Master Thesis

Ray Tracing Animations
Using 4D Kd-Trees

Jens Olsson, 703
Lund University, Faculty of Engineering

April 21, 2007

Abstract

Static acceleration structures are for efficiency reasons the de-facto
standard used in high-quality renderers today. Time discretization is vi-
tal for performance for such a system, forcing otherwise natural time-
dependent phenomena like motion-blur to be accumulated together by
multiple rendered images. In this thesis, new methods are presented for
storing animation sequences in a time-dependent kd-tree, which includes
a pre-processing step, and a modified surface area heuristic (SAH) cost
function. A time-dependent distributed ray tracer was implemented as a
plug-in for Softimage|XSI to test the methods in practice. Tests showed
that the 4D kd-tree had better adaption to dynamic data compared to the
3D kd-tree even when both had the advantage of pre-processing. Applica-
tions of the 4D kd-tree were demonstrated to temporally displace instances
of primitives to create the illusion of large groups of independently moving
objects.

Contents
1 Introduction
2 Ray Tracing

3 Previous Work

3.1 Static Structures
3.2 Dynamic Structures
3.3 Time-Dependent Structures . . .
4 Kd-Trees

4.1 Construction

4.1.1 Termination Criteria . . .

4.1.2 Splitting
4.2 Traversal

5 Extending the Kd-Tree

5.1 Preprocessing Data
5.2 Construction
5.3 Traversal

6 Implementation

6.1 Reading Data

6.2 Construction
7 Results

7.1 Propeller

72 Head

7.3 Armadillo

7.4 Temporally Instanced Primitives
8 Conclusions and Future Work

9 Acknowledgements

16
17
17

19
19
21
24
26

28

29

1 Introduction

Rendered animations have traditionally been generated frame-by-frame, con-
stantly re-reading data for each concurrent frame. This makes for a simpler
implementation, and most renderers only store the bare minimum of data that
is necessary to generate the frame. Only a few years ago, this was still the only
way to fit scene description data into the available memory on the computer
systems. We can expect system bounds to expand considerably over the next
years with 64-bit processing on common desktop computers. This will open up
lots of new paths for research in speeding up rendering, since the complete data
for a complex animation can fit into system memory, allowing processing to be
carried out and reused over many frames. For simple scenes, even 2 gigabytes of
memory could fit many frames of data, potentially utilizing the system resources
better.

From a theoretical point of view, a time-continuous model fits better with many
ray tracing techniques compared to a pre-discretized temporal model. Cook et
al. [3] introduced distributed ray tracing in 1984, where rays are distributed in
time as well as around the focal point, to properly capture effects like depth of
field and motion blur. Kajiya [9] concretized the theoretical foundation further,
describing what is commonly referred to as Monte Carlo ray tracing. Time-
dependent Monte Carlo ray tracing integrates the final pixel value over the
camera shutter time span, which requires sampling at arbitrary time instants,
something which would not be possible with a discrete time model.

Currently, ad-hoc techniques are most often used to generate motion-blur and
reuse global illumination calculations, such as post-processing motion blur and
on-disk photon maps. Such techniques fail to generate physically correct effects,
or simply require too large intervention from the end user. The complexities
of a time-based renderer can also be outwon by the inherent savings of reusing
global illumination calculations. Havran et al. presented a time-based bidirec-
tional ray tracer [6], where they showed up to 10x speed-up over frame-by-frame
rendering by elegant reuse of samples.

The question arises of how to store time-based animation in memory. Glassner
[5] used Bounding Volume Hierarchies (BVHs) to good effect, where he showed
considerable performance improvements for rendering the complete animation
in one go. Havran [7] gives convincing empirical proof that the kd-tree data
structure performs even better than BVH data structures in general. The kd-
tree is a very simple data structure, where a volume is divided into subvolumes
by axis-aligned splitting planes. When such a structure is used for sorting a
set of primitives in space, the performance gains can be huge in a ray tracing
system, because straight-forward traversal of the tree discards a majority of un-
necessary intersection tests, a vital part of ray tracing.

We present an approach to extending the kd-tree to include time, proposing
a simple heuristic to select a suitable splitting plane for the 4 dimensions. We
also present a method to subdivide primitives in time into segments with small
bounds in space. An interesting application of the time-dependent kd-tree is
also demonstrated, where instances of objects are temporally displaced to give

the illusion of individiual motion in a set of instanced objects.

2 Ray Tracing

Generating images by ray tracing, is essentially simulating the way images form
in a camera in the real world. Kajiya defined the rendering equation in [9]

Lo(z,w,) = Le(x,w,) + /Q Jfr(x, wo,wi) Li(x, w;)(w;i - n)dw; (1)

which describes how outgoing light L, from a point p in direction w, is given
by the sum of the emitted light L. from the surface and the integral over all
reflected light. The reflected light is described as the integral of light coming
from all possible incoming directions w; over the hemisphere Q) at x, scaled by a
function f,., describing how the surface scatters the photons and a factor w; - n
which models how the energy is spread out over the surface when the incident
angle decreases. The rendering equation is the most fundamental formulation
of the rendering problem, and widely differing rendering techniques can all be
reformulated as approximations of the rendering equation.

,,

Figure 1: For each ray, the closest primitive along that ray has to be found.

In the simplest form of ray tracing, given a model of the world W and an imag-
inary camera C, an image is simulated by intersecting rays originating from the
camera with the world model, as shown in figure 1. Given a ray r(t) = o + td,
where o is the origin and d is the ray direction, there must exist a function
fW,r) = to, where tg is the distance to the closest intersection point with the
world along the given ray r. There must also exist a function fy(W,r) = A,
where A is an estimate of the incoming light spectrum from the ray direction.
Thus ray tracing is in nature very extendable, since the algorithm works un-
modified as long as any primitives comprising the world model allows for the
evaluation of the two functions. The function f) can be arbitrarily complex, it
might itself do recursive ray tracing to compute its value. It may for instance
model a reflective or refractive surface, or model an advanced global illumination
solution, or calculate some simplified lighting from light sources in the world.

A suite of books has been written on the subject of ray tracing images. For
the interested reader, an extensive treatment on the state of the art in ray trac-
ing is given in [14]. A slightly easier read, although a bit dated, is given in [4]. In
this thesis, we will mainly discuss data structures in ray tracing for accelerating
ray intersection testing.

Given no prior knowledge of the world representation except a set of the prim-
itives comprising the world, we have no other option but to intersect each ray
with every primitive, since we cannot know in advance which of the primitives is
closest to the ray origin. Thus for N primitives, the time complexity for finding
the closest intersection point will be O(N). Given an image with size m x n,
we will thus have at a minumum m - n - N intersection tests if we sample with
one ray per pixel. If we assume quite reasonable numbers m,n, N = 1024, we
have 10242 intersection tests to perform, over one billion possibly expensive in-
tersection tests, which given only one ray per pixel will not even be sufficiently
sampled to produce a visually pleasing image. We can clearly see that the com-
putational costs will be unmanageable when the resolution and the number of
primitives are large.

In the next section we will discuss ways to make ray tracing faster by using
spatial data structures to reduce the number of ray-primitive intersections.

3 Previous Work

In general, every part of the ray tracing algorithm has to be carefully optimized.
The naive algorithm has many computations showing complexity O(N), those
computations will have complexity O(N™) for n levels of recursive ray tracing.
Thus any part of the algorithm naively implemented will overshadow any opti-
mized part of the algorithm for a complex enough scene.

Common optimization techniques can be broadly categorized into three groups.

e Fewer rays. Reducing the amount of rays sent. Some techniques avoid
initial rays from the camera, others limit the depth of recursive raytracing
by some condition.

o (Generalized rays. Ray tracing many rays simultaneously, by considering
them as bundles or a larger cone structure.

o Fewer intersection tests. Reducing the amount of intersection tests by
sorting primitives spatially or hierarchically.

For further reading, Arvo and Kirk gives a thorough but a bit dated survey of all
three categories in [4]. In this thesis, we restrict ourselves to the third category
of reducing intersection tests. The third category is by far the most important
speed-up technique for ray tracers today, and a good approach for minimizing
the intersection tests is vital for the performance of any given implementation.

There are a multitude of ways to try to reduce the amount of intersection tests
that are performed. They all have one thing in common though, they can all
be considered as data structures that sorts and organizes objects. We refer to

all of these as “acceleration structures”. We divide existing research into three
categories; static structures, dynamic structures and time-dependent structures.

3.1 Static Structures

For a computationally intensive simulation, it makes sense to spend some extra
time calculating a more optimal acceleration structure. This has given head-
room to the research of a vast amount of very different acceleration structures,
since a complex structure with a high construction cost still could pay off for a
complex enough simulation.

Most acceleration structures can be categorized as a variant or a hybrid of

e (rids. Dividing space into a grid of equally sized cells and hence fails to
adapt to scene distribution. Very cheap to traverse, but must be traversed
cell by cell along the ray. Variants include non-uniform grids and recursive
grids, where a cell can be further subdivided if need.

e Binary Space Partitioning Trees (BSPs). Recursively dividing space into
halves. Traversal can discard whole subtrees of the BSP directly. Variants
like the kd-tree restrict the partitioning to arbitrarily positioned axis-
aligned splitting planes. By careful choice of splitting planes the structure
adapts well to scene distribution. More expensive to traverse compared to
the grid, but fewer cells actually have to be visited due to better structure.

e Bounding Volume Hierarchies (BVHs). Enclosing primitives by simpler
bounds that are cheap to intersect. Hierarchical trees can be built by in
turn bounding local primitives together, so that large sets of primitives
can be discarded very cheaply by a single intersection test. When an
intersection test succeeds though, every primitive inside the bound will
have to be tested. Adapts well to scene distribution.

e Ray-Space Subdivisions. Sort primitives as candidates for a discretized set
of possible ray origins and directions. A 5D-structure that is complex to
construct and has very high memory requirements. First mentioned by
Arvo and Kirk in [4].

These structures all rely on primitives having a bound. We will restrict examples
to axis-aligned bounding boxes, the smallest non-rotated box-shape that fully
encloses a primitive. We refer to such a bound as B(P) for a given primitive P.
Consider a model M of a car moving a certain distance over time t = [to, t1]. If
we were to put a spatial bound B(M) on the car, the bound would be

B(M) = B(U;B(M,,)) , t; € t 2)

thus spanning the entire volume the animation of the car travels through. If
we were to store an entire animated scene in a static structure, traversal of
the structure would in extreme cases result in having to test every primitive
for intersection, because the bounds of the objects can potentially extend over
the whole scene. We can conclude that static structures will have problems
separating objects when primitive bounds grow because of time dynamics.

3.2 Dynamic Structures

Recent advances in real-time ray tracing has led to other needs in acceleration
structures. When the ray-tracer produces as much as 30 frames per second, in-
teractive applications become attractive. The few minutes it takes to construct
a kd-tree for high-quality ray tracing becomes far too expensive, the ray-tracer
needs to rebuild the scene in milliseconds.

Wald et al. has reported promising results in a series of papers. In [15], uniform
grids are used with some careful techniques to efficiently ray-trace interactive
scenes. In [16], dynamic BVHs are introduced, that maintains topology over
time so that only bounding volumes need to be updated.

Woop et al. in parallel with Keller et al. as well as Havran et al. researched
hybrids of a kd-tree and a BVH in [17], [10] and [8]. The data structures are
very similar, and differ only in minor details. For each cell, instead of a single
splitting plane, they use two planes, that can be positioned so that they bound
primitives in the cell. For well behaved motion, the trees can be constructed
so that they can be quickly updated for geometry changes by re-positioning the
splitting planes.

There exists many more such structures that are being used for real-time ray
tracing, but they all have in common that they either rely on rebuilding a new
structure quickly, or rely on well-behaved motion to be stored.

3.3 Time-Dependent Structures

For an animation sequence of any length, it can not be assumed that the mo-
tion will be in any way well-behaved. We will in fact require the structure to
be able to handle arbitrarily complex motion, simulated, pre-scripted or even
completely random, as any such sequence is trivial to construct using existing
3D software. A data structure that efficiently treats a pre-scripted motion se-
quence is in a sense both dynamic and static, because it from frame to frame
describes dynamic motion, but as a sequence it is static.

Glassner introduces the term “Spacetime Ray Tracing” in [5], where he describes
the concept of ray tracing objects in 4D spacetime. In such a space, a moving
3D object could be treated as a static 4D object. Glassner uses a hybrid of
space subdivision and BVHs, and reports noticeable savings in rendering time.
For one sequence, a 20% speed-up is reported, and for the other test sequence
a speed-up of almost 50% is noted.

The paper is followed up in [13] by Quail, where he compares Glassner’s space-
time structure with a 4D extension of ray classification. Even for simple ray
classification, the memory requirements are very large, and Quail notes that
his extension as expected uses much more memory than Glassner’s structure.
For one example he mentions that the 4D ray classification uses almost 1000
times the amount of memory of the BVH hybrid. Quail reports that the ray
classification method is up to 50% faster than the BVH hybrid for scenes with
localized movement. For wide ranging movement, ray classification showed a

performance improvement of 30%, but it was noted that the scheme generated
very large hierarchies, hinting that ray classification treated localized motion
much better.

Havran et al. [6] introduce a complete system for rendering animations, which
include advanced effects such as global illumination and motion blur. They
present a method to render multiple frames at once, by updating samples over
the frames, compensating for camera or object motion, thus avoiding recalcu-
lation of expensive calculations. They use a global kd-tree for static objects
and also nest kd-trees containing animated primitives within the global tree.
The nested trees stores instances of any animated primitive, one instance for
each frame. Comparing their method with frame-by-frame rendering showed a
speed-up factor of around 10x.

Kato et al. reports in [11] that they used a grid structure for their Kilauea
project but subdivided moving primitives temporally. There is sparse informa-
tion on exact method or performance, but we expect their method to be similar
to ours.

Given the popularity of the kd-tree in ray tracing, we propose a concrete ex-
tension of the structure to include time. We try to get a measure of how the
increased complexity affects processing time, and show that the 4D kd-tree is a
viable alternative to hybrid structures.

4 Kd-Trees

The kd-tree was introduced by Bentley [1]. The k originally denoted dimension,
e.g. a 3-dimensional kd-tree was meant to be referred to as a 3d-tree. A kd-tree
is in structure a BSP-tree, with the difference that the BSP-commonly splits
a volume into two by a midsection splitting plane. The kd-tree loosens this
restriction and allows the splitting plane to be arbitrarily positioned, but axis-
aligned. Havran [7] showed that the kd-tree performed better than the general
BSP for all tested scenes. The kd-tree has a much better adaption to scene
distribution, which pays off when the structure is traversed.

The kd-tree is characterized by modest memory requirements. The amount
of leaf cells grows roughly linearly to the number of primitives, and a total
memory limit can be used as termination criteria for the construction phase.

Positioning of the splitting planes greatly influences the performance of the
structure in ray-tracing. There are though existing algorithms for generating
suitable kd-trees for ray-tracing, and efficient algorithms for traversing them.
We give an overview of the algorithm described by Havran [7], which currently
is the de-facto standard.

4.1 Construction

Given a set of primitives P = {F,;}, we construct an axis-aligned bounding box
B = B(P) = B(U;B(F;)), which will be the bounds of the kd-tree structure.

The volume B will either be split into two non-overlapping subvolumes 54 and
Bp, or the splitting algorithm is terminated and a list of all primitives that
overlap the volume is stored. For each subvolume B4 and B, it is again decided
if they are split into two subvolumes, or the splitting is terminated. Thus the
kd-tree can be constructed by a recursive algorithm, each step subdividing space
into finer subvolumes, see figure 2.

Figure 2: The enclosing volume is recursively split into subcells

4.1.1 Termination Criteria

Termination criteria are important for making the tree efficient, and are often
set as user parameters for tuning the performance. A limit on how many prim-
itives may be stored in a tree cell forces the construction algorithm to keep
subdividing space until the primitives are sufficiently separated. A high leaf
count in most cases leads to unnecessary intersection tests. It is also common
to impose a max tree depth as a termination criterion as a large tree depth
can affect the performance negatively, resulting in a large amount of processing
used on traversing the tree nodes. Since the structure is built top-down, the
construction can also be terminated when the structure reaches a maximum
memory size. Such criterions are in conflict with each other, so that enforcing
one termination criteria may lead to other criterions not being fulfilled. Re-
stricting memory usage may force large number of primitives to be stored in
some tree cells, as well as keeping a low max primitives count may force the tree
depth higher than the max tree depth states. It is thus necessary to order any
termination criteria based on priority.

4.1.2 Splitting

There are a multitude of ways of subdividing a volume B into two subvolumes.
The kd-tree in its design defines the subdivision to be made by axis-aligned
splitting planes. For any distribution of objects, there exists splitting surfaces
that are better adapted to the scene than such a simple plane. The complexity
to find the best of such surfaces is substantial though, and carries over even to
arbitrarily oriented splitting planes. Havran [7] states that the number of pos-
sible positions of an arbitrarily oriented splitting plane is of O(N?), increasing
construction time cubically as the number of primitives N grows linearly. Thus
the kd-trees restriction of axis-aligned splitting planes is reasonable, and with
an arbitrarily positioned axis-aligned splitting plane, the number of possible po-
sitions is O(N). Axis-aligned splitting planes also pay off when traversing the
structure, with only trivial arithmetic calculations for the traversal. Simpler
schemes, such as splitting along the spatial median, unfortunately does not pay
off, as they do not properly take into account the real cost of traversal, and
generally produces badly adapted structures.

MacDonald and Booth introduced the term surface area heuristics (SAH) in
[12], which is extensively treated by Havran [7]. The principle idea is to guide
the construction of the tree based on estimated costs of actually ray-tracing
the structure. The probability of a ray intersecting a subvolume B4 is given
by the surface area ratio p(Ba|B) = SSB—;, given that the ray intersects B. For
estimated costs of intersection and tree traversal, it is possible to locally esti-
mate costs of terminating splitting and creating a leaf, or estimate costs of a set
of possible subdivisions. Pharr and Humphreys [14] uses a simplified, locally
greedy algorithm, where the cost C' is calculated as

e Leaf
N
C=> ci(k)

=1

All primitives will have to be intersected, where ¢;(k) denotes time cost of
intersecting primitive k. Pharr and Humphreys also makes the assumption
that intersection costs do not vary much in their implementation, and thus
simplify the cost further to

C = Nt;

o Split

NA NB
C=ci+pay cilar) +ps Y ci(be)
k=1 k=1

¢ denotes the cost associated with finding which of the subcells the ray in-
tersects. pa and pp are the conditional probabilities p(B4|B) and p(Bz|B)
defined earlier, which defines the probabibility that a ray intersecting B
intersects the respective subvolume. N4 and Np denotes the number of
primitives overlapping the two regions B4 and Bp, and {a;} and {bs}
are index lists such that {ax;k = 1,..., Na} represent the indices of all
primitives overlapping B4, and vice-versa for {b,} and Bp. Assuming that
intersection costs do not vary significantly, as in the leaf case, this can be

10

simplified as
C =t;+ (1 —be)(paNat; + psNpt;) (3)

where the b, term is introduced to favor splits where one of the subcells
is empty, and designed so that b, € [0,1] when one of the cells is empty,
and zero otherwise.

For each cell, we can see that the cost function is modeled such that each of
the subvolumes will be leaves, since the probabilities of the ray intersecting
one of the cells is directly multiplied with leaf cost functions C'y = Nat; and
Cp = Npt;, corresponding to N4 and Np intersection tests of primitives with no
additional traversal. Thus such a scheme does not produce a globally minimized
cost tree, because each of the subcells can be further split, so that the estimated
cost will differ from the true cost. On the other hand, a globally minimized cost
tree would require the subcell costs to be computed correctly. This requires the
tree to be fully constructed, which contradicts the fact that we are searching
for the best construction choices to begin with. Havran [7] states but does not
prove that the problem of finding such a minimum total cost kd-tree is NP-hard.

For each volume B, a cost C is calculated for any candidate splitting plane,
as well as the cost for making the cell a leaf. The splitting planes that we are
interested in are the ones which minimize the cost, and we can discard a lot of
possible splitting positions directly. If we are considering splitting along a fixed
axis in the vicinity of one primitive, we imagine placing the splitting plane in
the center of the primitive. The primitive will now overlap both B4 and Bp,
adding to both N4 and Np. Subtly moving the splitting position along the axis
does not alter N4 and Np, only changing the surface areas of the cells and thus
changing the p4 and pp terms. But because s4 + sp = k1 = pa +pp = ko
this only linearly changes the cost, indicating that a local minimum exists at a
primitive boundary along the axis. When the splitting plane is moved to one
of the boundary edges, the primitive will no longer overlap one of the subcells,
further reducing either N4 or N by one, resulting in a jump down in the cost
function on the boundary. Moving the splitting position further beyond the
primitive boundary will result in the inclusion of empty space in the cell volume
and increased probability that the primitive will have to be tested, and thus
gives a higher cost again. The same reasoning holds for multiple primitives and
overlapping primitives. Only object boundary edges thus need to be considered
as candidate splitting positions. For N primitives, we will then have to com-
pute up to 3-2- N costs, since for each axis, each object has two boundary edges.

The smallest cost determines leaf or split, and after splitting, the algorithm
will recursively be applied to the resulting subcells.

4.2 Traversal

There are a few variations on traversing a kd-tree efficiently. Common methods
are categorized into two groups

e Sequential traversal. The algorithm steps cell by cell, so that when one cell
has been tested for intersection, a new ray traversal origin is set slightly
beyond the cell border, and a new candidate cell containing the current

11

traversal ray origin is searched for in the kd-tree. The algorithm thus
walks from cell to cell until either an intersection is found, or the ray
exits the kd-tree without any hit. Each look-up in the kd-tree will require
multiple visits to many nodes, because the search always starts from the
root node.

e Recursive traversal. The tree is traversed top-down, so that any subcells
are tested in the order that the ray passes through them. The algorithm is
applied recursively for each subcell so that the closest cells will be tested
down to leaf level before more distant cells are considered. Guarantees
that each node is visited only once, but traversal steps require more book-
keeping than sequential traversal, because distant cells to be tested have
to be stored until closer lying cells have been processed.

The recursive algorithm generally has better performance for ray tracing appli-
cations, and is the more common method to traverse kd-trees. A number of
variants are covered in [7]. We choose to present one of the simpler methods.

For each ray r(t) = o + td that is intersected with a kd-tree root node N
we find a parameter range tyr = [to,t1],t; > 0 corresponding to the intersection
points with the node bounding volume, see figure 3. If the node is a leaf, all
primitives are simply intersection tested, returning the closest hit in the param-
eter range if any intersection test succeeds. If the node is split, the parameter
tsplit is calculated, corresponding to the intersection of the ray with the splitting
plane. If t5,;;+ > t; only the near child is intersected by the ray, because the
splitting plane intersection with the ray lies beyond the ray exit point from the
cell. If ¢4y < to, the ray only passes through the far cell, because the splitting
plane intersection with the ray is closer to the origin than the ray entry point in
the cell. Otherwise both cells have to be tested, and the algorithm will be recur-
sively applied with new parameter ranges tpeqr = [to, tspiit) and tfar = [toprit, t1]
for the respective near and far cell. The far cell intersection testing is postponed
until the near cell subtree has been completely traversed, and it is stored in a
stack structure for later processing.

In such a way the algorithm proceeds, identifying which of the two cells are inter-
sected, updating the parameter range appropriately and recursively traversing
the tree from closest to furthest object. Given that intersection testing consti-
tute a great proportion of ray tracing processing time, it does pay off to optimize
both the kd-tree data structures and the traversal algorithm. Extra information
is often stored to speed up look-ups and traversal in the tree. The method above
is relevant though, because it forms the basis of the more optimized algorithms.

5 Extending the Kd-Tree

Given an animation sequence on the time interval t = [tg,t1], an arbitrary
number of frames {f;} spread out over the time interval are sampled using
ray-tracing. We would like to consider one such frame f; as a discretized time
instant, but one frame f; really corresponds to the exposure on the image plane
of the virtual camera. If we correctly model a camera, the camera shutter re-
mains open for a time interval Atg, which for large exposure times gives the

12

Figure 3: The order of the intersection points along the ray gives information
about which of the subnodes that need to be tested for possible intersection.

motion blur effect. A set of frames {f;} thus corresponds to a set of continuous
time slices. The traditional way of rendering motion blur further discretizes
each such time slices into n subframes, but such methods are not popular in
production rendering, since they easily produce artifacts for wide-ranging mo-
tion. In addition, the rendering time increases by a factor n.

More correct methods do treat each time segment correctly as continuous time,
but render each time segment independently. Storing the complete animation
sequence does show both advantages and disadvantages. If the shutter time is
small, treating each time segment independently will read the minimum amount
of data necessary, while storing the entire animation sequence will read data that
is inbetween time slices and thus never used. On the other hand, for long shutter
times, time slices may well start to overlap, making the independent treatment
read the same data over and over. For a single camera it does not make sense
that the shutter intervals can overlap, but in special effects photography, in-
dividual cameras are often used for each frame. Extreme motion blur effects
in general can hold great value for certain special effects, which the continuous
time model handles automatically.

We believe there is a need to clarify the implications of using a kd-tree for
storing animation data, as was also suggested by Havran in [7]. We believe that
the inherent simplicity of the structure can have many advantages over hybrid
structures used for storing dynamic data.

In ray-tracing, the term kd-tree has become synonymous with its 3-dimensional
specialization, much because a 3D structure fits naturally into the problem do-
main, since most processing in ray-tracing are 3D visibility queries of some sort.
It does not make as much sense to fit a 4D structure to such a rendering problem,
because primitive time bounds extend over the entire time span of the sequence
in most cases, in principle offering no candidate splitting positions along the
time axis.

13

We construct a simple method to preprocess the animation data so that it
can be stored in a 4D kd-tree trivially. We also motivate using cost functions
in line with SAHs for splitting the tree.

5.1 Preprocessing Data

Given the task of rendering N frames { f;}, we have to store animation data for
the entire time interval t = [ty,,ts, +ts] where ¢y, is frame ¢ shutter open time
and At is shutter time. As mentioned in Section 2, spatial bounds for an ani-
mated object for the entire time interval t are in most cases extremely inflated
compared to the spatial bound at a time instant ¢;. Large spatial bounds as
well as temporal bounds both indicate a need to describe the primitive in more
detail over time. As we are trying to fit the data into a 4D kd-tree, it is essential
to introduce new candidate splitting positions along the time axis. This only
seems possible by subdividing the primitive in time into subprimitives, defined
over separate non-overlapping time segments. This do solve both bound issues,
since the animated spatial bounds for each such subprimitive will be reduced
due to the smaller time interval, in turn giving us candidate splitting positions
in time for the kd-tree.

We propose a simple iterative method for subdividing primitives in time which is
flexible enough to be used on both continuous and discretized data. We denote
the entire time interval for the animation, including shutter time, as to = [to, t1].
We set time t, = g, and for a primitive P we find the largest time ¢, < t; such
that

S(B(P,)) > % SB(UB(P.))) . ti € [ta.ts] (4)

where S(B(P)) denotes the surface area of the axis-aligned bounding box of
primitive P. This essentially restricts how much we allow the primitives ani-
mated spatial bound to inflate from the initial static bound at time t,. We are
interested in the static 4D bounding box of each subprimitive, so from a tradi-
tional point of view we enclose moving objects in 3D bounding boxes for short
spans of time. Thus the parameter x describes how much extra surface area we
can allow for a cell. A higher x will lead to more unnecessary intersection tests,
while a lower x will lead to more subprimitives being generated.

For the interval [t,,], we create a new subprimitive P that defines the same
motion as the primitive P, but only exists on the interval. We then iterate the
method by setting ¢, = ¢, and repeating the process until ¢, > ¢;. The resulting
N subprimitives P;, as depicted in figure 4, all have controlled spatial bounds,
and a temporal bound smaller than tg for N > 1.

The motivation for using the surface area to model equation 4 is directly re-
lated to the surface area heuristics used in construction of a kd-tree with good
performance. The probability of a ray entering a cell is not related to volume,
only surface area. This can be easily visualized if one considers an axis-aligned
triangle or another flat primitive, thus having a spatial bound with zero volume.
If the triangle is increased in size, the probability of a ray intersecting the object
is increased, which is reflected in the fact that the spatial bound surface area
increases, while the volume will remain zero.

14

Figure 4: Splitting a primitive with large spatial bounds into smaller primitives
with smaller spatial bound.

Choosing a suitable parameter r is not directly obvious. £ < 1 would mean
that we do not allow the surface area to increase, which in theory will force
infinitely many subprimitives. Arvo and Kirk state in [4] that the projected
area of a volume is on average 1/4th of the surface area of the volume, giving a
hint that if for example x = 2, we allow the surface area to double, the average
projected area facing a given ray will also double, in effect increasing the prob-
ability of intersecting the primitive by a factor x compared to intersecting the
static spatial bound at t,.

The parameter s could vary between primitives, and could additionally be set
by the user, but we believe an extra parameter for controlling the kd-tree con-
struction is unwanted, proposing that x be set as a fixed value, optimized for
the implementation for a variety of scenes.

5.2 Construction

Given the preprocessed data, we have a set of unsplit primitives { P;}, and a set
of generated subprimitives {ﬁj}, where the temporal bound edges of 15j offer
potential candidate splitting positions for the 4D kd-tree. We would like to use
the concept of surface area heuristics also for the extended kd-tree, since we
again want to minimize an estimated cost of intersecting a candidate tree node.
Surface areas of 4D bounding boxes which have mixed spatial and temporal
axes might give an indication of trouble, but on the temporal and spatial scale
of photo realistic ray tracing, it is not unreasonable to model photons and thus
rays as arriving instantaneously, which will simplify the SAH concept.

As we treat the time axis as just another spatial axis in the tree, we have
to relate in some way the cost of a spatial split to a temporal split. Thus we
cannot blindly design some ad-hoc rule, unless it relates spatial and temporal
axes in a consistent way. Returning to the cost function

C=t+ (1 —"0b.)(paNat; + ppNpt;)

15

explained in detail in equation 3 on page 11, we see that the term surface area
heuristics in some way is misleading, because the probability terms and all the
other components very easily relates to the temporal split. Given a 4D volume B
with temporal bounds t = [tg, t1], denoting the time interval length [t| = |t; —to].
The primitive B is split into two subvolumes along the time axis such that 54
is defined on ta = [to, tspiie] and Bp is defined on tp = [teprit, t1]. For a given
ray r intersecting the volume B, assuming light travels infinitely fast, the ray
will never intersect both subvolumes, as the ray only exists in a specific time
instant. Thus the ray either intersects B4 or Bp, giving the probabilities

ba = M bB = —|tB|
[t] [t]

()

and thus p4 + pp = 1. We have thus reinterpreted the given cost function so
that costs for a spatial axis can be compared to a cost for the temporal axis,
without explicitly relating spatial and temporal axes.

Using this cost function makes construction of the 4D kd-tree trivial. We can
reuse the same construction algorithm as for the 3D kd-tree, modified to 4 axes
instead of 3. The only difference in treating the temporal axis is in replacing the
spatial surface area based probabilities by the temporal probability equations
given in eq 5.

5.3 Traversal

As for construction, traversal of the kd-tree is a simple modification of the
original recursive traversal algorithm. 4 axes have to be iterated instead of 3,
and for a temporal split, simply looking at the time of the ray r and the splitting
position in time determines which one of the subcells to be further traversed.

6 Implementation

While implementing a test framework for the 4D kd-tree, the option was to
either extend an existing ray tracer, or the daunting task of developing a new
renderer. The interface to animation data was also crucial, and it was early
on decided that the framework would be tightly integrated with existing 3D
software, which would allow us to read animation data at arbitrary resolution.
Since a lot of the ray tracer internals would be time dependent, which none of
the candidate ray tracing implementations were, we chose to develop a new ray
tracer.

The test framework is developed in C++, and is due to time constraints quite
limited in scope. It renders triangles with textures, reflections, refractions, shad-
ows, and most importantly, physically correct motion blur. It does not model
global illumination, as this has been well covered in other works. The framework
core is not tied to a specific software, but the current client implementation was
developed as a plug-in for Softimage|XSI, a high-end 3D animation software. It
should be noted that the results are not dependent on this choice, as any given
3D software could have been used as animation source instead.

16

6.1 Reading Data

Scene primitives were divided into static and animated. Static objects were
simply read as static triangles set to exist over the entire animation time span.
Animated objects most often are hand animated, but they could equally well
be objects from a rigid-body simulation, which differ a bit in source, as the
hand animated object is controlled by well defined keyframes and the resulting
interpolating curves, while simulated objects are effectively discretized motion.
Mimicking exactly the interpolation of animation curves inside the 3D software
would allow us to read only the keyframe data, but we would soon have a
replication of the entire animation engine of the 3D software, which intuitively
sounds unlikely to be successful. We thus choose to treat any animated object
by discretizing the motion.

Our initial model samples n subframes for each animation frame of the sequence.
We do not want to sample more sparsely than once each frame, because the eye
is extremely sensitive to motion path artifacts. In our test framework, data is
linearly interpolated for simplicity, and the parameter n is here mainly a way for
the user to control motion blur smoothness. If a smoother interpolation method
was chosen, like Catmull-Rom splines [2], one motion sample per frame could
possibly be enough to approximate the motion.

For N frames, each sampled by n subframes, we store the vertex data for each
triangle in a separate array. Any triangle sharing a vertex can thus use the
same vertex data array. As we use the preprocessing method described in sec-
tion 5.2 to segment the triangle in time, all subprimitives generated reference
the same vertex arrays. In this way, no data is duplicated due to the splitting,
and the only cost introduced in the segmentation is the cost of the subprimitive
structures. The major overhead in memory will thus be the massive amounts of
animation data stored as vertex arrays, but the amount of this data is known,
so that it is easy to calculate how many frames of data the memory can hold,
making it possible to divide a very complex animation into a set of frame blocks
that all fit into memory.

Animated lights and cameras are also sampled as coordinate arrays describ-
ing their motion paths over time. Animated attributes are not supported, but
it would be simple to also sample these.

The abstraction between 3D software and ray tracing implementation produces
alot of memory overhead as memory is duplicated inbetween them. It would be
interesting to couple them tighter so that the ray tracing implementation does
not store any data. Then one would build a 4D kd-tree in the same way as
before, but never store triangles explicitly in the tree. The advantages would
be obvious, letting the 3D software interpolate data, so that to the ray tracing
implementation, the data can still be viewed as continuous in time.

6.2 Construction

We were able to squeeze a 4D kd-tree node into 8 bytes, by using yet another
bit of the splitting position, as is traditionally done for the 3D kd-tree nodes

17

(see [14] for details), without noticing any artifacts. This results in no memory
penalty for using the 4D kd-tree due to node memory size, as they are exactly
the same size as the 3D counterpart.

We explicitly avoided relating temporal and spatial axes, as we did not want to
introduce yet another arbitrary variable. This leads to a performance penalty
in our implementation because we chose to calculate temporal costs initially,
and then comparing to the cost for the dominant spatial axis.

18

7 Results

We tested the data structure on a variety of scenes, and present a subset of these
here. We compare memory overhead and performance with the traditional ac-
cumulation motion blur as well as comparing to stochastic motion blur limited
by traditional 3D kd-trees.

Comparing accumulation motion blur to stochastic motion blur is very diffi-
cult for a number of reasons. We cannot compare them based on total number
of rays, because rays in the stochastic case will be far more expensive due to the
interpolation of triangles for every intersection test. The accumulation motion
blur quality is also balanced between the subframe sampling versus the number
of subframes sampled, making it impossible to declare a definitive render time
for a given test scene. Accumulation motion blur artifacts usually occur as strob-
ing effects, while the stochastic motion blur artifacts result in large amounts of
noise, again making it difficult to compare quality between them. For these
reasons, our comparison will be highly subjective, and should be regarded as an
example of the rendering performance for a given set of options.

We also show some interesting applications of the 4D kd-tree, where instanced
primitives are displaced in time to create an illusion of more complex data.

7.1 Propeller

The first test scene is a simple propeller consisting of about 1000 triangles that
features wide-ranging motion. The reference image in figure 5 was rendered with
stochastic motion blur using 128 samples per pixel and 8 motionsteps linearly
interpolated.

Figure 5: Reference image for the propeller test scene.

We chose to render the accumulation motion blur test with adaptive sampling
for each subframe with a maximum of 4 samples, due to that the final frame will
be accumulated. We rendered using 8, 16, 32 and 64 subframes, each subframe
rendered using a 3D kd-tree. For the stochastic motion blur tests, we used the
4D kd-tree with 8 motionsteps, and an adaptive sampling of max 8, 16, 32 and
64 samples per pixel.

19

Figure 6: Accumulation motion blur test results.

Figure 7: Stochastic motion blur test results.

Propeller test common data

method | accelerator tree memory size primitives memory size
accumulation | 3D kd-tree 15.3 kB 83.3 kB
stochastic 4D kd-tree 384.3 kB 664.4 kB

Propeller test results

accumulation | 8 subframes 16 subframes 32 subframes 64 subframes
time (minutes) 0.75 1.48 3.30 6.51
total rays ‘ 796925 1594750 3190770 6381735
stochastic | 8 samples 16 samples 32 samples 64 samples
time (minutes) 0.44 0.84 1.67 3.33
total rays ‘ 653510 1423635 2980755 6083995

Propeller test rendering time breakdown (seconds)
accumulation | 8 subframes 16 subframes 32 subframes 64 subframes

update data 2.77 5.47 12.20 24.41

build tree 0.14 0.26 1.17 1.74

raytrace 41.62 82.75 184.63 363.71
stochastic | 8 samples 16 samples 32 samples 64 samples
update data 0.58 0.47 0.47 0.45
build tree 0.45 0.45 0.47 0.47
raytrace 25.13 49.30 99.20 198.96

For these particular settings the two methods seem to match each other quite
well in quality and amount of rays traced. The stochastic motion blur tests all
render a bit faster, probably because rays more efficiently can be used on inter-
esting areas, whereas the accumulation buffer method wastes more rays tracing

20

unimportant areas for every subframe. The human eye is more forgiving to
noise than strobing artifacts, and the quite noisy stochastic motion blur images
do look better when played in a sequence. The accumulation buffer motion
blur tests do converge to a very good quality image, and for many scenes the
supersampling could possibly be lowered.

One attractive aspect of the stochastic motion blur method is the fact that
we practically have motion vectors for each sample for free, since these can
often be extracted directly from the interpolation step of the triangles. Mo-
tion vectors are playing a large role in production rendering today for post-
processing motion blur. Although such post-processing techniques do fail to
correctly model motion blur, carefully combining rough stochastic motion blur
with post-processing blur is a good approximation to fully sampled motion blur.

We also compared the performance of stochastic motion blur while using the
tradidional 3D kd-tree instead of our 4D kd-tree. We made one set of tests for
the basic primitives, and one test where the primitives were subdivided in time
using our segmentation method.

Stochastic rendering time comparison (minutes)
kd-tree segmented | 8 samples 16 samples 32 samples 64 samples

3D no 1.2 2.4203 4.93723 9.98932
3D yes 0.49167 0.95130 1.89583 3.78645
4D yes 0.43802 0.83828 1.66927 3.33178

Stochastic rendering time breakdown (seconds)
kd-tree segmented | update data build tree

3D no 0.484 0.031
3D yes 0.484 0.625
4D yes 0.469 0.468

Notably, the construction time for the non-segmented 3d kd-tree is significantly
lower, primarily because the number of primitives is a tenth of the number of
primitives generated by the segmentation method. More interesting is that the
build time for the 3D kd-tree is higher than the 4D kd-tree for the same number
of primitives, which indicates that the 3D kd-tree algorithm has problem sorting
the primitives efficiently.

There seems to be a slight improvement in rendering performance in using the
4D kd-tree. The traversal cost is comparable between the two, so the rendering
times indicates that the 4D kd-tree has better adaption to the generated data.

7.2 Head

The second test scene is a slightly heavier mesh, consisting of around 10k tri-
angles, deformed by a twist deformer applied on the mesh and rendered with
extreme motion blur effects. The reference image was again rendered with 128
samples per pixel, using stochastic motion blur.

The shutter time for the test spanned over 10 frames, which forces the accu-
mulation blur method to use quite many subframes to converge to a continuous

21

Figure 8: The head test scene, the right-most image shows the motion blur
settings used in the test.

motion blur effect. We used 8, 16, 32 and 64 subframes for the accumulation
motion blur effect, while 4, 8, 16 and 32 samples per pixel of stochastic sampling
gave a comparable quality due to better sample distribution in time. Tree depth
and leaf size were restricted to 32 and 8.

Figure 9: Accumulation motion blur test results.

Figure 10: Stochastic motion blur test results.

Head test common data

method | accelerator tree memory size primitives memory size
accumulation | 3D kd-tree 0.2 MB 0.9 MB
stochastic 4D kd-tree 18.4 MB 12.2 MB

22

Head test results

accumulation | 8 subframes 16 subframes 32 subframes 64 subframes
time (minutes) 1.3 2.6 5.0 8.9
total rays ‘ 1961956 3909952 7806048 15599764
stochastic | 4 samples 8 samples 16 samples 32 samples
time (minutes) 1.2 1.9 3.4 6.2
total rays ‘ 933204 1886628 3822216 7687188

Head test rendering time breakdown (seconds)
accumulation | 8 subframes 16 subframes 32 subframes 64 subframes

update data 4.3 8.3 16.3 26.1

build tree 2.6 5.5 10.3 17.6

raytrace 70.0 143.5 271.6 487.6
stochastic | 4 samples 8 samples 16 samples 32 samples
update data 1.5 1.5 1.5 1.5
build tree 26.6 26.4 26.0 26.0
raytrace 45.8 87.9 173.7 344.8

We notice right away that for the compared render settings, the accumulation
motion blur method can trace twice as many rays as the stochastic motion blur
method in the same amount of time. We notice that the construction time for
the 4D kd-tree is far larger compared to the 3D kd-tree, even more than we saw
in the propeller test case. The extreme motion blur subdivides the 10k triangles
to over 220k subprimitives, which explains the increase in build time.

We also get a hint that a lot of data is being generated when we look at the size of
the kd-tree in memory, so even though the method clearly handles extreme mo-
tion blur, memory gets consumed quite rapidly, even though the kd-tree nodes
occupy the same amount of space in both the 3D and the 4D implementation.

Stochastic rendering time comparison (minutes)
kd-tree segmented | 4 samples 8 samples 16 samples 32 samples

3D no 16.7 36.3 65.4 130.7
3D yes 2.2 3.5 6.1 11.1
4D yes 1.2 1.9 3.4 6.2

Stochastic rendering time breakdown (seconds)
kd-tree segmented | update data build tree

3D no 1.2 0.5
3D yes 1.5 51.9
4D yes 1.5 26.0

It does seem naive to expect a 3D kd-tree to hold animation data for 10 frames
and still render it efficiently, as the rendering times for the non-segmented case
are extremely long. Segmenting the primitives improves rendering performance
a lot, but as in the propeller case, the 4D kd-tree build time is actually lower,
indicating that the 3D kd-tree builder must again have trouble constructing the
tree. The speed-up of rendering using the 4D kd-tree is significant.

The difference in time when updating the data is actually the time to sub-

divide primitives into subprimitives, so for this scene, the segmentation time is
approximately 0.266 seconds.

23

7.3 Armadillo

The third test scene is a dense mesh: the armadillo from the Stanford 3D Scan-
ning Repository, comprised of around 350k triangles, and deformed by a bone
structure with animation. We used 2, 4, 8 and 16 subframes of accumulation
motion blur, compared to 2, 4, 8 and 16 samples per pixel for stochastic motion
blur. The shutter time spanned 4 frames, and the tree depth and leaf size were
limited to 24 and 8. Raising the x segmentation to 4 for this scene gave a sig-
nificant speed increase.

Figure 11: The armadillo test scene.

Figure 12: Accumulation motion blur test results.

Figure 13: Stochastic motion blur test results.

Armadillo test common data

24

method | accelerator tree memory size primitives memory size

accumulation | 3D kd-tree 4.7 MB 38.7 MB
stochastic 4D kd-tree 20.1 MB 144.7 MB
Armadillo test results
accumulation | 2 subframes 4 subframes & subframes 16 subframes
time (minutes) 1.0248 1.9813 4.2963 9.15208
total rays 583460 1166384 2332464 4665212
stochastic | 2 samples 4 samples 8 samples 16 samples
time (minutes) 3.1 3.8 5.0 7.3
total rays 569680 1110336 2169484 4159652

Armadillo test rendering time breakdown (seconds)
accumulation | 2 subframes 4 subframes & subframes 16 subframes

update data 8.5 13.6 27.8 54.3

build tree 28.9 58.3 134.4 296.6

raytrace 22.8 45.3 92.1 191.5
stochastic | 2 samples 4 samples 8 samples 16 samples
update data 224 22.5 22.5 22.5
build tree 116.6 116.5 116.6 116.5
raytrace 46.1 83.7 156.9 294.4

For such a dense mesh, the kd-tree build time starts to become significant in
the total rendering time. Our kd-tree implementation could possibly be further
optimized, but the problem lies in the method of segmenting the primitives,
thus multiplying the number of primitives by a significant factor. For this scene
for example, the 3D kd-tree for accumulation motion blur has to sort 345926
primitives, i.e. the number of triangles in the scene. This results in about one
million nodes in the kd-tree for the test kd-tree settings. When we consider
animated triangles, and segment these temporally for this scene, we get more
than four million primitives to sort for K = 2. The total kd-tree node count for
such large scenes can quickly rise to tens of millions.

This is one of the effects of the design choices of our method; we restrict the
growth of the bounding box of any animated primitive, but with the penalty
that the primitive count instead will rise. Such a dense mesh as this is comprised
of extremely tiny triangles in screen space, so even though the motion blur effect
is not very extreme, the tiny triangles motion paths can be extremely elongated
relative to their size, meaning that our method will segment the triangle into
possibly hundreds or thousands of new subprimitives.

25

Stochastic rendering time comparison (minutes)
kd-tree segmented | 2 samples 4 samples 8 samples 16 samples

3D no 3.2 5.4 10.1 18.2
3D yes 3.3 4.0 5.4 8.1
4D yes 3.1 3.8 5.0 7.3

Stochastic rendering time breakdown (seconds)
kd-tree segmented | update data build tree

3D no 20.8 26.6
3D yes 22.5 118.8
4D yes 22.5 116.5

For very low sampling, the 3D and 4D kd-trees render in almost the same time,
but looking at the build times, it seems that the 4D kd-tree is still faster in
rendering, the build time mainly equalling them out. For higher sampling rates,
the 4D kd-tree clearly is better adapted for the generated data, as was indicated
earlier in the propeller and head test cases.

7.4 Temporally Instanced Primitives

A common technique in rendering is to create a set of lightweight primitives
that all reference a template primitive. Even though the scene may be com-
prised of thousands or millions of primitives, each object is only a carbon copy,
referencing data stored only once in memory. Storing the template primitive in
a static 3D acceleration structure will naturally restrict all copies to exactly the
same time instant, which is the reason that instancing static objects is the most
common.

Being able to sort the template primitive once into a time-dependent 4D ac-
celeration structure has some attractive features for instancing techniques. We
can store the complete animation for a template primitive, and with simple
means create copies that exist displaced in time relative to the template primi-
tive, since the 4D acceleration structure allows us to ray-trace at any given time
instant without having to rebuild the data.

We implemented a simple prototype for instancing animated primitives. We
derived a simple subtype of the primitive class, which contains a reference to
the template primitive, a spatial transform as well as a temporal transform. Care
has to be taken to update the bounding box appropriately, since the bounding
box of the template primitive will most likely no longer be axis-aligned after
transformation. In our implementation, we modeled the template primitive as
defining a cyclic animation, so that any time sample outside the source anima-
tion time span was displaced back into the time interval.

We created a simple animation cycle of a bunny that comprised 20 frames.
No static instancing technique can create the same effect as temporal instanc-
ing, the only option is to duplicate data for each copy. We made some simple
tests of 1, 10, 100, 1000, 10000, 100000 and 1000000 bunnies, measuring memory
overhead when duplicating the data versus instancing temporally. Duplicating
the data, memory allocation grew at a linear rate proportional to the number of

26

primitives, as is natural to expect. The memory overhead for the larger primi-
tive counts were thus extrapolated. Figure 16 depicts the difference in memory
overhead for the two cases.

Figure 14: 10 temporally instanced primitives.

Figure 15: 1000 temporally instanced primitives.

As expected, rendering even a million primitives is very cheap using temporal
instancing. There is an initial overhead of the template primitive, clearly visible
in figure 16 in the initial few samples of the temporal instancing curve, and we
expect that for heavier template primitives, the overhead will be even more
pronounced. The template primitive overhead will of course also limit the total
number of primitives possible to fit into memory. The final images, see figure 14
and figure 15, really shows the value of arbitrarily displacing the instances in
time. The illusion of individual bunnies is extremely good, even though they
are all cheap copies of one single animation source.

27

12 memory usage
10 ‘ ‘
no instancing
—— temporal instancing
O sampled data
10t L[_* extrapolated data

10°F E

i
o
©
T
I

®

memory load / byte
(=
o
T
L

10 ¢ E|

10 1 1 1 1 1
10 10 10° 10° 10" 10 10
number of primitives

Figure 16: Memory load when rendering a given number of character primitives.

8 Conclusions and Future Work

In this thesis, we presented methods to store complete animation sequences in
4D kd-trees. A straight-forward method was also introduced to subdivide prim-
itives along the time axis to limit bounding box inflation due to motion. A cost
function was formulated that naturally extended traditional kd-tree surface area
heuristics to accomodate time.

Using the method on a set of test scenes indicated that the extra costs in both
construction time and memory load can pay off in rendering time due to better
scene adaption of the structure.

We did not optimize the code for interpolating the triangles, and we believe
further work into fast cpu-optimized triangle interpolation would be very im-
portant to validate storing animation data in memory. We currently estimate
costs at least twice for every node, as we explicitly avoided relating spatial and
temporal axes. It would be interesting to further study how to avoid these dou-
ble cost calculations, preferably without trivially relating the axes.

We also demonstrated using the 4D kd-tree to create temporally displaced in-
stanced primitives, which is not possible with a static acceleration structure
unless data is duplicated explicitly for each copy.

Temporal instancing holds tremendous potential for practical applications. It

would be very interesting to see further work in using it to render massive crowd
simulations. It would simply be a matter of authoring a seamless set of anima-

28

tion loops as are traditionally used in games, storing these once in memory
for every template character, and switching between them as the simulation
progresses.

9

Acknowledgements

I would like to thank my supervisors Petrik Clarberg and Tomas Akenine-Moller
for valuable discussions and comments along the way. I would also like to
thank all the authors mentioned in the bibliography, as their works gave me the
inspiration and energy for writing a thesis in computer graphics.

References

1

2]

3]

[4]

[5]

[6]

7]

8]

9]

[10]

[11]

[12]

Bentley, J. L. Multidimensional Binary Search Trees Used for Associative
Searching. Communications of the ACM. 18(9) pp. 509-517. 1975.

Catmull, E., Rom, R. A class of local interpolating splines. Computer Aided
Geometric Design. pp. 317-326. Academic Press, 1974.

Cook, R. L., Porter, T., Carpenter, L. Distributed Ray Tracing. Proceedings
of ACM SIGGRAPH 8. pp. 137-145. ACM Press, 1984.

Glassner, A. S. (Ed.). An Introduction to Ray Tracing. Academic Press,
1989.

Glassner, A. S. Spacetime Ray Tracing for Animation. IEEE Computer
Graphics and Applications. 8(2) pp. 60-70. 1988.

Havran, V., Damez, C., Myszkowski, K., Seidel, H. An Efficient Spatio-
Temporal Architecture for Animation Rendering. ACM SIGGRAPH 2003
Sketches & Applications. 2003.

Havran, V. Heuristic Ray Shooting Algorithms. PhD thesis, Czech Techni-
cal University, 2000.

Havran, V., Herzog, H., Seidel, H.-P. On the Fast Construction of Spatial
Hierarchies for Ray Tracing. Proceedings of IEEE Symposium on Interac-
tiwve Ray Tracing. pp. 71-80. 2006.

Kajiya, J. T. The Rendering Equation. Siggraph ‘86 Proceedings. 20(4) pp.
143-150. ACM Press, 1986.

Keller, A., Wichter, C. Instant Ray Tracing: The Bounding Interval Hierar-
chy. Rendering Techniques 2006: EuroGraphics Symposium on Rendering.
2006.

Kato, T. The “Kilauea” Massively Parallel Ray Tracer. Practical Parallel
Rendering. pp- 249-328. AK Peters, 2002.

MacDonald, J. D., Booth, K. S. Heuristics for ray tracing using space
subdivision. Visual Computer. 6(6) pp. 153-165. 1990.

29

[13] Quail, M. Space Time Ray Tracing using Ray Classification Macquarie
University, 1996.

[14] Pharr, M. and Humphreys, G. Physically Based Rendering. Morgan Kauf-
mann, 2004.

[15] Wald, I., Ize, T., Kensler, A., Knoll, A. and Parker, S. G. Ray Tracing
Animated Scenes using Coherent Grid Traversal. SIGGRAPH 06: ACM
SIGGRAPH 2006 Papers. 25(3) pp. 485-493. ACM Press, 2006.

[16] Wald, I., Boulos, S. and Shirley, P. Ray Tracing Deformable Scenes using
Dynamic Bounding Volume Hierarchies. ACM Transactions on Graphics.
2006.

[17] Woop, S., Marmitt, G. and Slusallek, P. B-KD Trees for Hardware Accel-
erated Ray Tracing of Dynamic Scenes. Proceedings of Graphics Hardware.
2006.

30

