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Abstract
Autostereoscopic displays with multiple views provide a true three-dimensional experience, and full systems for 3D
TV have been designed and built. However, these displays have received relatively little attention in the context of
real-time computer graphics. We present a novel rasterization architecture that rasterizes each triangle to multiple
views simultaneously. When determining which tile in which view to rasterize next, we use an efficiency measure
that estimates which tile is expected to get the most hits in the texture cache. Once that tile has been rasterized, the
efficiency measure is updated, and a new tile and view are selected. Our traversal algorithm provides significant
reductions in the amount of texture fetches, and bandwidth gains on the order of a magnitude have been observed.
We also present an approximate rasterization algorithm that avoids pixel shader evaluations for a substantial
amount (up to 95%) of fragments and still maintains high image quality.

1. Introduction

The next revolution for television is likely to be 3D
TV [MP04], where a multi-view autostereoscopic dis-
play [Dod05, JFO02] is used to create a true three-
dimensional experience. Such displays can be viewed from
several different viewpoints, and thus provide motion paral-
lax. Furthermore, the viewers can see stereoscopic images
at each viewpoint, which means that binocular parallax is
achieved. Displays capable of providing binocular parallax
without the need for special glasses are called autostereo-
scopic. This is in contrast to ordinary displays, where a 3D
scene is projected to a flat 2D surface.

Analogously, for real-time graphics, the next revolution
might very well be the use of autostereoscopic multi-view
displays for rendering. Possible uses are scientific & medical
visualization, user interfaces & window managers, advertis-
ing, and games, to name a few. Another area of potential
great impact is stereo displays for mobile phones, and com-
panies such as Casio and Samsung have already announced
such displays.

Stereo is the simplest case of multi-view rendering, and
APIs such as OpenGL [SA92], have had support for this
since 1992. To accelerate rendering for stereo, a few ap-
proximate techniques have been suggested [PK96, SHS00].
Furthermore, efficient algorithms for stereo volume render-
ing [AH94, HK96] and ray tracing [AH93] have been pro-
posed. The PixelView hardware architecture [SBM04] is
used to compute and visualize a four-dimensional ray buffer,
which is essentially a lumigraph or light field. The drawback
is the expensive computation of the ray buffer, which makes
supporting animated scenes difficult.
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Surprisingly, to the best of our knowledge, only one re-
search paper exists on rasterization for multiple viewpoints.
Halle [Hal98] presents a method for multiple viewpoint ren-
dering on existing graphics hardware, by rendering polygons
as a multitude of lines in epipolar plane images. His system
and ours can be seen as complementary, since his algorithm
works well for hundreds of views, but breaks down for few
views (<10). Our algorithms, on the other hand, have been
designed for few views (≤ 16). Another difference is that
we target a new hardware implementation, instead of using
existing hardware.

The inherent difficulty in rendering from multiple views
is that rasterization for n views tends to cost n times as
much as a single view. For example, for stereo rendering
the cost is expected to be twice as expensive as rendering
a single view [Ake03]. Rendering to a display with, say, 16
views [MP04] would put an enormous amount of pressure on
even the most powerful graphics cards of today. However,
since the different viewpoints are relatively close to each
other, the coherency between images from different views
can potentially be exploited for much more efficient render-
ing, and this is the main purpose of our multi-view rasteriza-
tion architecture.

Our architecture is orthogonal to a wide range of
bandwidth reducing algorithms, such as texture com-
pression [BAC96, KSKS96], texture caching [HG97,
IEH99], prefetching [IEP98], color compression [MSM∗04],
depth compression & Z-max-culling [Mor00], Z-min-
culling [AMS03], and delay streams [AMN03]. In addition
to using such techniques, our architecture directly exploits
the inherent coherency when rendering from multiple views
(including stereo) by using a novel triangle traversal algo-
rithm. Our results show that our architecture can provide
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significant reductions in the amount of texture fetches when
rendering exact images. We also present an algorithm that
approximates pixel shader evaluations from nearby views.
This algorithm generates high quality images, and avoids
execution of entire pixel shaders for a large amount of the
fragments.

2. Motivation
Here we will argue that texturing is very likely to be the dom-
inating cost in terms of memory accesses, now and in the
future. For this, we use some simple formulae for predict-
ing bandwidth usage for rasterization. Given a scene with
average depth complexity d, the average overdraw, o(d), is
estimated as [CH93]:

o(d) = 1+
1
2

+
1
3

+ · · ·+ 1
d

. (1)

Without using any bandwidth reducing algorithms, the band-
width required by a single pixel is [AMS03]:

b = d×Zr +o(d)× (Zw +Cw +Tr), (2)

where Zr and Zw are the cost, in bytes, for reading and writ-
ing a depth buffer value, respectively. Furthermore, Cw is the
cost for writing to the color buffer (assuming no blending is
done, since the term Cr is missing) and Tr is the total cost for
accessing textures for a fragment. Standard values for these
are: Zr = Zw = Cw = 4 bytes and a texel is often stored in
4 bytes. Trilinear mipmapping [Wil83] is commonly used
for reducing aliasing, and this requires eight texel accesses,
which makes Tr = 8×4 = 32 bytes for a filtered color from
one texture. If a texture cache [HG97] with miss rate, m, is
used, and we have a multi-view display system with n views,
Equation 2 becomes:

b(n) = n× [d×Zr +o(d)× (Zw +Cw +m×Tr)]

= n× [d×Zr +o(d)×Zw︸ ︷︷ ︸
depth buffer, Bd

+ o(d)×Cw︸ ︷︷ ︸
color buffer, Bc

+o(d)×m×Tr︸ ︷︷ ︸
texture read, Bt

]

= n× [Bd +Bc +Bt ] (3)

Now, we analyze the different terms in this equation
by looking at two existing example shaders (not written
by the authors). First, we assume the scene has a depth
complexity of d = 4 (⇒ o ≈ 2). This is quite reasonable,
since occlusion culling algorithms and spatial data struc-
tures (e.g. portals) efficiently reduce depth complexity to
such low numbers, or even lower. For example, the recent
game S.T.A.L.K.E.R [Shi05] has a target depth complex-
ity of d = 2.5. Using d = 4, the depth buffer term will be
Bd ≈ 4× 4 + 2× 4 = 24 bytes and the color buffer term
becomes Bc ≈ 2× 4 = 8 bytes. Furthermore, we assume
a texture cache miss rate of 25% (m = 0.25). This figure
comes from Hakura and Gupta [HG97], who found that each
texel is used by an average of four fragments when trilinear
mipmapping is used. We have observed roughly the same
behavior in our tests scenes.

Example I: Pelzer’s ocean shader [Pel04] uses seven ac-
cesses to textures using trilinear mipmapping. The texture

bandwidth alone will thus be Bt = 2×0.25×7× (8×4) ≈
112 bytes. 2

Example II: Uralsky [Ura05] presents an adaptive soft
shadow algorithm, which uses more samples in penumbra
regions. Eight points are first used to sample the shadow
map, and if all samples agree, the point is considered as ei-
ther in umbra or fully lit. Otherwise, 56 more samples are
used. With percentage-closer filtering [RSC87] using four
samples per texture lookup, we get, Bt = 8× (4× 4) =
128 bytes in non-penumbra regions, while in penumbra,
Bt = 64×(4×4)= 1024 bytes. Assuming only 10% of the
pixels are in penumbra, the estimated cost becomes Bt =
2×0.25× (0.9×128+0.1×1024)≈ 109 bytes. 2

Compared to Bc = 8 and Bd = 24, it is apparent that tex-
ture memory bandwidth is substantially larger (Bt = 112 and
Bt = 109). This term can also easily grow much larger. For
example, current hardware allows for essentially unlimited
texture accesses per fragment, and with anisotropic texture
filtering the cost rises further.

In addition to this, both Bd and Bc can be reduced using
lossless compression [Mor00,MSM∗04]. Morein reports that
depth buffer compression reduces memory accesses to the
depth buffer by about 50%. Bd can also be further reduced
using Z-min-culling [AMS03] and Z-max-culling [Mor00].
The advantage of buffer compression and culling is that they
work transparently—the user do not need to do anything
for this to work. For texture compression, however, the user
must first compress the images, and feed them to the raster-
izer. Both Example I and II contain textures that cannot be
compressed, since they are created on the fly. Furthermore,
none of the ordinary textures were compressed in the exam-
ple code.

Texturing can easily become the largest cost in terms of
memory bandwidth, as argued above. This fact is central
when designing our traversal algorithm (Section 4). In com-
puter cinematography, pixel shaders can be as long as several
thousand lines of code [PVL∗05], and this trend of making
longer and longer pixel shaders can be seen in real-time ren-
dering as well. This means that many applications are often
pixel-shader bound. Thus, in a multi-view rasterization ar-
chitecture, it may also be desirable to reduce the number of
pixel shader evaluations, which is the topic of Section 4.3.

3. Background: Multi-View Rasterization

This section briefly describes a brute-force architecture for
multi-view rasterization and multi-view projection.

3.1. Brute-Force Multi-View Rasterization
Here, we describe a brute-force approach to multi-view ras-
terization. This is used when rendering stereo in OpenGL
and DirectX, and therefore we assume that this is the norm
in multi-view rasterization. The basic idea is to first render
the entire scene for the left view, and save the resulting color
buffer. In a second pass, the scene is rendered for the right
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BRUTEFORCE-MULTIVIEWRASTERIZATION()

1 for i← 1 to n // loop over all views
2 create Mi // create projection matrix
3 for j← 1 to t // loop over all triangles
4 RASTERIZETRIANGLE(Mi,∆ j)
5 end
6 end

NEW-MULTIVIEWRASTERIZATION()

1 create all Mi, i ∈ [1, . . . ,n] // create projection matrices
2 for j← 1 to t // loop over all triangles
3 RASTERIZETRIANGLETOALLVIEWS(M1, . . . ,Mn,∆ j)
4 end

Figure 1: Hi-level pseudo code for brute-force multi-view
rasterization (top), and for our new multi-view rasteriza-
tion algorithm (bottom). Assume rendering is done to n
views, and that the scene consists of triangles, ∆ j, j ∈
[1, . . . , t]. Note that the core of our algorithm lies in the
RASTERIZETRIANGLETOALLVIEWS() function.
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Figure 2: Off-axis projections for three views. As can be
seen, all views share the same z-axis. We use the term “view
divergence” for the distance between two views’ viewpoints.

view, using another projection matrix. The resulting color
buffers form a stereo image pair. Extending this to n ≥ 2
views is straightforward.

Pseudo code for brute-force multi-view rasterization is
given in the top part of Figure 1, where it is assumed that
we have a scene consisting of t triangles, ∆ j, j ∈ [1, . . . , t].

3.2. Multi-View Projection
We concentrate on projections with only horizontal parallax,
since the great majority of existing autostereoscopic multi-
view displays can only provide parallax along one axis. In
this case, off-axis projection matrices are used. In Figure 2,
this type of projection is illustrated for three views. Note that
the distance between two views’ camera viewpoints is de-
noted view divergence. In the following, we assume that n
views are used, and we use an index, i ∈ [1, . . . ,n], to iden-
tify a particular view. Furthermore, we have a vertex, v, in
object space, that should be transformed into homogeneous

screen space for each view. These transformed vertices are
denoted pi, i ∈ [1, . . . ,n]. For each view, a different object-
space to homogeneous screen-space matrix, Mi, must be cre-
ated. Since parallax is limited to the x-direction, only the
components of the first row of the Mi are different—the re-
maining three rows are constant across all views. Thus, the
y, z, and w components of pi = (pi

x, pi
y, pi

z, pi
w)T = Miv will

be exactly the same. We will use this fact when designing
our traversal algorithm (next section). This could also be ex-
ploited for implementing an efficient vertex shader unit for
a multi-view rendering architecture, but that is beyond the
scope of this paper.

4. New Multi-View Rendering Algorithms

Since it is likely that texturing (Bt ) is the largest consumer of
memory bandwidth, our strategy is to devise a traversal algo-
rithm that reduces the n×Bt -term of Equation 3 as much as
possible. Our hypothesis is that this should be possible if the
texture cache can be exploited by all views simultaneously.
Ideally, all views use exactly the same texels, and that would
reduce n×Bt to Bt , which is a substantial improvement. Ob-
viously, the best case will not occur, but very good results
can be obtained as we will see. To make this possible, our
approach is to rasterize a triangle to all views before starting
on the next triangle. Since the same texture is applied to a
particular triangle for all views, one can expect to get more
hits in the texture cache with this approach compared to the
brute-force variant (Section 3.1).

The number of texture cache hits will also vary de-
pending on how a triangle for the different views is tra-
versed. Therefore, the core of our architecture lies in
RASTERIZETRIANGLETOALLVIEWS (Figure 1), and in the
following two subsections, we describe two variants of that
algorithm. The general idea of our traversal algorithms is to
traverse a small part (e.g., a tile or even just a pixel) of a
triangle for a given view, and then determine which view to
traverse next. To do this, we maintain an efficiency measure,
E i, for each view. With respect to the texture cache, the effi-
ciency measure estimates which view is the best to continue
traversing. Thus, E i guides the traversal order of the different
views.

We start by describing our algorithm for scanline-based
traversal, and then show how it can be generalized to tiled
traversal. In Section 4.3, we extend the traversal algorithm so
that pixel shader evaluations can be approximated from one
view to other views. Finally, in Section 4.4, our architecture
is augmented in order to generate effects, such as depth of
field, which require many samples.

4.1. Scanline-Based Multi-View Traversal

As many different parameters are often interpolated in per-
spective over a triangle, it is beneficial to compute nor-
malized, perspective-correct barycentric coordinates (PBs),
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View 1 View 2

u

v

View 1 View 1+2View 2

PB space

Figure 3: The two views in a stereo system. A single scanline is highlighted for both the left and right view. In the right part
of the figure, we show the PB space for view 1 and view 2, where the green and red samples in PB space correspond to the
samples along the selected scanlines. To the very right, the texture sample locations from the two views are placed on top of
each other. With respect to the texture cache, the best order to traverse the pixels in the two views is the order in which the
samples occur along the PB traversal direction (fat line in PB space). The reason that the PB traversal directions in the two
views are identical, is the multi-view projection, described in Section 3.2.

t = (tu, tv) once per fragment, and then use these to inter-
polate the parameters in a subsequent step. The PBs can be
expressed using rational basis functions [MWM02], and we
will refer to the coordinate space of the PBs as PB space.
Note that each view and pixel has its own PB, ti = (t i

u, t
i
v),

where i is the view number.

The goal of our algorithm is to provide for substantial op-
timization of texture cache performance by roughly sorting
the rasterized pixels by their respective PBs, and thereby
sorting all texture accesses. In order to motivate this state-
ment, we assume that a pixel shader program is used to com-
pute the color of a fragment. The color will be a function,
color = f (ti,Si), of the PB, t i, and some state, Si, consisting
of constants for view i. If we assume that the shader contains
no view dependencies, then all states, Si, will be equal and
we can write color = f (ti,S), meaning that the only varying
parameter will be the PBs. Since pixel shader programs are
purely deterministic, the exact same PB will yield the same
texture accesses. Therefore, it is reasonable to assume that
roughly sorted PBs will give roughly sorted texture accesses.
This applies to all texture accesses, including nested or de-
pendant accesses, as long as they do not depend on the view.
Note in particular that a shader containing view-independent
texture access followed by view-dependent shading compu-
tations will be efficiently handled by our algorithm. An ex-
ample of this is a shader that applies a bump map to a surface
in order to perturb the normal, and after that, specular shad-
ing is computed based on the normal.

The rationale for our traversal algorithm is illustrated in
Figure 3. For simplicity, only a stereo system is shown, but
the reasoning applies to any number of views. We focus on
a single scanline at a time. As can be seen, evenly spaced
sample points in screen space are unevenly distributed in the
PB space due to perspective. Using multi-view projection,
the sample points for both views are located on a straight
line in PB space. The direction of this line is denoted the PB
traversal direction.

To guide the traversal, we define a signed efficiency mea-

sure, E i, for each view, i, as:
E i = d · ti, (4)

where d = (du,dv) is the PB traversal direction, which is
computed as the difference between two PBs located on the
same scanline. Thus, E i is the projection of ti onto the PB
traversal direction.

In order to sort the pixel traversal order, we simply chose
to traverse the pixel, and view, with the smallest efficiency
measure E i. When a pixel has been visited for view, i, the
ti for the next pixel for that view is computed, and the effi-
ciency measure, E i, is updated. The next view to traverse in
is selected as before, and so on, until all pixels on the scan-
line have been visited for all views. Then, the next scanline
is processed until the entire triangle has been traversed. An
optimization of Equation 4 is presented in Section 5.

Below, pseudo code for our new traversal algorithm is
shown. A single scanline is only considered since every
scanline is handled in the same way.
TRAVERSESCANLINE(scanlinecoord y)

1 compute coordinate, xi, for the leftmost pixel inside triangle
for each view on scanline y

2 compute li =no. of pixels on current scanline for all views i
3 compute ti for all views, i, for the leftmost pixel, (xi,y)
4 compute d, and compute E i = d · ti for all views, i
5 while (pixels left on scanline for at least one view)
6 find view, k, with smallest Ek and lk > 0
7 visit pixel (xk,y) using tk for view k
8 xk = xk +1, lk = lk−1
9 update tk and Ek

10 end
In the algorithm presented above, we have used only the

perspective-correct barycentric coordinates (PBs) to guide
the traversal order. This does not take mipmapping into ac-
count. It would be very hard to optimize for mipmapping
as it depends on a view-dependent level-of-detail parameter,
λ i, which is usually computed from the pixel shader pro-
gram state using finite differences. It may be possible to op-
timize for mipmapping in the simple case of linear texture
mapping, but it is next to impossible to generalize this to
dependent accesses. Furthermore, we believe it is not worth
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Figure 4: Tiled traversal, shown in PB space, for a row of
tiles overlapping a triangle (not shown). The PB traversal
direction is the gray line. Our algorithm visits the tiles in
the following order: A0, A1, B0, B1, C0, D0, C1, E0, D1, and
finally F0. This is the order in which the tiles appear on the
PB traversal direction.

complicating our algorithm further for an expectedly slight
increase in performance.

4.2. Tiled Multi-View Traversal

While scanline-based traversal works fine, there are many
advantages of using a tiled traversal algorithm, where a tile
of w× h pixels is visited before moving on to the next tile.
For example, it has been shown that texture caching works
even better [HG97], that simple forms of culling [Mor00,
AMS03] can be implemented, and that depth buffer and
color buffer compression [Mor00, MSM∗04] can be em-
ployed. These types of algorithms are difficult or impossible
to use with scanline-based traversal.

Fortunately, our scanline-based traversal algorithm can be
extended to work on a per tile basis. This is done by imag-
ining that the pixels in Figure 3 are tiles rather than pixels.
A rectangular tile in screen space projects, in general, to a
convex quadrilateral in PB space. In Figure 4, a triangle is
assumed to have been rasterized, and for a particular row of
tiles, the projection of the tiles are shown in PB space. As
can be seen, the projected tiles overlap the same area in PB
space for the two views, and therefore texture cache hit ra-
tio can be expected to be high. This is especially true if the
tiles are traversed in the order in which they appear along
the PB traversal direction, as we suggest in our algorithm in
Section 4.1.

Practically, this amounts to two computational and al-
gorithmic differences compared to scanline-based traversal.
First, we compute the efficiency measure, E i, and perform
sorting for the each tile rather than each pixel. As reference
point for the computations, we use the center of the tile, but
any point inside the tile would do. The second difference is
that the traversal algorithm is designed so that all tiles (over-
lapping a triangle), on a row of tiles, are visited before mov-
ing on to the next row of tiles.

Exact view Approximated view

pe

qe

re
ta

Figure 5: Illustration of how a fragment (red circle) with
perspective-correct barycentric coordinates ta, in an ap-
proximated view, can be mapped onto a screen-space po-
sition in the exact view. The color of two nearby fragments
in the exact view are interpolated to compute the color of the
fragment in the approximated view.

4.3. Approximate Pixel Shader Evaluation

In this section, we present an extension for tiled traver-
sal algorithm (Section 4.2), which adds approximated pixel
shader evaluation. The general idea, inspired by the work of
Cohen-Or et al. [COMF99], is that exact pixel shader eval-
uation is done for a particular view, e, and when rasterizing
to a nearby view, a, the pixel shader evaluations from view
e are reused if possible. In Section 4.1, we motivated that
if the pixel shader program contains no view dependencies,
then it will be a deterministic function, color = f (ti,S), of
the PB, ti, of a pixel. We used this to motivate that for a given
PB coordinate, the shader will always issue the same texture
accesses. However, it is also true that the shader will always
return the same color given the same PB as input. This im-
plies that we should be able to reuse the results of the pixel
shader programs.

In the following, we present an algorithm that exploits this
assumption to provide approximate pixel shader evaluations,
and our results show that we can obtain high-quality render-
ings. Since the approximation may produce incorrect results
for view-dependent shaders, we suggest that the application
programmer should have fine-grained control over this fea-
ture in order to turn it off/on as desired.

We initially divide our views into sets where the view di-
vergences of the cameras in each set are considered small
enough. When a triangle is rasterized, we select an exact
view from each set. This can be done by either setting a fixed
exact view, or by choosing the view that maximizes the tri-
angle’s projected area. We refer to the remaining views in
the set as approximated views.

Figure 5 illustrates our approximate pixel shader tech-
nique. When evaluating the pixel shader for the exact view,
we execute the full pixel shader, which may depend on the
camera position. Hence, the exact view will render the tri-
angle without any approximations. Looking at a single frag-
ment in an approximated view, we will use its perspective-
corrected barycentric coordinates (PBs), ta = (ta

u , ta
v ), to

compute the position of the fragment in the exact view’s ho-
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mogeneous screen space. Assume the homogeneous coordi-
nates of the triangle’s vertices in the exact view are denoted
pe, qe, and re. Now, to find out which pixel in the exact view
that correspond to ta in an approximated view, we can use
interpolation of the homogeneous screen-space coordinates
as shown below:

c = (cx,cy,cz,cw)T = (1− ta
u − ta

v )pe + ta
u qe + ta

v re. (5)

The screen-space x-coordinate in the exact view is found by
homogenization: x = cx/cw, and the y-coordinate is implic-
itly known from the scanline being processed due to the find-
ings in Section 3.2. The position, (x,y), will rarely map ex-
actly to a sample point of a fragment in the exact view, but
we can compute the color† of the approximated fragment by
interpolating between the neighboring fragments in the exact
view.

In order to approximate the pixel shader evaluation, we
introduce a shader output cache, shown in Figure 6, which
holds the pixel shader outputs (color and possibly depth) for
a number of tiles rendered in the exact view. When a new
triangle is being rasterized, we start by clearing the shader
output cache to ensure that we only use fragment outputs of
the same triangle during approximation. Each time a tile is
being rasterized for the exact view, we allocate and clear the
next tile-sized entry in the shader output cache. The next en-
try is selected in a cyclic fashion, so that the least recently
traversed tile is retired from the cache. The pixel shader out-
puts of the fragments in the current tile are then simply writ-
ten to that cache entry.

Each time we render a fragment in an approximated view,
we compute the corresponding fragment position in the ex-
act view as outlined above. The fragments to the left and
right of the true fragment position are queried in the cache,
and if both fragments are found, we compute the approx-
imated pixel shader output by linear interpolation. If only
one of the fragments exists, we simply set the approximated
output to the value of that fragment.‡ Finally, if none of the
fragments are found, we execute the full pixel shader to com-
pute the exact output.

Our main reason for choosing two shaded fragments and
weighting them to form an approximated fragment is that
we can use existing hardware interpolators to do the com-
putations. This makes the implementation very inexpensive,
and in Section 6, we show that this approximation generates
high-quality results for view-independent shaders. However,
there is a more precise way of performing the filtering. In-
stead of projecting the center of the pixel, we project the
endpoints of a filter kernel into the exact view. This is shown
in Figure 7. When the horizontal parallax difference between

† If the pixel shader also computes the depth of the fragment, our
algorithm can be used to approximate the depth as well.
‡ Alternatively, one could choose to execute the full pixel shader
for such fragments. This would increase the quality slightly.
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Figure 6: To support approximate pixel shader evaluation,
a shader output cache and an approximation unit (AU) are
introduced into the rasterization pipeline. Before the pixel
shader is executed for an approximated view, the AU checks
with the shader output cache whether the fragment color can
be computed from existing fragment colors in the cache. If
so, the pixel shader unit is bypassed. Otherwise, the pixel
shader is executed as usual.

ta

Approximated viewExact view filter kernel

Figure 7: Higher quality filtering is obtained by projecting
the blue end points of the filter kernel in the approximated
view into the exact view. These projected points span a num-
ber of pixels (dark gray), which are weighted using the filter
kernel to form the approximated fragment.

the exact view and the approximated view is relatively large,
the projected endpoints may span more than two pixels. To
obtain a higher quality of the approximated fragments, a
larger filter (e.g., tent, or Gaussian) is applied to all the pixels
in the span. Note that this technique is also approximate.

The approximation method requires that the pixels in the
different views are traversed in an ordered fashion, so the
shader output cache is filled with the appropriate results be-
fore it is being queried. This is exactly what our algorithms
(described in Section 4.1 & 4.2) do, and hence the approxi-
mation works well when used together with our traversal al-
gorithms. However, in order to make sure that the shader out-
put cache is filled before we start processing approximated
views, we must delay the approximated views slightly. In our
implementation we do this by computing the efficiency mea-
sure, E i, for a tile located k−1 tiles away along the currently
traversed row of tiles, where k is the number of entries in the
shader output cache. For exact views, we compute the effi-
ciency measure as usual. This will cause our sorted traversal
algorithm of Section 4.1 to pre-load the cache.
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Discussion One possibility we explored was to augment ex-
isting depth and color buffer caches and use them to do the
job of the shader output cache. This requires a small exten-
sion of one bit per cache entry in order to be able to flag if
a color or depth value was written while rasterizing the cur-
rent triangle. We found that this approach works satisfactory
for opaque geometry. However, we cannot perform any ap-
proximations when blending is enabled, because using the
blended values for approximation may cause distortion of
geometry seen through a transparent triangle. Blending is
popular for particle effects, and crucial to multi-pass tech-
niques in general. Therefore, we think that it is important to
be able to support blending in our approximate algorithm as
well.

4.4. Accumulative Color Rendering

A very simple and worthwhile extension of our architecture
is to allow all views to access a single common color buffer,
while each view has its own depth and stencil buffers. This
allows for acceleration of some forms of multi-sampling ef-
fects, such as, depth of field for a single view. Recall that
we compute the traversal order based on a texture-cache ef-
ficiency measure in our architecture. Therefore, the render-
ing order will be correct in the multiple depth buffers, but
we cannot make any assumptions about the rendering order
in the common color buffer. However, many multi-sampling
algorithms can be described on an order-independent form:

m =
n

∑
i=1

wici,

where n is the number of samples, ci is the color of a sample,
wi is the weight of the sample (typically wi = 1/n), and m is
the color of the multi-sampled fragment. This equation can
be implemented by using additive blending for the summa-
tion, and the factor wi can be included in the pixel shader.

If the programmer is aware of that a multi-view rasterizer
is being used, he/she can accelerate multi-sampling in the
cases mentioned above. For instance, if we have hardware
capable of handling four views, an image with depth of field
using 4×4 samples can be rendered as follows:
RENDERSCENEDEPTHOFFIELD()

1 for y← 1 to 4
2 create all Mi, i ∈ [1,4]
3 disable color writes
4 RASTERIZESCENETOALLVIEWS(M1, . . . ,M4)
5 enable color writes
6 enable additive blending
7 enable pixel shader that includes the wi = 1/16 scaling term
8 RASTERIZESCENETOALLVIEWS(M1, . . . ,M4)
9 end

It is important to initialize the depth buffer (line 3 & 4)
prior to color rendering, otherwise incorrect results will be
obtained using additive blending. Note that this is also the
case when using a single-view architecture, and so is not

a disadvantage that stems from our architecture. An alter-
native approach is to render into 16 different color buffers,
and combine the result in a post-process. However, our ap-
proach yields much better color buffer cache performance,
since the triangles rendered simultaneously are coherent in
screen space, and the post-processing stage is avoided.

In the pseudo code above, a deferred shading approach
is used. Alternatively, the result could be blended directly
into an accumulation buffer, but we have found that this uses
more bandwidth. It is also worth pointing out that a brute-
force implementation of depth of field using n samples per
pixel sends the geometry n times to the graphics hardware.
Our implementation sends the geometry 2n/v, where v is the
number of views (e.g. 16) the system can handle at a time.

5. Implementation

To benchmark and verify our algorithms, we have imple-
mented a subset of OpenGL 2.0 in a functional simulator
in C++. The core of the traversal algorithm and the approx-
imation technique were implemented in less than 300 lines
of code.

In our implementation, the efficiency measure E i that is
used to select the next tile to rasterize is computed in a less
expensive way, compared to directly evaluating Equation 4.
Since E i is only used to sort the points, ti, we can evaluate
this expression along the axis that corresponds to the largest
of abs(du) and abs(dv). Thus, E i is simply the component of
ti that corresponds to this axis, and the computation of E i is
therefore almost for free.

Clipping a triangle against the view frustum may result
in at most seven triangles. Since the projection matrices
are different for each view, the number of resulting trian-
gles may not be the same for all views. Hence, it is impor-
tant to traverse unclipped triangles. We have adapted Mc-
Cool et al’s. [MWM02] traversal algorithm in homogeneous
space, so that we traverse tiles along the horizontal view-
port direction. In order to do so, we first find a screen space
axis-aligned bounding box for each triangle, using binary
search and a box-triangle overlap test [AMA05]. We then
traverse the bounding box using a simple horizontal sweep.
A more advanced traversal algorithm would yield higher per-
formance, but this is outside the scope of this paper. The ef-
ficiency of the traversal algorithm will not affect bandwidth
utilization in our simulator, since we detect tiles not overlap-
ping the triangle and discard them.

In terms of culling, some special cases may occur. For in-
stance, triangles can be backface culled or outside the view
frustum in one view, while remaining visible in others. This
is easily solved if our algorithms are robustly implemented.
A culled triangle can simply be given a scanline width of
zero pixels, which will make sure it is never rasterized. For
our approximate algorithm, a culled triangle will not gener-
ate any fragments, which means that the shader output cache
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will not be filled, and approximation will not be done. Thus,
the visual result is not compromised.

It should be noted that it may be difficult to compute the
PB traversal direction and efficiency measure in the context
of a tiled rasterizer. We have favored simple code, and com-
pute the PB traversal direction from the start and end points
of a row of tiles. We also evaluate the efficiency measure in
the center of each tile, regardless of whether it lies inside the
triangle or not. This implementation suffers from a weak-
ness that appear when a row of tiles cross the “horizon” of
the plane that pass through the current triangle. When cross-
ing this horizon, the PBs behave similarly to an 1/x function
in the vicinity of the origin. This results in sign changes in
the efficiency measure, and ultimately in incorrect sorting.
However, it should be noted that this is a very rare occur-
rence. Furthermore, it will only affect the texture cache ef-
ficiency, and not the correctness of the result. In the future,
we would like to investigate if there is an elegant way to ex-
tend our implementation so that correct sorting is guaranteed
even in these extreme cases.

6. Results

In this section, we present the results for our exact and ap-
proximate algorithms (Section 4.2 and 4.3, respectively).
The results were obtained from our functional simulator, us-
ing the test scenes summarized in the top row of Figure 8.

The Quake3 scene is a game level using multi-texturing
with one texture map combined with a light map for every
pixel. A potentially visible set is used during rendering, so
the overdraw factor is similar to that of most modern games.

For our Soft Shadows test scene, we implemented Ural-
sky’s soft shadow mapping algorithm [Ura05] in combina-
tion with bump-mapped and gloss-mapped per-pixel Phong
shading. This scene is meant to model a modern or next-
generation graphics engines, targeted for real-time graphics,
which makes heavy use of complex shaders containing many
texture accesses.

The Ocean scene is our implementation of Pelzer’s ocean
shader [Pel04]. This scene is a nightmare scenario for our
algorithms, as it contains bump-mapped reflections and re-
fractions, both view-dependent and highly diverging due to
the bump mapping and high view divergence of the cameras.
Thus, this scene was designed to contradict all assumptions
made in our algorithms.

All scenes have an animated camera, and statistics were
gathered for at least 200 frames. The Ocean scene also has an
animated water surface. We chose to render at a resolution of
640× 480 pixels per view, which is reasonable considering
the current 3D display technology. For example, Philips has
built a 3D display capable of either nine views at 533×400
pixels, or seven views at 686× 400 pixels [vB04]. We have
investigated the behavior of our algorithms with respect to

rendering resolution, and conclude that they both behave
robustly. Both total bandwidth and texturing bandwidth in-
crease slightly sub-linearly with increasing resolution. This
effect is due to all caches getting slightly more cache hits at
higher resolutions, and the compression ratios of color and
depth buffers were either constant or became slightly better.
Similar behavior was observed for a brute-force architecture.

Even though there are computations that can be shared
among different views in the vertex-processing units, we fo-
cus our evaluation only on the rasterizer stage, since it is
very likely that it will become the bottleneck. In the follow-
ing, we refer to a conventional rasterizer (CR) as a modern
rasterizer architecture with the following bandwidth reduc-
ing algorithms: fast depth clears, depth buffer compression,
depth buffer caching, Z-max culling, texture caching, color
buffer compression and color buffer caching. A multi-view
rasterization architecture that is implemented by rendering
the scene n times using a single CR is called a brute-force
(BF) multi-view architecture (see also Section 3.1).

For all architectures, we use a fully associative 6 kB tex-
ture cache with least-recently used (LRU) replacement pol-
icy. Since our architecture rasterizes to all views simulta-
neously, it needs an increasing amount of depth and color
buffer cache with an increasing number of views. For all our
tests, our architecture uses n×512 bytes for the depth buffer
caches, and n×512 bytes for the color buffer caches. Thus,
a stereo system will use 8 kB cache memory in total.

For a fair comparison, we ensure that our architecture and
the BF architecture use exactly the same amount of cache
memory. The extra 1 kB of cache memory that we need
per view, can be spent on either the depth and color buffer
caches, or on the texture cache in a BF architecture. We call
these architectures BF DC and BF TX respectively. In all our
tests, we have observed that the total amount of bandwidth
is reduced most if the texture cache is increased. We have
therefore chosen to omit the BF DC architecture from the
results.

We present statistics gathered from our test scenes in Fig-
ure 8. As can be seen in those diagrams, both our exact and
our approximate rasterization algorithms perform far better
than the brute-force architecture. For the Quake3 scene, the
majority of bandwidth usage is spent on the color and depth
buffer. However, our algorithm provides major reductions in
terms of texture bandwidth. In fact, it remains almost con-
stant over an increasing number of views. The same holds
for the Soft Shadow scene, but the results are even better
since the texture bandwidth is more dominating compared
to the Quake3 scene.

In the case of the Ocean scene, our algorithm performs
worse than BF TX when the number of views is greater than
eight. This is not very surprising considering that the scene
was designed as a worst case for our algorithm. The scene
contains very little view coherency in the texture accesses,
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Figure 8: The first row shows a summary of the test scenes rendered at 640× 480 pixels. The bandwidth
(BW) figures, located on top of each bar, is the BW in megabytes (MB) per frame for a single view using a
conventional rasterizer, as described in the text. Each bar is divided into texturing BW (gray), depth buffer
BW (white), and color buffer BW (black). The second and third rows show total BW and texture BW per
frame as a function of the number of views for each frame.

Brute Force (BF)
Brute Force, extended
texture cache (BF TX)
Exact multi-view
Approximative multi-view
Exact multi-view, single
camera (only ocean scene)

and the BF TX architecture will have a much bigger tex-
ture cache at 16 views. We think that the results are very
good considering the circumstances, and substantial band-
width reduction is achieved up to four views. In fact, our
algorithm performs better even for 16 views, if we render
four passes with a four-view architecture. It should be noted
that all benchmarks once again turned completely to our fa-
vor simply by increasing the texture cache size to 12 kB.
This means that for every scene, there is a texture cache size
“knee” that makes our algorithm perform extremely well.
The same applies to a BF TX architecture: when the texture
cache size is decreased, performance will degrade grace-
fully. We have also included bandwidth measurements for
a version of the Ocean scene that used a shared camera po-
sition for the shaders (Figure 6), and these indicate how dis-
advantageous the view dependencies of this scene are.

It should be noted that even though the bandwidth mea-
surements for our approximate algorithm is only marginally
better than the exact algorithm, the approximate algorithm
completely avoids a very large amount of pixel shader pro-
gram executions. Hence, computational resources are re-

leased and can be used for other tasks. Our tests show that
about 95% of the pixels, in the approximated view in a stereo
system, can be approximated. When the number of views in-
creases, fewer pixels can be approximated due to increased
view divergence, and with 16 views, our approximation ra-
tio has dropped to approximately 80%. See Figure 9 (color
page) for a visualization of the approximation in a five-view
system. A major advantage of our approximate algorithm is
that it always generates correct borders of the triangles and
correct depth—only the content “inside” a triangle can be
subject to approximation.

It is also important to measure image quality of our
approximate algorithm. For the Quake3 scene, the peak-
signal-to-noise-ratio (PSNR) was about 40 dB for the en-
tire animation. This is considered high even for still im-
age compression. When the number of views increased, the
PSNR remained relatively constant. This was not expected
by us, since using linear interpolation for approximation
gives worse results for a larger view divergence between an
exact view and an approximated view. However, fewer pixels
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Figure 9: Visualization of approximation in the Quake3 scene. Green pixels have been approximated from the exact central
view.

can be approximated when the view divergence is high be-
tween the approximated and exact view, and hence the qual-
ity increases.

The Soft Shadows and Ocean scene are harder cases for
the approximation algorithm since they both contain view
dependencies. The Soft Shadows scene contain view depen-
dencies in the form of specular highlights, and the Ocean
scene has nested view-dependent texture lookups (bump-
mapped reflections and refractions). For those scenes, we
must use a unified camera position for shading when the ap-
proximate algorithm is used. Otherwise visible seams may
appear between approximated pixels and “exact” pixels.
In our Soft Shadows scene, the unified camera position is
hardly visible, and the PSNR is between 36 and 40 dB. In
our Ocean scene, the differences are easily spotted when
comparing to the exact solution, but the approximated ver-
sion still looks good.As previously stated, we believe the ap-
plication programmer should be given the appropriate con-
trol over when approximation should be used. Approxima-
tion could be turned off for surfaces with view-dependent
shaders, or be controlled by a user-tweakable setting for
quality or performance. In some applications, such as games,
it may be more reasonable to use approximation. However,
when a graphics hardware architecture is used for scientific
computing, e.g. fluid dynamics on the GPU, the application
programmer would probably want to turn off approximation,
and only use our exact algorithm, which would still give a
performance advantage.

Interestingly, for our approximate algorithm, we observed
that compression of the color buffer works better than for
our exact algorithm. On average, the compression ratio im-
proved by 5–10%, most likely because of the slight low-pass
effect introduced by the approximation filter.

To summarize, our results show that our multi-view raster-
ization architecture gives substantial reductions in terms of
total bandwidth usage. The texture bandwidth remains close
to constant with an increasing number of views, and texture
bandwidth reductions on the order of a magnitude are pos-
sible. Furthermore, our approximate technique can render
high-quality images without executing the pixel shader for
up to 95% of the fragments.
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Figure 10: The Sponza atrium rendered with a depth of field
(DOF) effect. The diagram shows bandwidth measurements
in gigabytes per frame as a function of the number of views
supported by the rasterizer. The curve named “Theoretical
optimum” shows the best possible performance for our ar-
chitecture at a given number of supported views. In short,
we assume that the texture and color buffer bandwidth are
zero for all views but one during each render pass. The BF
DC architecture has been included because it performs bet-
ter than the BF TX architecure in this particular benchmark.
This is due to the two-pass nature of the DOF algorithm, and
since the scene does not use any complicated shaders.

6.1. Accumulative Color Rendering

Figure 10 shows our final test scene, which is a depth of
field (DOF) rendering of the Sponza atrium, using multi-
texturing with decal textures and global illumination light
maps. In contrast to the Ocean scene, which was designed
as a nightmare scenario, this test hits the very sweet spot
of our algorithm. Here, we benchmark the performance of
accumulative color rendering (Section 4.4). The tests were
made using the same configurations of the rasterizer as in
the previous benchmarks. However, this time we rendered a
16×16 samples DOF, where each configuration rendered the
scene in as few passes as possible. For instance, a 16-view
multi-view rasterization architecture would need to render
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16 passes, while a 4-view system would need 4× 16 = 64
passes. The BF algorithms always require all 256 passes.
Our results in Figure 10 show a major reduction, not only in
texture bandwidth, but also in color buffer bandwidth. This
is to be expected, since all color buffer cache memory can
be spent on a single color buffer, and since a projected prim-
itive will be relatively coherent in screen space across all
views when rasterizing to the same buffer. It is worth noting
that the performance of our architecture is very close to its
theoretical limit.

6.2. Small triangles

In this section, we will shed some light on how our ar-
chitecture performs when rendering very small triangles.
As we perform sorting on a per-tile level, the behavior of
our algorithm will approach an architecture that renders
a triangle to all views without any sorting at all (called
“Tri-by-Tri” below) when rendering small triangles. In order
to test sub-pixel triangle rendering, i.e., where the average
number of pixels per triangle (ppt) is less than one, we
rendered the Quake3 scene at low resolution using various
four-view systems. In the following table, we present the
texture bandwidth relative to the BF TX architecture:

80×60, 0.8 ppt 640×480, 48 ppt
BF TX 100% 100%
Tri-by-Tri 31.3% 88.8%
Our 28.5% 27.3%

As can be seen, our algorithm handles small triangles very
robustly. A view-independent texture access will be very co-
herent for a small triangle no matter what point in the trian-
gle we choose to sample from, and drawing a triangle to all
views will provide sufficient sorting of the texture accesses.
Our opinion is that the Tri-by-Tri algorithm is much less ro-
bust since it fails horribly when the triangle area increase.
Large triangles are still frequently used in games, architec-
tural environments & particle systems, and it is therefore
crucial to be able to handle them as well.

7. Discussion

Our multi-view rasterization architecture has been designed
with the current technological development in mind: com-
puting power grows at a much faster rate than memory band-
width, and DRAM capacity is expected to double every
year [Owe05]. Hence our focus has been on reducing us-
age of memory bandwidth at a cost of duplicating the depth
and stencil buffers. The BF architecture would only need to
duplicate the color buffer, if the depth and stencil buffers are
cleared between rendering different views.

From a cost/performance perspective, a reasonable solu-
tion would be to implement a multi-view rasterizer with our
approximate pixel shader technique and our tiled traversal
for two, three, or four views. A multi-pass approach can be

used when rendering to more views than supported by the
architecture. For example, a system for four views can be
used to render to 12 different views by rendering the scene
three times.

Our traversal algorithm requires the ability to change the
view which is currently being rasterized to. The same pixel
shader program is used for all views, so switching views only
amounts to changing the current active view. This can be
done by enumerating all views, and changing the currently
active index. This index points to view-dependent informa-
tion, such as view parameters, and it also points to output
buffers, for example. Therefore, we are confident that view
switching can be efficiently implemented in hardware.

8. Conclusion and Future Work

We have presented a novel multi-view rasteriziation archi-
tecture, and shown that it is possible to exploit a substantial
amount of the inherent coherency in this context. It is our
hope that our work will renew interest in multi-view image
generation research, a field that has received relatively lit-
tle attention. Furthermore, it is our belief that our architec-
ture may accelerate the acceptance of multi-view displays
for real-time graphics.

With our current architecture, it is apparent that the bottle-
necks from texturing and complex pixel shaders have moved
to color and depth buffer bandwidth usage. For future work,
we would therefore like to investigate whether these buffers
can be compressed simultaneously for all views. This can
lead to higher compression ratios. Some kind of differential
encoding might be a fruitful avenue for this type of problem.
Currently, we are making an attempt at augmenting our al-
gorithms so that parallax in more directions can be obtained.
This would allow us to have, for example, 2×2 viewpoints,
and thus achieve both horizontal and vertical parallax. The
parameter space (texture cache size, tile size, etc) involved
in our architecture is large, and in future work, we want to
explore various configurations in more detail.
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