
Master ThesisRay Tracing AnimationsUsing 4D Kd-TreesJens Olsson, π03Lund University, Faculty of EngineeringApril 21, 2007AbstractStatic acceleration structures are for e�ciency reasons the de-factostandard used in high-quality renderers today. Time discretization is vi-tal for performance for such a system, forcing otherwise natural time-dependent phenomena like motion-blur to be accumulated together bymultiple rendered images. In this thesis, new methods are presented forstoring animation sequences in a time-dependent kd-tree, which includesa pre-processing step, and a modi�ed surface area heuristic (SAH) costfunction. A time-dependent distributed ray tracer was implemented as aplug-in for Softimage|XSI to test the methods in practice. Tests showedthat the 4D kd-tree had better adaption to dynamic data compared to the3D kd-tree even when both had the advantage of pre-processing. Applica-tions of the 4D kd-tree were demonstrated to temporally displace instancesof primitives to create the illusion of large groups of independently movingobjects.

1

Contents1 Introduction 32 Ray Tracing 43 Previous Work 53.1 Static Structures . 63.2 Dynamic Structures . 73.3 Time-Dependent Structures . 74 Kd-Trees 84.1 Construction . 84.1.1 Termination Criteria . 94.1.2 Splitting . 104.2 Traversal . 115 Extending the Kd-Tree 125.1 Preprocessing Data . 145.2 Construction . 155.3 Traversal . 166 Implementation 166.1 Reading Data . 176.2 Construction . 177 Results 197.1 Propeller . 197.2 Head . 217.3 Armadillo . 247.4 Temporally Instanced Primitives 268 Conclusions and Future Work 289 Acknowledgements 29

2

1 IntroductionRendered animations have traditionally been generated frame-by-frame, con-stantly re-reading data for each concurrent frame. This makes for a simplerimplementation, and most renderers only store the bare minimum of data thatis necessary to generate the frame. Only a few years ago, this was still the onlyway to �t scene description data into the available memory on the computersystems. We can expect system bounds to expand considerably over the nextyears with 64-bit processing on common desktop computers. This will open uplots of new paths for research in speeding up rendering, since the complete datafor a complex animation can �t into system memory, allowing processing to becarried out and reused over many frames. For simple scenes, even 2 gigabytes ofmemory could �t many frames of data, potentially utilizing the system resourcesbetter.From a theoretical point of view, a time-continuous model �ts better with manyray tracing techniques compared to a pre-discretized temporal model. Cook etal. [3] introduced distributed ray tracing in 1984, where rays are distributed intime as well as around the focal point, to properly capture e�ects like depth of�eld and motion blur. Kajiya [9] concretized the theoretical foundation further,describing what is commonly referred to as Monte Carlo ray tracing. Time-dependent Monte Carlo ray tracing integrates the �nal pixel value over thecamera shutter time span, which requires sampling at arbitrary time instants,something which would not be possible with a discrete time model.Currently, ad-hoc techniques are most often used to generate motion-blur andreuse global illumination calculations, such as post-processing motion blur andon-disk photon maps. Such techniques fail to generate physically correct e�ects,or simply require too large intervention from the end user. The complexitiesof a time-based renderer can also be outwon by the inherent savings of reusingglobal illumination calculations. Havran et al. presented a time-based bidirec-tional ray tracer [6], where they showed up to 10× speed-up over frame-by-framerendering by elegant reuse of samples.The question arises of how to store time-based animation in memory. Glassner[5] used Bounding Volume Hierarchies (BVHs) to good e�ect, where he showedconsiderable performance improvements for rendering the complete animationin one go. Havran [7] gives convincing empirical proof that the kd-tree datastructure performs even better than BVH data structures in general. The kd-tree is a very simple data structure, where a volume is divided into subvolumesby axis-aligned splitting planes. When such a structure is used for sorting aset of primitives in space, the performance gains can be huge in a ray tracingsystem, because straight-forward traversal of the tree discards a majority of un-necessary intersection tests, a vital part of ray tracing.We present an approach to extending the kd-tree to include time, proposinga simple heuristic to select a suitable splitting plane for the 4 dimensions. Wealso present a method to subdivide primitives in time into segments with smallbounds in space. An interesting application of the time-dependent kd-tree isalso demonstrated, where instances of objects are temporally displaced to give3

the illusion of individiual motion in a set of instanced objects.2 Ray TracingGenerating images by ray tracing, is essentially simulating the way images formin a camera in the real world. Kajiya de�ned the rendering equation in [9]
Lo(x, ωo) = Le(x, ωo) +

∫

Ω

fr(x, ωo, ωi)Li(x, ωi)(ωi · n)dωi (1)which describes how outgoing light Lo from a point p in direction ωo is givenby the sum of the emitted light Le from the surface and the integral over allre�ected light. The re�ected light is described as the integral of light comingfrom all possible incoming directions ωi over the hemisphere Ω at x, scaled by afunction fr, describing how the surface scatters the photons and a factor ωi · nwhich models how the energy is spread out over the surface when the incidentangle decreases. The rendering equation is the most fundamental formulationof the rendering problem, and widely di�ering rendering techniques can all bereformulated as approximations of the rendering equation.
World

Figure 1: For each ray, the closest primitive along that ray has to be found.In the simplest form of ray tracing, given a model of the world W and an imag-inary camera C, an image is simulated by intersecting rays originating from thecamera with the world model, as shown in �gure 1. Given a ray r(t) = o + td,where o is the origin and d is the ray direction, there must exist a function
f(W , r) = t0, where t0 is the distance to the closest intersection point with theworld along the given ray r. There must also exist a function fλ(W , r) = λ,where λ is an estimate of the incoming light spectrum from the ray direction.Thus ray tracing is in nature very extendable, since the algorithm works un-modi�ed as long as any primitives comprising the world model allows for theevaluation of the two functions. The function fλ can be arbitrarily complex, itmight itself do recursive ray tracing to compute its value. It may for instancemodel a re�ective or refractive surface, or model an advanced global illuminationsolution, or calculate some simpli�ed lighting from light sources in the world.4

A suite of books has been written on the subject of ray tracing images. Forthe interested reader, an extensive treatment on the state of the art in ray trac-ing is given in [14]. A slightly easier read, although a bit dated, is given in [4]. Inthis thesis, we will mainly discuss data structures in ray tracing for acceleratingray intersection testing.Given no prior knowledge of the world representation except a set of the prim-itives comprising the world, we have no other option but to intersect each raywith every primitive, since we cannot know in advance which of the primitives isclosest to the ray origin. Thus for N primitives, the time complexity for �ndingthe closest intersection point will be O(N). Given an image with size m × n,we will thus have at a minumum m · n · N intersection tests if we sample withone ray per pixel. If we assume quite reasonable numbers m, n, N = 1024, wehave 10243 intersection tests to perform, over one billion possibly expensive in-tersection tests, which given only one ray per pixel will not even be su�cientlysampled to produce a visually pleasing image. We can clearly see that the com-putational costs will be unmanageable when the resolution and the number ofprimitives are large.In the next section we will discuss ways to make ray tracing faster by usingspatial data structures to reduce the number of ray-primitive intersections.3 Previous WorkIn general, every part of the ray tracing algorithm has to be carefully optimized.The naive algorithm has many computations showing complexity O(N), thosecomputations will have complexity O(Nn) for n levels of recursive ray tracing.Thus any part of the algorithm naively implemented will overshadow any opti-mized part of the algorithm for a complex enough scene.Common optimization techniques can be broadly categorized into three groups.
• Fewer rays. Reducing the amount of rays sent. Some techniques avoidinitial rays from the camera, others limit the depth of recursive raytracingby some condition.
• Generalized rays. Ray tracing many rays simultaneously, by consideringthem as bundles or a larger cone structure.
• Fewer intersection tests. Reducing the amount of intersection tests bysorting primitives spatially or hierarchically.For further reading, Arvo and Kirk gives a thorough but a bit dated survey of allthree categories in [4]. In this thesis, we restrict ourselves to the third categoryof reducing intersection tests. The third category is by far the most importantspeed-up technique for ray tracers today, and a good approach for minimizingthe intersection tests is vital for the performance of any given implementation.There are a multitude of ways to try to reduce the amount of intersection teststhat are performed. They all have one thing in common though, they can allbe considered as data structures that sorts and organizes objects. We refer to5

all of these as �acceleration structures�. We divide existing research into threecategories; static structures, dynamic structures and time-dependent structures.3.1 Static StructuresFor a computationally intensive simulation, it makes sense to spend some extratime calculating a more optimal acceleration structure. This has given head-room to the research of a vast amount of very di�erent acceleration structures,since a complex structure with a high construction cost still could pay o� for acomplex enough simulation.Most acceleration structures can be categorized as a variant or a hybrid of
• Grids. Dividing space into a grid of equally sized cells and hence fails toadapt to scene distribution. Very cheap to traverse, but must be traversedcell by cell along the ray. Variants include non-uniform grids and recursivegrids, where a cell can be further subdivided if need.
• Binary Space Partitioning Trees (BSPs). Recursively dividing space intohalves. Traversal can discard whole subtrees of the BSP directly. Variantslike the kd-tree restrict the partitioning to arbitrarily positioned axis-aligned splitting planes. By careful choice of splitting planes the structureadapts well to scene distribution. More expensive to traverse compared tothe grid, but fewer cells actually have to be visited due to better structure.
• Bounding Volume Hierarchies (BVHs). Enclosing primitives by simplerbounds that are cheap to intersect. Hierarchical trees can be built by inturn bounding local primitives together, so that large sets of primitivescan be discarded very cheaply by a single intersection test. When anintersection test succeeds though, every primitive inside the bound willhave to be tested. Adapts well to scene distribution.
• Ray-Space Subdivisions. Sort primitives as candidates for a discretized setof possible ray origins and directions. A 5D-structure that is complex toconstruct and has very high memory requirements. First mentioned byArvo and Kirk in [4].These structures all rely on primitives having a bound. We will restrict examplesto axis-aligned bounding boxes, the smallest non-rotated box-shape that fullyencloses a primitive. We refer to such a bound as B(P) for a given primitive P .Consider a model M of a car moving a certain distance over time t = [t0, t1]. Ifwe were to put a spatial bound B(M) on the car, the bound would be

B(M) = B
(
∪iB(Mti

)
)

, ti ∈ t (2)thus spanning the entire volume the animation of the car travels through. Ifwe were to store an entire animated scene in a static structure, traversal ofthe structure would in extreme cases result in having to test every primitivefor intersection, because the bounds of the objects can potentially extend overthe whole scene. We can conclude that static structures will have problemsseparating objects when primitive bounds grow because of time dynamics.6

3.2 Dynamic StructuresRecent advances in real-time ray tracing has led to other needs in accelerationstructures. When the ray-tracer produces as much as 30 frames per second, in-teractive applications become attractive. The few minutes it takes to constructa kd-tree for high-quality ray tracing becomes far too expensive, the ray-tracerneeds to rebuild the scene in milliseconds.Wald et al. has reported promising results in a series of papers. In [15], uniformgrids are used with some careful techniques to e�ciently ray-trace interactivescenes. In [16], dynamic BVHs are introduced, that maintains topology overtime so that only bounding volumes need to be updated.Woop et al. in parallel with Keller et al. as well as Havran et al. researchedhybrids of a kd-tree and a BVH in [17], [10] and [8]. The data structures arevery similar, and di�er only in minor details. For each cell, instead of a singlesplitting plane, they use two planes, that can be positioned so that they boundprimitives in the cell. For well behaved motion, the trees can be constructedso that they can be quickly updated for geometry changes by re-positioning thesplitting planes.There exists many more such structures that are being used for real-time raytracing, but they all have in common that they either rely on rebuilding a newstructure quickly, or rely on well-behaved motion to be stored.3.3 Time-Dependent StructuresFor an animation sequence of any length, it can not be assumed that the mo-tion will be in any way well-behaved. We will in fact require the structure tobe able to handle arbitrarily complex motion, simulated, pre-scripted or evencompletely random, as any such sequence is trivial to construct using existing3D software. A data structure that e�ciently treats a pre-scripted motion se-quence is in a sense both dynamic and static, because it from frame to framedescribes dynamic motion, but as a sequence it is static.Glassner introduces the term �Spacetime Ray Tracing� in [5], where he describesthe concept of ray tracing objects in 4D spacetime. In such a space, a moving3D object could be treated as a static 4D object. Glassner uses a hybrid ofspace subdivision and BVHs, and reports noticeable savings in rendering time.For one sequence, a 20% speed-up is reported, and for the other test sequencea speed-up of almost 50% is noted.The paper is followed up in [13] by Quail, where he compares Glassner's space-time structure with a 4D extension of ray classi�cation. Even for simple rayclassi�cation, the memory requirements are very large, and Quail notes thathis extension as expected uses much more memory than Glassner's structure.For one example he mentions that the 4D ray classi�cation uses almost 1000times the amount of memory of the BVH hybrid. Quail reports that the rayclassi�cation method is up to 50% faster than the BVH hybrid for scenes withlocalized movement. For wide ranging movement, ray classi�cation showed a7

performance improvement of 30%, but it was noted that the scheme generatedvery large hierarchies, hinting that ray classi�cation treated localized motionmuch better.Havran et al. [6] introduce a complete system for rendering animations, whichinclude advanced e�ects such as global illumination and motion blur. Theypresent a method to render multiple frames at once, by updating samples overthe frames, compensating for camera or object motion, thus avoiding recalcu-lation of expensive calculations. They use a global kd-tree for static objectsand also nest kd-trees containing animated primitives within the global tree.The nested trees stores instances of any animated primitive, one instance foreach frame. Comparing their method with frame-by-frame rendering showed aspeed-up factor of around 10×.Kato et al. reports in [11] that they used a grid structure for their Kilaueaproject but subdivided moving primitives temporally. There is sparse informa-tion on exact method or performance, but we expect their method to be similarto ours.Given the popularity of the kd-tree in ray tracing, we propose a concrete ex-tension of the structure to include time. We try to get a measure of how theincreased complexity a�ects processing time, and show that the 4D kd-tree is aviable alternative to hybrid structures.4 Kd-TreesThe kd-tree was introduced by Bentley [1]. The k originally denoted dimension,e.g. a 3-dimensional kd-tree was meant to be referred to as a 3d-tree. A kd-treeis in structure a BSP-tree, with the di�erence that the BSP-commonly splitsa volume into two by a midsection splitting plane. The kd-tree loosens thisrestriction and allows the splitting plane to be arbitrarily positioned, but axis-aligned. Havran [7] showed that the kd-tree performed better than the generalBSP for all tested scenes. The kd-tree has a much better adaption to scenedistribution, which pays o� when the structure is traversed.The kd-tree is characterized by modest memory requirements. The amountof leaf cells grows roughly linearly to the number of primitives, and a totalmemory limit can be used as termination criteria for the construction phase.Positioning of the splitting planes greatly in�uences the performance of thestructure in ray-tracing. There are though existing algorithms for generatingsuitable kd-trees for ray-tracing, and e�cient algorithms for traversing them.We give an overview of the algorithm described by Havran [7], which currentlyis the de-facto standard.4.1 ConstructionGiven a set of primitives P = {Pi}, we construct an axis-aligned bounding box
B = B(P) = B

(
∪iB(Pi)

), which will be the bounds of the kd-tree structure.8

The volume B will either be split into two non-overlapping subvolumes BA and
BB, or the splitting algorithm is terminated and a list of all primitives thatoverlap the volume is stored. For each subvolume BA and BB, it is again decidedif they are split into two subvolumes, or the splitting is terminated. Thus thekd-tree can be constructed by a recursive algorithm, each step subdividing spaceinto �ner subvolumes, see �gure 2.

Figure 2: The enclosing volume is recursively split into subcells4.1.1 Termination CriteriaTermination criteria are important for making the tree e�cient, and are oftenset as user parameters for tuning the performance. A limit on how many prim-itives may be stored in a tree cell forces the construction algorithm to keepsubdividing space until the primitives are su�ciently separated. A high leafcount in most cases leads to unnecessary intersection tests. It is also commonto impose a max tree depth as a termination criterion as a large tree depthcan a�ect the performance negatively, resulting in a large amount of processingused on traversing the tree nodes. Since the structure is built top-down, theconstruction can also be terminated when the structure reaches a maximummemory size. Such criterions are in con�ict with each other, so that enforcingone termination criteria may lead to other criterions not being ful�lled. Re-stricting memory usage may force large number of primitives to be stored insome tree cells, as well as keeping a low max primitives count may force the treedepth higher than the max tree depth states. It is thus necessary to order anytermination criteria based on priority.
9

4.1.2 SplittingThere are a multitude of ways of subdividing a volume B into two subvolumes.The kd-tree in its design de�nes the subdivision to be made by axis-alignedsplitting planes. For any distribution of objects, there exists splitting surfacesthat are better adapted to the scene than such a simple plane. The complexityto �nd the best of such surfaces is substantial though, and carries over even toarbitrarily oriented splitting planes. Havran [7] states that the number of pos-sible positions of an arbitrarily oriented splitting plane is of O(N3), increasingconstruction time cubically as the number of primitives N grows linearly. Thusthe kd-trees restriction of axis-aligned splitting planes is reasonable, and withan arbitrarily positioned axis-aligned splitting plane, the number of possible po-sitions is O(N). Axis-aligned splitting planes also pay o� when traversing thestructure, with only trivial arithmetic calculations for the traversal. Simplerschemes, such as splitting along the spatial median, unfortunately does not payo�, as they do not properly take into account the real cost of traversal, andgenerally produces badly adapted structures.MacDonald and Booth introduced the term surface area heuristics (SAH) in[12], which is extensively treated by Havran [7]. The principle idea is to guidethe construction of the tree based on estimated costs of actually ray-tracingthe structure. The probability of a ray intersecting a subvolume BA is givenby the surface area ratio p(BA|B) =
SBA

SB
, given that the ray intersects B. Forestimated costs of intersection and tree traversal, it is possible to locally esti-mate costs of terminating splitting and creating a leaf, or estimate costs of a setof possible subdivisions. Pharr and Humphreys [14] uses a simpli�ed, locallygreedy algorithm, where the cost C is calculated as

• Leaf
C =

N∑

k=1

ci(k)All primitives will have to be intersected, where ci(k) denotes time cost ofintersecting primitive k. Pharr and Humphreys also makes the assumptionthat intersection costs do not vary much in their implementation, and thussimplify the cost further to
C = Nti

• Split
C = ct + pA

NA∑

k=1

ci(ak) + pB

NB∑

k=1

ci(bk)

ct denotes the cost associated with �nding which of the subcells the ray in-tersects. pA and pB are the conditional probabilities p(BA|B) and p(BB|B)de�ned earlier, which de�nes the probabibility that a ray intersecting Bintersects the respective subvolume. NA and NB denotes the number ofprimitives overlapping the two regions BA and BB, and {ak} and {bk}are index lists such that {ak; k = 1, . . . , NA} represent the indices of allprimitives overlapping BA, and vice-versa for {bk} and BB. Assuming thatintersection costs do not vary signi�cantly, as in the leaf case, this can be10

simpli�ed as
C = tt + (1 − be)(pANAti + pBNBti) (3)where the be term is introduced to favor splits where one of the subcellsis empty, and designed so that be ∈ [0, 1] when one of the cells is empty,and zero otherwise.For each cell, we can see that the cost function is modeled such that each ofthe subvolumes will be leaves, since the probabilities of the ray intersectingone of the cells is directly multiplied with leaf cost functions CA = NAti and

CB = NBti, corresponding to NA and NB intersection tests of primitives with noadditional traversal. Thus such a scheme does not produce a globally minimizedcost tree, because each of the subcells can be further split, so that the estimatedcost will di�er from the true cost. On the other hand, a globally minimized costtree would require the subcell costs to be computed correctly. This requires thetree to be fully constructed, which contradicts the fact that we are searchingfor the best construction choices to begin with. Havran [7] states but does notprove that the problem of �nding such a minimum total cost kd-tree is NP-hard.For each volume B, a cost C is calculated for any candidate splitting plane,as well as the cost for making the cell a leaf. The splitting planes that we areinterested in are the ones which minimize the cost, and we can discard a lot ofpossible splitting positions directly. If we are considering splitting along a �xedaxis in the vicinity of one primitive, we imagine placing the splitting plane inthe center of the primitive. The primitive will now overlap both BA and BB,adding to both NA and NB. Subtly moving the splitting position along the axisdoes not alter NA and NB, only changing the surface areas of the cells and thuschanging the pA and pB terms. But because sA + sB = k1 ⇒ pA + pB = k2this only linearly changes the cost, indicating that a local minimum exists at aprimitive boundary along the axis. When the splitting plane is moved to oneof the boundary edges, the primitive will no longer overlap one of the subcells,further reducing either NA or NB by one, resulting in a jump down in the costfunction on the boundary. Moving the splitting position further beyond theprimitive boundary will result in the inclusion of empty space in the cell volumeand increased probability that the primitive will have to be tested, and thusgives a higher cost again. The same reasoning holds for multiple primitives andoverlapping primitives. Only object boundary edges thus need to be consideredas candidate splitting positions. For N primitives, we will then have to com-pute up to 3 ·2 ·N costs, since for each axis, each object has two boundary edges.The smallest cost determines leaf or split, and after splitting, the algorithmwill recursively be applied to the resulting subcells.4.2 TraversalThere are a few variations on traversing a kd-tree e�ciently. Common methodsare categorized into two groups
• Sequential traversal. The algorithm steps cell by cell, so that when one cellhas been tested for intersection, a new ray traversal origin is set slightlybeyond the cell border, and a new candidate cell containing the current11

traversal ray origin is searched for in the kd-tree. The algorithm thuswalks from cell to cell until either an intersection is found, or the rayexits the kd-tree without any hit. Each look-up in the kd-tree will requiremultiple visits to many nodes, because the search always starts from theroot node.
• Recursive traversal. The tree is traversed top-down, so that any subcellsare tested in the order that the ray passes through them. The algorithm isapplied recursively for each subcell so that the closest cells will be testeddown to leaf level before more distant cells are considered. Guaranteesthat each node is visited only once, but traversal steps require more book-keeping than sequential traversal, because distant cells to be tested haveto be stored until closer lying cells have been processed.The recursive algorithm generally has better performance for ray tracing appli-cations, and is the more common method to traverse kd-trees. A number ofvariants are covered in [7]. We choose to present one of the simpler methods.For each ray r(t) = o + td that is intersected with a kd-tree root node N ,we �nd a parameter range tN = [t0, t1], ti > 0 corresponding to the intersectionpoints with the node bounding volume, see �gure 3. If the node is a leaf, allprimitives are simply intersection tested, returning the closest hit in the param-eter range if any intersection test succeeds. If the node is split, the parameter

tsplit is calculated, corresponding to the intersection of the ray with the splittingplane. If tsplit > t1 only the near child is intersected by the ray, because thesplitting plane intersection with the ray lies beyond the ray exit point from thecell. If tsplit < t0, the ray only passes through the far cell, because the splittingplane intersection with the ray is closer to the origin than the ray entry point inthe cell. Otherwise both cells have to be tested, and the algorithm will be recur-sively applied with new parameter ranges tnear = [t0, tsplit] and tfar = [tsplit, t1]for the respective near and far cell. The far cell intersection testing is postponeduntil the near cell subtree has been completely traversed, and it is stored in astack structure for later processing.In such a way the algorithm proceeds, identifying which of the two cells are inter-sected, updating the parameter range appropriately and recursively traversingthe tree from closest to furthest object. Given that intersection testing consti-tute a great proportion of ray tracing processing time, it does pay o� to optimizeboth the kd-tree data structures and the traversal algorithm. Extra informationis often stored to speed up look-ups and traversal in the tree. The method aboveis relevant though, because it forms the basis of the more optimized algorithms.5 Extending the Kd-TreeGiven an animation sequence on the time interval t = [t0, t1], an arbitrarynumber of frames {fi} spread out over the time interval are sampled usingray-tracing. We would like to consider one such frame fi as a discretized timeinstant, but one frame fi really corresponds to the exposure on the image planeof the virtual camera. If we correctly model a camera, the camera shutter re-mains open for a time interval ∆ts, which for large exposure times gives the12

Figure 3: The order of the intersection points along the ray gives informationabout which of the subnodes that need to be tested for possible intersection.motion blur e�ect. A set of frames {fi} thus corresponds to a set of continuoustime slices. The traditional way of rendering motion blur further discretizeseach such time slices into n subframes, but such methods are not popular inproduction rendering, since they easily produce artifacts for wide-ranging mo-tion. In addition, the rendering time increases by a factor n.More correct methods do treat each time segment correctly as continuous time,but render each time segment independently. Storing the complete animationsequence does show both advantages and disadvantages. If the shutter time issmall, treating each time segment independently will read the minimum amountof data necessary, while storing the entire animation sequence will read data thatis inbetween time slices and thus never used. On the other hand, for long shuttertimes, time slices may well start to overlap, making the independent treatmentread the same data over and over. For a single camera it does not make sensethat the shutter intervals can overlap, but in special e�ects photography, in-dividual cameras are often used for each frame. Extreme motion blur e�ectsin general can hold great value for certain special e�ects, which the continuoustime model handles automatically.We believe there is a need to clarify the implications of using a kd-tree forstoring animation data, as was also suggested by Havran in [7]. We believe thatthe inherent simplicity of the structure can have many advantages over hybridstructures used for storing dynamic data.In ray-tracing, the term kd-tree has become synonymous with its 3-dimensionalspecialization, much because a 3D structure �ts naturally into the problem do-main, since most processing in ray-tracing are 3D visibility queries of some sort.It does not make as much sense to �t a 4D structure to such a rendering problem,because primitive time bounds extend over the entire time span of the sequencein most cases, in principle o�ering no candidate splitting positions along thetime axis. 13

We construct a simple method to preprocess the animation data so that itcan be stored in a 4D kd-tree trivially. We also motivate using cost functionsin line with SAHs for splitting the tree.5.1 Preprocessing DataGiven the task of rendering N frames {fi}, we have to store animation data forthe entire time interval t = [tf1
, tfN

+ ts] where tfi
is frame i shutter open timeand ∆ts is shutter time. As mentioned in Section 2, spatial bounds for an ani-mated object for the entire time interval t are in most cases extremely in�atedcompared to the spatial bound at a time instant ti. Large spatial bounds aswell as temporal bounds both indicate a need to describe the primitive in moredetail over time. As we are trying to �t the data into a 4D kd-tree, it is essentialto introduce new candidate splitting positions along the time axis. This onlyseems possible by subdividing the primitive in time into subprimitives, de�nedover separate non-overlapping time segments. This do solve both bound issues,since the animated spatial bounds for each such subprimitive will be reduceddue to the smaller time interval, in turn giving us candidate splitting positionsin time for the kd-tree.We propose a simple iterative method for subdividing primitives in time which is�exible enough to be used on both continuous and discretized data. We denotethe entire time interval for the animation, including shutter time, as tΩ = [t0, t1].We set time ta = t0, and for a primitive P we �nd the largest time tb ≤ t1 suchthat

S(B(Pta
)) ≥

1

κ
S
(
B

(
∪iB(Pti

)
))

, ti ∈ [ta, tb] (4)where S(B(P)) denotes the surface area of the axis-aligned bounding box ofprimitive P . This essentially restricts how much we allow the primitives ani-mated spatial bound to in�ate from the initial static bound at time ta. We areinterested in the static 4D bounding box of each subprimitive, so from a tradi-tional point of view we enclose moving objects in 3D bounding boxes for shortspans of time. Thus the parameter κ describes how much extra surface area wecan allow for a cell. A higher κ will lead to more unnecessary intersection tests,while a lower κ will lead to more subprimitives being generated.For the interval [ta, tb], we create a new subprimitive P̃ that de�nes the samemotion as the primitive P , but only exists on the interval. We then iterate themethod by setting ta = tb and repeating the process until ta ≥ t1. The resulting
N subprimitives P̃i, as depicted in �gure 4, all have controlled spatial bounds,and a temporal bound smaller than tΩ for N > 1.The motivation for using the surface area to model equation 4 is directly re-lated to the surface area heuristics used in construction of a kd-tree with goodperformance. The probability of a ray entering a cell is not related to volume,only surface area. This can be easily visualized if one considers an axis-alignedtriangle or another �at primitive, thus having a spatial bound with zero volume.If the triangle is increased in size, the probability of a ray intersecting the objectis increased, which is re�ected in the fact that the spatial bound surface areaincreases, while the volume will remain zero.14

Figure 4: Splitting a primitive with large spatial bounds into smaller primitiveswith smaller spatial bound.Choosing a suitable parameter κ is not directly obvious. κ ≤ 1 would meanthat we do not allow the surface area to increase, which in theory will forcein�nitely many subprimitives. Arvo and Kirk state in [4] that the projectedarea of a volume is on average 1/4th of the surface area of the volume, giving ahint that if for example κ = 2, we allow the surface area to double, the averageprojected area facing a given ray will also double, in e�ect increasing the prob-ability of intersecting the primitive by a factor κ compared to intersecting thestatic spatial bound at ta.The parameter κ could vary between primitives, and could additionally be setby the user, but we believe an extra parameter for controlling the kd-tree con-struction is unwanted, proposing that κ be set as a �xed value, optimized forthe implementation for a variety of scenes.5.2 ConstructionGiven the preprocessed data, we have a set of unsplit primitives {Pi}, and a setof generated subprimitives {P̃j}, where the temporal bound edges of P̃j o�erpotential candidate splitting positions for the 4D kd-tree. We would like to usethe concept of surface area heuristics also for the extended kd-tree, since weagain want to minimize an estimated cost of intersecting a candidate tree node.Surface areas of 4D bounding boxes which have mixed spatial and temporalaxes might give an indication of trouble, but on the temporal and spatial scaleof photo realistic ray tracing, it is not unreasonable to model photons and thusrays as arriving instantaneously, which will simplify the SAH concept.As we treat the time axis as just another spatial axis in the tree, we haveto relate in some way the cost of a spatial split to a temporal split. Thus wecannot blindly design some ad-hoc rule, unless it relates spatial and temporalaxes in a consistent way. Returning to the cost function
C = tt + (1 − be)(pANAti + pBNBti)15

explained in detail in equation 3 on page 11, we see that the term surface areaheuristics in some way is misleading, because the probability terms and all theother components very easily relates to the temporal split. Given a 4D volume Bwith temporal bounds t = [t0, t1], denoting the time interval length |t| = |t1−t0|.The primitive B is split into two subvolumes along the time axis such that BAis de�ned on tA = [t0, tsplit] and BB is de�ned on tB = [tsplit, t1]. For a givenray r intersecting the volume B, assuming light travels in�nitely fast, the raywill never intersect both subvolumes, as the ray only exists in a speci�c timeinstant. Thus the ray either intersects BA or BB, giving the probabilities
pA =

|tA|

|t|
pB =

|tB|

|t|
(5)and thus pA + pB = 1. We have thus reinterpreted the given cost function sothat costs for a spatial axis can be compared to a cost for the temporal axis,without explicitly relating spatial and temporal axes.Using this cost function makes construction of the 4D kd-tree trivial. We canreuse the same construction algorithm as for the 3D kd-tree, modi�ed to 4 axesinstead of 3. The only di�erence in treating the temporal axis is in replacing thespatial surface area based probabilities by the temporal probability equationsgiven in eq 5.5.3 TraversalAs for construction, traversal of the kd-tree is a simple modi�cation of theoriginal recursive traversal algorithm. 4 axes have to be iterated instead of 3,and for a temporal split, simply looking at the time of the ray r and the splittingposition in time determines which one of the subcells to be further traversed.6 ImplementationWhile implementing a test framework for the 4D kd-tree, the option was toeither extend an existing ray tracer, or the daunting task of developing a newrenderer. The interface to animation data was also crucial, and it was earlyon decided that the framework would be tightly integrated with existing 3Dsoftware, which would allow us to read animation data at arbitrary resolution.Since a lot of the ray tracer internals would be time dependent, which none ofthe candidate ray tracing implementations were, we chose to develop a new raytracer.The test framework is developed in C++, and is due to time constraints quitelimited in scope. It renders triangles with textures, re�ections, refractions, shad-ows, and most importantly, physically correct motion blur. It does not modelglobal illumination, as this has been well covered in other works. The frameworkcore is not tied to a speci�c software, but the current client implementation wasdeveloped as a plug-in for Softimage|XSI, a high-end 3D animation software. Itshould be noted that the results are not dependent on this choice, as any given3D software could have been used as animation source instead.16

6.1 Reading DataScene primitives were divided into static and animated. Static objects weresimply read as static triangles set to exist over the entire animation time span.Animated objects most often are hand animated, but they could equally wellbe objects from a rigid-body simulation, which di�er a bit in source, as thehand animated object is controlled by well de�ned keyframes and the resultinginterpolating curves, while simulated objects are e�ectively discretized motion.Mimicking exactly the interpolation of animation curves inside the 3D softwarewould allow us to read only the keyframe data, but we would soon have areplication of the entire animation engine of the 3D software, which intuitivelysounds unlikely to be successful. We thus choose to treat any animated objectby discretizing the motion.Our initial model samples n subframes for each animation frame of the sequence.We do not want to sample more sparsely than once each frame, because the eyeis extremely sensitive to motion path artifacts. In our test framework, data islinearly interpolated for simplicity, and the parameter n is here mainly a way forthe user to control motion blur smoothness. If a smoother interpolation methodwas chosen, like Catmull-Rom splines [2], one motion sample per frame couldpossibly be enough to approximate the motion.For N frames, each sampled by n subframes, we store the vertex data for eachtriangle in a separate array. Any triangle sharing a vertex can thus use thesame vertex data array. As we use the preprocessing method described in sec-tion 5.2 to segment the triangle in time, all subprimitives generated referencethe same vertex arrays. In this way, no data is duplicated due to the splitting,and the only cost introduced in the segmentation is the cost of the subprimitivestructures. The major overhead in memory will thus be the massive amounts ofanimation data stored as vertex arrays, but the amount of this data is known,so that it is easy to calculate how many frames of data the memory can hold,making it possible to divide a very complex animation into a set of frame blocksthat all �t into memory.Animated lights and cameras are also sampled as coordinate arrays describ-ing their motion paths over time. Animated attributes are not supported, butit would be simple to also sample these.The abstraction between 3D software and ray tracing implementation producesalot of memory overhead as memory is duplicated inbetween them. It would beinteresting to couple them tighter so that the ray tracing implementation doesnot store any data. Then one would build a 4D kd-tree in the same way asbefore, but never store triangles explicitly in the tree. The advantages wouldbe obvious, letting the 3D software interpolate data, so that to the ray tracingimplementation, the data can still be viewed as continuous in time.6.2 ConstructionWe were able to squeeze a 4D kd-tree node into 8 bytes, by using yet anotherbit of the splitting position, as is traditionally done for the 3D kd-tree nodes17

(see [14] for details), without noticing any artifacts. This results in no memorypenalty for using the 4D kd-tree due to node memory size, as they are exactlythe same size as the 3D counterpart.We explicitly avoided relating temporal and spatial axes, as we did not want tointroduce yet another arbitrary variable. This leads to a performance penaltyin our implementation because we chose to calculate temporal costs initially,and then comparing to the cost for the dominant spatial axis.

18

7 ResultsWe tested the data structure on a variety of scenes, and present a subset of thesehere. We compare memory overhead and performance with the traditional ac-cumulation motion blur as well as comparing to stochastic motion blur limitedby traditional 3D kd-trees.Comparing accumulation motion blur to stochastic motion blur is very di�-cult for a number of reasons. We cannot compare them based on total numberof rays, because rays in the stochastic case will be far more expensive due to theinterpolation of triangles for every intersection test. The accumulation motionblur quality is also balanced between the subframe sampling versus the numberof subframes sampled, making it impossible to declare a de�nitive render timefor a given test scene. Accumulation motion blur artifacts usually occur as strob-ing e�ects, while the stochastic motion blur artifacts result in large amounts ofnoise, again making it di�cult to compare quality between them. For thesereasons, our comparison will be highly subjective, and should be regarded as anexample of the rendering performance for a given set of options.We also show some interesting applications of the 4D kd-tree, where instancedprimitives are displaced in time to create an illusion of more complex data.7.1 PropellerThe �rst test scene is a simple propeller consisting of about 1000 triangles thatfeatures wide-ranging motion. The reference image in �gure 5 was rendered withstochastic motion blur using 128 samples per pixel and 8 motionsteps linearlyinterpolated.

Figure 5: Reference image for the propeller test scene.We chose to render the accumulation motion blur test with adaptive samplingfor each subframe with a maximum of 4 samples, due to that the �nal frame willbe accumulated. We rendered using 8, 16, 32 and 64 subframes, each subframerendered using a 3D kd-tree. For the stochastic motion blur tests, we used the4D kd-tree with 8 motionsteps, and an adaptive sampling of max 8, 16, 32 and64 samples per pixel. 19

Figure 6: Accumulation motion blur test results.
Figure 7: Stochastic motion blur test results.Propeller test common datamethod accelerator tree memory size primitives memory sizeaccumulation 3D kd-tree 15.3 kB 83.3 kBstochastic 4D kd-tree 384.3 kB 664.4 kBPropeller test resultsaccumulation 8 subframes 16 subframes 32 subframes 64 subframestime (minutes) 0.75 1.48 3.30 6.51total rays 796925 1594750 3190770 6381735stochastic 8 samples 16 samples 32 samples 64 samplestime (minutes) 0.44 0.84 1.67 3.33total rays 653510 1423635 2980755 6083995Propeller test rendering time breakdown (seconds)accumulation 8 subframes 16 subframes 32 subframes 64 subframesupdate data 2.77 5.47 12.20 24.41build tree 0.14 0.26 1.17 1.74raytrace 41.62 82.75 184.63 363.71stochastic 8 samples 16 samples 32 samples 64 samplesupdate data 0.58 0.47 0.47 0.45build tree 0.45 0.45 0.47 0.47raytrace 25.13 49.30 99.20 198.96For these particular settings the two methods seem to match each other quitewell in quality and amount of rays traced. The stochastic motion blur tests allrender a bit faster, probably because rays more e�ciently can be used on inter-esting areas, whereas the accumulation bu�er method wastes more rays tracing20

unimportant areas for every subframe. The human eye is more forgiving tonoise than strobing artifacts, and the quite noisy stochastic motion blur imagesdo look better when played in a sequence. The accumulation bu�er motionblur tests do converge to a very good quality image, and for many scenes thesupersampling could possibly be lowered.One attractive aspect of the stochastic motion blur method is the fact thatwe practically have motion vectors for each sample for free, since these canoften be extracted directly from the interpolation step of the triangles. Mo-tion vectors are playing a large role in production rendering today for post-processing motion blur. Although such post-processing techniques do fail tocorrectly model motion blur, carefully combining rough stochastic motion blurwith post-processing blur is a good approximation to fully sampled motion blur.We also compared the performance of stochastic motion blur while using thetradidional 3D kd-tree instead of our 4D kd-tree. We made one set of tests forthe basic primitives, and one test where the primitives were subdivided in timeusing our segmentation method.Stochastic rendering time comparison (minutes)kd-tree segmented 8 samples 16 samples 32 samples 64 samples3D no 1.2 2.4203 4.93723 9.989323D yes 0.49167 0.95130 1.89583 3.786454D yes 0.43802 0.83828 1.66927 3.33178Stochastic rendering time breakdown (seconds)kd-tree segmented update data build tree3D no 0.484 0.0313D yes 0.484 0.6254D yes 0.469 0.468Notably, the construction time for the non-segmented 3d kd-tree is signi�cantlylower, primarily because the number of primitives is a tenth of the number ofprimitives generated by the segmentation method. More interesting is that thebuild time for the 3D kd-tree is higher than the 4D kd-tree for the same numberof primitives, which indicates that the 3D kd-tree algorithm has problem sortingthe primitives e�ciently.There seems to be a slight improvement in rendering performance in using the4D kd-tree. The traversal cost is comparable between the two, so the renderingtimes indicates that the 4D kd-tree has better adaption to the generated data.7.2 HeadThe second test scene is a slightly heavier mesh, consisting of around 10k tri-angles, deformed by a twist deformer applied on the mesh and rendered withextreme motion blur e�ects. The reference image was again rendered with 128samples per pixel, using stochastic motion blur.The shutter time for the test spanned over 10 frames, which forces the accu-mulation blur method to use quite many subframes to converge to a continuous21

Figure 8: The head test scene, the right-most image shows the motion blursettings used in the test.motion blur e�ect. We used 8, 16, 32 and 64 subframes for the accumulationmotion blur e�ect, while 4, 8, 16 and 32 samples per pixel of stochastic samplinggave a comparable quality due to better sample distribution in time. Tree depthand leaf size were restricted to 32 and 8.
Figure 9: Accumulation motion blur test results.
Figure 10: Stochastic motion blur test results.Head test common datamethod accelerator tree memory size primitives memory sizeaccumulation 3D kd-tree 0.2 MB 0.9 MBstochastic 4D kd-tree 18.4 MB 12.2 MB22

Head test resultsaccumulation 8 subframes 16 subframes 32 subframes 64 subframestime (minutes) 1.3 2.6 5.0 8.9total rays 1961956 3909952 7806048 15599764stochastic 4 samples 8 samples 16 samples 32 samplestime (minutes) 1.2 1.9 3.4 6.2total rays 933204 1886628 3822216 7687188Head test rendering time breakdown (seconds)accumulation 8 subframes 16 subframes 32 subframes 64 subframesupdate data 4.3 8.3 16.3 26.1build tree 2.6 5.5 10.3 17.6raytrace 70.0 143.5 271.6 487.6stochastic 4 samples 8 samples 16 samples 32 samplesupdate data 1.5 1.5 1.5 1.5build tree 26.6 26.4 26.0 26.0raytrace 45.8 87.9 173.7 344.8We notice right away that for the compared render settings, the accumulationmotion blur method can trace twice as many rays as the stochastic motion blurmethod in the same amount of time. We notice that the construction time forthe 4D kd-tree is far larger compared to the 3D kd-tree, even more than we sawin the propeller test case. The extreme motion blur subdivides the 10k trianglesto over 220k subprimitives, which explains the increase in build time.We also get a hint that a lot of data is being generated when we look at the size ofthe kd-tree in memory, so even though the method clearly handles extreme mo-tion blur, memory gets consumed quite rapidly, even though the kd-tree nodesoccupy the same amount of space in both the 3D and the 4D implementation.Stochastic rendering time comparison (minutes)kd-tree segmented 4 samples 8 samples 16 samples 32 samples3D no 16.7 36.3 65.4 130.73D yes 2.2 3.5 6.1 11.14D yes 1.2 1.9 3.4 6.2Stochastic rendering time breakdown (seconds)kd-tree segmented update data build tree3D no 1.2 0.53D yes 1.5 51.94D yes 1.5 26.0It does seem naive to expect a 3D kd-tree to hold animation data for 10 framesand still render it e�ciently, as the rendering times for the non-segmented caseare extremely long. Segmenting the primitives improves rendering performancea lot, but as in the propeller case, the 4D kd-tree build time is actually lower,indicating that the 3D kd-tree builder must again have trouble constructing thetree. The speed-up of rendering using the 4D kd-tree is signi�cant.The di�erence in time when updating the data is actually the time to sub-divide primitives into subprimitives, so for this scene, the segmentation time isapproximately 0.266 seconds. 23

7.3 ArmadilloThe third test scene is a dense mesh: the armadillo from the Stanford 3D Scan-ning Repository, comprised of around 350k triangles, and deformed by a bonestructure with animation. We used 2, 4, 8 and 16 subframes of accumulationmotion blur, compared to 2, 4, 8 and 16 samples per pixel for stochastic motionblur. The shutter time spanned 4 frames, and the tree depth and leaf size werelimited to 24 and 8. Raising the κ segmentation to 4 for this scene gave a sig-ni�cant speed increase.

Figure 11: The armadillo test scene.
Figure 12: Accumulation motion blur test results.
Figure 13: Stochastic motion blur test results.Armadillo test common data24

method accelerator tree memory size primitives memory sizeaccumulation 3D kd-tree 4.7 MB 38.7 MBstochastic 4D kd-tree 20.1 MB 144.7 MBArmadillo test resultsaccumulation 2 subframes 4 subframes 8 subframes 16 subframestime (minutes) 1.0248 1.9813 4.2963 9.15208total rays 583460 1166384 2332464 4665212stochastic 2 samples 4 samples 8 samples 16 samplestime (minutes) 3.1 3.8 5.0 7.3total rays 569680 1110336 2169484 4159652Armadillo test rendering time breakdown (seconds)accumulation 2 subframes 4 subframes 8 subframes 16 subframesupdate data 8.5 13.6 27.8 54.3build tree 28.9 58.3 134.4 296.6raytrace 22.8 45.3 92.1 191.5stochastic 2 samples 4 samples 8 samples 16 samplesupdate data 22.4 22.5 22.5 22.5build tree 116.6 116.5 116.6 116.5raytrace 46.1 83.7 156.9 294.4For such a dense mesh, the kd-tree build time starts to become signi�cant inthe total rendering time. Our kd-tree implementation could possibly be furtheroptimized, but the problem lies in the method of segmenting the primitives,thus multiplying the number of primitives by a signi�cant factor. For this scenefor example, the 3D kd-tree for accumulation motion blur has to sort 345926primitives, i.e. the number of triangles in the scene. This results in about onemillion nodes in the kd-tree for the test kd-tree settings. When we consideranimated triangles, and segment these temporally for this scene, we get morethan four million primitives to sort for κ = 2. The total kd-tree node count forsuch large scenes can quickly rise to tens of millions.This is one of the e�ects of the design choices of our method; we restrict thegrowth of the bounding box of any animated primitive, but with the penaltythat the primitive count instead will rise. Such a dense mesh as this is comprisedof extremely tiny triangles in screen space, so even though the motion blur e�ectis not very extreme, the tiny triangles motion paths can be extremely elongatedrelative to their size, meaning that our method will segment the triangle intopossibly hundreds or thousands of new subprimitives.
25

Stochastic rendering time comparison (minutes)kd-tree segmented 2 samples 4 samples 8 samples 16 samples3D no 3.2 5.4 10.1 18.23D yes 3.3 4.0 5.4 8.14D yes 3.1 3.8 5.0 7.3Stochastic rendering time breakdown (seconds)kd-tree segmented update data build tree3D no 20.8 26.63D yes 22.5 118.84D yes 22.5 116.5For very low sampling, the 3D and 4D kd-trees render in almost the same time,but looking at the build times, it seems that the 4D kd-tree is still faster inrendering, the build time mainly equalling them out. For higher sampling rates,the 4D kd-tree clearly is better adapted for the generated data, as was indicatedearlier in the propeller and head test cases.7.4 Temporally Instanced PrimitivesA common technique in rendering is to create a set of lightweight primitivesthat all reference a template primitive. Even though the scene may be com-prised of thousands or millions of primitives, each object is only a carbon copy,referencing data stored only once in memory. Storing the template primitive ina static 3D acceleration structure will naturally restrict all copies to exactly thesame time instant, which is the reason that instancing static objects is the mostcommon.Being able to sort the template primitive once into a time-dependent 4D ac-celeration structure has some attractive features for instancing techniques. Wecan store the complete animation for a template primitive, and with simplemeans create copies that exist displaced in time relative to the template primi-tive, since the 4D acceleration structure allows us to ray-trace at any given timeinstant without having to rebuild the data.We implemented a simple prototype for instancing animated primitives. Wederived a simple subtype of the primitive class, which contains a reference tothe template primitive, a spatial transform as well as a temporal transform. Carehas to be taken to update the bounding box appropriately, since the boundingbox of the template primitive will most likely no longer be axis-aligned aftertransformation. In our implementation, we modeled the template primitive asde�ning a cyclic animation, so that any time sample outside the source anima-tion time span was displaced back into the time interval.We created a simple animation cycle of a bunny that comprised 20 frames.No static instancing technique can create the same e�ect as temporal instanc-ing, the only option is to duplicate data for each copy. We made some simpletests of 1, 10, 100, 1000, 10000, 100000 and 1000000 bunnies, measuring memoryoverhead when duplicating the data versus instancing temporally. Duplicatingthe data, memory allocation grew at a linear rate proportional to the number of26

primitives, as is natural to expect. The memory overhead for the larger primi-tive counts were thus extrapolated. Figure 16 depicts the di�erence in memoryoverhead for the two cases.

Figure 14: 10 temporally instanced primitives.

Figure 15: 1000 temporally instanced primitives.As expected, rendering even a million primitives is very cheap using temporalinstancing. There is an initial overhead of the template primitive, clearly visiblein �gure 16 in the initial few samples of the temporal instancing curve, and weexpect that for heavier template primitives, the overhead will be even morepronounced. The template primitive overhead will of course also limit the totalnumber of primitives possible to �t into memory. The �nal images, see �gure 14and �gure 15, really shows the value of arbitrarily displacing the instances intime. The illusion of individual bunnies is extremely good, even though theyare all cheap copies of one single animation source.
27

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

memory usage

number of primitives

m
em

or
y

lo
ad

 /
by

te

no instancing
temporal instancing
sampled data
extrapolated data

Figure 16: Memory load when rendering a given number of character primitives.8 Conclusions and Future WorkIn this thesis, we presented methods to store complete animation sequences in4D kd-trees. A straight-forward method was also introduced to subdivide prim-itives along the time axis to limit bounding box in�ation due to motion. A costfunction was formulated that naturally extended traditional kd-tree surface areaheuristics to accomodate time.Using the method on a set of test scenes indicated that the extra costs in bothconstruction time and memory load can pay o� in rendering time due to betterscene adaption of the structure.We did not optimize the code for interpolating the triangles, and we believefurther work into fast cpu-optimized triangle interpolation would be very im-portant to validate storing animation data in memory. We currently estimatecosts at least twice for every node, as we explicitly avoided relating spatial andtemporal axes. It would be interesting to further study how to avoid these dou-ble cost calculations, preferably without trivially relating the axes.We also demonstrated using the 4D kd-tree to create temporally displaced in-stanced primitives, which is not possible with a static acceleration structureunless data is duplicated explicitly for each copy.Temporal instancing holds tremendous potential for practical applications. Itwould be very interesting to see further work in using it to render massive crowdsimulations. It would simply be a matter of authoring a seamless set of anima-28

tion loops as are traditionally used in games, storing these once in memoryfor every template character, and switching between them as the simulationprogresses.9 AcknowledgementsI would like to thank my supervisors Petrik Clarberg and Tomas Akenine-Möllerfor valuable discussions and comments along the way. I would also like tothank all the authors mentioned in the bibliography, as their works gave me theinspiration and energy for writing a thesis in computer graphics.References[1] Bentley, J. L. Multidimensional Binary Search Trees Used for AssociativeSearching. Communications of the ACM. 18(9) pp. 509-517. 1975.[2] Catmull, E., Rom, R. A class of local interpolating splines. Computer AidedGeometric Design. pp. 317-326. Academic Press, 1974.[3] Cook, R. L., Porter, T., Carpenter, L. Distributed Ray Tracing. Proceedingsof ACM SIGGRAPH 84. pp. 137-145. ACM Press, 1984.[4] Glassner, A. S. (Ed.). An Introduction to Ray Tracing. Academic Press,1989.[5] Glassner, A. S. Spacetime Ray Tracing for Animation. IEEE ComputerGraphics and Applications. 8(2) pp. 60-70. 1988.[6] Havran, V., Damez, C., Myszkowski, K., Seidel, H. An E�cient Spatio-Temporal Architecture for Animation Rendering. ACM SIGGRAPH 2003Sketches & Applications. 2003.[7] Havran, V. Heuristic Ray Shooting Algorithms. PhD thesis, Czech Techni-cal University, 2000.[8] Havran, V., Herzog, H., Seidel, H.-P. On the Fast Construction of SpatialHierarchies for Ray Tracing. Proceedings of IEEE Symposium on Interac-tive Ray Tracing. pp. 71-80. 2006.[9] Kajiya, J. T. The Rendering Equation. Siggraph '86 Proceedings. 20(4) pp.143-150. ACM Press, 1986.[10] Keller, A., Wächter, C. Instant Ray Tracing: The Bounding Interval Hierar-chy. Rendering Techniques 2006: EuroGraphics Symposium on Rendering.2006.[11] Kato, T. The �Kilauea� Massively Parallel Ray Tracer. Practical ParallelRendering. pp. 249-328. AK Peters, 2002.[12] MacDonald, J. D., Booth, K. S. Heuristics for ray tracing using spacesubdivision. Visual Computer. 6(6) pp. 153-165. 1990.29

[13] Quail, M. Space Time Ray Tracing using Ray Classi�cation MacquarieUniversity, 1996.[14] Pharr, M. and Humphreys, G. Physically Based Rendering. Morgan Kauf-mann, 2004.[15] Wald, I., Ize, T., Kensler, A., Knoll, A. and Parker, S. G. Ray TracingAnimated Scenes using Coherent Grid Traversal. SIGGRAPH '06: ACMSIGGRAPH 2006 Papers. 25(3) pp. 485-493. ACM Press, 2006.[16] Wald, I., Boulos, S. and Shirley, P. Ray Tracing Deformable Scenes usingDynamic Bounding Volume Hierarchies. ACM Transactions on Graphics.2006.[17] Woop, S., Marmitt, G. and Slusallek, P. B-KD Trees for Hardware Accel-erated Ray Tracing of Dynamic Scenes. Proceedings of Graphics Hardware.2006.

30

