vertex of each triangle. The essence of the algorithm is contained in the 
first step, therefore the second step is intentionally left out in this short 
introduction. 
 
In order to create the surface, 
the user has to choose a 
threshold value c. This value 
determines what shall and 
shall not be considered to be 
the outer material and the 
inner material in the slices. 
For example in the figure to 
the right, if the value of the 
threshold c is set to 
correspond to the grey scale 
value between a and b, then 
pixels with the grey scale of b 
or lower value (brighter) 
would be considered as not 
belonging to the inner 
material.  

 
Figure 9: The figure shows a picture slice of a head, 
with amplification of a region on the right. 

Setting c to this value means that the surface is located between a and b as the 
surface is located at the intersection of the outer and inner material. The 
marching cubes algorithm attempts to locate the surface in a so called grid cell  
created from eight pixels in two adjacent slices, having one pixel corresponding 
to each vertex in the corners of the cube. The cube in the figure below is drawn 
in cell space, where corresponds to the pixel of the coordinate in the 
kth slice.  

),,( kji ),( ji

 

Figure 10: A grid cell created from 8 pixels in two adjacent slices. The pixels are located at 
the corners of the cell. 

 

19 



The algorithm then test how the surface intersect the cube and continues 
(marches) to the next grid cell.  
 
To find the surface intersection a 1 is assigned to the cubes vertex if the value at 
the vertex (normally the grey scale value obtained from the corresponding pixel 
in the slice) equals or exceeds the threshold value c. If a 1 is assigned, this 
vertex is considered to be on or inside the surface, the other vertices that are 
located outside the surface are assigned a 0. Then, all cubes that contain at least 
one vertex inside or on the surface (assigned to 1) and at least one vertex outside 
the surface (assigned to 0) are intersected by the surface. 
 

 

The number of possible 
configurations of the vertices, 
inside or outside, is (256), 
but considering the fact that 
the topology remains the same 
if the configuration is mirrored 
reduces the number of cases to 
128. If rotational symmetry 
also is considered the number 
of cases are diminished to a 
manageable 14 cases, plus the 
case when no triangulation is 
necessary, when all the cubes 
vertices are above or below the 
threshold (case 0). Putting 
these cases in a look up table 
instead of triangulating each 
cube individually speeds up 
performance considerably. To 
the right the different cases 
that can occur are shown. 

82

Figure 11: The possible topological cases in marching 
cubes. 

 
When each cube has been assigned a triangulation, the surface intersection can 
be interpolated along the edges of the cube and the surface will be constructed 
of the triangulations made in all the cubes. For example, consider that the 
surface constant is chosen to c=86, and two of the cubes vertices corresponds to 
pixels giving them the value of 68 and 104. Then using linear interpolation the 
intersection of the edge would be exactly in the middle of the two vertices since 
the distance to the intersection point from the vertex with the pixel value 68 
is  5.0)68104/()6886( =−−
  
In general, the marching cubes algorithm works as follows: 
 

• Scan two slices and create a grid cell from four pixels in one slice and 
four pixels in the next slice. 

20 



• Determine the index of the cube in the lookup table comparing the 
threshold constant c with the values assigned at each vertex of the cube. 

• Using the calculated index, look up the triangulation of the cube 
• Determine the intersection point p (where p=c) for all vertices that lies 

on the cubes edges interpolating the values assigned at each vertex. 
• Continue with the following pixels in the slices or when ready, change 

slices 

2.1.2 The GMC-algorithm 
As previously seen in the section describing the marching cubes algorithm, 
surfaces can be generated from binary classifications, that is, data where just 
two different classifications are possible, interior and exterior. However, the 
creation of surfaces from non-binary classifications is an important task in many 
areas, for example in medical imaging, it’s important to be able to create 
geometric representations from MR images. In such images normally more than 
2 different data classes exists. With the normal marching cubes approach just 
one tissue could be visualized, leaving out the others. The advantage of being 
able to see the surrounding tissues as well is obvious. An algorithm that is able 
to handle such cases is needed. 
 
The traditional approach in medical imaging to create these geometric 
representations has been to connect the contours of the different classes in 
neighboring slices. This method often leads to ambiguities and requires user 
interaction to produce a satisfying result. Methods to create such geometric 
representations already exist, for example Bloomenthal and Ferguson [10] have 
developed a method to generate surfaces by decomposing a grid cell in 
tetrahedras. A marching tetrahedra algorithm is also proposed by Nielson and 
Franke [11]. The problem of these algorithms is that, even though they solve the 
problem of generating surfaces from non-binary data, they generate an 
excessive amount of triangles whereof many are badly shaped. 
 
The GMC algorithm (Generalized Marching Cubes), developed at Konrad-
Zuse-Zentrum in Berlin [3] is an extension to the previously explained marching 
cubes algorithm. The motivation for the development of the algorithm was to 
create a fast and robust solution that would be able to create surface 
representations from data containing multiple vertex classes. While the GMC 
allows an arbitrary number of vertex classes to be defined this leads to that new 
concepts has to be introduced. The generated surfaces does not longer belong to 
a single solid material as in the marching cubes, but is constructed of surface 
patches, separating volumes of two different classes. 
 
As in marching cubes, the grid cells or grid cells, are traversed and classified 
according to their configuration of vertex classes. The triangulation is computed 
interpolating weights that are set for each of the vertices, which may already be 
given with the data set, or be assigned by a special smooth-method. The method 
to find the triangulation that approximates the boundary surfaces is completely 

21 



automatic in comparison with other existing approaches that may require user 
interaction to resolve ambiguities. This, with the help of a look-up table that 
gives the algorithm the speed comparable with of marching cubes, assures fast 
generation and a topological correct solution to the surface generation problem. 
 
The resulting surfaces generated by the GMC are also referred to as so-called 
non-manifold surfaces, meaning that one edge may be part of three or more 
triangles. 

2.1.2.1 The Algorithm 
In order to generate an iso-surface using the marching cubes algorithm the data 
has to be constructed in such a way that only two different data classes exits. 
With this assumption 28 different configurations can occur in a cubic grid cell, 
allowing the use of a look-up table for each triangulation case of the cells. In 
this way a very fast algorithm is obtained, but it yields a lot of problems when 
working with data sets that contains more than one data class. Instead, the GMC 
works in a way that it generates iso-surfaces that separate the different data 
classes of the volumetric data, allowing multiple data classes in the same data 
set. Thus, surfaces generated by the GMC may contain contours and points 
where three or more regions belonging to different classes join, producing non-
manifold surfaces. In most cases the cells triangulated by the algorithm contain 
no more than 2 or 3 different vertex classes. Using look-up tables for these 
configurations, which after elimination of the geometric equivalents reduces the 
number from 6561 (38) to 58 different triangulations, a performance similar to 
the one in marching cubes is achieved. Still, this leaves out the more general 
cases that have to be triangulated by a special triangulation method. Since they 
are not very frequent in the normal application the speed isn’t affected too much 
in the normal case. 

2.1.2.1.1 A schematic overview of the GMC algorithm 
The schematics of the GMC algorithm do not differ very much from the 
marching cubes algorithm. The biggest difference lies in that the data is 
represented as a labelfield lattice that could be thought of as a uniform grid, 
where every grid cell has a label in each corner indicating which material it 
belongs to. Every label also contains a set of weights, one for each of the 
existing materials. 
 
The algorithm could roughly be described as follows: 
 

• Examine the labelfield to find out which materials exists 
• Smooth the labels in the labelfield to obtain weights 
• Scan two slices at a time and create a grid cell from four points in one 

slice and four points in the next slice of the labelfield 
• If the cube contains at most 3 different labels, look in the look-up table 

for the triangulation. If the cube contains more labels, create the 
triangulation with the triangulation algorithm. 

22 



• Shift the points of the triangulation according to the weights 
• Continue with the following slices 

2.1.2.1.2 Labeling, the separation of the regions 
In medical imaging a labeling is normally obtained using a segmentation 
algorithm on a stack of MR images, while in other applications it may be 
obtained by evaluating an analytical expression. Other techniques also exist to 
mark the regions, such as contouring. 
 
In order to reach the goal of creating non-manifold surfaces that separate 
regions of different type, space must be represented in some way. To make the 
explanation of the algorithm easier, let’s assume that space is divided in a 
uniform discrete grid, with every grid cell corresponding to a label. 

Figure 12: A uniform discrete grid, made up of 4 image slices that are segmented into regions, 
labeled and later put together. The uniform grid is a simplification due to the fact that the 
distance between the image slices and the distance between the pixels are not always the same 
in the real case, for example when image data are obtained from MR scanners. 
 
Let σ denote the total number of region types that exists, yielding σ different 
labels. We can now define a cubic grid cell with eight vertices from the discrete 
grid. Let there exist a set of σ weights {p0..pσ} at every vertex, where p0 denotes 
the weight that the vertex belongs to the label 0 and so on. If a vertex is 
assigned to the material k, then every weight variable pi is set to 0 except for pk, 
which is set to 1. To classify an inner point of the cell the region of maximal 
weight is chosen, the function 
 

maximalxpi i   )(|Region(x) =  
 

can be evaluated using for example tri-linear interpolation, where pi(x) denotes 
the interpolated weight in the point x. Classification using the maximal weight 
does not require the weights to be set to 0 or 1, but restricting to integer values 
in this way makes it easy to distinguish between the different topological 
configurations. That way using a simple indexing scheme a look-up table can be 

23 



used, increasing speed remarkably. To obtain smoother results however a non-
binary classification is preferred. 

2.1.2.1.3 Obtaining weights, the smoothing of the labelfield 
In order to make the triangulation as correct as possible and to obtain smooth 
surfaces as result, weights are used together with the labels. Normally a label 
lattice does not contain any weights, but weights could have been assigned 
when creating the labelfield. A simple and very effective way to obtain weights 
that will generate a good result is to use a smoothing filter on the labels. 
 

Figure 13: Starting from a labelfield, binary images are extracted and blurred. These are later 
used to obtain the weights. 
 
First, to illustrate the method let us begin in the 2D case. This could be 
compared to treating just one slice at a time from the stack of slices that make 
out the labelfield. Let us hold on to the definition of σ as the number of different 
materials in a labelfield. Then in the first step, the 2D labelfield is separated into 
σ intermediate images, where every pixel is set to the maximum intensity where 
the current label occurs and zero otherwise. Then all the images are blurred 
using a Gaussian filter, resulting in σ images containing pixels somewhere 
between the maximum and minimum intensity. Now, at every position  in 
the grid, the weights of the different materials are set to the corresponding 
intensities found in the σ smoothed images. 

),( ji

 
In some cases, this smoothing can result in that a position  in the labelfield 
contains a label a, but the weight for the material a is less than the weight of 
some other material b at this position. In order to tackle this problem, two 
different strategies are available, constrained- and unconstrained smoothing. In 
the case of unconstrained smoothing, if such situations arise, the position  
will be re-labeled to contain the label of the material that has the biggest weight. 
If instead constrained smoothing is used, the original weights are always 
preserved resulting in that no such re-labeling will occur. 

),( ji

),( ji

24 



 

 
Figure 14: The picture on the left represent a 2D labelfield with two labels, black and white. 
The right picture is the result after the smoothing using a gauss-kernel of width 1. If 
unconstrained smoothing is set, the two small dots would have too low weights in comparison to 
the surrounding material and would be re-labeled to belong to the white region. If constrained 
smoothing is set, these points would still be labeled to belong to the black region. As seen in the 
picture, a smoother, less “noisy” result is obtained with unconstrained smoothing on the cost of 
loss of detail  
 
The advantages of the unconstrained approach are that isolated labels will be 
removed producing a smoother, less noisy result with smoother boundaries. But 
this may also lead to loss of data or precision, speaking for the constrained 
approach that preserves the original labelfield. 
 
The smoothing strategy described is pretty easy to generalize to the 3D case. 
Nevertheless, some precautions have to be taken, while separating the labelfield 
into σ labelfields and smoothing each field separately increases the memory 
usage, which makes large models impossible to handle in computers. The 
approach used to reduce the needed memory is to process the labelfield slice-
wise. Combining bounding boxes that contain the weights of each material and 
the use of only 3*σ buffers, lots of space can be saved. This while memory just 
has to be allocated to hold the size of the bounding boxes of each material and 
not always the size of a whole slice. 
 
A schematic overview of the smoothing process 
 

• Examine each slice and set a flag for each material that occurs in the 
slice 

• Set a bounding box for each material that occurs in each slice, big 
enough to hold the material and the size of the smoothing kernel.  

• Copy and smooth 3 adjacent slices and put them in 3 temporal slice 
variables 

• For all slices 
o Compute the new slice from the 3 temporal ones 
o Copy and smooth the next adjacent slice and shift the temporal 

slices 
• Output the resulting weights 

 
Holding the weight for each material in every grid point consumes a lot of 
memory, therefore the optimization has been made to just save the biggest 

25 



weight corresponding to the label in the grid point and letting the other weights 
be 1 minus the weight at that point, thus making the space needed σ times 
smaller. 

2.1.2.1.4 Triangulation of the grid cells 
When a labelfield with corresponding weights has been obtained, the 
triangulation of the grid cells can be performed in order to extract the surface. 
The labelfield together with its weights define a unique set of surfaces 
separating the different labels inside the cell. The surfaces are defined so that 
the two largest weights are equal on them when interpolated from the cube 
corners. Since tri-linear interpolation is a non-linear transformation, these 
surfaces will not be planar, therefore to represent these surfaces in a good and in 
computer graphics convenient way, a triangular approximation is constructed 
using bi-linear interpolation. This triangulation has to be consistent between the 
adjacent grid cells in order to avoid holes in the resulting surface mesh and it 
has also to preserve the topology inside the cells. 
 
As seen previously, in the case of 2 different region types, 256 configurations 
are possible that can be represented of 14 topological cases, and in the case of 3 
different regions an additional 44 is needed. To be able to handle any case, that 
is up to 8 different labels, a method is needed that can generate the triangulation 
of any case automatically. 
 
Re-labeling 
Before a triangulation can take place, the labels in the cells corners has to be re-
labeled. In a labelfield an arbitrary number of materials can be defined, but in 
order to make the triangulation algorithm easier to implement, and to make the 
look-up table easier to use, the materials are given labels from 0 to 7, as the 
maximum number of different labels that can exist in a grid cell is 8. This gives 
the advantage that the triangulator just has to deal with 8 different materials 
since the re-labeling is done before the triangulation. When the triangulation of 
the cube is done, an inverse re-labeling is done to obtain the original labels. 
 
Subdivision of the grid cells 
The method used in the GMC is based on a simple sub-division approach. To 
obtain a representation of the inner structure of a grid cell, the cell is subdivided 
into a number of smaller cells. For each sub-cell the maximum weight is 
interpolated at a point placed as in figure. 
 

26 



Figure 15: The picture shows an example of subdivision by 4 in the 2d case and the outcome of 
the evaluation of the sub cells. The sub cells memberships are determined using linear 
interpolation of the weights in the four corners in the sampling points in the picture, giving the 
membership of the sub cell to the label that has the maximum interpolated weight. The letters in 
the corners represent the different labels. 
 
Note that the placement of the sampling points is translated from the center of 
the sub cells to lie on the cells faces and boundaries. In this way consistency can 
be guaranteed between adjacent grid cells since the points on the faces and the 
boundaries are shared with the adjacent grid cells. The sub cells are classified to 
the maximum weight found in their corresponding point. Whenever two sub-
cells are of different classes, their common face is added to an intermediate 
triangulation as shown in the picture, which later will be simplified. 
 
Finding patches 
When the intermediate triangulation is finished, the next task is to find and 
classify the patches contained in the cell. All connecting triangles separating the 
same vertex classes are grouped into patches. Then the boundary curve of each 
patch is extracted. 
 
For each vertex in the triangulation the number of boundary curves it belongs to 
is determined. For a point inside a patch this number is then zero and they are 
not longer needed to create the final triangulation. Points belonging to more 
than one boundary curve are named branching points.  

Figure 16: The picture shows an intermediate triangulation on the left and on the right the 
boundary curve of each of the three patches together with the classification of the points.  
 
Simplifying the boundary curves 
In order to produce the final triangulation, the intermediate triangulation has to 
be simplified. To make this, only a few of the produced vertices are of real 

27 



importance namely the ones that are branching points and those who lay on the 
cells edges. This because the branching points reflects the cells inner topology 
and the vertices on the edges are referenced by multiple cells. All the other 
vertices will only increase the complexity on a sub-cell level and are not needed 
to produce a topological correct result. After this is done the boundary curves of 
the patches consists of only those vertices, normally 3 or 4, but cases with more 
vertices also exists. 

 
Figure 17: The resulting triangulation after the simplifying step.  
 
Retiling patches 

 
 
Figure 18: Anchor point strategy, using one point as 
anchor, edges can be connected from this point 
forming triangles. 

After the simplification of the 
boundary curves is completed, 
the patches are once again retiled 
with triangles. If a patch is 
planar, this can be done using a 
simple anchor point strategy. 
When this is not the case, special 
care has to be taken while 
unfavorable triangulation in 
combination with the 
simplification of the boundary 
curve can introduce penetrating 
triangles. This is avoided by 
introducing a center vertex into 
patches with 5 or more boundary 
points and using a fan-type 
triangulation strategy.  

 
Figure 19: Fan-type strategy, placing one point in 
the middle of the polygon edges can be defined 
between this point and the points on the polygon to 
create triangles 

 
After the retiling of the patches the basic triangulation is done and the different 
regions in the labelfield are separated by surface patches. Triangulating cells is a 
quite time consuming task, and many triangulations are topologically 
equivalent. This calls for the use of a look-up table in order to reduce the 
number of triangulations to a minimum. 

28 



The look-up table 
In order to save memory the look-up table is created on the fly. That means, 
when a cell needs to be triangulated and it consists of 2 or 3 materials, the look-
up table is queried to check if any topological equivalent already has been 
triangulated. If so, then the triangulation is returned from the look-up table. If 
no triangulation is previously calculated for this topological case the 
triangulation is made using the algorithm previously described and added to the 
look-up table. 
 
The table doesn’t store the exact position of the points on the edges and the 
faces, it merely stores whether a face or an edge contains a point or not, just as 
after the retiling step. Therefore the points must later be shifted on the edges, 
faces and sometimes even the inner points that may exist.  
 
For a complete overview of the different triangulation cases that exists, a table 
is set up in the appendix B.  
 

Figure 20: Example of triangulation in the 3D case. Where the first cube shows the labels, the 
second the intermediate triangulation and the third the final triangulation 
 
A schematic overview of the triangulation process 
 

• For all grid cells 
o If the cell contains three different materials or less and a 

topological corresponding case already has been triangulated  
 Choose the triangulation from the lookup table 

o Else 
 Triangulate the grid cell. 

• Do a sub-division of the grid cell 
• Do an intermediate triangulation of the grid cell 
• Group the triangles in patches 
• Simplify the boundary curves of the patches, 

saving only boundary points on edges and 
branching points 

• Re-tile the patches using fan- or anchor point 
strategy 

• If the cell contains three different materials or 
less, save the triangulation in the lookup table 

29 



 

2.1.2.1.5 Shifting the points 
The result obtained from the previous steps is triangulated grid cells with a set 
of points defined on and in them. The surfaces that these cells define is a 
topological correct one, and valid since the separation of all regions is correct. 
However, the location of the points is just determined to be on the center on the 
edges, faces and the interior by the triangulator. A quick solution to this would 
be determining the location of the points in the sub-division step, but it would 
give a non exact result in respect of the weights as the sub division just could 
give an approximate location of the points. Instead, using the weights that are 
defined for each point in the corner of the grid cells, the points could be shifted 
to a more exact position, giving a better result for every grid cell and resulting 
in more exact and smoother surfaces. 
 
The algorithm goes through all points and first shift all points that are located on 
edges, then the points located on the faces (at most one point per face) and last it 
relocates the inner points. The reason of doing the shifting in this order is that 
the position of the inner points depends on the position of the face and edge 
points, and the position of the face points depends on the position of the edge 
points. Thus, shifting the points in this order saves calculations. 
 
Bilinear interpolation 
To determine where on an edge a point should be located, the weights in the 
cubes vertices belonging to this edge are used. If weights for more than two 
materials exist at the vertices, determining where the point should be located 
turns in to a quite complicated matter. To remedy this, the simplification is 
made that all but the maximum weights at each vertex are set to be equal. Then 
only two different weights occur at a vertex, the primary that is the strongest 
weight and the secondary representing all the others.  
Making this simplification also gives the advantage that the amount of memory 
needed for storing the results from the segmentation is reduced drastically. 
 
Now the location of a point on an edge can be determined by bilinear 
interpolation. 
 

30 



 

 
Setting up the equation system: 
 

112 )( aab wxwwy +−=  

221 )( aab wxwwy +−=  
 
Gives the intersection point 
 

1221

21

abab

aa

wwww
ww

Ux
+−−

−
==  

 
which is the new location of 
the point. 

 
Figure 21: Bilinear interpolation done geometrically 
between two vertices.  

In the implementation of the GMC the weights are chosen so that  to 
save space. This is guaranteed to be correct since the primary weight  is 
always bigger than the secondary weight . Only one case exists where the 
interpolation fails, that is when the denominator is zero. In this case U is set to 
0.5 which is the logical due to the fact that the denominator is zero when the 
weights are the same.  

12 1 ww −=

1w

2w

 
Edge shift 

          When a point lies on an edge, the 
new position of the point is 
calculated using bilinear 
interpolation of its weights as 
explained in the previous section. 
Shifting the points on the edges 
gives a smoother result than just 
letting them be on the middle of the 
edge, which would give an  
‘edgy’ surface as result. 

Figure 22: The figure shows an edge from a 
grid cell with the point to be shifted in red. 

 
Face shift 
The shifting of the points on a face is somewhat more complicated than the 
shifting of the points on the edges, there exist two different topological cases 
when points on faces occur. One case is when three edges of the face have 
points on them and one is when all four edges of the face have points on them.  
 

31 



Figure 23a: The figure shows the face of a 
cube with three different materials present (A, 
B, C) and the points on the edges that 
separate these materials. The red point is the 
point to be shifted on the face. 

Figure 23b: The new location of the point 
after the shifting has been made.  

 
When three edges has points on them 4 different configurations are possible, but 
all are equal if the face is rotated. At first an interpolation is made of the weights 
at the vertices of the face to get the corresponding weights for the points and 
 . Then the fractional value U is calculated with bilinear interpolation of 
these weights. The point on the face pf is placed on the straight line that can be 
drawn between  and : 

1p

2p

1p 2p
)( 121 ppUpp f −∗+=  

 
Note that the position of the point  is not considered at all when calculating 
the new position of the face-point. 

3p

Figure 24a: The figure shows a cell face 
where four different materials meet. 

Figure 24b: The placing of the face point is in 
the intersection of the lines drawn from the 
points lying on opposite edges. 

32 



 
The case when all four edges have points on them is solved by computing the 
intersection of the lines drawn between the points that lie on opposite edges. 
The face-point is then placed where these lines intersect.  
 
Inner shift 
The inner points are placed in the 
position given by the mean value 
of all the neighboring points. The 
neighboring points to an inner 
point pi are all the points that are 
connected to pi with edges. Thus, 
the placing of the points during 
inner shift is not directly 
dependent on the weights, but 
indirectly because of the placing 
of the neighboring points, the 
points that lie on the faces and the 
edges, are determined by the 
weights.  

 Figure 25: In the picture the entire grid cell can be 
seen with the inner point marked with red and the 
face points with green. The triangulation is also 
shown with the thinner lines representing the edges 
between the points. Notice how the points separate 
the different materials in the cube. 

 
All the shifting of the points in the surface model can be done whenever desired, 
assuming that the weights still are defined for all the points in the labelfield. 
However, to save memory, in the implementation this is performed on each cell 
directly after its triangulation.  
 

2.2 Our modifications  
Motivation 
The motivation for modifying the GMC algorithm was to correct the problem of 
the ridges that were created when 3 materials meet in one cube cell. The idea 
was to give the user the ability to pick a special smooth material that should be 
generated to be smooth, and have no ridges on it. A natural example is the 
example of when bone, muscle and fat meet each other in a model. Bone is 
considered to be smooth due to its natural properties and therefore it is more 
natural if the muscle and fat follows the bone in such a way that no ridges occur, 
than that all materials are interpolated to follow each other. 
 
The idea 
The ridge problem occurs when three or more materials meet in a cube cell. 
Eliminating all materials except for the special material and the material that 

33 



defines the outer region would yield an optimal calculation of the surface of the 
special material, since just two materials would be present.  
The idea was to change the algorithm so that it generates the surface triangles 
that belong to the special material as if no other materials were present in the 
model. Using this strategy leads to distortions in the other materials present, 
since the shifting of the points will have to be modified, but it was agreed upon 
that the benefits of the change would be greater than the drawbacks of these 
distortions in the model. 
 
Changes in the smoothing process 
To be able to generate the surface of the special material without distortions 
from other materials, the original weights have to be saved. This is due to the 
simplification step previously mentioned, where only the dominating weight is 
saved and a secondary weight is generated to represent all the other materials. In 
the implementation of the GMC the weights are represented by a byte, giving 
them values in the range of 0 to 255 where 255 is the maximum weight. 
 
The smoothing process was modified in such a way that: 

1. A vertex is always re-labeled to belong to the special material when the 
weight of the special material,  is such that . smw 128≥smw

2. A vertex can’t be labeled to belong to the special material if . 128<smw
3. An extra table is created containing just the weights for the special 

material 
 
When forcing the algorithm to re-label a vertex to belong to the special material 
if  is 128 or bigger, and not allowing vertices labeled to belong to the 
special material when  is smaller than 128, the algorithm behaves as if only 
two materials existed. This is due to the fact that the maximum allowed weight 
is 255, and if a labelfield contains only two different materials and one of them 
has the weight 128 in a vertex, the value of the other must be 127. In our case 
this would be the same as running the smoothing process on a labelfield 
containing just the special material and the outer material. Using this approach 
the outer material can be considered to have the weight 255 minus the weight of 
the special material. The weights are also saved for the special material, making 
it possible to perform the shifting of the points in a manner that the surface of 
the special material is not distorted by the other materials. This makes the 
changes of the smoothing process complete. 

smw

smw

  
Changes in edge shift 
The weights saved in the smoothing process are used if one of the vertices that 
lie on the treated edge is labeled to belong to the special material. This way the 
shifting of the points on the edges will be done in the same manner as if the 
special material was the only material existing. When none of the vertices are 
labeled to belong to the special material the shifting is done as normal, using the 
normal table of weights. 

34 



 
Changes in face shift 
There exist two basic configurations to consider when the special material is 
present in a face shift; when two corner vertices belong to the special material 
and when one corner vertex belongs to the special material.  
 
1. Configurations with two vertices belonging to the special material 
 
When two vertices belong to the special material, two different configurations 
are available.  
 

Figure 26a: A cell face where two vertices 
belong to the special material 

Figure 26b: The final placing of the face point 
giving a straight line as border for the special 
material 

 
The case when three edges have points on them, the vertices of the special 
material are placed so that they are on the same side, sharing one edge. In this 
case, no changes have to be done, since the implementation of face shift is such 
that the face point pf will be placed on a straight line between the two points 
separating the special material from the other materials. Thus, creating a straight 
border towards the other materials as also would be the case when just two 
materials were present. In the case when all four edges have points on them, the 
placing of the vertices labeled with the special material are located on opposite 
corners, creating a so called checkerboard case. This case is handled by a 
special method that resolve the ambiguities and it is not handled in faceshift. 
 
 2. Configurations with one vertex belonging to the special material 
If just one vertex is labeled to belong to the special material and three edges 
have points on them, two basic configurations are available with their rotational 
equivalents. The two cases are shown in the pictures below. In order to make 
the implementation easier, the points  and  are re-named to take each 
others name in the second case, giving just one case and its rotational 
equivalents to consider.  

3p 2p

35 



  

Figure 27a: Configuration case 1 Figure 27b: Configuration case 2. If 
and are switched we get the same 

configuration as in case 1, considering the 
special material. The same points are used for 
separating the special material from the 
others.  

1p 2p

 
The objective of the changes is to simulate that only the special material and 
one material representing the outside are present in the model. If this was the 
case, a straight line would have been drawn between the points  and , 
separating the special material from the outside. In order to recreate this,  has 
to be placed somewhere on this line separating the special material from the 
others, namely the one created by  and . The ideal placement of  is 
achieved when  is orthogonal to 

3p 2p

fp

3p 2p fp
)( 1pp f − )( 23 pp − . 

36 



 

Figure 28a: To relocate the face point the 
orthogonal projection of v is made on u . 

To make a solution that works for all 
the 4 rotational equivalents of the 
face and that is independent of the 
coordinate system, vectors are used.  
 
Let  
 

32 ppu −=  
 
 and  
 

31 ppv −=  
 
now, the orthogonal projection of v  
on u  is  
 

u
u

uvv p 2

⋅
=  

 
then the ideal placing of the face 
point is 
 

pf vpp += 3  
 
The idea is illustrated in the pictures 
on the right. 
 
However, the idea only works when 
the angle α between u  and v  is 
such that °≥≥° 9045 α . 

Figure 28b: Placing the face point in the 
position pvp +3  gives an angle of 90 degrees 
between the lines. 

 
In the other cases when α is outside this interval, the face point has to be placed 
in either one of the extremes of the line between  and . This can be 
detected by looking at

3p 2p

pv . When pv  is pointing in the opposite direction of 
u , )45( °<α the face point is placed in . When the length of 3p pv is greater than 
the length of u , )90( °>α then the face point is placed in . However, the 
placement of the face point in or gives degenerate triangles. In the case of 
moving the face point to , the triangle [ , , ] will be degenerate, and in 
the case of moving the face point to , the triangle [ , , ] will be 
degenerate. Normally such a situation should be avoided by removing these 

2p

2p 3p

3p 1p fp 3p

2p 1p 2p fp

37 



triangles right away since we know that they are degenerate. However, due to 
the structure in which the triangles are indexed and stored in the implementation 
of the GMC, this is a quite time consuming and not so easy task. Instead of 
doing this at every single instance when a degenerate triangle is generated, the 
problem is remedied when the triangulation of all cube cells are finished. In this 
step the surface is simplified and all such triangles are removed.  
 
The last case occurring in face shift is when four edges have points on them, or 
in other words, when four materials meet in one cell face. This is a quite 
unusual case and does not occur too often even though more than three 
materials might exist in the labelfield. The solution to this case when no special 
material is present consists of just calculating the intersection point  given by 
the intersection of the two lines constructed of the points on opposite sides of 
the face. Then the face point is placed in this intersection point. However, when 
the special material is present in one corner, using this solution would distort it. 
In order to simulate that the special material is the only one present the face 
point must be placed so that the border between the special material and the 
other materials is a straight line. 

ip

Figure 29a: Four materials meeting on a face 
giving an intersection at each edge. 

Figure 29b: The vector v  is projected on 
u giving the vector pv  that determines the 

new location of the face point .  , the 

intersection point is used to construct 
fp ip

v .  
 

38 



 

Figure 29c: The final placement of the face point . Note the straight border between the 
special material and the others. 

fp

 
In order to not disturb the balance between the other materials, the face point is 
placed on the line between  and  a distance 3p 2p pv  from the point  where 3p

pv  is the orthogonal projection of v on u . This gives the exact properties of the 
solution to the configuration just explained above. The same restrictions apply 
as well when the projection gives a resulting vector pv  so that the placement of 
the point  would be outside the face.  fp
 
Changes in inner shift 
Inner shift is originally implemented to work so that the inner point is moved to 
the average of all the other points it is connected to. In the case when only the 
special material and the outer region exist, there would just be one surface patch 
separating the special material from the outer region.  
 
In order to simulate this situation, the inner shift is separated in two cases 
 

1. When the cube cell does not contain the special material 
2. When the cube cell contains the special material. 

 
In the first case, the inner shift is done as normal, the points that are neighbors 
to the inner point are collected and the mean value is computed. The inner point 
is then placed in this position. 
 
In the second case, all the points that together with the inner point define 
triangles that separate the special material from the others are collected and the 
mean value of them is computed. Meaning all the points that are neighbors to 
the inner point, and that are located on patches that separate the special material 
from the other ones are extracted. In this way all the materials apart from the 

39 



special one are treated as if they were part of the outer region, giving the desired 
result. 
 
A schematic overview of the GMC after the modifications1  
 

• Examine the labelfield to find out which materials exists 
• Smooth the labels in the labelfield to obtain weights 
o Save the weights of the special material in separate table 
• Scan two slices at a time and create a grid cell from four points in one 

slice and four points in the next slice of the labelfield 
• If the cube contains at most 3 different labels, look in the look-up table 

for the triangulation. If the cube contains more labels, create the 
triangulation with the triangulation algorithm 

o Shift the points in the cube. If the special material occurs in the cube, 
use the weights saved in the table and use the strategies developed to 
simulate the presence of just the special material and the outer region 

• Continue with the following slices 
 

2.3 Result 
The purpose of the changes to the GMC was to let the user select one material 
that should be treated to be smooth (the special material) without ridges. The 
ideal case was chosen to be the surface generated with the original GMC with 
just this special material and the exterior present, due to the fact that no other 
materials then could distort the surface. The results have been chosen to be 
evaluated on a single labelfield. 

2.3.1 The evaluation model 
The model chosen for the evaluation is the zahn mit kortikalis model. This is a 
good example because of the easy structure of the model and the visual aspects, 
making it easy to distinguish the ridges and other anomalies.  
 
The model is generated from a labelfield of the dimensions 143x239x24 and the 
ready model contains of 57486 points making up 115350 faces distributed on 5 
patches. Below the whole model is shown with its different parts. It consists of 
four different materials, the dentin, enamel, kortikalis and the exterior. As seen 
in the pictures dentin is in connection with three different materials at two patch 
boundaries; where it connects to enamel and where it connects to kortikalis. 
Therefore dentin is chosen to be the special material in the test. 
  

                                                 
1 The modifications are marked with a non-filled circle 

40 



 
Fig
the

l 

 

2.
 

 
Fig
gen
 
 

Ename
n 
Denti
ure 30a: The whole model gen
 original GMC 

s

3.2 Visual evaluation 

ure 31a: Dentin as it looks 
erated with the original GMC 
Kortikali
erated by 
 
Figure 30b: The same model shown with 
enamel and kortikalis in transparent view. 
Note how the dentin surface resides inside the 
kortikalis and enamel surface 

like when 
 
Figure 31b: Dentin when generated with our 
modified GMC and selected to be smooth 

41 



 
Figure 32a and 32b: Zoom in on the lower ridge on dentin with the triangle edges visible. The 
left picture shows the result when the original GMC is used. The picture on the right shows the 
same situation when the modified GMC is used. 
 
As seen in these pictures the difference of the surfaces generated by the original 
and the new version of the GMC are quite big. The original version gives a very 
strong ridge effect where the three materials meet, and the new GMC gives a 
result without these effects.  
 

 
Figure 33a and 33b: The ideal dentin surface is shown  on the left and the surface generated by 
the modified GMC on the right 
 
As seen in these two pictures, there is virtually no difference between the ideal 
surface and the one generated by our modified GMC. It is very hard to point out 
any differences. 
 

42 



2.3.3 Mathematical evaluation 
The visual evaluation is not always fair as it can be very difficult spot the 
differences without previous knowledge of the models. More exact results can 
be obtained if the difference between the surfaces is evaluated statistically. 
 

 
Due to the fact that every model has 
its own coordinate system 
deviations in the surface models 
can’t be compared directly between 
them.  

To the right a snapshot of the 
material dentin is shown, when 
generated with the original GMC 
from a labelfield with just this 
material. To be able to interpret the 
statistical results in a better way 
regarding the distance between the 
surfaces generated by the original 
GMC and the modified one, the 
dentin surface has been measured to 
its diameter and length with the 
results 0.6717 for the diameter and 
2.0452 for the length.  

Figure 34: The figure shows the dimension of 
the dentin surface. The blue line has the length 
0.6717 and the red one 2.0452 

Moreover, due to the lack of length units in the coordinate system, some 
reference values have to be established to make the comparison meaningful. 

2.3.3.1 Surface distance 
In Amira there exists a module for measuring the distance between two 
triangulated surfaces. For each vertex of the surface the distance to the closest 
point on the other surface is computed. From the histogram of these values the 
following is computed: 
 
Mean distance: δ  
Standard deviation from the mean distance: σ  
Root mean square distance:  rms
Maximum distance: maxδ  
 
The output of the module is a distance field, meaning a field of values that for 
every vertex in the source surface contains the minimal distance to the target 
surface. This distance field can be connected with the surfaceViewer module to 
produce a visual result of how the surfaces differ from each other. 

 
 

43 



 
 
Surface distance: 
 
Ideal surface   
surface 
generated by 
original GMC 
with all materials 
present 
 
 

0.00142141=δ  
0.0034648=σ  

0.0037449=rms
 

0.0203537max =δ
 
 

 
Figure 35: The distance field visualized together with the ideal surface. Note that the scale is 
set to be ten times bigger in the next picture. The surface distance is a color marked indicator 
which spans from white (no difference [0]) through blue and red to yellow (maximal distance 
[0.01]). 
 
As seen in the picture, the ridges present a serious distortion to the model, even 
though the color scale is set to be ten times bigger. Setting the scale to the same 
values as in the following example is useless since a lot of values bigger than 
the scale. The mean distance should not be considered since the surfaces are 
exactly the same everywhere but where the ridges occur, and therefore gives no 
fair comparison. Although this is the case, the mean distance is 0.21% of the 
dentin diameter which is bigger than the mean surface distance when comparing 
the results of the modified GMC with the ideal surface. This gives an idea about 
how strongly distorted the model is by the ridges. 
 

44 



 
 
Surface distance: 
 
Ideal surface   
surface generated 
by modified GMC 
with all materials 
present 
 
 

000529077.0=δ  
0.00172168=σ  

00180108.0=rms
 

0108175.0max =δ  
 
 

 
Figure 36: The distance field visualized together with the ideal surface. Note that the scale is 
ten times smaller than in the last picture. The surface distance is a color marked indicator 
which spans from white (no difference [0]) through blue and red to yellow (maximal distance 
[0.001]). 
 
As seen in the picture, the deviation is not especially strong at any part of the 
surface, but more generally distributed all over. The deviations are not stronger 
where the ridges earlier were found. The small deviations found that are 
scattered all over are results from the difference in the smoothing process and 
also the triangulation. In the smoothing process the different materials can affect 
each other giving a slightly different result than the two material case. The 
differences in the triangulation come from that placing a vertex on a straight 
line, may cause it to be distorted a little bit because of the limited precision of 
the floating point numbers in computers. 
 
All in all, the goal of recreating the dentin surface as in the ideal case with all 
materials present has been reached. The differences are so small that very strong 
zoom has to be applied to see them. The mean distance is just 0.079% of the 
dentin diameter which is a very low value. 

2.3.3.2 Surface Curvature 
Another way to study the results is to look upon the curvature of the surface. 
This can be done with a surface curvature module which looks the surrounding 
to each vertex and calculates the maximum shifting at this vertex. Therefore it is 

45 



a measurement of how irregular the surface is. The intensity of the shifting is 
used for color marking the surface.  
 
However in this case this method is not useful because of the similarities 
between the compared surfaces. But as we will see later this method comes to 
use during the comparisons in the post-processing step.    
 

2.3.4 Advantages 
The initial goal of generating surfaces without ridges that was set out in the 
beginning has been reached. The surfaces generated by our modified version of 
the GMC shows virtually no difference from the ideal ones. The advantage of 
taking on the problem as it occurs is obvious. The speed of the algorithm is only 
affected in linear time, as well as the space. With this version of the GMC 
smooth surface models can easily be created without ridges. Furthermore, the 
advantage of changing the GMC is that the process can be automated, without 
the user having to bother to look for ridges in a second step when generating 
surfaces. Some changes to the other surfaces in the labelfield also occurs, at 
most times to the better, while the other surfaces connect at the boundary where 
the ridge appears, making the boundary between the two materials more 
smooth.  

2.3.5 Drawbacks 
Even though the objective has been reached and smooth surfaces without ridges 
can be generated automatically with the new GMC, some drawbacks exist. The 
most import one is that only one material can be chosen to be smooth. This is 
due to the fact that if two or more materials could be chosen to be smooth, and 
if they lie close to each other in the labelfield, ambiguities would occur when 
smoothing the labelfields and when triangulating. It may also result in surface 
intersection. Therefore, choosing more than one material is out of the scope in 
this thesis. 

2.4 Further work for the GMC 
There exist several ways of improving the GMC. One improvement might be to 
allow the user to select more than one material to be smooth. As this might 
introduce problems such as surface intersections, the materials have to be 
chosen with care. One way to do this would be to check in the labelfield how 
close the materials chosen to be smooth are, and if there’s a risk for any surface 
intersection. Another approach might be to create one labelfield for each 
material and look if they intersect each other after the smoothing. After this is 
done, the ability to select materials can be based on this information. A third 
approach could be to give every material a “hardness” value, where the material 
with the highest value in every grid cell is treated as the special material is 
treated now. These improvements are however not very easy to implement and 
may require time costly computations. 
 

46 



Another improvement could be to add a point in face shift when four materials 
meet. In this way, the sometimes sharp edges on the triangles defining the 
border of the materials could be avoided. This of course also leads to that new 
points have to be introduced elsewhere in the grid cell, depending on its 
triangulation.  

47 



3 Post-processing 
The smoothing of polygonal models is an area where a lot of improvements 
have been done in the last 10 years. The reason is the rising demands for good 
visualisations from more and more researchers in different scientific areas. The 
fast development of computer processors and graphics card has made scientific 
visualization possible on even a cheap personal computer. The users demand 
correct visualisations of the studied datasets including smoothing and removal 
of noise from the models. As 3D-visualisation was a totally new way to 
interpret your data in the beginning of the 1990´s, suitable algorithms for 
smoothing polygonal meshes had to be developed. Lots of different methods 
have been suggested, but looking at the smoothing of polygonal meshes as a 
signal-processing problem has won the greatest achievements so far. An 
overview over the current research in this area can be found in [1]. Visualisation 
systems like AMIRA create large polygonal meshes when constructing 
isosurfaces from volumetric medical data or multiple range images. Because of 
the size of the typical data sets, only algorithms using linear time are of practical 
use as computation time has to be kept within the range of seconds, not minutes 
or hours. Different geometric signal processing approaches have proven to be 
successful in smoothing surfaces given the linear constraint. The algorithms 
treated in this section refer to this most common strategy of smoothing surfaces. 
We have implemented a modified version of an iterative algorithm invented by 
Taubin [5]. We will in the next sections show how the algorithm is derived, how 
it works and what modifications has been done to fit the special case of ridge 
smoothing. First we will present an ancestor to Taubin’s algorithm, called the 
Laplacian smoothing algorithm and in doing so we will use a parallel between 
meshes and graphs. The smoothing of a mesh can in fact be viewed as a 
smoothing of a graph signal. Then we will show the limitation of Laplacian 
smoothing and motivate the use of Taubin’s smoothing algorithm. At the end 
we will present our modifications to the algorithm and suggest other ways to 
solve the problem of post-processing ridges. 

3.1 Introduction 

3.1.1 The ridge 
In the current version of the GMC-algorithm problems will arise when more 
than 3 materials meet in the same grid cell (see the chapter about the 
Generalized Marching Cubes algorithm). The unwanted result is the occurrence 
of ridges and deformations on the boundaries where many materials meet.  
 
We will present an example of a ridge to demonstrate the ridge problem. If we 
for example look at the tooth-dataset we can clearly see the ridge on the 
visualized material ‘dentin’. The ridge stands out quite a bit from the rest of the 
surface and this looks unnatural for a material known to be smooth, in fact the 
ridge deform the other materials as well. The red marked edges in the pictures 
shows the boundary between different patches on the ‘dentin’-surface. A patch 

48 



is the term for all the triangles with the same combination of out and inside 
material, the 3 patches in figure 37a are:  ‘dentin/enamel’, ‘dentin/air’ and 
‘dentin/kortikalis’, also marked with different colors. 
    

 
Figure 37a:  Visualized material ‘dentin’ from 
a tooth-dataset. The boundary between 
different patches is marked with red.  

 
Figure 37b: ‘Dentin’ magnified. The ridge 
does not only affect the triangles closest to the 
boundary but surrounding triangles as well. 

 
The first step in the ridge smoothing is to identify these boundaries between the 
patches. When the boundaries are known are the locations of the ridges also 
known which are the places where the smoothing needs to be done. The ridge 
does not only affect the triangles closest to the boundary but the surrounding 
triangles as well as seen in picture 37b. This makes it hard to know if the 
underlying undulations belong to the original data or if they are a part of the 
incorrect visualization. The width of the ridge is not known and it is something 
that can change from dataset to dataset, making it hard to find an automated 
solution of the problem.  
 
The purpose of the post-processing is to remove the ridge from the patches of 
the special material and in doing so also trying to not deform the patches from 
the other materials further. 

3.1.2 A simple overview of the smoothing 
A simple approach to reduce the ridge is to move all vertices lying on the 
boundary to the center of their neighboring vertices. By the neighboring vertices 
are meant the vertices which fulfill both of the following conditions: 
 

• The vertex share the same triangle edge as the vertex on the boundary; 
• The vertex is a corner on a triangle which patch has the special material 

on one of its sides. 
 

49 



 
Figure 38: An example of the different patches along the ridge; The yellow, red and grey 
patches are all different combinations of inside/outside materials. The yellow and red patches 
have the same inside material, in this case the special material. 
 
This simple smoothing step will remove some of the irregularities and can also 
be applied for the found neighbors and their neighbors and so on. This 
smoothing can be performed on a certain surrounding depth from the boundary 
vertices. The depth should be chosen large enough to cover the whole ridge. 
When all vertices on the ridge have been moved is it possible to start the 
smoothing all over from the boundary points again. In pseudo-code this would 
look something like: 
 
For a number of iterations: 

• Find all vertices lying on the boundary 
For each found vertex: 

• Find the neighboring vertices 
• Calculate the mean of the neighboring vertices 
For each neighbor: 

• Move the neighbor and its neighbors of a certain depth to 
a new position (recursive step) 

• Move the vertex position to the mean of its neighbors. 
 

 
Figure 39: An example of how a point on the boundary is moved to a new position calculated 
from the positions of the neighbors. 
 
This is roughly what happens during the smoothing, even though the actual 
smoothing algorithm is more sophisticated. In the next section we will consider 
the vertices of the mesh as nodes on a graph, and moving the vertices will be the 
same as smoothing the graph signal. 

50 



3.2 Theory 

3.2.1 Graphs and graph signals  
Taubin [5] introduces graphs and discrete graph signals as tools for describing 
the polygonal curves and polyhedral surfaces. From the mesh of vertices a 
directed graph is constructed, where each node represents a vertex on the curve 
or the surface. The nodes are ordered from 1 to n. A discrete graph signal is the 
vector , with the value  for the  node in the graph. 
Depending on if the curve or surface is two- or three-dimensional the vertices 
will have the representation or . The graph signal 
can later be smoothed using different filters. 

t
nvvv ),...,( 1= iv thi :

t
iii yxv ),(= t

iiii zyxv ),,(=

 
A graph G=(V, E) represented as set of vertices }1:{ vi nivV ≤≤=  and a set of 
edges . Each edge has an associated pair of vertices, 

.   
}1:{ ek nkeE ≤≤=

),( 21
kk

k vve =
 
The first order neighborhood to the node i  are all nodes connected to i  
by an edge .  If the node belongs to the neighborhood  it is called a 
neighbor to node i . A node is not allowed to be a neighbor to it self and if a 
node   is a neighbor to node  is the node  also a neighbor to node .  

njj K1

),( ji j *i

j i j i
 

 
Figure 40: Figure showing the first order neighborhood to the vertex i. 
 

3.2.2 Laplacian Smoothing 
Most smoothing algorithms smooth the polygonal mesh by moving its vertices 
without changing the connectivity of the faces or removing and adding vertices 
to the mesh.  This is also the way the iterative Laplacian smoothing algorithm 
works.  
 
Laplacian smoothing is a well-known technique used for removing geometric 
irregularities from 2D-meshes. The algorithm works by moving the vertices of 
the grid to the barycentre (center of mass) of its neighbors. This is done for a 

51 



number of iterations, which will lead to that the high frequencies of the treated 
mesh, will be removed. The Laplacian smoothing algorithm calculates the 
convolution of the graph signal and the discrete Laplacian operator, which is the 
weighted sum of the neighbourhood vectors. 
 
The Laplacian operator of a general discrete graph signal is defined as: 
 
(1)  ∑

∈

−=∆
*

)(
ij

ijiji vvwv

 
where  is the weight for the vector ijw ij vv − . The weights sum up to 1 for each 
vertex: 
 
(2) = 1 ∑

∈ *ij
ijw

 
There are many ways to choose the weights and a good and simple one is to 
give all vectors equal weights: . Another strategy could be to use fujiwara 
weights, which calculate the weights as an inverse of the edge length.  

||/1 *i

 
Equation (1) can also be written in matrix form as: 
 
(3) , ( ) KvvWIv −=−−=∆
 
where I  is the identity matrix and W is the weight matrix. The element of 
the weight matrix is  if the node  is a neighbour to node i , and 0 otherwise. 

thij :

ijw j
 
When the convolution of the Laplacian operator and the graph signal of all 
vertices of the mesh have been calculated the vertices are updated by adding the 
displacement vector to the original vertex positions. The displacement vector is 
the product of the vector average and a scale factor 10 << λ : 
 
(4) iii vvv ∆+=′ λ  
 
or written as a matrix equation: 
 
(5) VKIV )( λ−=′  
 
The algorithm functions by carrying out the smoothing step for a number of 
iterations, each iteration making the surface smoother. The iterative step can be 
expressed as: 
 
(6)   VKIV NN )( λ−=
 

52 



A Study of the Laplacian Smoothing 
Let’s now see how the Laplacian smoothing algorithm from above treats a 
disturbed sinus signal. We wrote a Matlab program to study the behavior of 
different smoothing algorithms and to compare them. Consider a closed curve 
with consecutive vertices  and equal weights . The first order 

neighborhood to every vertex will then be 
iv ||/1 *iwij =

{ }1,1* +−= iii  and (1) can be 
written as: 
 

( ) ( ) )2(
2
1

2
1

2
1

1111 +−+− +−=−+−=∆ iiiiiiii vvvvvvvv  

 
The convolution of the Laplacian operator and the graph signal can be written 
as: [ ] v∗−− 2/1002/11 K , or in matrix form as: 
 

Kvvvv −=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−
−

−
−−

−−

−=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−=∆

211
1

210
121

1012

2
1

011
1

010
101

1010

2
1

100
0

100
010

0001

OOM

O

L

OOM

O

L

OOM

O

L

  

 
In the following diagrams from the Matlab-simulation we have added noise 
similar to a ridge to a simple sinus signal. The noise added consists of a sinus 
signal with the double frequency compared to the original added to an interval 
of the original sinus signal together with some stochastic noise. The signal has 
then been filtrated 30 respectively 200 times with the filter coefficient λ = 0.35. 
Already after 30 iterations we can see the effectiveness of the Laplacian 
smoothing algorithm. After 200 iterations the ridge is almost gone, the result is 
similar to the original signal but not quite the same. The amplitude of the signal 
has been reduced and it is somewhat distorted. This is a sign of the so-called 
shrinkage effect which will treat later in this chapter. Another interesting 
observation is that the double frequency sinus signal is also gone. 
 
Let’s now look at the Fourier Transform of the signal. The simple sinus signal 
consists of a single low frequency. The ridge adds noise to the higher 
frequencies of the signal which makes it distorted. After 30 iterative steps with 
the Laplacian smoothing algorithm a lot of the high frequency noise is gone and 
after 200 steps is the filter even sharper leaving almost only the single low 
frequency of the sinus signal. 
 

53 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1
Laplacian smoothing of a disturbed sinus signal

S
in

us

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1
S

in
us

 w
ith

 ri
dg

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

La
pl

. 3
0 

ite
ra

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

La
pl

. 2
00

 it
er

a.

Figure 41a: The upper diagram shows an undistorted sinus signal. The next shows the sinus 
signal with an added distortion, lets call it a ‘ridge’. In the two lowest diagrams the distorted 
signal has been smoothed with 30 respectively200 iterations with the Laplacian smoothing 
algorithm. 
 

54 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

S
in

us

Difference between Sinus and indicated signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

S
in

us
 w

ith
 ri

dg
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

La
pl

. 3
0 

ite
ra

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

La
pl

. 2
00

 it
er

a.

Figure 41b: This figure corresponds to the previous, but here are the difference between the 
original signal and the other signals studied. 

0 5 10 15 20 25 30 35 40 45 50

100

S
in

us

Fast Fourier Transformed (FFT) signals

0 5 10 15 20 25 30 35 40 45 50

100

S
in

us
 w

ith
 ri

dg
e

0 5 10 15 20 25 30 35 40 45 50

100

La
pl

. 3
0 

ite
ra

.

0 5 10 15 20 25 30 35 40 45 50

100

Frequency (Hz)

La
pl

. 2
00

 it
er

a.

Figure 41c: This figure shows the Fast Fourier Transform of the studied signals. Note that the 
scale on the y-axis is a logarithmic one. 

55 



 

3.2.3 Shrinkage effect 
An unwanted result of the Laplacian smoothing is the so-called shrinkage effect. 
The shrinkage effect is a result of continually moving the vertices in the 
direction of their statistical average. For a curve this phenomenon will cause the 
curve to converge into a circle, which then shrinks in size and eventually to a 
single point, the average centre of mass for all the points on the curve.  
 

Figure 42a: Original data. The black curve 
marks the original location of the ridge. 

Figure 42b: Smoothed data with occurrence 
of shrinkage. The red curve marks the new 
location of the ridge. 

 
This phenomenon can also be observed by looking at the transfer function of the 
Laplacian smoothing, introduced in the next chapter. We will also introduce the 
transfer function for Taubin-smoothing which has no shrinkage effect. 

3.2.4 Signal processing on graph signals 
A good way to solve the smoothing problem would be to move our point of 
view from the space of signals and instead study the frequency subspaces of the 
signals. We can smooth the graph signal by calculating its DFT and attenuate 
the high frequencies of the signal. This approach has been suggested by [9] and 
is called the Fourier descriptors method. The low frequencies are considered as 
the original or ‘correct’ data and the high frequencies as noise. A perfect filter 
would set all high frequencies above a certain threshold to 0 while letting 
frequencies below the threshold pass by unchanged. This kind of filter can’t be 
implemented efficiently but there are fast linear filters that come close to that 
behavior, among them the Taubin-filter and FIR-filters [6] with different kinds 
of windows. As we will see later the Laplacian filter does not produce good 
results. 
 

56 



Taubin makes some valuable observations about the matrix K in his paper [5]. 
He derives the transfer function for algorithms using first order neighbourhoods 
with equal weights and he makes the observation that the weight matrix W is a 
normal matrix which has real eigenvalues. By its construction W is also a 
stochastic matrix with eigenvalues bounded between -1 and 1. As a 
consequence the eigenvalues of the matrix K = I-W are also real and bounded 
between 0 and 2, where the high eigenvalues correspond to the high frequencies 
of the graph signal. The eigenvalues of K have a close relationship to the 
filtering of the graph signal if the signal is written in the basis of the 
eigenvectors of K. To attenuate the high eigenvalues of the matrix K is the same 
as to attenuate the high frequencies of the signal [5].  
 
If a set of right eigenvectors that corresponds to the eigenvalues 

 of the matrix K and 
Ni ee ,,K

20 1 ≤≤≤≤ Nkk K Nδδ ,,1 K  are the associated dual basis 
of the right eigenvectors  is chosen it is possible to write the discrete 
graph signal v as a linear combination of the eigenvectors  as 

Ni ee ,,K

Ni ee ,,K
 

(7)   vEevv i

N

i
i ˆˆ

1
== ∑

=

 
where  is the DFT of the graph signal. The filtering of the graph signal v 
with the transfer function  can then be written as 

vv t
ii δ=ˆ

)(Kf
 

(8) 
vekfevkf

vEkfdiagvEKfvKfv
N

i

t
iii

N

i
iii ⎟

⎠

⎞
⎜
⎝

⎛
=

====′

∑∑
== 11

)(ˆ)(

ˆ))((ˆ)()(

δ
 

 
or iteratively in matrix form as 
 
(9)   VKfV NN )(=
 
The eigenvalues of the matrix K can be calculated with , 
where E are the right eigenvectors of K.  The right eigenvectors of K;  
are also the right eigenvalues of the smoothing matrix  and the eigenvalues  
can be found with linear algebra once the eigenvalues of K are known. Ideally 
one would like to find a transfer function that is 

KEEkdiag 1)( −=

Ni ee ,,K
)(Kf

1)( =kf  for the frequencies 
lower than a desired pass-band frequency and 

for . Calculating the eigenvalues of K this is however 
impossible in the most cases. The computations of eigenvalues of K and DFT of 
the graph signal are not linear in time complexity which makes them practically 

PBkk ≤≤0
0)( =kf 2≤< kkPB

57 



unusable for larger data sets. Instead Taubin suggested a low-pass 
filter that simulates the desired behavior. )(Kf
 
 If we go back to the Laplacian smoothing matrix from equation (6) 

 we can see that it does not fulfill the desired criteria’s:  NN KKf )1()( λ−=
 

⎩
⎨
⎧

≤<
=

=−
∞→ .200

01
)1(lim

kfor
kfor

k N

N
λ  

 
This observation was done by Taubin and he introduces another transfer 
function that fulfils the desired criteria’s. 

3.2.5 Taubin-filter and filter design 
The improved smoothing filter of Taubin is based on the Laplacian smoothing, 
but doesn’t generate shrinkage. If we go back to the Laplacian smoothing 
equation in (6) we can see that it uses a factor λ to move the vertices into the 
barycentre of the neighbors. Taubin [5] introduces another factor µ to move the 
points back again. The filtering could be seen as continually moving the vertices 
back and forth for a number of iterations. The filtering is expressed as a two-
step iterative equation: 
 
 

⎪⎩

⎪
⎨
⎧

′∆+′=

∆+=′
+

ii
n
i

n
i

n
ii

vvv

vvv

µ

λ
1

(10) 
 
 
or in matrix form as 
 
(11) ( ) VKIKIV NN ))(( µλ −−=  
 
The factor µ  is larger than λ  and negative: µλ −<<0 . In order to study the 
differences between the Laplacian filter and the Taubin filter we implemented a 
Matlab program that simulates the two filters.  
 

58 



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

Ta
ub

in
 1

00
 it

er
at

io
ns

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

La
pl

ac
e 

10
0 

ite
ra

tio
ns

Figure 43: Diagrams showing the transfer functions of the algorithm invented by Taubin 
(Taubin-filter) and the Laplacian smoothing algorithm. In this example the Taubin-filter is 
designed to have a pass band frequency of 1.0=PBk  
 
The Laplacian transfer function lets only the zero frequency pass unchanged, 
while the Taubin-filter transfer function lets more frequencies pass. Frequencies 
up to the pass band frequency are slightly enhanced and frequencies over the 
pass band frequency are attenuated.  
 
Designing a Taubin-filter with suitable parameters can be done fairly easily. 
What we want to do is to let the pass band frequency pass unchanged: 

1)1)(1()( =−−= µλ PBPBPB kkkf . This second degree equation has the 
solutions;  
 

(12)  and 0=PBk
µλ
11

+=PBk  

 
We must also choose the parameters so that we get a stable transfer function. 
The rule of BIBO, bounded input – bounded output applies, which gives that the 
absolute value of the transfer function has to be less than 1: 1)( <kf . This is 

given by the fact that  will increase towards eternity if Nkf )( 1)( >kf . Since 
the function is decreasing for values above the pass band frequency we get 
the following conditions that have to hold for a stable and fast transfer function: 

)(kf

 

59 



[ ]

[ ]

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
−

−−=−−=

−>
−

−−=−−=

1)
1

1)(1()1)(1()(

1)
1

21)(21()21)(21()2(

12

12

λ
λµλ

λ
λµλ

PB

PB
PBPBPBPB

PB

k
kkkkkf

k
f

  

 
Solving this equation system gives: 
 

(13) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
>

+−
−

+
−

−
<

λ
µ

λ

1
1

4)2(
)2(2

1
)2(2

22

PB

PBPB
PBPB

PB

k

kk
kk

k

 

 
The pass band frequency should be chosen so that the original frequencies of the 
signal are kept and the noise is removed. A too low pass band frequency will 
generate shrinkage and a too high will not remove the noise. A useful property 
is Parseval´s theorem, which states that the sum of the squares of a signal is 
equal to the sum of the square of its DFT: 
 

(14) 22 1 X
N

x =  

 
So if we sum the frequency subspaces of the DFT from 0 up till the pass band 
frequency we get the energy preserved by the filter. The pass band frequency 
should be chosen so that the most energy of the ‘correct’ part of the signal is 
kept. To compute energy of the signal with DFT is, once again, in most cases 
not possible, but could be done with some kind of power spectrum estimation 
like in [6].  A typical good value of  is 0.1 which gives PBk 5024.0=λ and 

5289.0−=µ . 
  
The Taubin-algorithm gives good results, but a large number of iterations are 
normally necessary to remove bigger distortions like heavily pronounced ridges.  

60 



 

3.3 Implementation 
To smooth the ridge we have developed a small toolbox of algorithms. They 
have different advantages and are useful in different cases.  

3.3.1 Selection of vertices 
We are not interested in smoothing the whole surface but rather a smaller part of 
it around the ridges of the boundary curve. The set of point collected for the 
smoothing are the vertices lying on the boundary curve and all the surrounding 
vertices to certain distance from each vertex on the curve. These are collected in 
a recursive way by following the connecting edges between the vertices. Each 
vertex is visited several times but is only added once to the set of vertices to be 
smoothed.  
 
We found it valuable to divide the smoothing into 2 different categories: 
 

1. Boundary algorithm - smoothing of the points lying on the boundary. 
2. Surrounding algorithm - smoothing of the points surrounding the 

boundary to a certain depth. 
 
This allows us to put special constrains on the smoothing of the vertices on the 
boundary. This is used by the algorithm “Following ridge and normal vector”. 

3.3.2 Taubin filter 
This algorithm is the implementation of described Taubin-filter from above. It 
uses the first order neighborhood structure to the vertices to compute the 
Laplacian operator. We have selected equal weights for the Laplacian operator 
as this has proven to be a good enough selection for our needs. The smoothing 
is carried out on the set of all vertices not separating between the ones lying on 
the boundary curve. 

3.3.3 Following ridge and normal vector 
This algorithm uses a first order neighborhood structure with equal weights just 
as the Taubin-filter. The movement of the vertices on the boundary curve is 
however constrained, only allowing the vertices to move in the direction of two 
vectors; the normal vector of the plane fitted to the first order neighborhood and 
the local approximation for the boundary vector at this vertex. The motivation 
for using this constrains is that it keeps the boundary form and in some cases 
treats the other materials apart from the special material better than the Taubin-
filter (see figure 44). The displacement vector is calculated as follows: 
 

61 



(15)  

)1(

)()(

fromoperatorlaplacianv
vectornormaln

vectorridger
rrvnnvd

=∆
=
=

⋅∆+⋅∆=

 

 
To avoid the shrinkage effect the algorithm ‘moves back’ the smoothed points 
towards their original position a factor 10 ≤≤ β  in the direction of the normal 
vector: 

 
(16)   nnvd )( ⋅∆−=′ β  

 
This gives the following update expression for the vertices: 

  
(17)  rrvnnvvddvv iiiii )())(1(' ⋅∆+⋅∆−+=′++= β  

 
The algorithm is combined with Taubin-filter as surrounding algorithm. A way 
of designing the value for parameter β  is not specified in this paper.  
 

 
Figure 44a: Original ridge 
on surface of the tooth shown 
in twisted view. White marked 
patches are tooth/air and red 
marked patches are 
tooth/gum. 

 
Figure 44b: The ridge was 
smoothed 10 iterations, depth 
3 with the Taubin-algorithm 
as boundary algorithm. 
Irregularities from the 
originally straight boundary 
form can be seen. 

 
Figure 44c: The ridge was 
smoothed 10 iterations, depth 
3 with the boundary 
algorithm following normal 
and ridge vector. The straight 
boundary form is kept. 

 

3.3.4 Neighbors on boundary 
This algorithm is used for obtaining a smoother boundary between the special 
material and the neighboring materials. The filter uses the first order neighbors 
lying on the boundary curve: The filter actually uses the same Laplacian 
operator as in the closed curve example in the section about the Laplacian 
smoothing algorithm. The Laplacian operator uses equal weights. It is not 
combined with any surrounding algorithm. 
 

62 



 
Figure 45a:  A smoothed surface with 
boundary. 

 
Figure 45b:  The boundary is straightened out 
with 10 iterations with the boundary 
neighbors Taubin-filter. 

 

3.4 Results for the Taubin-filter 
The results in this section refer to the results obtained with the implemented 
smoothing module from the post-processing step. The results in the first section 
are shown in 3 different views: visual, surface distance and the surface 
curvature. The visual view is the results as they are shown to the user of the 
module. The surface distance shows how much the smoothed surface differers 
from the ideal. The surface distance is a color marked indicator which spans 
from white (no difference [0]) through blue and red to yellow (maximal distance 
[0.0214]).  
 

 
 

Figure 46: The color scale of the surface distance 
 
The last view is the curvature view which shows the shifting in the surface. This 
color indicator also spans from white (flat local surface [0]) through blue and 
red to yellow (edge [1]).    

63 



3.4.1 Visual results 

 
Figure 47a: Dentin visualized without any 
other materials present. The other materials 
have been removed from the dataset in order 
to prevent occurrences of ridges. This is the 
ideal surface. 

 
Figure 47b:  Dentin visualized together with 
other materials. Ridges occur where 3 
different materials meet. The surface is shown 
in twisted mode where the different colors 
indicate the different patches. 

 
Figure 47c: The surface from figure 47 b 
smoothed with the Taubin-filter: 15 iterations, 
depth 10 and pass band frequency 1.0=PBk .  

 
Figure 47d: The surface from figure 47 b 
smoothed with the Taubin-filter: 100 
iterations, depth 10 and pass band 
frequency 1.0=PBk . 

 

64 



 

 
Figure 47e: The surface from figure 57 b 
smoothed with the Taubin-filter: 100 iterations, 
depth 3 and pass band frequency 1.0=PBk  
plus 5 iterations, depth 10 and pass band 
frequency . 1.0=PBk

 

 
Already after 15 iterations the surface looks considerably smoother. After 100 
iterations the ridge has shrunken even more but the remains are still visible in 
the model. This is how far we come as removing the ridge in this case. The low 
frequency component of the broad ridge can’t be removed without distorting the 
rest of the underlying low frequency information of the surface. We have found 
that the ridge can be totally removed in models where it is not so strongly 
pronounced as in this case.  

65 



3.4.2 Surface distance 
 

 
 

Figure 48a: Surface distance between 
the ideal surface and the surface with 
ridge. The distance field is displayed on 
the ideal surface with a color marker 
on the triangles. The intense red and 
yellow parts show where the ridge is as 
biggest. The blue parts show mild 
differences between the surfaces.  Some 
statistical values for the surface 
distance comparison: 
 
Mean, 00142138.0=δ   
Deviation, 00346552.0=σ  

00374555.0=rms  
Maximal distance, 021400.0max =δ  
 

 

 

 
 

Figure 48b: Surface distance between 
the ideal surface and the ridge smoothed 
15 iterations, depth 10 with the Taubin-
filter.  The intense red parts of the ridge 
are gone and replaced with milder 
nuances of red and blue. This indicates 
that the ridge has shrunken. If we look at 
the statistics we can see that the 
maximal distance has sunken from 
0.21400 to 0.018837:  
 
Mean, 00150376.0=δ   
Deviation, 00343285.0=σ  

00374764.0=rms  
Maximal distance, 018837.0max =δ  
 

 

66 



 
 

Figure 48c: Surface distance between 
the ideal surface and the ridge smoothed 
100 iterations, depth 10 with the Taubin-
filter. The red parts are almost gone. 
The ridge has shrunken further. The 
mean distance is higher than for the 
original ridge as a result of the big 
depth, which is wider than the ridge. 
This makes the surface look smoother 
but also moves correctly placed vertices 
not belonging to the ridge.  
 
Mean, 00153481.0=δ   
Deviation, 00322405.0=σ  

00357061.0=rms  
Maximal distance, 018835.0max =δ  
 

 
 

 

Figure 48d: Surface distance between the 
ideal surface and the ridge smoothed 100 
iterations with the surrounding depth 3 
and additionally 5 iterations with the 
surrounding depth 10 with the Taubin-
filter. This approach generates even 
better results than 58 c at 1/3 of the 
computational cost, but the user has to 
estimate the width of the ridge.  The 
surrounding of the ridge is less modified. 
The mean distance is smaller and so are 
the deviation, root mean square and 
maximal distance as well. 
 
Mean, 00130501.0=δ   
Deviation, 00299228.0=σ  

00326436.0=rms  
Maximal distance, 0170987.0max =δ  
 

 
 

As anticipated a high number of iterations improve the smoothing of the 
surface, but an interesting result is that an equally good or better result can be 
achieved if we choose the depth around the boundary properly from the 
beginning and finish off by slightly smoothing with a larger depth.  

67 



3.4.3 Curvature 

 
Figure 49a: Max curvature of the ideal 
surface. The shiftings on the surface are seen 
as yellow marked. Note that some of the 
yellow marks are seen where the original 2D-
slices lie. 

 
Figure 49b: Max curvature of the surface with 
ridge. The big shifting on the ridge is seen as the 
yellow mark alongside the ridge. 

 

 
Figure 49c: Max curvature of the ridge 
smoothed 100 iterations, depth 10. It is still 
possible to see where the ridge was even 
though it is less pronounced. 

 

68 



3.4.4 Advantages  
One of the advantages with the post-processing is that it can be used with an 
existing version of Amira without modifying other existing modules. In this 
way the post-processing module differs from the other approach as the module 
is merely an addition to the existing package. The smoothing module can 
remove ridges from any material simply by connecting a module to a surface. 
Another advantage is that the smoothing can be done consecutively for many 
special materials in a data-set, excluding the option when many special 
materials border to each other. For example this could be useful in a dataset 
containing several teeth connected to jaw, gum and so on. The teeth can be 
smoothed separately as long as they do not border to each other. The smoothing 
can be done fairly fast and produces good results if the ridge isn’t too 
pronounced.  
 
Compared to traditional surface smoothing strategies which consider a whole 
surface our solution locates exactly the problem areas, namely alongside the 
patch boundaries. The rest of the polygonal mesh is left unchanged, leaving the 
details in the areas that are not infected by ridges. Our solution also reduces the 
computational needs or redirects the computational powers to sharpen the 
Taubin-filter with even more iterations in the areas where needed. 

3.4.5 Drawbacks 
A disadvantage is that the post-processing smoothing is not a fully automated 
solution, it demands some user interaction. Even though identification of the 
materials and the boundary between them is done automatically the user has to 
select a material to be smooth and judge from the looks of the ridge how much 
smoothing that is necessary. It may take a while to learn to set the parameters 
properly. Another disadvantage is that ridges can be too big to remove entirely. 
This happens when the ridge has pronounced underlying low frequency 
component.   

3.5 Further work 
Some other approaches could be tried like implementing a sharp and fast FIR-
filter. An attempt was made in the end of the project, and the filter seemed do 
the calculations fast, but we could not get it to function properly. A functioning 
FIR-filter could be implemented from the description in [6] with some 
modifications.  
 
Another good feature would be to introduce a possibility to smooth many 
materials instead of just one. This would allow the user to view many different 
materials as smooth at the same time. This is for example useful for data set 2, 
kieferstuck in the following section which consists of several teeth that are 
labeled to belong to different materials. One ambiguity would arise when 2 
special materials border to each other and some kind of strategy would have to 
be developed to solve this situation.  

69 



4 Comparisons 
The purpose of this section is to compare the results obtained by using the new 
GMC and the post processing module with the original surfaces generated when 
just using the original GMC. The comparisons are purely visual, meaning that 
no statistical data is extracted of the deviation of the surfaces or such. 
Comparisons are made using three different data sets, with one material selected 
in each and one of them that is to be specially treated to avoid ridges. Each data 
set is compared in the same manner using five snapshot images named a to e. 
The purpose of the different images: 
 

a) Presentation of the data set. The whole data set is visualized with all 
materials present. This is done with the original GMC, giving an 
overview of the data set and an idea of what the special material is and 
how this special material is placed in the model.  

 
b) The ideal result. The result obtained when running the original GMC 

on the labelfield with just the special material present. This result is 
obtained by deleting all the materials from the labelfield but the 
selected one. The reason for using this result as an ideal reference is 
that there are just two materials present, the special one and the 
exterior. This means that the ridge problem can’t occur, since no points 
exist where three materials meet. 

 
c) The original GMC. This is what the surface of the selected material 

looks like when the original GMC is run on the labelfield with all 
materials present. Just the special material is shown in the picture.  

 
d) The new GMC. The result obtained when the new GMC is run on the 

labelfield containing all materials and the special material. Comparing 
the results with the images in b and c one can see how the result from 
the new GMC differs from the old ones. To make the comparison 
easier, just the selected material is shown. 

 
e) The result from post processing. The result obtained after running the 

post processing module on the surface obtained by the original GMC. 
Comparing this result with b gives a good idea of how the post 
processing works in general. Also here, the special material is the only 
one shown. 

 
All data sets have been obtained using a MR scanner. The image slices from the 
scanner have later been segmented and labeled in order to create the labelfields. 
It is important to point out that with the access to more powerful equipment the 
detail level of the models can be significantly improved using more images and 
images of a higher resolution.  

70 



4.1 Data set 1, zahn mit kortikalis 
This data set contains a tooth with its separate parts and also a piece of jaw bone 
where the tooth resides. The model consists of four materials; Enamel, dentin, 
kortikalis and the exterior. The labelfield is of the size 143x239x24 and the 
resulting surface contains 57486 points and 115350 faces in 5 patches. The 
special material is dentin and it has two ridges. One of the ridges occur when 
the exterior, enamel and the dentin meet and the other when kortikalis, dentin 
and the exterior meet.  
 

 
Figure 50a: Full view of the model with all materials present. 

Enamel 

Dentin 

Kortikalis 

71 



 
Figure 50b:  This is the ideal result for dentin, the one we are striving for. It is obtained by 
deleting all the materials from the labelfield but dentin and then generating the surface with the 
GMC. Since just two materials are present (dentin and exterior), no distortions occur in neither 
the smoothing process nor the triangulation process. 
 

72 



 
Figure 50c: This is what dentin looks like when its surface is generated together with the other 
materials using the original GMC. The snapshot is taken in “twisted view” meaning that all the 
patches have been colored separately. That way the boundaries between them are easy to 
distinguish and it’s exactly at the boundaries that the ridges will occur. The ridge distortions 
are as seen quite strong in this model and they present a serious deviation from the ideal result. 
 

73 



 
Figure 50d: The result obtained from the new GMC module run on the complete labelfield with 
all materials present and dentin selected to be smooth, visualized in “twisted view”. The ridges 
seen in the previous image are gone. 
 

74 



 
Figure 50e: The snapshot is taken after running the post processing module on the surface 
shown in figure 1c. The surface smoothing was done using the Taubin method with 100 
iterations and the neighborhood depth set to 20. A better result might be obtained by using 
different smoothing algorithms after each other and varying the parameters of the filter, 
neighborhood depth and so on. 

75 



4.2 Data set 2, kieferstuck 
This data set contains a piece of a jaw with the teeth belonging to it. It contains 
eleven materials; Kortikalis, spong, zahn-1 to 8 and the exterior. The labelfield 
is of the size 267x471x150 and the resulting surface contains 565168 points and 
1132568 faces in 32 patches and the material selected to be smooth is zahn-4. 
There exist several ridges in this model but in order to make it easier to 
compare, just the ones on zahn-4 are treated. The ridges on zahn-4 occur when 
the exterior, kortikalis and zahn-4 meet and when the exterior, spong and zahn-4 
meet. 
 

 
Figure 51a: All materials are visualized in this snapshot. All the materials are not visible, for 
example spong is located inside the kortikalis. 

Zahn-4 

Kortikalis 

 

76 



 
Figure 51b: The ideal result for zahn-4. Obtained by deleting all the materials from the 
labelfield but zahn-4 and then generating the surface with the original GMC. 
 

77 



 
Figure 51c: Result obtained when using the original GMC with all materials present. Note the 
strongly marked ridges that give a serious deviation from the ideal case. 
 

78 



 
Figure 51d: The result obtained when the new GMC is used and all materials are present in the 
labelfields. The ridges are completely gone. 
 

79 



 
Figure 51e: Result obtained after running the post processing module on the surface in figure 
2c. The surface smoothing was done using the Taubin method with 100 iterations and the 
neighborhood depth set to 20. 

80 



4.3 Data set 3, human 
This data set contains thirteen materials representing the inner structure of the 
body such as bone, muscle, fat, veins and liver. The labelfield is of the size 
256x256x67 and the resulting surface contains 317257 points and 639445 faces 
in 41 patches. The material selected to be smooth is bone. This is a very 
complex model to generate as there exist many boundaries between the different 
materials. Especially for the bone, as it touches a large number of different 
materials. This is the only model of the three that contains cases when four 
materials meet on the face of a grid cell during the triangulation. Thus, it’s a 
very complex data set. 
 

 
Figure 52a: In the image all materials in the labelfield are visualized. Fat blocks the view of the 
other materials. 
 
 

81 



 
Figure 52b: The ideal result for bone. Obtained by deleting all the materials from the labelfield 
but bone and then generating the surface with the original GMC. 
 

82 



 
Figure 52c: Result obtained when using the original GMC with all materials present. Since the 
model contains so many materials, ridges appear all over the surface distorting it in many 
places. 
 

83 



 
Figure 52d: The result obtained when the modified GMC is used and all materials are present. 
The model is now remarkably smoother and very close to the ideal one. There exist only small 
deviations from the ideal surface which not are visible to the eye. Those have their origin in the 
differences in the smoothing process. 
 
 

84 



 
Figure 52e: Result obtained after running the post processing module on the surface in figure 
3c. The surface smoothing was done using the Taubin method with 100 iterations and the 
neighborhood depth set to 7. Using a smaller neighborhood depth is motivated by the size of the 
ridges. A too big neighborhood flattens the surface too much and suppresses detail.  
 

85 



5 Conclusions 
Removing surface irregularities such as ridges may seem like an easy task at a 
first glance, but it has several quite hard problems associated. Solving the 
problem in a good way calls for a solution that does not only gives a good visual 
result, but also a correct one regarding how the surface follows the labeled data.  
 
The two approaches sought out to be evaluated as possible solutions to the ridge 
problem have been successfully implemented and are available for integration 
within the Amira framework. This means that the possibility now exists of 
removing the ridges in a computer assisted way in means of the post processing 
module. When the characteristics of the materials are known an automated 
generation of ridge-free surfaces using the modified GMC is available, which is 
a very interesting approach. 
 
Both of the approaches together offer a good means of removing ridges in the 
general case. Together the post processing module and the modified GMC give 
the user the ability to correct a wide range of irregularities occurring where 
three or more materials meet. 
 
After looking at the test results and the ease of use, the modified GMC gives 
very good results with minimal user interaction. This gives an interesting 
solution to the ridge problem as generation of ridge free surfaces can be 
automated when just one material is considered to be hard and smooth. 
However, when more than one material with these properties exists in a model, 
post process smoothing has to be applied. If the proposed changes to the GMC 
are implemented they might remedy this problem in some of the models and 
open the way for a real automated solution.  
 
Even though the ridges may be small in size in the surface models, the impact of 
the ridges can be quite big when using the models in real-life applications such 
as simulations of stress, strains and pressure and for surgical planning. With the 
increasing speed of graphics processors, models of very high quality will be 
available in the future making medical imaging a very important field. 
 
 

86 



6 Appendices 
 
Appendix A, Terminology 
This appendix presents the necessary terminology for understanding the 
presentation of the visualization system. The terminology is divided into 5 
groups: radiology, image extraction, visualization, the Generalized Marching 
Cubes algorithm and Amira specific. 
 
Radiology 

 
 
Figure A1:  Radiology is the first step in the 3D reconstruction pipeline. 
 
Computed tomography (CT) 
Computed tomography is an examination method that uses x-rays to get cross 
sectional images of the body. A detector array connected to a computer receives 
the x-rays that pass through the body. The computer generates a picture showing 
the tissues with high absorption of x-rays as white areas and the tissues with low 
absorption of x-rays as black areas. A CT-scanning can create consecutive 
images with millimeter distance.  
 
Magnetic resonance imaging (MR) 
Magnetic resonance imaging uses magnetic fields and radio waves to obtain 
cross sectional images of the body. The MR works by exiting the hydrogen 
atoms of the body with radio waves. The energy is returned from the atoms 
when the radio waves are removed and is picked up by a sensor. As the 
hydrogen atoms belong primarily to the water in the body tissues containing the 
most water will send out the most energy and can be seen as white areas on the 
resulting image. A MR-scanning can create consecutive high resolution images 
with millimeter distance. 
 
Single-photon emission computed tomography (SPECT) 
This imaging technique consists of injecting a patient with a radioactive tracer 
that emits high-energy photons attached to a natural substance like for example 
glucose. When the substance travels through the body it can be registered by 
detecting the emitted radioactivity. That way a series of images can be obtained 
describing this process. 

87 



 
Image extraction 

 
Figure A2: The image stack generated from the radiology step is segmented into volumetric 
data during the image extraction step.. 
 
Slices 
Slices are cross sectional images taken by a MR- or CT-scanner or other 
acquisition device.  The acquisition device scans a part of a body or object and 
takes several hundreds of pictures with small distances. When the images are 
aligned on top of each other they form an image stack.  
 
Data points 
The data points are the raw data from simulations or a MR- or CT-scanner or 
other acquisition device. In the case when the data is obtained from a MR- or 
CT-scanner the pixels in the slices correspond to the data points. 
  
Materials 
In a dataset the points are set to belong to different material classes, the 
materials are the computer representation of the real world tissues like bone, 
muscle, fat and so on. 
 
Labels 
A label indicates which material a point belongs to. Labeling is done during the 
segmentation step. 
 
Segmentation  
Segmentation is the process of separating a slice into regions with labels 
corresponding to the material. This way the data points from a slice are set to 
belong to different materials. 
 

88 



 
 
Figure A3: A screenshot of the segmentation editor in Amira. 
 
Contours 
The contours are the borders that separate the different materials from each 
other. The contours are found during a manual, automatic or semiautomatic 
segmentation step.  
  
Volumetric dataset  
A volumetric dataset is the 3D-representation of all 2D-data points from the pile 
of slices. A special case of the volumetric dataset is the lattice where the points 
are regularly arranged in space. 
 
Lattice 
A lattice is a regular arrangement of points in space.  
 
Labelfield 
A labelfield is a lattice where every point has a label associated, also called 
label-lattice. 
 
Region 
A labelfield is divided into different regions. In a region all points are labeled 
with the same label.  
 
Visualization 

 
 
Figure A4: In the last step of 3D reconstruction pipeline the data is finally visualized.  

89 



 
Isosurface 
An isosurface is a surface that separates two regions.  
 
Polygonal mesh 
The polygonal mesh is the graphical representation of the isosurfaces. The 
isosurface is divided into a mesh of polygonals that can be rendered by the 
graphical hardware in the computer.  
 

 
Figure A5: A polygonal mesh 
 
Vertices  
The vertices are the corners of the faces on the polygonal mesh. The positions of 
the vertices are determined by the generalized marching cubes algorithm. 
 
Faces 
Faces are generated during the polygonization of a surface. The faces are 
generated as triangles in Amira. A face consists of a set of vertices, normally 
three for a triangle.  
 
Edges 
An edge is non repeated pair of vertices. An edge can belong to one or more 
faces.  
 

90 



Patches 
Faces that have the same combination of inside and outside material are said to 
belong to the same patch.  
 
Boundary edge 
A boundary edge is an edge that is not shared by two faces of the same patch. 
The edges are instead shared by 2 or more faces with different patches.  
 
Boundary 
The boundary is the closed curve created by all the boundary edges of the same 
type.  
 
Manifold and non-manifold surface 
By a manifold surface is meant a surface where the all the edges of the faces are 
of degree 1 or 2.  In other words; an edge is a part of only one face or 2 faces 
share the same edge. A non-manifold surface has edges that are shared by 3 or 
more faces.  
 
The Generalized Marching Cubes algorithm (GMC) 
The GMC-algorithm generates isosurfaces from a labelfield with multiple 
vertex classes. The algorithm has been developed at the Konrad Zuse Zentrum 
for Informationstechnik in Berlin.  
 

 
Figure A6: The figure shows a grid cell where an isosurface passes through. The grid cell has 2 
different vertex classes. Seven of the vertices belong to the white vertex class and one vertex 
belongs to the black vertex class. The isosurface separates the 2 vertex classes. The part of the 
isosurface inside of the grid cell consists of a single face which has been generated by the 
marching cubes algorithm. The corners of the face lie on the edges of the grid cell. The 
locations of the corners on the edges have been computed by using bi-linear interpolation for 
the weights of the grid cells vertices. The computed face configuration inside the grid cell is 
called the triangulation for the grid cell.  
 
Grid 
The GMC-algorithm generates surfaces from a label-lattice of data points. The 
label-lattice is arranged as a uniform grid of points. 
 
Grid cell 
A grid cell is created from eight data points arranged like in figure A6. These 
data points are sometimes called the corners or the vertices of the grid cell. The 

91 



grid cell is the heart of the GMC-algorithm; here are the form and position of 
the isosurfaces calculated. The GMC-algorithm marches grid cell by grid cell 
through the grid. 
 
Vertex classes 
The vertices of the grid cell are divided into to different classes depending on 
which labels the vertices have. The configurations of vertices within a grid cell 
dictate how the resulting isosurfaces are divided by different patches. The 
GMC-algorithm can handle up to eight different vertex classes within the same 
grid cell, in other words; it is possible for up to eight different materials to meet 
in the same grid cell.  
 
Weights 
Weights are assigned to the vertices of the grid cell to specify the weight for the 
vertex classification. The weights are generated either at creation of the 
labelfield or in a later smoothing step.  
 
Bilinear interpolation 
When an isosurface passes an edge in the grid cell the point of intersection is 
calculated with bilinear interpolation. This is the case when the edge of the grid 
cell is shared by 2 vertices belonging to 2 different vertex classes. The 
intersection point is found by examining the weights of the 2 vertices.  
 
Triangulation 
Faces are generated after the calculation of the isosurface intersections within 
the grid cell and on its edges. The computed face configuration inside the grid 
cell is called the triangulation for the grid cell. 
 
Topological cases 
The topological cases are the different ways in which a grid cell can be 
triangulated. Figure B1 in appendix B shows the possible triangulations for up 
till 3 different vertex classes. 
 
Look-up table 
The most common topological cases are stored in a look-up table in order to 
speed up the generation of the isosurface. The more uncommon topological 
cases are computed on the fly by the GMC-algorithm and are later stored in the 
look-up table for reuse.   
 
Amira 
Tcl  
Tcl is a popular scripting language with a quite simple syntax used to control 
components in Amira. 
 

92 



TGS Open Inventor 
A graphics toolkit built on top of OpenGL allowing describing and rendering of 
3D scenes. 
 
Qt  
A multi-platform GUI software toolkit that adds portability to graphical user 
interfaces, making applications compile on UNIX, Windows and other 
platforms.  
 
Twisted view 
Visualizing the patches in different color, making the boundaries between them 
easy to distinguish 

93 



 
Appendix B, Topological cases 
 

 
Figure B1: The image shows the triangulation for up to three vertex classes. The first two rows 
contains the cases with only two classes. The image shows the look-up table for up to three 
different vertex classes. The first two rows. 
 

94 



Appendix C, A brief user guide to the new GMC 
 

 

The modified version of the GMC 
contained in the SurfaceGen module 
shows very few differences in the 
user interface from the original one. 
A new multi menu exists with the 
ability to select the material to be 
smooth. Apart from this, the module 
works in the same way as the 
original one, different smoothing 
techniques can be applied, the 
ability to add a border material 
exists and so on. To the right the 
interface is shown.  

Figure C1: Snapshot of the new GMC modules 
graphical interface 

 
The upper part shows the SurfaceGen module together with the module in its 
context, connected to a labelfield and surface module as its output. The lower 
part is the interface to the module, showing the different options that exists for 
the user 
 

95 



Appendix D, A brief user guide to the post processing module 
 
The post processing module can be 
attached to a surface module. Then 
the user has the ability to choose 
from a number of options. 
The picture on the right shows the 
interface with the module connected 
to a surface in the upper half and in 
the lower half the different options 
that exist for smoothing. 
Below follows a description of the 
different ports and what they do. 

 
  

Figure D1: Snapshot from the post processing 
module 

Description of the ports 
Materials 
The port where the material containing the ridge to be smoothed can be 
selected.  
 
Boundary algorithm 
The algorithm to be used at the boundary points, the ones that have edges 
between them separating patches. 
  
Surrounding algorithm 
The algorithm to be used at the points surrounding the ridge to a defined depth. 
 
Iterations 
The number of iterations steps the algorithms should be performed. The more 
steps, the smoother the result. For smaller ridges not containing so many 
triangles a smaller value can be used, down to 1. For bigger ridges containing 
more triangles a bigger value has to be used. This also depends on the structure 
of the surroundings to the ridge. 
 
Surrounding depth 
This option only appears when a surrounding algorithm is chosen. Here the user 
can specify which neighbouring points that should be moved in the smoothing 
step. The depth is defined such that a depth of 1 gives just the points that can be 
reached from the boundary following just one edge (the first order neighbours). 
A depth of two gives all the points that can be reached following 2 or less edges 
(the second order neighbours) and so on.  

96 



Mark smooth edge 
Toggle to mark the final smoothed edge with red lines. 
 
Mark original edge 
Toggle to mark the edge as it was before the smoothing with black lines. 
 
Beta 
This option appears when "following normal & ridge vector" is chosen. It 
defines a percentage that the points should be moved back in the direction of the 
surface normal extracted from the neighbours to the points chosen for 
smoothing. This is to avoid a shrinkage effect. Normally 0.9 is a good value 
when many iterations are made, but for fewer iterations the value should be 
lower to move the points more and in that way flatten out the ridge faster. 
 
Lambda and Micro 
These two parameters are only visible when choosing the Taubin algorithm. 
They define the pass band frequency and the standard values are optimized for a 
fast and stable filter. These values can be manipulated to change this frequency.  
 
Description of the algorithms 
The following algorithms are available. For treating the boundary points 
between the patches all the algorithms can be chosen, but for the surrounding 
points just the Taubin filter algorithm is available: 
 
Taubin filter (Lambda/micro filter) 
This technique simulates a low pass filter, the filter parameters are also 
available but there is no need to alter them if you are not an advanced user. 
They could be re-calculated to produce a better filter for giving a special pass-
band frequency and so on. Normally a large number of iterations are needed in 
order to see good results when treating large ridges, between 40-100 iterations, 
but with small ridges a smaller number of iterations, down to as few as 5 can 
produce a good result. 
 
Following normal & ridge vector 
This algorithm moves every point towards the mean value of its first order 
neighbours, but just in the direction of the surface normal and the ridge vector at 
this point. 
 
Neighbours on boundary Taubin filter 
This algorithm is mainly used for straightening out the boundary that exists 
between two patches as a post processing step to the smoothing. It works in the 
same way as the normal Taubin filter, but it just considers the points on the 
boundary. To give a good result it should be combined with a surrounding 
algorithm. 
  

97 



7 References: 
 
[1] Gabriel Taubin, Eurographics 2000,  Geometric Signal Processing on 
Polygonal meshes –
http://www.research.ibm.com/people/t/taubin/publications.html (link validated 
2004-05-21) 
 
[2] D. Stalling, M. Zöckler, O. Sandler, H. E. Hege, 1998, Weighted labels for 
3D image segmentation – http://www.zib.de/bib/pub/pw/index.en.html (link 
validated 2004-05-21) 
 
[3] H.C. Hege, M. Seebass, D. Stalling, M. Zöckler, 1997, A generalized 
marching cubes algorithm based on non-binary classifications – 
http://www.zib.de/bib/pub/pw/index.en.html (link validated 2004-05-21)  
 
[4] William E. Lorensen, Harvey E. Cline, 1987, Marching cubes: A high 
resolution 3D surface construction algorithm 
 
[5] Gabriel Taubin, 1995, Curve and surface smoothing without shrinkage –
http://www.research.ibm.com/people/t/taubin/publications.html (link validated 
2004-05-21) 
 
[6] Gabriel Taubin, Tong Zhang, Gene Golub, 1996, Optimal surface smoothing 
as filter design – 
http://www.research.ibm.com/people/t/taubin/publications.html (link validated 
2004-05-21) 
 
[7] Kondrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Amira User’s 
Guide – http://www.amiravis.com/usersguide31/usersguide/index.html (link 
validated 2004-05-21) 
 
[8] C. Kober, B. Erdman, R. Sader,  H.–F. Zeilhofer, 2003, Simulation of the 
Human Mandible: Comparison of Bone Mineral Density and Stress/Strain 
Profiles due to Masticatory Muscles’ Traction – 
http://www.zib.de/bib/pub/pw/index.en.html (link validated 2004-05-21) 
 
[9] C.T. Zahn, R.Z. Roskies, IEEE Transactions on Computers 1972, Fourier 
descriptors for plane closed curves 
 
[10] J Bloomenthal, K Ferguson, 1995, Polygonization of Non-Manifold 
Implicit Surfaces – http://www.unchainedgeometry.com/jbloom/pdf/SIG95-
NonManifoldPolygonizer.pdf (link validated 2004-05-23) 
 
[11] G.M. Nielson, Richard Franke, Computing the Separating Surface for 
Segmented Data, IEEE Visualization '97, Oct., pp. 229-233, 1997. 

98 

http://www.unchainedgeometry.com/jbloom/pdf/SIG95-NonManifoldPolygonizer.pdf
http://www.unchainedgeometry.com/jbloom/pdf/SIG95-NonManifoldPolygonizer.pdf


 

99 


	Introduction
	Background
	Visualization systems
	3D reconstruction from medical images
	3D Reconstruction in Amira

	The problem
	An example of the ridge problem and consequences
	Goal description
	Contribution
	Changes to the GMC algorithm
	The smoothing module

	Introduction to Amira
	Overview
	Features
	Extending and altering Amira
	Software structure
	Modules and data
	About writing modules


	Terminology

	Altering the GMC
	Theory
	Marching cubes
	The GMC-algorithm
	The Algorithm
	A schematic overview of the GMC algorithm
	Labeling, the separation of the regions
	Obtaining weights, the smoothing of the labelfield
	Triangulation of the grid cells
	Shifting the points



	Our modifications
	Result
	The evaluation model
	Visual evaluation
	Mathematical evaluation
	Surface distance
	Surface Curvature

	Advantages
	Drawbacks

	Further work for the GMC

	Post-processing
	Introduction
	The ridge
	A simple overview of the smoothing

	Theory
	Graphs and graph signals
	Laplacian Smoothing
	Shrinkage effect
	Signal processing on graph signals
	Taubin-filter and filter design

	Implementation
	Selection of vertices
	Taubin filter
	Following ridge and normal vector
	Neighbors on boundary

	Results for the Taubin-filter
	Visual results
	Surface distance
	Curvature
	Advantages
	Drawbacks

	Further work

	Comparisons
	Data set 1, zahn mit kortikalis
	Data set 2, kieferstuck
	Data set 3, human

	Conclusions
	Appendices
	References:


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


