
Graphics for the Masses:
A Hardware Rasterization Architecture for Mobile Phones

Tomas Akenine-M̈oller
Chalmers University of Technology

Ericsson Mobile Platforms

Jacob Str̈om
Ericsson Research

Abstract

The mobile phone is one of the most widespread devices with ren-
dering capabilities. Those capabilities have been very limited be-
cause the resources on such devices are extremely scarce; small
amounts of memory, little bandwidth, little chip area dedicated for
special purposes, and limited power consumption. The small dis-
play resolutions present a further challenge; the angle subtended
by a pixel is relatively large, and therefore reasonably high quality
rendering is needed to generate high fidelity images.

To increase the mobile rendering capabilities, we propose a new
hardware architecture for rasterizing textured triangles. Our ar-
chitecture focuses on saving memory bandwidth, since an exter-
nal memory access typically is one of the most energy-consuming
operations, and because mobile phones need to use as little power
as possible. Therefore, our system includes three new key innova-
tions: I) an inexpensive multisampling scheme that gives relatively
high quality at the same cost of previous inexpensive schemes, II) a
texture minification system, including texture compression, which
gives quality relatively close to trilinear mipmapping at the cost
of 1.33 32-bit memory accesses on average, III) a scanline-based
culling scheme that avoids a significant amount ofz-buffer reads,
and that only requires one context. Software simulations show that
these three innovations together significantly reduce the memory
bandwidth, and thus also the power consumption.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics Processors I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Texture

Keywords: graphics hardware, mobile phone, culling, texture fil-
tering, multisampling

1 Introduction

Mobile phones are used all over the world, and since they are
equipped with displays, it is also possible to render images on these
devices. It is very likely that this makes the mobile phone the most
widespread rendering platform today. However, this type of render-
ing has mostly been limited to very simple two-dimensional graph-
ics, and it is only recently that three-dimensional graphics has seen
the light in this context. Increased interest in mobile graphics can

be seen in the activities of upcoming standards, such as Java Spec-
ification Request 184, and OpenGL ES (for embedded systems).
Applications that are likely to use three-dimensional graphics in-
clude man-machine interfaces (MMIs), screen savers, maps, ani-
mated messages, and, naturally, games.

Mobile phones inherently exhibit two characteristics that are
drastically different from, for example, PC systems with graphics
cards. First of all, they have very small displays, and second, they
have very small amounts of resources for rendering. These charac-
teristics will be briefly discussed next. Existing mobile phones with
color displays have limited resolution. Common sizes are QCIF
(176×144), and QVGA (320×240). Larger resolutions are more
expensive than small ones, and also consume more energy which
decreases use time on battery charge. It is therefore likely that lower
resolutions, such as QCIF and QVGA, will dominate for all but the
high end market. In terms of the number of colors of the display,
anything from 256 to 65,536 is common. In addition to low resolu-
tion, the user often holds the display close to the eyes, which makes
the average eye-to-pixel angle large in comparison to that of a PC
system. Our measurements show that this angle is between 2–4
times larger on a mobile phone than on a PC. These display condi-
tions implies that every pixel on a mobile phone should ultimately
be rendered with higher quality than on a PC system.

There are several reasons for a mobile phone to have limited re-
sources. Since they are powered by batteries, any type of rendering
needs to use as little energy as possible. External memory accesses
are often the operation in a computer system that uses the most
energy [Fromm et al. 1997]. In low-power processes, an off-chip
memory access consumes more than an order of magnitude more
energy than an access to a small on-chip SRAM memory. This
means that bandwidth resources should be used with great care, and
that peak bandwidth is extremely limited in the first place. Little
available bandwidth, little amount of chip area, and small amounts
of memory all help in keeping the price per device low, and also, in
the majority of the cases, contribute to using less energy than a sys-
tem with more resources. Typical examples of real mobile phone
data is: 1) one 32-bit memory access per clock cycle (10-100MHz),
2) CPUs with 10-200 MHz, and 3) 1-16 MB of reasonably fast
memory.

The demand for high-quality rendering and the requirement of
using little resources are contradictory. To ameliorate this conflict,
we present a hardware architecture for rasterizing textured triangles
with three new, key innovations:

1. a multisampling scheme that only generates two new samples
per pixel, and that achieves more effective levels of shades for
critical edges than previous schemes,

2. texture filtering, using texture compression, which costs 1.33
32-bit memory accesses on average for minification, with
quality relatively close to trilinear mipmapping, and

3. a simple culling scheme that operates on a scanline basis,
making the implementation inexpensive, and saving band-
width and thus also energy.



Figure 1: One frame from ourScreenSaver benchmark rendered with different schemes at 176× 144 pixels. Bandwidth without clears
in MB/frame in brackets. OSSP=one sample per pixel. Left to right: nearest neighbor texture sampling with OSSP (0.43), POOMA with
zmin-culling with OSSP (0.42), POOMA with FLIPQUAD multisampling andzmin-culling (0.62), and trilinear mipmapping with OSSP (0.91).

We have simulated our architecture in software and counted the
number of memory accesses, which we believe is the most impor-
tant performance measure for our target platform, the mobile phone.
Our methods are ad-hoc rather than based on theoretical insights.
Still, compared to trilinear mipmapping with one sample per pixel,
our architecture gives relatively high quality texture filtering at 53%
less memory bandwidth, and multisampling at 32% less bandwidth.
Figure 1 contains some results.

This paper is organized as follows. First, some previous work is
reviewed, followed by a discussion about the system assumptions.
Then the actual architecture is presented, with focus on the three
previously mentioned innovations. After that, the implementation is
discussed, followed by results and evaluation. Finally, a conclusion
and some thoughts on future work are offered.

2 Previous Work

In general, there has not been much published on low-cost
architectures where the entire system is described. Two notable
exceptions are Neon [McCormack et al. 1999], and the PixelVision
architecture [Kelleher 1998]. However, these are not on the
extreme side of the cost spectrum. The Kyro architecture described
in [Akenine-Möller and Haines 2002], on the other hand, has been
scaled down and adapted to handheld devices. In this form it is
called MBX. This architecture is tile-based, and uses deferred
shading. A significant portion of memory bandwidth is used since
geometry sorting is needed before rendering can start. It has not
been documented on how energy-efficient this architecture is. A
low power rendering engine is presented by Woo et al. [2002],
where several hardware techniques are used to minimize power
usage. Their solution delivers high performance, and uses a lot of
resources. Therefore, it cannot be considered to be of low cost,
as opposed to our proposed system. In the rest of this section,
we review research that has focused on extreme low-cost, or that
closely relates to our own work.

Low Memory Bandwidth Texturing
There are mainly two ways described in the literature for re-
ducing the cost of texturing, namely, texture compression and
texture caching. A simple texture compression scheme has been
incorporated in DirectX [McCabe and Brothers 1998]. This was
developed by S3, and initially called S3TC, and later renamed to
DXTC. A 4× 4 block of texels is compressed into a fixed size
using the following strategy: First, two reference colors, encoded
in 16 bits each, are found, and in between these, two more colors
are computed by linear interpolation. Each texel in the block can
then index into these four colors, and requires thus only two bits
each. This gives a compression ratio of 6:1. For blocks where the
colors in the block are not close to lying on a line in RGB space,
the quality may degrade severely. However, for photographs and
similar images, it most often gives surprisingly good results. One
of the main advantages is that each block is compressed to a fixed
size, which simplifies hardware implementation greatly.

Using a cache for texels is a clever strategy since already fetched

texels that are needed later can be accessed at a greatly reduced
cost [Hakura and Gupta 1997]. Prefetching in an architecture with
texture caches can be used to hide latency [Igehy et al. 1998].

Traversal and Occlusion Culling
For polygon rasterization with subpixel accuracy, one can use a
modified Bresenham algorithm [Lathrop et al. 1990]. An often
used alternative involves edge functions [Pineda 1988], where the
region inside a triangle is described as the logical intersection of
the positive half-spaces of the triangle edges. Different strategies,
called traversals, can be used to find the pixels inside the triangle.
Depending on how complex these are, different numbers of con-
texts are required during traversal. A context stores interpolation
parameters for a particular pixel, and can be used to traverse
to neighboring pixels using only additions. Each context costs
considerable in terms of gates on-chip.

To increase coherence utilization, and for simple occlusion
culling algorithms, graphics hardware often traverses the pixels that
a triangle covers in a tiled fashion [Kelleher 1998; McCormack and
McNamara 2000; Morein 2000]. This means that all pixels inside a
tile, say an 8×8 region, are visited before moving on to another tile.
Different traversal strategies are needed for this, and these cost in
terms of numbers of contexts that must be stored. For example, Mc-
Cormack and McNamara describe a tiled traversal algorithm that
requires one more context than the corresponding non-tiled traver-
sal. In total, they need four contexts for the tiled version.

The hierarchicalz-buffer algorithm uses az-pyramid to cull
groups of geometry that are occluded by already rendered ob-
jects [Greene et al. 1993]. This algorithm is highly efficient when
implemented in software, but there still does not exist a full-blown
hardware implementation. Commodity graphics hardware often
has a simpler form of occlusion culling, where each tile stores
the maximum,zmax, of the z-values inside a tile [Morein 2000].
A tile can be e.g., 8× 8 pixels. During traversal of a triangle,
a test is performed when a new tile is visited that determines if
the “smallest”z-value of the triangle is larger thanzmax of the
corresponding tile. If so, that tile is skipped, and otherwise that
tile is rendered as usual. Note that, to updatezmax, all thez-values
of the tile must be read, which can be expensive. This update
operation is needed if az-value is overwritten that was equal tozmax.

Low-Cost Screen Antialiasing
In terms of low-cost antialiasing schemes for rasterization hard-
ware, there is not much previous published work. Our view of
low-cost schemes is that they should have reasonably regular
sampling patterns and generate few samples per pixel, in order
to simplify implementation and generate few memory accesses.
Note that edge antialiasing is most needed for near-vertical and
near-horizontal edges. In our experience, during rotation, edges
near 45 degrees are the next to most distracting. In Figure 2, some
common low-cost sampling patterns are illustrated. Many graphics
cards support brute-force supersampling schemes, where the scene



Figure 2: Simple, low-cost sampling patterns (left to right): one
sample per pixel (no antialiasing), 2× 2 super sampling (brute
force), Quincunx sampling pattern (gray samples are borrowed
from neighboring pixels), and rotated grid supersampling (RGSS).

is rendered at twice the horizontal and vertical resolution. When
the scene has been rendered, a filtering pass starts, which averages
2×2 regions down to a single pixel. These schemes use four times
as much memory, and this sampling pattern does not much increase
the number of shades for near-horizontal and near-vertical edges.
The most apparent advantage is that it is simple to implement. The
Quincunxscheme is less expensive [NVIDIA 2001]. It generates
only two samples per pixel, but uses five samples to generate a
color for a pixel. The sampling pattern is that of the “five” on a dice
as seen in Figure 2. Each pixel generates one sample in the middle
of the pixel, and one sample in one of the corners. The other three
corner samples come from neighboring pixels’ corner samples.
This makes the scheme inexpensive, simple to implement, and
with increased quality over the brute force approach. The weights
for the samples in Quincunx are 0.5 for the middle sample, and
0.125 for each of the corner samples. Another clever scheme is the
N-rooks sampling scheme [Shirley 1990]. One instantiation of this
is therotated grid supersampling(RGSS) scheme, as shown to the
right in Figure 2. The pixel is divided into a 4×4 grid, and four
samples are placed so that every column and every row has exactly
one sample. This increases the average number of shades on
near-horizontal and near-vertical edges. Still, it uses four samples,
and thus as much memory as the brute force 2×2 scheme.

3 System Assumptions

In this section we will present the assumptions that we have made
for our system, and some background for those assumptions.

In order to keep power usage low, the available memory band-
width is assumed to be 32 bits per clock. Texture accesses in graph-
ics memory are completed in one clock cycle, while a texture access
in main memory may incur a latency of more than one clock cycle.
The power constraint is likely to limit display resolution to QCIF
or QVGA for some years to come. Furthermore, we assume that
the depth complexity per pixel will be at most four, which enables
reasonably complex scenes. Colors and depth values in thez-buffer
are stored in 16 bits each. Furthermore, colors are encoded as 5-6-5
bits for red, green, and blue. Next, we will discuss the implications
of some of these limits on resources.

In general, the number of memory accesses,m, for a standard
fragment that is visible is often assumed to be [Morein 2000]:

m= zR+zW +cW + tR. (1)

zR (Z read),zW (Z write), andcW (color write) are often 32 bits=4
bytes memory accesses in PC systems, whiletR (texture read) can
be significantly more due to texture filtering. Using, for example,
trilinear mipmapping [Williams 1983] and no texture caching,tR
can cost 3 bytes times 8 = 24 bytes. In our system,zR, zW, and
cW cost 2 bytes each, and a color in a texture is stored as 16 bits.
The average overdraw,o(n), per pixel is given by the equation be-
low [Cox and Hanrahan 1993], wheren is the depth complexity:

o(n) = 1+
1
2

+
1
3

+
1
4

+ · · ·+ 1
n

(2)

For an average pixel, this gives:

m= zR+
o(n)

n
(zW +cW + tR). (3)

A target depth complexity ofn = 4 giveso(n) ≈ 2. Therefore, the
following holds for an average fragment in our architecture:

m= zR+
2
4
(zW +cW + tR). (4)

This is true if the depth test (zR) is done before the other operations
(zW, cW, tR). Assume thatzR’s, zW’s andcW’s can be queued up so
that two values are read/written in one 32-bit memory access, and
that we count in terms of 32-bit memory operations. This gives:

m= 0.5+
2
4
(0.5+0.5+6) = 4. (5)

The last figure (6), comes from the fact that texels are stored in 16
bits, which means that reading a 2×2 texel block takes either two
accesses (if we are lucky, probability 0.5) or four (if unlucky, prob-
ability 0.5). Thus, the eight texels needed for trilinear mipmapping
need six 32-bit accesses on average. Since the depth complexity is
4, this implies that the required bandwidth per pixel is 4×4 = 16
words of 32 bits each.

4 Architecture

Our rasterization system is mostly a classical pipeline, and so need
not be described in detail. However, it includes three key inno-
vations that will be described here. These increase image quality
and/or lower memory bandwidth usage, and thus also power con-
sumption. Our design choices are often taken in order to create an
affordable solution that is also energy-efficient. At the same time,
we desire high rendering quality and performance. Therefore, we
seek a balanced architecture that satisfies those constraints and de-
sires in a reasonable way.

4.1 FLIPQUAD Multisampling

As implied in Section 1, our target platform needs reasonably high
rendering quality, and hence, we have decided to include some sort
of multisampling scheme. This scheme should be as cheap as pos-
sible and still reduce edge antialiasing significantly. Therefore, our
approach is to combine the good features of the Quincunx sampling
pattern and RGSS (see Section 2) into what we call theFLIPQUAD
multisampling scheme. The desired features of Quincunx are that it
generates only two samples per pixel, and that sample sharing from
neighboring pixels occurs. The advantage of RGSS is that each row
and column has exactly one sample, which increases the number of
shades in edge antialiasing.

We start with the RGSS sampling pattern, and move the sam-
ple locations so that they are positioned at the pixel borders. This
is shown to the left in Figure 3. Placing samples on the border of

Figure 3: Left: the RGSS pattern is adapted so that sample sharing
between neighbors can potentially occur. Right: the sample pattern
has to be reflected when moving to neighboring pixels. This results
in the FLIPQUAD sampling pattern. The top row pixels to the right
also shows a possible traversal order (moving to the right).

the pixel opens up for simple sample sharing between neighboring
pixels. However, the resulting pattern cannot be replicated onto ev-
ery pixel on the screen, because this does not make sample sharing



occur. The simple solution to this is to flip (reflect) every other pat-
tern. This is shown to the right in Figure 3. This sampling pattern
has the desired features: only two samples generated per pixel, sam-
ple sharing occurs, and samples are unique on rows and columns.
The final color of a pixel is obtained by averaging the four samples
with equal weights (0.25), and this causes a texture shift towards
the upper left.

For all pixels except the bottom and right edges, only two sam-
ples are generated. Assume that these two samples are the ones
located on the left and the top edge of the pixel. Texture samples
could either be fetched for both these sample locations, or alterna-
tively, they can share a single texture lookup. We take the latter, less
expensive approach, and we also let these samples share the same
interpolated color. This technique is also used by Quincunx. How-
ever, each sample computes its own depth value in order to avoid
incorrect surface intersections. To simplify hardware, the follow-
ing coordinates are used for shared computations. Assume that the
coordinates of the upper left corner of the pixel is(0,0), and that
the lower right corner is(1,1). The average of the two sample lo-
cations could be used, but since the sample configuration changes
for every other pixel, we use the average of the two samples for
both configurations: (two for the left edge, two for the upper edge)
[(0,1/3)+(0,2/3)+(1/3,0)+(2/3,0)]/4 = (1/4,1/4).

4.2 The POOMA Texturing System

In this section, we will describe the texturing subsystem of our ar-
chitecture. It is called “poor man’s” texturing system (POOMA for
short), since it makes as much as possible out of the limited re-
sources. Our starting point is trilinear mipmapping, which accesses
six 32-bit words on average (see Section 3). Using the techniques
presented in this section—bilinear-average mipmapping, texture
compressionandblock overlapping—this can be reduced to as low
as 1.33 memory accesses on average. Note that we have omitted
the use of texture caches as those incur a significant cost to our sys-
tem, and also because our system only can access 32-bits per cycle,
which limits the latency problem.

Bilinear-Average Mipmapping: Trilinear mipmapping re-
quires access to the 2×2 neighborhood in two levels of the mipmap,
and in each level bilinear filtering should be performed. Finally,
those two filtered values are linearly blended to create the final fil-
tered color. Our simplified filtering method uses only the texels of
the higher resolution mipmap level, and so avoids half of the mem-
ory accesses: The four texels in the higher resolution level are read,
and bilinearly filtered to produce the first filtered value. Then the
average of the same four texels is computed, and used as the sec-
ond filtered value. These two filtered values are linearly combined,
to provide the final filtered color. Roughly, this gives us a filter-
ing scheme that computes bilinear filtering in leveln, and nearest-
neighbor filtering in leveln+ 1, and then linear filtering between
those values. However, our scheme often performs a little bit better
than that. The reason for this is illustrated to the right in Figure 4.
Assume that the texture sample point is located in the gray 2× 2
region. This region does not coincide with the 2× 2 blocks used
for computing averages for leveln+ 1. Therefore, the average of
the texels in the gray region does not exist in leveln+1. Still, it is
used in our scheme, and it is more correct than the corresponding
nearest-neighbor sample. Since only the higher resolution mipmap
level is read, the number of memory accesses is halved from six to
three.

Texture Compression: To increase the number of texels ob-
tained in one memory access, we use texture compression. Each
3×2 region is compressed into 32 bits in the following way. Just as
in the DXTC algorithm (Section 2), two reference colors are stored,
but only 11 bits are used per color (4-4-3). A third reference color
is calculated as the mean of these two reference colors. Each texel

level n

level n+1

level n

level n+1

Figure 4: Left: part of a mipmap pyramid with two levels shown. A
texel in leveln+1 is often computed as some average of four texels
in level n. Right: If the four gray texels constitute the 2×2 neigh-
borhood of the sample, our filtering technique (bilinear-average
mipmapping) uses the average of those as a filtered value from level
n+1. Note, however, that this value does not exist in the real level
n+1, and therefore our filtering technique finds a better value than
doing nearest neighbor sampling in leveln+1.

in the block can refer to one of the three reference colors. Thus
a ternary variable is needed for each texel, instead of two bits as
used by DXTC. Three ternary variables give rise to 33 = 27 differ-
ent combinations, and can thus be encoded into a 5-bit number, that
we call a texel mapping value. Two such texel mapping values are
sufficient to encode the full 3×2 texel block. The texel mapping
value can be decoded using the following table, wherea, b andc
represent the first, second and third reference color, respectively.

0: aaa 4: abb 8: acc 12: bba 16: bcb 20: cac 24: cca 28: -
1: aab 5: abc 9: bba 13: bbb 17: bcc 21: cba 25: ccb 29: -
2: aac 6: aca 10: bab 14: bbc 18: caa 22: cbb 26: ccc 30: -
3: aba 7: acb 11: bac 15: bca 19: cab 23: cbc 27: - 31: -

For instance, if a texel mapping value of 18 is stored, the three
texels should bec, a, a. Using this compression scheme, a 3×
2-block can be stored in 11+ 11+ 5+ 5 = 32 bits. Originally, a
3× 2 block requires 2 bytes×3× 2 = 12 bytes of storage. Using
the proposed compression scheme, the same block requires only
4 bytes. This means that we achieve a compression ratio of 3:1.
The texture compression scheme also lowers memory bandwidth.
In 1/3 of the cases, all 2×2 texels can be found in the same block,
and only one memory access is needed. In half of the cases, two
blocks are needed, and in 1/6 of the cases, four blocks are needed.
Thus the average number of memory accesses is lowered from three
to 1/3×1+1/2×2+1/6×4 = 2.

Block Overlapping: While a texture cache can decrease the
number of memory accesses needed, its cost in terms of on-chip
memory lead us down a different path. Instead of caching texels,
we can increase the probability that the entire 2×2 neighborhood
around the texture sample point can be found inside a block. This is
done by introducing redundant blocks. Each 3×2 block is allowed
to overlap with its neighbor in they-direction, as shown in Figure 5.
Thus, the entire 2× 2 neighborhood will be inside a block with

Figure 5: Left: If a texture sample point is inside the gray region,
then all four texels needed for bilinear filtering are available from
the same 3× 2 block. Right: The dotted blocks overlap with the
solid blocks, and the gray area covers more of the space.

probability 2/3, and one memory access will suffice. In the rest of
the cases, two blocks are needed, which means that the number of
memory accesses has been lowered from six to 2/3×1+ 1/3×2
= 1.33. One obvious disadvantage here is that the memory require-
ments increase. Roughly speaking, the increase will be a factor



of 2, but since the previously presented compression scheme com-
pressed at a ratio of 3:1, our scheme will still decrease memory
requirements by a factor of 2/3. A more subtle disadvantage is that
the same texel will be represented twice, and since the compression
is lossy, with two slightly different values. During minification this
can increase flickering slightly, but as we will show, this effect is
surprisingly mild. During magnification, however, this will lead to
discontinuities when traversing block boundaries in they-direction.
Therefore, the redundant blocks are not used during magnification,
and two memory accesses are thus required. The actual average
number of memory access per pixel will thus vary with how great a
percentage of the pixels are magnified, but will end up somewhere
between 1.33 and 2.

4.3 Scanline-based zmin-Culling

Our goal of constructing an energy-efficient architecture can be
translated into minimizing the cost of the terms in Equation 3 be-
cause memory accesses use the majority of the energy [Fromm et al.
1997]. SincecW’s and zW’s are hard to avoid, and because our
POOMA texturing system reduced the cost oftR significantly, it is
natural to attempt to reduce the cost ofzR. It is interesting to note
that if the depth test is performed before texturing, thenzmax-based
occlusion culling algorithms [Morein 2000] can only avoidzR’s, in
terms of memory bandwidth. The following rewrite of Equation 3
is key to our algorithm:

m= αzR+β (zR+zW +cW + tR), (6)

whereα = 1−o(n)/n andβ = o(n)/n. If no occlusion culling al-
gorithm is used, thenα is the cost for occluded fragments in terms
of zR andβ is the cost for non-occluded fragments. Thus,αzR is
what can maximally be avoided in terms of bandwidth if azmax-
based occlusion culling algorithm is used. Forn = 4 we can see
that α ≈ β ≈ 2/4 = 0.5 (Section 3). Whenn is smaller than 4,
thenα < β . This lead us to investigate whether it is possible to re-
duce the cost associated withβ instead of that ofα . Therefore, we
propose that the minimumz-value,zmin, of each tile is stored (off
chip). When a new a tile is encountered, a maximumz-value,ztri ,
for the triangle in the tile is computed. Thisztri -value can be, e.g.,
the maximum of the triangle vertices’z-values, or the maximum
z-value of the triangle plane inside the tile. Ifzmin > ztri , then all
fragments inside the tile for that triangle are visible, and allz-reads
can be avoided for that tile. Put another way, triangles that are def-
initely in front of all previously rendered geometry do not need to
read thez-buffer. From now on, we refer to this algorithm aszmin-
based culling. In the same spirit, Morein uses a fast clear algorithm
that also avoids the first z-read operation [2000]. There are two ma-
jor advantages ofzmin-based culling overzmax-based culling. First,
zmin for a tile is trivial to update: as soon as we write az-value that
is smaller than the tile’s currentzmin, the zmin value must be up-
dated. Thus, there is no need to read allz-values of the tile in order
to updatezmin. Second, for depth complexities up ton = 4, there
is potentially more to gain by using the proposed algorithm since
β > α . This is because thezmin-based culling algorithm starts to
pay off from the first rendered triangle, while forzmax-based algo-
rithms, it takes a while to build up azmax-value that can actually
cull something. As a background, we first explainzmin-culling for
a system that traverses pixels tile-by-tile. We will then go through
how a scanline based version works. In both cases, we need to store
thezmin-value of a tile off-chip, and when rendering of a tile starts,
an off-chip memory access is always needed.

With tile-based traversal, we start rasterizing a tile by reading
zmin from the off-chip memory. We then calculateztri for that tile.
If zmin > ztri , all pixels in the tile are visible, and we can render
the entire tile without reading thez-buffer. Thezmin-value is copied

to on-chip memory, where it is calledzonchip

min and is continuously up-
dated during pixel write so that it holds the minimum of thez-buffer
for that tile. After the rasterization of the tile, we write back the
zonchip

min -value to the off-chipzmin storage for that tile.
Note that the algorithm reads and writes to the off-chipzmin stor-

age even if noz-reads can be avoided. In the worst case, this can
make the total bandwidth increase. However, as seen in the results,
the reduction in bandwidth due to tiles which can be trivially ac-
cepted generally more than outweighs this.

In order to decrease the number of contexts (interpolation pa-
rameters etc), we use the zigzag traversal scheme [Pineda 1988]
(left part of Figure 6), which is scanline based and only uses one
context. Reading and writing the off-chipzmin-value eight times
per tile (once for each scanline) is too expensive. For an efficient
zmin-culling implementation for scanline traversal, we store tempo-
rary information about the current row of tiles on-chip. For each
tile on the current row, we store azonchip

min -value, avisited-bit and a
visible-bit.

When we switch from one row of tiles to the next (e.g., going
from y = 7 to y = 8 for 8×8 tiles), we invalidate allvisitedbits in
the on-chip memory (right part of Figure 6). This indicates that the
information stored inzonchip

min andvisible is invalid. The first time we

1. Invalidate all
visited bits 

2. Copy zmin 
on-chip to off-chip

Current tilerow

Figure 6: Left: zigzag traversal. Dark gray pixels are inside the tri-
angle, and light gray pixels are outside the triangle, but still visited
by the traversal algorithm. Right: tiled zigzag traversal.

enter a tile, we validate thevisitedbit, copyzmin from the off-chip
memory tozonchip

min , calculateztri and setvisible to true if zonchip

min > ztri ,
and false otherwise. When we enter a tile for which thevisited
bit is set, we simply readvisible to see if we need to read thez-
buffer or not. When writing inside a tile, we update thezonchip

min -value
appropriately. Finally, before we go to the next row of tiles (going
from y = 15 toy = 16 in our case), we write back allzonchip

min -values
for all the tiles wherevisitedis true.

If a stencil or alpha test kills the pixel, thezonchip

min -value for that tile
will not be updated for that pixel. This is possible since updating
of zonchip

min is done right beforez-write andc-write, at the end of the
pixel pipeline. Note also that no hazards can occur for the updates
of zmin since our architecture only renders one triangle at a time.

5 Implementation

We have implemented a subset of OpenGL in software, and focused
mainly on the rasterization stage, since it is there our new algo-
rithms reside. All texture filtering modes of OpenGL have been
implemented, in addition to a new texture filtering mode for texture
minification to support the POOMA texturing system. We also sup-
port bilinear-average filtering with and without compression. The
zmin-culling scheme was implemented inside the traversal loop that
used zigzag-order. The FLIPQUAD multisampling scheme is tog-
gled through a simple API call as well. Due to our energy focus, we
have mainly concentrated on gathering statistics concerning mem-
ory accesses. This is important since it reveals a lot about a possible
hardware implementation in terms of energy-efficiency.



6 Results and Evaluation

In this section, we show visual results from our algorithms, as
well as data gathered during software simulations of our architec-
ture. For many of our tests, we have used three benchmark scenes:
ScreenSaver, Man-Machine Interface (MMI), andGame. Screen

Figure 7: Screen shots from ourMMI benchmark scene. To the
left the main 3D user interface is shown. A number of menu icons
are located on a circle, and the user can navigate using the left and
right keys on the mobile phone. A blue particle system shows the
currently active icon. To the right, the phone book icon has been
activated and the user can scroll in his phone book.

shots from these can be seen in Figures 1, 7, and 10.ScreenSaver
is a simple screen saver, andMMI is a three-dimensional user inter-
face. Finally,Game is a walkthrough in a game level. We believe
these three scenes represent typical applications that will be used on
mobile phones. We have chosen not to include frame buffer clears
in our statistics, since our paper does not focus on reducing these
costs.

6.1 FLIPQUAD Multisampling

In this subsection, our proposed multisampling scheme will be eval-
uated. In Figure 8, a white triangle has been rendered on a black

Figure 8: Different sampling schemes for a white triangle on black
background. From left to right, top to bottom: One sample per
pixel, 2×2 samples, FLIPQUAD (our scheme), RGSS and Quin-
cunx. Right bottom: the worst case edge for FLIPQUAD. Top to
bottom: one sample, 2×2, RGSS, Quincunx, and FLIPQUAD.

background, to show how well the schemes perform for edge an-
tialiasing. The best scheme here is RGSS, but it costs 4 samples per
pixel. FLIPQUAD performs almost as good at half the cost. No-
tice also, that Quincunx, with the same cost as FLIPQUAD, creates
fewer effective shades on the edges, and fails to remove the jerk on

the edge that is close to 45 degrees. In the bottom right part of that
figure, one of the worst case edges for our scheme is evaluated. This
occurs when the triangle edge coincides with two of the sample lo-
cations. As can be seen, our scheme produces a slightly jerky result,
but we believe that near-horizontal, near-vertical, and near-45◦ are
the types of edges in most need of antialiasing. Figure 9 shows an
evaluation of how the schemes perform on rendering thin features.
As can be seen, our scheme again performs almost as well as RGSS.

Figure 9: Evaluation of sampling schemes for thin features. From
top to bottom: one sample per pixel, 2× 2 samples (brute force),
RGSS, Quincunx, and FLIPQUAD.

This is somewhat surprising, since the distance between the sam-
ples in FLIPQUAD is relatively large. We believe that one reason
why it still performs well, is that the sampling pattern is reflected
for every other pixel, and this break-up of the symmetry helps in
getting a better result. Compared to Quincunx, a major advantage
is that the weights for our scheme is the same for all four samples.
This results in the following weight transition for FLIPQUAD: 0,
0.25, 0.5, 0.75, 1.0 (from 0 to 4 samples). For Quincunx, the cor-
responding transition is: 0, 0.125, 0.25, 0.75, 0.875, 1.0. As can
be seen, there is one more number, but the transition is not linear.
Also, for near-vertical or near-horizontal edges, the effective transi-
tion often becomes: 0, 0.25, 0.75, 1.0, which is clearly worse than
that of FLIPQUAD. In Figure 10, our scheme is compared against
Quincunx for a real scene. We choose to concentrate on Quincunx,

Figure 10: A screen shot from ourGame benchmark scene using
(left to right): one sample per pixel, Quincunx, and FLIPQUAD. In
all images, we also used the POOMA texturing system.

since it has the same memory requirements as our scheme. As can
be seen, FLIPQUAD reduces edge aliasing a bit more than Quin-
cunx, and both FLIPQUAD and Quincunx produce good results in
comparison to using just one sample per pixel. We have not ob-
served any artifacts stemming from the variation in the sampling
pattern, however, a more formal analysis is left for future work.

The triangle setup for using FLIPQUAD needs to compute 1/3’s
of the deltas, and then during stepping from one sample to another,
one needs to step with these deltas, or two times these deltas. Also,
to be certain that a pixel is completely outside a triangle, one ei-
ther needs to test up to three (one for left, top, and right pixel edge)
sample locations for inclusion in the triangle. Alternatively, one
can test geometrically whether the square of the pixel overlaps the



triangle. To summarize, our scheme is a bit more complex to im-
plement than the Quincunx scheme, but we believe it is worth the
extra complexity because of the increase in quality.

6.2 The POOMA Texturing System

In this section, we will show individual results for each of the inno-
vations of the POOMA texturing system; bilinear-average mipmap-
ping, texture compression and overlapping. We will also show re-
sults from the combination of these three techniques.

A B

C D

Figure 11: A: nearest neighbor, 1 memory accesses per pixel
(MAPP). B: bilinear mipmapping, 3 MAPP. C: bilinear-average
mipmapping, the proposed algorithm, 3 MAPP. D: trilinear
mipmapping, 6 MAPP.

Bilinear-Average Mipmapping: Figure 11 shows a 16-bit im-
age of a tree and a house textured using nearest neighbor (1 mem-
ory access, top left), bilinear mipmapping (3 memory accesses, top
right), bilinear-average texturing as proposed here (3 memory ac-
cesses, bottom left) and trilinear mipmapping (6 memory accesses,
bottom right). As we can see, bilinear-average mipmapping pro-
duces less aliasing than bilinear mipmapping, at the same cost in
terms of memory accesses—half of that of trilinear mipmapping.
Since the proposed scheme does not interpolate between mipmap
levels, it cannot be used for, e.g., art maps for non-photorealistic
rendering [Klein et al. 2001], and other similar techniques. This
also implies that each level in the mipmap must be a lowpass fil-
tered version of the previous level. When the level of detail is in-
creased, a filtering transition will occur from bilinear interpolation
in the higher resolution level to something that is similar to nearest
neighbor mipmapping in the lower resolution level. Here, under-
blurring can create a slight aliasing effect, as in the checker board
image in Figure 13. However, this effect is less pronounced than for
bilinear mipmapping. It is our experience that the bilinear-average
texturing proposed here is better than all other schemes in this study
bar trilinear mipmapping, which is considerably more costly.

Texture Compression: Figure 12 shows some results from our
texture compression scheme. The top row shows the uncompressed
100× 100 images in 16 bits (5-6-5). The middle row shows the
same images, but this time compressed with the proposed scheme,
to 1/3 of the number of bytes. In these two images, the 2×3 blocks
are rotated 90◦ compared to the illustration in Figure 5. The bottom
row shows the images compressed using the S3TC method. When
starting from 24 bits, the S3TC method compresses a factor 6:1,
but since we start out with 16 bit originals, the compression factor
is 4:1. It is clear that the images compressed with the proposed
technique have some artifacts, due to the quantization to 11 bits (4-
4-3), and to the fact that only three colors can be represented in each

Figure 12: Top: Uncompressed 100× 100. Middle: Compressed
3:1 using the proposed scheme, PSNR 24.4 dB and 28.3 dB. Bot-
tom: Compressed 4:1 using S3TC, PSNR 23.7 dB and 31.3 dB.

block. The compression can also “disturb” the dithering pattern
that is needed due to the 11 bit quantization. This is especially a
problem for smooth gradients of blue (as seen in the blue sky of
Figure 12), since only 3 bits are allotted to the blue component.
S3TC on the other hand gives smoother colors, but also more block
artifacts as can be seen in the left image.

Block Overlapping: By using block overlapping, it is possible
to go down from 2 to 1.33 memory accesses per pixel for minifica-
tion. As discussed in Section 4.2, this means that there will be two
different representations of the texture. The two leftmost images
in Figure 13 show two such representations. This will give rise to
some flickering, since a pixel can be drawn using the one represen-

A

B

C

D E

Figure 13: A, B: Two overlapping representations of a texture.
C: The combined results of bilinear-average mipmapping, texture
compression and block overlapping. D: Checker pattern, bilinear-
average mipmapping. E: Checker pattern, trilinear mipmapping.

tation in one frame, and the other representation in the next frame.
However, during minification this flickering effect is reduced by
the bilinear filtering that is part of the bilinear-average texturing
scheme. Our experience is that bilinear-average texturing and block
overlapping together produce slightly more flickering/aliasing than
just bilinear-average texturing by itself, but the result is still much



better than, for instance, nearest neighbor texturing, which requires
only slightly fewer memory accesses. Also, even with block over-
lapping and mipmapping, our scheme requires less memory storage
than nearest neighbor without mipmapping. The rightmost image
in Figure 13 shows the combination of bilinear-average texturing,
texture compression and block overlapping.

The POOMA texturing system may not be appropriate in all sit-
uations. For render-to-textures, for instance, compressed textures
might not be feasible due to the extra time needed for compres-
sion. Bilinear-average filtering, however, might still be appropriate.
Other times, standard trilinear mipmapping is the way to go. We
see the features of POOMA texturing as a complement to existing
filtering methods, rather than as a replacement.

6.3 Scanline-based zmin-Culling

To evaluate our culling algorithm we used the three scenes pre-
sented in the beginning of this section. The table below shows how
muchzmin-culling, with tile size 8× 8, reduced the number of z-
reads, and how much the total bandwidth (BW), i.e., external mem-
ory accesses, was lowered. The second column shows the average
depth complexity, while the last shows increase due tozmin-culling.

num. of avg. reduction tot. BW on-chip
frames DC of z-reads change BW

ScreenSaver 1599 2.5 69 % -10 % +6 %
MMI 1807 0.65 84 % -14 % +24 %
Game 2666 1.5 49 % -8 % +28 %

As can be seen, the reduction of z-reads is quite drastic, ranging
from 49 up to 84 percent. In terms of total bandwidth,zmin-culling
offers reduction between 8–14 percent. Note that off-chip mem-
ory accesses are more than an order of magnitude more expensive
in power consumption than an on-chip access, and therefore our
scheme is advantageous. The on-chip requirements are 176/8×18
bits= 49.5 bytes for QCIF, and 90 bytes for QVGA, where 18 bits
comes from the fact that 2 bytes are used to storezmin, and 2 bits are
needed for thevisitedandvisibleflags. We believe that these mod-
est requirements and the gains in bandwidth are enough to justify
implementation of this algorithm.

6.4 Entire Architecture

To evaluate our entire architecture, our three benchmark scenes
were used. The table below reports bandwidth usage to external
memory in megabytes (MB). The scenes were rendered in QVGA
resolution.

nearest POOMA+zmin POOMA+zmin trilinear
1 sample 1 sample FLIPQUAD 1 sample

ScreenSaver 1.15 1.29 1.87 2.24
MMI 0.52 0.51 0.70 1.10
Game 0.98 1.09 1.58 2.80

Comparing the first two columns, we see that POOMA withzmin-
culling is quite near the results of nearest-neighbor sampling. This
is remarkable, since the quality increase of our method is substan-
tial. Texture storage is also saved: with overlapping and mipmap
levels it is about 8/9th of that needed for a non-mipmapped un-
compressed texture. Compared to trilinear mipmapping, POOMA
with zmin-culling is considerably cheaper — a reduction of 53% on
average. Perhaps even more striking is a comparison of the two last
columns. It reveals that our scheme can provide nice texture filter-
ing with multisampling at a lower cost (32% lower on average) than
single sample trilinear mipmapping. Figure 1 shows visual results.

7 Conclusion and Future Work

We have proposed an architecture for hardware rasterizing of tex-
tured triangles on mobile phones. The architechture has been im-
plemented in software. One of our goals was to reduce the number

of memory accesses since these consume much of the total energy
of the system, and our texturing system and culling can reduce the
used memory bandwidth by 53% with similar quality. Another goal
was to keep the rendering quality high, and therefore we have pro-
posed a new, inexpensive multisampling scheme. Together with
our texturing system and culling, it provides multisampling at 32%
fewer memory accesses than single sample trilinear mipmapping.
We believe that the tradeoffs that we have made can be justified
in our context, i.e., rendering on a mobile phone powered by a
rechargeable battery. In the future, we would like to combine our
POOMA texturing system with texture caches for even lower mem-
ory bandwidth consumption. Furthermore, we would like to com-
bine ourzmin-culling with thezmax-culling algorithm.

Acknowledgements: Thanks to Peter Svedberg and Peter Gomez for help with the
video. Many thanks to Eric Haines, Fredrik Dahlgren and Erik Ledfelt, for proofread-
ing. Thanks towww.gametutorials.com for letting us use the scene in Figure 10.

References

AKENINE-MÖLLER, T., AND HAINES, E. 2002. Real-Time Rendering. AK Peters
Ltd.

COX, M., AND HANRAHAN , P. 1993. Pixel Merging for Object-Parallel Rendering:
a Distributed Snooping Algorithm. InSymposium on Parallel Rendering, ACM
SIGGRAPH, 49–56.

FROMM, R., PERISSAKIS, S., CARDWELL, N., KOZYRAKIS, C., MCCAUGHY, B.,
PATTERSON, D., ANDERSON, T., AND YELICK, K. 1997. The Energy Efficiency
of IRAM Architectures. In24th Annual International Symposium on Computer
Arhchitecture, ACM/IEEE, 327–337.

GREENE, N., KASS, M., AND MILLER, G. 1993. Hierarchical Z-Buffer Visibility. In
Proceedings of ACM SIGGRAPH 93, ACM Press/ACM SIGGRAPH, New York,
J. Kajiya, Ed., Computer Graphics Proceedings, Annual Conference Series, ACM,
231–238.

HAKURA , Z. S., AND GUPTA, A. 1997. The Design and Analysis of a Cache Ar-
chitecture for Texture Mapping. In24th International Symposium of Computer
Architecture, ACM/IEEE, 108–120.

IGEHY, H., ELDRIDGE, M., AND PROUDFOOT, K. 1998. Prefetching in a
Texture Cache Architecture. InWorkshop on Graphics Hardware, ACM SIG-
GRAPH/Eurographics.

KELLEHER, B. 1998. PixelVision Architecture. Tech. rep., Digital Systems Research
Center, no. 1998-013, October.

KLEIN, A., LI , W., KAZHDAN , M., CORRÊA, W., FINKELSTEIN, A., AND

FUNKHOUSER, T. 2001. Non-Photorealistic Virtual Environments. InProceed-
ings of SIGGRAPH 2000, ACM Press/ACM SIGGRAPH, New York, E. Fiume,
Ed., Computer Graphics Proceedings, Annual Conference Series, ACM, 527–534.

LATHROP, O., KIRK, D., AND VOORHIES, D. 1990. Accurate Rendering by Subpixel
Addressing.IEEE Computer Graphics and Applications 10, 5 (September), 45–53.

MCCABE, D., AND BROTHERS, J. 1998. DirectX 6 Texture Map Compression.Game
Developer Magazine 5, 8 (August), 42–46.

MCCORMACK, J., AND MCNAMARA , R. 2000. Tiled Polygon Traversal Using
Half-Plane Edge Functions. InWorkshop on Graphics Hardware, ACM SIG-
GRAPH/Eurographics.

MCCORMACK, J., MCNAMARA , B., GIANOS, C., SEILER, L., JOUPPI, N. P.,
CORELL, K., DUTTON, T., AND ZURAWSKI, J. 1999. Implementing Neon: A
256-Bit Graphics Accelerator.IEEE Micro 19, 2 (March/April), 58–69.

MOREIN, S. 2000. ATI Radeon HyperZ Technology. InWorkshop on Graphics
Hardware, Hot3D Proceedings, ACM SIGGRAPH/Eurographics.

NVIDIA. 2001. HRAA: High-Resolution Antialiasing Through Multisampling. Tech.
rep.

PINEDA, J. 1988. A Parallel Algorithm for Polygon Rasterization. InComputer
Graphics (Proceedings of ACM SIGGRAPH 88), ACM, 17–20.

SHIRLEY, P. 1990.Physically Based Lighting Calculations for Computer Graphics.
PhD thesis, University of Illinois at Urbana Champaign.

WILLIAMS , L. 1983. Pyramidal Parametrics. InComputer Graphics (Proceedings of
ACM SIGGRAPH 83), ACM, 1–11.

WOO, R., YOON, C., KOOK, J., LEE, S., AND YOO, H. 2002. A 120-mW 3-D
Rendering Engine With a 6-Mb Embedded DRAM and 3.2 GB/s Runtime Recon-
figurable Bus for PDA Chip.IEEE Journal of Solid-State Circuits 37, 19 (October),
1352–1355.


