
High Dynamic Range Texture Compression for Graphics Hardware

Jacob Munkberg∗ Petrik Clarberg Jon Hasselgren Tomas Akenine-Möller

Lund University

Abstract

In this paper, we break new ground by presenting algorithms
for fixed-rate compression of high dynamic range textures at
low bit rates. First, the S3TC low dynamic range texture
compression scheme is extended in order to enable compres-
sion of HDR data. Second, we introduce a novel robust algo-
rithm that offers superior image quality. Our algorithm can
be efficiently implemented in hardware, and supports tex-
tures with a dynamic range of over 109:1. At a fixed rate of
8 bits per pixel, we obtain results virtually indistinguishable
from uncompressed HDR textures at 48 bits per pixel. Our
research can have a big impact on graphics hardware and
real-time rendering, since HDR texturing suddenly becomes
affordable.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors; I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Texture;
E.4 [Data]: Coding and Information Theory—Data com-
paction and compression;

Keywords: texture compression, image compression, high
dynamic range images, graphics hardware

1 Introduction

The use of high dynamic range (HDR) images in render-
ing [Ward 1994; Debevec and Malik 1997; Debevec 1998;
Reinhard et al. 2005] has changed computer graphics for-
ever. Prior to this, only low dynamic range (LDR) images
were used, usually storing 8 bits per color component, i.e., 24
bits per pixel (bpp) for RGB. Such images can only represent
a limited amount of the information present in real scenes,
where luminance values spanning many orders of magnitude
are common. To accurately represent the full dynamic range
of an HDR image, each color component can be stored as a
16-bit floating-point number. In this case, an uncompressed
HDR RGB image needs 48 bpp.

In 2001, HDR images were first used in real-time ren-
dering [Cohen et al. 2001], and over the past years, we have
observed a rapidly increasing use of HDR images in this con-
text. Game developers have embraced this relatively new
technique, and several recent games use HDR images as tex-
tures. Examples include Unreal Engine 3, Far Cry, Project
Gotham Racing 3, and Half-Life 2: Lost Coast.

∗e-mail: {jacob | petrik | jon | tam}@cs.lth.se

Figure 1: Example of a high dynamic range image, here
shown at three different exposures, compressed with our al-
gorithm to a fixed rate of 8 bits per pixel. Our algorithm
gives excellent image quality over a large dynamic range,
and is fast to decompress in hardware.

The disadvantage of using HDR textures in real-time
graphics is that the texture bandwidth usage increases
dramatically, which can easily limit performance. With
anisotropic filtering or complex pixel shaders, it can become
even worse. A common approach to reduce the problem is
texture compression, introduced in 1996 [Knittel et al. 1996;
Beers et al. 1996; Torborg and Kajiya 1996]. By storing
textures in compressed form in external memory, and send-
ing compressed data over the bus, the bandwidth is signifi-
cantly reduced. The data is decompressed in real time using
special-purpose hardware when it is accessed by the pixel
shader. Several formats use as little as 4 bpp. Compared
to 24 bpp RGB, such techniques can potentially reduce the
texture bandwidth to only 16.7% of the original.

Texels in textures can be accessed in any order during ras-
terization. A fixed-rate texture compression (TC) system is
desirable, as it allows random addressing without complex
lookup mechanisms. Hence, JPEG and similar algorithms
do not immediately qualify as reasonable alternatives for
TC, since they use an adaptive bit rate over the image. The
fixed bit rate also implies that all realistic TC algorithms
are lossy. Other characteristics of a TC system are that
the decompression should preferably be fast and relatively
inexpensive to implement in hardware. However, we expect
that increasingly complex decompression schemes can be ac-
cepted by the graphics hardware industry, since the available
bandwidth grows at a much slower pace than the computing
power [Owens 2005]. A difference between LDR and HDR
TC is that for HDR images, we do not know in advance what
range of luminance values will be displayed. Hence, the im-
age quality must remain high over a much larger range of
luminance.

We present novel HDR TC schemes, which are inexpensive
to implement in hardware. Our algorithms compresses tiles
of 4 × 4 pixels to only 8 bpp. The compressed images are
of very high quality over the entire range of input values,
and are essentially indistinguishable from uncompressed 48
bpp data. An example of a compressed image is shown in
Figure 1.

2 Related Work

Here, we first present research in LDR texture compression
(TC) for graphics hardware that is relevant to our work. For
a more complete overview, consult Fenney’s paper [2003].
Second, some attention is given to existing HDR compression
systems.

LDR Texture Compression Vector quantization (VQ) tech-
niques have been used by Beers et al. [1996] for TC. They
presented compression ratios as low as one or two bpp. How-
ever, VQ requires an access in a look-up table, which is not
desirable in a graphics hardware pipeline. The S3TC texture
compression scheme [Iourcha et al. 1999] has become a de
facto standard for real-time rendering. Since we build upon
this scheme, it is described in more detail in Section 4.

Fenney [2003] presents a system where two low-resolution
images are stored for each tile. During decompression, these
images are bilinearly magnified and the color of a pixel is
obtained as a linear blend between the magnified images.
Another TC scheme assumes that the whole mipmap pyra-
mid is to be compressed [Pereberin 1999]. Box filtering is
used, and the luminance of a 4× 4 tile is decomposed using
Haar wavelets. The chrominance is subsampled, and then
compressed. The compression ratio is 4.6 bpp.

In a TC system called iPACKMAN [Ström and Akenine-
Möller 2005], 4 × 4 tiles of pixels are used, and each tile
encodes two base colors in RGB444 and a choice of modifier
values. The color of a pixel is determined from one of the
base colors by adding a modifier value.

HDR Image and Video Compression To store an HDR im-
age in the RGBE format, Ward [1991] uses 32 bits per pixel,
where 24 bits are used for RGB, and the remaining 8 bits
for an exponent, E, shared by all three color components.
A straightforward extension would be to compress the RGB
channels using S3TC to 4 bits per pixel, and store the ex-
ponent uncompressed as a separate 8 bpp texture, resulting
in a 12 bits per pixel format supported by current graph-
ics hardware. However, RGBE has a dynamic range of 76
orders of magnitude and is not a compact representation of
HDR data known to reside in a limited range. Furthermore,
as both the RGB and the exponent channel contain lumi-
nance information, chrominance and luminance transitions
are not separated, and artifacts similar to the ones in Fig-
ure 13 are likely to occur. Ward also developed the LogLuv
format [1998], where the RGB input is separated into lu-
minance and chrominance information. The logarithm of
the luminance is stored in 16 bits, while the chrominance is
stored in another 16 bits, resulting in 32 bits per pixel. A
variant using 24 bpp was also presented.

Ward and Simmons [2004] use the possibility of storing an
extra 64 kB in the JPEG image format. The file contains a
tone mapped image, which can be decompressed using stan-
dard JPEG decompressors. In the 64 kB of data, a ratio im-
age of the luminance in the original and the tone mapped im-
age is stored. A loader incapable of handling the format will
display a tone mapped image, while capable loaders will ob-
tain the full dynamic range. Xu et al. [2005] use the wavelet
transform and adaptive arithmetic coding of JPEG 2000 to
compress HDR images. They first compute the logarithm
of the RGB values, and then use existing JPEG 2000 algo-
rithms to encode the image. Impressive compression ratios
and a high quality is obtained. Mantiuk et al. [2004] present
an algorithm for compression of HDR video. They quantize
the luminance using a non-linear function in order to distrib-
ute the error according to the luminance response curve of
the human visual system. Then, they use an MPEG4-based

coder, which is augmented to suppress errors around sharp
edges. These three algorithms use adaptive bit rates, and
thus cannot provide random access easily.

There is a wide range of tone mapping operators (cf. [Rein-
hard et al. 2005]), which perform a type of compression.
However, the dynamic range is irretrievably lost in the HDR
to LDR conversion, and these algorithms are therefore not
directly applicable for TC. Li et al. [2005] developed a tech-
nique called companding, where a tone mapped image can
be reconstructed back into an HDR image with high qual-
ity. This technique is not suitable for TC since it applies a
global transform to the entire image, which makes random
access extremely slow, if at all feasible. Still, inspiration can
be obtained from these sources.

In the spirit of Torborg and Kajiya [1996], we imple-
mented a fixed-rate HDR DCT encoder, but on hardware-
friendly 4 × 4 tiles at 8 bits per pixel. The resulting im-
ages showed severe ringing artifacts near sharp luminance
edges and moderate error values. The decompressor is also
substantially more complex than the algorithms we present
below.

3 Color Spaces and Error Measures

In this section, we discuss different color spaces, and develop
a small variation of an existing color space, which is advanta-
geous in terms of hardware decompression and image quality.
Furthermore, we discuss error metrics in Section 3.2, where
we also suggest a new simple error metric.

3.1 Color Spaces

The main difficulty in compressing HDR textures is that the
dynamic range of the color components can be very large. In
natural images, a dynamic range of 100,000:1 is not uncom-
mon, i.e., a factor 105 difference between the brightest and
the darkest pixels. A 24-bit RGB image, on the other hand,
has a maximum range of 255:1. Our goal is to support about
the same dynamic range as the OpenEXR format [Bogart
et al. 2003], which is based on the hardware-supported half
data type, i.e., 16-bit floating-point numbers. The range of
representable numbers with full precision is roughly 6.1·10−5

to 6.5 · 104, giving a dynamic range of 109:1. We aim to
support this range directly in our format, as a texture may
undergo complex image operations where lower precision is
not sufficient. Furthermore, the dynamic range of the test
images used in this paper is between 102.6 and 107.3. An
alternative is to use a tighter range and a per-texture scal-
ing factor. This is a trivial extension, which would increase
the quality for images with lower dynamic ranges. However,
this requires global per-texture data, which we have opted
to avoid. We leave this for future work.

To get consistently good quality over the large range, we
need a color space that provides a more compact represen-
tation of HDR data than the standard RGB space. Taking
the logarithm of the RGB values gives a nearly constant rel-
ative error over the entire range of exposures [Ward 2005].
Assume we want to encode a range of 109:1 in 1% steps. In
this log[RGB] space, we would need k = 2083 steps, given
by 1.01k = 109, or roughly 11 bits precision per color chan-
nel. Because of the high correlation between the RGB color
components [Sangwine and Horne 1998], we need to store
all three with high accuracy. As we will see in Section 4,
we found it difficult to reach the desired image quality and
robustness when using the log[RGB] space.

In image and video compression, it is common to decorre-
late the color channels by transforming the RGB values into
a luminance/chrominance-based color space [Poynton 2003].
The motivation is that the luminance is perceptually more
important than the chrominance, or chroma for short, and
more effort can be spent on encoding the luminance accu-
rately. Similar techniques have been proposed for HDR im-
age compression. For example, the LogLuv encoding [Ward
1998] stores a log representation of the luminance and CIE
(u′, v′) chrominance. Xu et al. [2005] apply the same trans-
form as in JPEG, which is designed for LDR data, but on
the logarithm of the RGB components. The OpenEXR for-
mat supports a simple form of compression based on a lu-
minance/chroma space with the luminance computed as:

Y = wrR + wgG + wbB, (1)

and two chroma channels, U and V , defined as:

U =
R− Y

Y
, V =

B − Y

Y
. (2)

Lossy compression is obtained by subsampling the chroma
components by a factor two horizontally and vertically.

Inspired by previous work, we define a simple color space
denoted log Y ūv̄, based on log-luminance and two chroma
components. Given the luminance Y computed using Equa-
tion 1, the transform from RGB is given by:

(Ȳ , ū, v̄) =

�
log2 Y, wb

B

Y
, wr

R

Y

�
. (3)

We use the Rec. 601 [Poynton 2003] weights (0.299, 0.587,
0.114) for wr, wg and wb. With non-zero, positive input
RGB values in the range [2−16, 216], the log-luminance Ȳ is
in the range [−16, 16], and the chroma components are in
the range [0, 1] with ū + v̄ ≤ 1.

In our color space, the HDR luminance information is
concentrated to the Ȳ component, which needs to be accu-
rately represented, while the (ū, v̄) components only contain
chrominance information normalized for luminance. These
can be represented with significantly less accuracy.

3.2 Error Measures

In order to evaluate the performance of various compression
algorithms, we need an image quality metric that provides
a meaningful indication of image fidelity. For LDR images,
a vast amount of research in such metrics has been con-
ducted [Chalmers et al. 2000]. Perceptually-based metrics
have been developed, which attempt to predict the observed
image quality by modeling the response of the human visual
system (HVS). The prime example is the visible differences
predictor (VDP) introduced by Daly [1993].

Error measures for HDR images are not as thoroughly re-
searched, and there is no well-established metric. The image
must be tone-mapped before VDP or any other standard im-
age quality metric, designed for LDR data, can be applied.
The choice of tone mapping operator will bias the result,
which is unfortunate. In our application, another difficulty
is that we do not know how the HDR textures will be used
or what the display conditions will be like. For example, a
texture in a 3D engine can undergo a number of complex
operations, such as lighting, blending and multi-texturing,
which change its appearance.

Xu et al. [2005] compute the root-mean-square error
(RMSE) of the compressed image in the log[RGB] color

-8 -6 -4 -2 0 +2 +4 +6 +8

49.1 44.9 41.7 39.2 37.7 37.1 38.4 38.0 35.7

Figure 2: In our multi-exposure PSNR error measure, the
image is tone mapped to a number of different exposures to
account for all normal viewing conditions, and the PSNR is
computed from the average MSE. In this case, the mPSNR
is 39 dB. The top row shows the standard PSNRs, and the
bottom row shows the exposure compensation, c.

space. Their motivation is that the logarithm is a conserv-
ative approximation of the HVS luminance response curve.
However, we argue that this error measure can be mislead-
ing in terms of visual quality. The reason is that an error in
a small component tends to over-amplify the error measure
even if the small component’s contribution to the final pixel
color is small. For example, consider a mostly red pixel,
r = (1000, 1, 1), which is compressed to r∗ = (1000, 1, 8).
The log[RGB] RMSE is then log2 8 − log2 1 = 3, but the
log-luminance RMSE, to which the HVS is most sensitive,
is only 0.004. Still, we include the log[RGB] RMSE error
because it reflects the relative, per-component error of the
compressed image. It is therefore well suited to describe
the expected error of the aforementioned image operations:
blending, lighting etc.

To account for all normal viewing conditions, we propose
a simple error metric, which we call multi-exposure peak-
signal-to-noise ratio, or mPSNR for short. The HDR image
is tone mapped to a number of different exposures, uniformly
distributed over the dynamic range of the image. See Fig-
ure 2 for an example. For each exposure, we compute the
mean square error (MSE) on the resulting LDR image, and
then compute the peak-signal-to-noise ratio (PSNR) using
the mean of all MSEs. As a tone mapping operator, we use
a simple gamma-adjustment after exposure compensation.
The tone mapped LDR image, T (I), of the HDR image, I,
is given by:

T (I) =
h
255 (2cI)1/γ

i255
0

, (4)

where c is the exposure compensation in f-stops, γ is the
display gamma, and [·]2550 indicates clamping to the integer
interval [0, 255]. The mean square error over all exposures
and over all pixels is computed as:

MSE =
1

n× w × h

X
c

X
x,y

�
∆R2

xy + ∆G2
xy + ∆B2

xy

�
, (5)

where n is the number of exposures, c, and w×h is the image
resolution. The error in the red component (similar for green
and blue) at pixel (x, y) is ∆Rxy = TR(I)−TR(C), where I is
the original image, and C is the compressed image. Finally,
mPSNR is computed as:

mPSNR = 10 log10

�
3× 2552

MSE

�
. (6)

The obtained mPSNR over all exposures gives us a predic-
tion of the error in the compressed HDR image. The PSNR
measure has traditionally been popular for evaluating the
performance of TC schemes, and although no other HDR
texture compression techniques exist, the use of mPSNR
makes our results more easily interpreted.

Recently, Mantiuk et al. [2005] have presented a number
of modifications to the visual differences predictor, making

it possible to predict the perceived differences over the entire
dynamic range in real scenes. This novel HDR VDP takes
into account a number of complex effects such as the non-
linear response and local adaptation of the HVS. However,
their current implementation only works on the luminance,
and does not take the chroma error into account.

As there is no established standard for evaluating HDR
image quality, we have chosen to use a variety of error met-
rics. We present results for our algorithm using the mPSNR,
the log[RGB] root-mean-square error, and the HDR VDP.

4 HDR S3 Texture Compression

The S3 texture compression (S3TC) method [Iourcha et al.
1999] is probably the most popular scheme for compressing
LDR textures. It is used in DirectX and there are extensions
for it in OpenGL as well. S3TC uses tiles of 4 × 4 pixels
that are compressed to 64 bits, giving a compression rate of
4 bpp. Two base colors are stored in 16 bits (RGB565) each,
and every pixel stores a two-bit index into a local color map
consisting of the two base colors and two additional colors
in between the base colors. This means that all colors lie on
a straight line in RGB space.

A natural suggestion for an HDR TC scheme is to adapt
the existing S3TC algorithm to handle HDR data. Due to
the increased amount of information, we double the rate to
8 bpp. We also apply the following changes. First, we trans-
form the linear RGB data into a more compact color space.
Second, we raise the quantization resolution and the number
of per-pixel index bits. In graphics hardware, the memory
is accessed in bursts of 2n bits, e.g., 256 bits. To simplify
addressing, it is desirable to fetch 2m pixels per burst, which
gives 2n−m bits per pixel (e.g., 4,8,16,...). Hence, keeping a
tile size of 4 × 4 pixels is a reasonable choice, as one tile
fits nicely into 128 bits on an 8 bpp budget. In addition, a
small tile size limits the variance across the tile and keeps
the complexity of the decompressor low.

The input data consists of three floating-point values per
pixel. Performing the compression directly in linear RGB
space, or in linear YUV space, produces extremely poor
results. This is due to the large dynamic range. Better
results are obtained in the log[RGB] and the log Y ūv̄ color
spaces (Section 3.1). Our tests show that 4-bit per-pixel
indices are needed to accurately capture the luminance
variations. We call the resulting algorithms S3TC RGB
(using log[RGB]), and S3TC YUV (using log Y ūv̄). The
following bit allocations performed best in our tests:

Color space Base colors Per-pixel indices
log[RGB] 2× (11+11+10) = 64 16× 4 = 64
log Y ūv̄ 2× (12+10+10) = 64 16× 4 = 64

Even though these S3TC-based approaches produce usable
results in some cases, they lack the robustness needed for
a general HDR TC format. Some of the shortcomings
of S3TC RGB and S3TC YUV are clearly illustrated in
Figure 13. As can be seen in the enlarged images, both
algorithms produce serious block artifacts, and blurring of
some edges. This tends to happen where there is a chroma
and a luminance transition in the same tile, and there is
little or no correlation between these. The reason is that all
colors must be located on a straight line in the respective
3D color space for the algorithms to perform well. In
Figure 13, we also show the results of our new HDR texture
compression scheme. As can be seen, the image quality
is much higher. More importantly, our algorithm is more
robust, and rarely generates tiles of poor quality.

5 New HDR Texture Compression Scheme

In the previous section, we have seen that building a per-tile
color map from a straight line in some 3D color space does
not produce acceptable results for S3TC-based algorithms.
To deal with the artifacts, we decouple the luminance from
the chrominance and encode them separately in the log Y ūv̄
space defined in Equation 3. By doing this, difficult tiles
can be handled much better. In the following, we describe
how the luminance and chrominance can be accurately rep-
resented on an 8 bpp budget, i.e., 128 bits per tile.

5.1 Luminance Encoding

In the log Y ūv̄ color space, the log-luminance values Ȳ are
in the range [−16, 16]. First, we find the minimum and max-
imum values, Ȳmin and Ȳmax, in a tile. Inspired by S3TC, we
then quantize these linearly and store per-pixel indices indi-
cating which luminance step between Ȳmin and Ȳmax that is
to be used for each pixel.

As we have seen, we need approximately 16 steps, i.e., 4-
bit per-pixel indices, for an accurate representation of HDR
luminance data. If we use 12-bit quantization of Ȳmin and
Ȳmax as in S3TC YUV, a total of 2×12+16×4 = 88 bits are
consumed, and only 40 bits are left for the chroma encod-
ing. This is not enough. By searching in a range around the
quantized base values, it is very often possible to find a com-
bination that gives a significantly reduced error. Thus, we
manage to encode the base luminances with only 8 bits each
without any noticeable artifacts, even on slow gradients.

Another approach would be to use spatial subsampling
of the luminance. Recent work on HDR displays by Seet-
zen et al. [2003; 2004] suggests that the human eye’s spatial
HDR resolution is lower than its LDR resolution. However,
the techniques developed for direct display of HDR images
are not directly applicable to our problem as they require
high-precision per-pixel LDR data to modulate the subsam-
pled HDR luminance. We have tried various hierarchical
schemes, but the low bit budget made it difficult to obtain
the required per-pixel precision. Second, our compression
scheme is designed for textures, hence we cannot make any
assumptions on how the images will be displayed on screen.
The quality should be reasonable even for close-up zooms.
Therefore, we opted for the straightforward solution of stor-
ing per-pixel HDR luminance.

The most difficult tiles contain sharp edges, e.g., the edge
around the sun in an outdoor photograph. Such tiles can
have a very large dynamic range, but at the same time,
both the darker and the brighter areas must be represented
accurately. For this, a uniform quantization between the
min/max luminances is not ideal. To better handle such
tiles, we add a mode using non-uniform steps between the
Ȳmin and Ȳmax values. Smaller quantization steps are used
near the base luminances, and larger steps in the middle.
Thus, two different luminance ranges that are far apart can
be accurately represented in the same tile. In our test im-
ages (Figure 10), the non-uniform mode is used for 11% of
the tiles, and for these tiles, the log-luminance RMSE is de-
creased by 12.0% on average. The two quantization modes
are illustrated in Figure 3.

To choose between the two modes, we use the mutual
ordering1 of Ȳmin and Ȳmax. In decoding, if Ȳmin ≤ Ȳmax,
then the uniform mode is used. Otherwise, Ȳmin and Ȳmax

are reversed, and we use the non-uniform mode. Hence, no

1Similar ordering techniques are used in the S3TC LDR tex-
ture compression format.

Ymax

Ymin

Ymax

Ymin
Uniform mode Non-uniform mode

Figure 3: The two luminance quantization modes. The non-
uniform mode is used for better handling tiles with sharp
luminance transitions, such as edges.

per-pixel
indices

base
luminances

per-block
indices

base
colors

mode
bits

2·8 16·4 2 2·(8+7) 8·2

luminance chrominance

Figure 4: The bit allocation we use for encoding the lumi-
nance and chrominance of a 4× 4 tile in 128 bits (8 bpp).

additional mode bit is necessary, and the luminance encoding
uses a total of 2×8+16×4 = 80 bits, leaving 48 bits for the
chrominance. The bit allocation is illustrated in Figure 4.

5.2 Chrominance Line

Our first approach to chrominance compression on a 48-bit
budget, is to use a line in the (ū, v̄) chroma plane. Similar to
the luminance encoding, each tile stores a number of indices
to points uniformly distributed along the line.

In order to fit the chroma line in only 48 bits, we sub-
sample the chrominance by a factor two, either horizontally
or vertically, similar to what is used in DV encoding [Poyn-
ton 2003]. The sub-sampling mode that minimizes the error
is chosen. To simplify the following description, we define
a block as being either 1× 2 (horizontal) or 2× 1 (vertical)
sub-sampled pixels. The start and end points of the chroma
line, each with 2×8 bits resolution, and eight 2-bit per-block
indices, gives a total cost of 4× 8 + 8× 2 = 48 bits per tile.

In our color space, the normalized chroma points (ūi, v̄i),
i ∈ [0, 7], are always located in the lower triangle of the
chroma plane. If we restrict the encoding of the end points of
the line to this area, we can get two extra bits by a flip trick
described in Figure 5. If a chrominance value c = (ūi, v̄i) is
in the upper (invalid) triangle, this indicates that the extra
bit is set to one, and the true chroma value is given by
c′ = (1 − ūi, 1 − v̄i), otherwise the bit is set to zero. We
can use one of these extra bits to indicate whether to use
horizontal or vertical sub-sampling. The other bit is left
unused.

u 1−u

v

1−v

(0,0)

(0,1)

(1,0)

v

u

Figure 5: Illustration of the flip trick. By mirroring the co-
ordinates for a base color, we exploit our triangular chromi-
nance space in order to obtain another bit.

Original Chroma line Shape transforms

Figure 6: A region where a line in chroma space is not suf-
ficient for capturing the complex color. With shape trans-
forms, we get a much closer resemblance to the true color,
although minor imperfections exist due to the sub-sampling.

v

u
Line fit Shape transform fit

Figure 7: In tiles with difficult chrominance, such as in this
example taken from Figure 6, a line in chroma space has
difficulties representing the (ū, v̄) points accurately (left).
Our algorithm based on shape transforms generates superior
chroma representations, as it is often possible to find a shape
that closely matches the chrominance points (right).

5.3 Chroma Shape Transforms

A line in chroma space can only represent two chrominances
and the gradient between them. This approximation fails for
tiles with complex chroma variations or sharp color edges.
Figure 6 shows an example of such a case. One solution
would be to encode ū and v̄ separately, but this does not
easily fit in 48 bits.

To better handle difficult tiles, we introduce shape trans-
forms; a set of shapes, each with four discrete points, de-
signed to capture chroma information. In the classic game
Tetris, the optimal placement of a shape in a grid is found by
rotating and translating it in 2D. The same idea is applied
to the chrominances of a tile. We allow arbitrary rotation,
translation, and uniform scaling of our shapes to make them
match the eight sub-sampled chrominance values of a tile as
closely as possible. The transformation of the shape can be
retrieved by storing only two points.

During compression, we select the shape that most closely
covers the chroma information of the tile, and store its index
along with two base chrominances (start & end) and per-
block indices. This allows each block in the tile to select one
of the discrete positions of the shape. The shape fitting is
illustrated in Figure 7 on one of the difficult tiles from the
image in Figure 6. Using one of the transformed shapes, we
get much closer to the actual chroma information.

The space of possible shapes is very large. In order to
find a selection of shapes that perform well, we have ana-
lyzed the chrominance content in a set of images (a total of
500,000 tiles), different from our test images. First, cluster-
ing was done to reduce the chroma values of a tile to four
chroma points. Second, we normalized the chroma points for
scale and rotation, and then iteratively merged the two clos-
est candidates until the desired number of shapes remained.
Figure 8 shows our selection of shapes after a slight man-
ual adjustment of the positions. See Appendix B for the
exact coordinates. Shapes A through C handle simple color
gradients, while D–H are optimized for tiles with complex
chrominance. Also, by including the uniform line (shape A),
we make the chrominance line algorithm (Section 5.2) a sub-

Shape A B C D E F G H
Freq(%) 5.8 10.8 6.3 18.3 17.4 16.8 6.6 18.0

Figure 8: The set of shapes we use for the shape transform
algorithm and their frequencies for our test images. The
points corresponding to base colors are illustrated with solid
black circles.

set of the shape transforms approach. Note that the set of
shapes is fixed, so no global per-texture data is needed.

Compared to the chrominance line, shape transforms need
three bits per tile to indicate which of the eight shapes to
use. We exploit the unused bit from the chrominance line,
and the other two extra bits are taken from the quantization
of the start and end points. We lower the (ū, v̄) quantization
from 8 + 8 bits to 8 + 7 bits. Recall from Section 3.1, that
in the log Y ūv̄ to RGB transform, the R and B components
are given as R = v̄Y/wr and B = ūY/wb, with wr = 0.299
and wb = 0.114. As wb is about three times smaller than wr,
it makes the reconstructed color more sensitive for quanti-
zation errors in the ū component, and therefore more bits
are spent there.

With these modifications, shape transforms with eight
shapes fit in precisely 48 bits. The total bit allocation for
luminance and chrominance is illustrated in Figure 4. We
evaluated both the chrominance line and the shape trans-
form approach, combined with the luminance encoding of
Section 5.1, on our test images. On average, the mPSNR
was about 0.5 dB higher using shape transforms, and the re-
sulting images are more visually pleasing, especially in areas
with difficult chrominance.

The shape fitting step of our new algorithm is imple-
mented by first clustering the eight sub-sampled input points
to four groups. Then we apply Procrustes analysis [Dryden
and Mardia 1998] to find the best orientation of each shape
to the clustered data set, and the shape with the lowest error
is chosen. This is an approximate, but robust and efficient
approach. We achieved somewhat lower errors by using an
extensive search for the optimal shape transform, but this is
computationally much more expensive.

6 Hardware Decompressor

In this section, we present a decompressor unit for hard-
ware implementation of our algorithm. We first describe
how the chrominance, (ū, v̄), is decompressed for a single
pixel. In the second part of this section, we describe the
color space transformation back to RGB-space. A presen-
tation of log-luminance decompression is omitted, since it
is very similar to S3TC LDR decompression. The differ-
ences are that the log-luminance is one-dimensional (instead
of three-dimensional), and more bits are used for the quan-
tized base values and per-pixel indices. In addition, we also
have the non-uniform quantization, but this only amounts
to using different constants in the interpolation.

The decompression of chrominance is more complex than
for luminance, and in Figure 9, one possible implementa-
tion is shown. To use shape transforms, a coordinate frame
must be derived from the chroma endpoints, (ū0, v̄0) and
(ū1, v̄1), of the shape. In our case, the first axis is defined
by d = (du, dv) = (ū1 − ū0, v̄1 − v̄0). The other axis is

u1

v1

u0

v0

du=u1-u0

dv=v1-v0

>1?

>1?

control
logic

which pixel to decode, 4 bits

color index
2 bits

α
con-

stants

con-
stants

β

shape
index
3 bits 5 bits

α

β

−β

u

v

horiz/vert
subsample bit

chroma
indices

t0

t1

t0 t1

FLIP

2 8

Figure 9: Decompression of chrominance, (ū, v̄), for a single
pixel. The indata is the 48 bits for chrominance (left part of
the figure), and a 4-bit value indicating which pixel in a tile
to decode. The outdata is (ū, v̄) for one pixel. The green box
contains the logic to implement the flip trick, where inverters
have been used to compute the 1− x terms.

d⊥ = (−dv, du), which is orthogonal to d. The coordinates
of a point in a shape are described by two values α and β,
which are both fixed-point numbers in the interval [0, 1], us-
ing only five bits each. The chrominance of a point, with
coordinates α and β, is derived as:

�
ū
v̄

�
= αd + βd⊥ +

�
ū0

v̄0

�
=

�
αdu − βdv + ū0

βdu + αdv + v̄0

�
. (7)

The diagram in Figure 9 implements the equation above. As
can be seen, the hardware is relatively simple. The α and β
constants units contain only the constants which define the
different chrominance shapes. Only five bits per value are
used, and hence the four multipliers compute the product
of a 5-bit value and an 8 or 9-bit value. Note that (ū, v̄)
are represented using fixed-points numbers, so integer arith-
metic can be used for the entire chroma decompressor.

At this point, we assume that Ȳ , ū and v̄ have been com-
puted for a certain pixel in a tile. Next, we describe our
transform back to linear RGB space. This is done by first

computing the floating-point luminance: Y = 2Ȳ . After
that, the red, green, and blue components can be derived
from Equation 3 as:

(R, G, B) =

�
1

wr
v̄Y,

1

wg
(1− ū− v̄)Y,

1

wb
ūY

�
. (8)

Since the weights, (wr, wg, wb) = (0.299, 0.587, 0.114), are
constant, their reciprocals can be precomputed. We propose
using the hardware-friendly constants: (1/w′

r, 1/w′
g, 1/w′

b) =
1
16

(54, 27, 144). This corresponds to (w′
r, w

′
g, w′

b) ≈
(0.296, 0.593, 0.111). Using our alternative weights makes
the multiplications much simpler. This comes with a non-
noticeable degradation in image quality.

In summary, our color space transform involves one power
function, two fixed-point additions, three fixed-point multi-
plications, and three floating-point times fixed-point multi-
plications. The majority of color space transforms include at
least a 3×3 matrix/vector multiplication, and in the case of
HDR data, we have seen that between 1–3 power functions
are also used. Ward’s LogLuv involves even more opera-
tions. Our transform involves significantly fewer arithmetic
operations compared to other color space transforms, and
this is a major advantage of our decompressor.

The implementation shown above can be considered
quite inexpensive, at least when compared to using other
color spaces. Still, when compared to popular LDR TC
schemes [Iourcha et al. 1999; Ström and Akenine-Möller
2005], our decompressor is rather complex. However, we
have attempted to make it simpler by designing a hardware-
friendly color space, avoided using too many complex arith-
metic operations, and simplified constants. In addition, we
believe that in the near future, graphics hardware designers
will have to look into more complex circuitry in order to re-
duce bandwidth, and the technological trend shows that this
is the way to go [Owens 2005].

7 Results

To evaluate the algorithms, we use a collection of both syn-
thetic images and real photographs, as shown in Figure 10.
Many of these are well-known and widely used in HDR re-
search. In the following, we refer to our algorithm as the
combination of our luminance encoding (Section 5.1) and
shape transforms (Section 5.3). The results using mPSNR,
log[RGB] RMSE, and HDR VDP are presented in Figure 11.
After that follows visual comparisons.

a. StarField b. Bonita c. Desk d. Room

e. Tubes f. Memorial g. Cathedral h. GreenSlats

i. DockDome j. StageEnv k. DraftOffice l. DaniBelgium

m. BigFogMap n. Office o. AtriumNight p. MtTamWest

Figure 10: The HDR test images we use for evaluating our
algorithms. The figure shows cropped versions of the actual
test images. (e), (k), and (n) are synthetic.

In terms of the mPSNR measure, our algorithm performs
substantially better over the entire set of images, with an
average improvement of about 3 dB over the S3TC-based
approaches. The mPSNR measure simulates the most com-
mon use of an HDR image in a real-time application, where
the image is tone mapped and displayed under various expo-
sures, either as a decal or as an environment map. The range
of exposures used in mPSNR is automatically determined
by computing the min and max luminance over each im-
age, and mapping this range to exposures that give a nearly
black, and a nearly white LDR image respectively. See Ap-
pendix A for the exact numbers.

The log[RGB] RMSE measures the relative error per com-
ponent over the entire dynamic range of the image. In this

Original S3TC RGB S3TC YUV Our algorithm

Figure 12: HDR VDP difference images. Green indicates
areas with 75% chance of detecting an artifact, and red in-
dicates areas with 95% detection probability.

Original ST3C RGB

ST3C YUV Our algorithm

Figure 14: A difficult scenario for our algorithm is an over-
exposed image (c) with sharp color transitions. S3TC YUV
does, however, handle this case even worse. Surprisingly,
S3TC RGB performs very well here.

metric, the differences between the algorithms are not as ob-
vious. However, our algorithm gives slightly lower error on
average.

The HDR VDP chart in Figure 11 shows just notice-
able luminance differences. The 75%-value indicates that
an artifact will be visible with a probability of 0.75, and the
value presented in the chart is the percentage of pixels above
this threshold. Our test suite consists of a variety of both
luminance-calibrated and relative luminance HDR images.
To compare them, we multiply each image with a luminance
factor so that all HDR VDP tests are performed for a global
adaptation level of approximately 300 cd/m2. Although we
quantize the base luminances to only 8 bits, our algorithm
shows near-optimal results, except for image (a). VDP dif-
ference images for image (i) are shown in Figure 12. In-
creasing the global adaptation level increases the detection
rates slightly, but the relationship between the algorithms
remains.

Our algorithm is the clear winner both in terms of robust-
ness and perceived visual quality, as can be seen in Figure 13.
In general, luminance artifacts are more easily detectable,
and both S3TC YUV and our algorithm handle these cases
better due to the luminance focus of the log Y ūv̄ color space.
However, the limitation of S3TC YUV to a line in 3D makes
it unstable in many cases. The only errors we have seen using
our algorithm are slight chrominance leaks due to the sub-
sampling, and artifacts in some images with high exposures,
originating from the quantization of the base chrominances.
Such a scenario is illustrated in Figure 14. Overall, our al-
gorithm is much more robust since it generates significantly
fewer tiles with visible errors, and this is a major strength.

It is very important that a TC format developed for real-
time graphics handle mipmapping well. Figure 15 shows the
average error from all our test images for the first 7 mipmap
levels. The average errors grow at smaller mipmap levels
due to the concentration of information in each tile, but
our algorithm is still very robust and compares favorably
to the S3TC-based techniques. In both error measures, our
approach is consistently much better.

a b c d e f g h i j k l m n o p
25

30

35

40

45

50

55

S3TC RGB
S3TC YUV
Our algorithm

a b c d e f g h i j k l m n o p
0.0

0.2

0.4

0.6

0.8

1.0
S3TC RGB
S3TC YUV
Our algorithm

a b c d e f g h i j k l m n o p
0.0

0.5

1.0

1.5

2.0

2.5

3.0
S3TC RGB
S3TC YUV
Our algorithm

mPSNR (dB) log[RGB] RMSE HDR VDP 75% error

Figure 11: These diagrams show the performance of our algorithm compared to the S3TC RGB and S3TC YUV algorithms
for each of the images (a)–(p) in Figure 10. The mPSNR measure gives consistently better values (left), while the log[RGB]
RMSE (middle) is lower on nearly all of the test images. The HDR VDP luminance measure (right) indicates a perceivable
error very close to 0.0% for most images with our algorithm, clearly superior to both S3TC-based algorithms.

Original ST3C RGB

ST3C YUV Our algorithm

Original ST3C RGB

ST3C YUV Our algorithm

Original ST3C RGB

ST3C YUV Our algorithm

Original ST3C RGB

ST3C YUV Our algorithm

Figure 13: This figure shows magnified parts of the test images (c), (d), (h), and (i), compressed with our algorithm and the
two S3TC-based methods. In difficult parts of the images, the S3TC algorithms sometimes produce quite obvious artifacts,
while this rarely happens with our algorithm due to its separated encoding of luminance and chrominance.

Mipmap level

m
PS

N
R

(d
B)

Mipmap level

lo
g[

RG
B]

 R
M

SE

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

0.5

Our algorithm
S3TC RGB
S3TC YUV

0 1 2 3 4 5 6 7
30

35

40

45

50

Our algorithm
S3TC RGB
S3TC YUV

Figure 15: Here, the average mPSNR and log[RGB] RMSE
values are presented for various mipmap levels of our test
images, where 0 is the original image and higher numbers
are sub-sampled versions.

8 Conclusions

In this work, we have presented the first low bit rate HDR
texture compression system suitable for graphics hardware.
In order to accurately represent the wide dynamic range in
HDR images, we opted for a fixed rate of 8 bpp. Although it
would have been desirable to further reduce the bandwidth,

we found it hard to achieve an acceptable image quality at
4 bpp, while preserving the full dynamic range. For future
work, it would be interesting to incorporate an alpha channel
in the 8 bpp budget.

Our algorithm performs very well, both visually and in the
chosen error metrics. However, more research in meaningful
error measures for HDR images is needed. The HDR VDP
by Mantiuk et al. [2005] is a promising approach, and it
would be interesting to extend it to handle chroma as well.
We hope that our work will further accelerate the use of
HDR images in real-time rendering, and provide a basis for
future research in HDR texture compression.

Acknowledgements

We acknowledge support from the Swedish Foundation for Strategic

Research and Vetenskapsr̊adet. Thanks to Calle Lejdfors & Christina

Dege for proof-reading, Rafal Mantiuk for letting us use his HDR

VDP program, and Apple for the temporary Shake license. Image

(f) is courtesy of Paul Debevec. (g) and (l) are courtesy of Dani

Lischinski. (h) was borrowed from the RIT MCSL High Dynamic

Range Image Database. (i) was created using HDRI data courtesy

of HDRIMaps (www.hdrimaps.com) from the LightWorks HDRI Starter

Collection (www.lightworkdesign.com). (k) and (n) are courtesy of

Greg Ward. (m) is courtesy of Jack Tumblin, Northwestern Univer-

sity. (o) is courtesy of Karol Myszkowski. The remaining images were

taken from the OpenEXR test suite.

References

Beers, A., Agrawala, M., and Chadda, N. 1996. Render-
ing from Compressed Textures. In Proceedings of ACM SIG-
GRAPH 96, 373–378.

Bogart, R., Kainz, F., and Hess, D. 2003. OpenEXR Image
File Format. In ACM SIGGRAPH Sketches & Applications.

Chalmers, A., McNamara, A., Daly, S., Myszkowski, K., and
Troscianko, T. 2000. Image Quality Metrics. In ACM SIG-
GRAPH Course Notes.

Cohen, J., Tchou, C., Hawkins, T., and Debevec, P. 2001.
Real-Time High Dynamic Range Texture Mapping. In Euro-
graphics Workshop on Rendering, 313–320.

Daly, S. 1993. The Visible Differences Predictor: An Algorithm
for the Assessment of Image Fidelity. In Digital Images and
Human Vision. MIT Press, 179–206.

Debevec, P. E., and Malik, J. 1997. Recovering High Dynamic
Range Radiance Maps from Photographs. In Proceedings of
ACM SIGGRAPH 97, 369–378.

Debevec, P. E. 1998. Rendering Synthetic Objects into Real
Scenes: Bridging Traditional and Image-Based Graphics with
Global Illumination and High Dynamic Range Photography.
In Proceedings of ACM SIGGRAPH 98, 189–198.

Dryden, I., and Mardia, K. 1998. Statistical Shape Analysis.
Wiley.

Fenney, S. 2003. Texture Compression using Low-Frequency
Signal Modulation. In Graphics Hardware, 84–91.

Iourcha, K., Nayak, K., and Hong, Z., 1999. System and
Method for Fixed-Rate Block-Based Image Compression with
Inferred Pixel Values. US Patent 5,956,431.

Knittel, G., Schilling, A. G., Kugler, A., and Straßer, W.
1996. Hardware for Superior Texture Performance. Computers
& Graphics, 20, 4, 475–481.

Li, Y., Sharan, L., and Adelson, E. H. 2005. Compressing
and Companding High Dynamic Range Images with Subband
Architectures. ACM Transactions on Graphics, 24, 3, 836–844.

Mantiuk, R., Krawczyk, G., Myszkowski, K., and Seidel,
H.-P. 2004. Perception-Motivated High Dynamic Range Video
Encoding. ACM Transactions on Graphics, 23, 3, 733–741.

Mantiuk, R., Daly, S., Myszkowski, K., and Seidel, H.-P.
2005. Predicting Visible Differences in High Dynamic Range
Images – Model and its Calibration. In Human Vision and
Electronic Imaging X, 204–214.

Owens, J. D. 2005. Streaming Architectures and Technology
Trends. In GPU Gems 2. Addison-Wesley, 457–470.

Pereberin, A. 1999. Hierarchical Approach for Texture Com-
pression. In Proceedings of GraphiCon ’99, 195–199.

Poynton, C. 2003. Digital Video and HDTV Algorithms and
Interfaces. Morgan Kaufmann Publishers.

Reinhard, E., Ward, G., Pattanaik, S., and Debevec, P.
2005. High Dynamic Range Imaging: Acquisition, Display and
Image-Based Lighting. Morgan Kaufmann Publishers.

Sangwine, S. J., and Horne, R. E. N., Eds. 1998. The Colour
Image Processing Handbook. Chapman and Hill.

Seetzen, H., Whitehead, L. A., and Ward, G. 2003. A High
Dynamic Range Display Using Low and High Resolution Mod-
ulators. Society for Information Display Internatiational Sym-
posium Digest of Technical Papers, 1450–1453.

Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G.,
Whitehead, L., Trentacoste, M., Ghosh, A., and Voroz-
covs, A. 2004. High Dynamic Range Display Systems. ACM
Transactions on Graphics 23, 3, 760–768.

Ström, J., and Akenine-Möller, T. 2005. iPACKMAN:
High-Quality, Low-Complexity Texture Compression for Mo-
bile Phones. In Graphics Hardware, 63–70.

Torborg, J., and Kajiya, J. 1996. Talisman: Commodity Real-
time 3D Graphics for the PC. In Proceedings of SIGGRAPH,
353–364.

Ward, G., and Simmons, M. 2004. Subband Encoding of High
Dynamic Range Imagery. In Proceedings of APGV ’04, 83–90.

Ward, G. 1991. Real Pixels. In Graphics Gems II. Academic
Press, 80–83.

Ward, G. J. 1994. The RADIANCE Lighting Simulation and
Rendering System. In Proceedings of ACM SIGGRAPH 94,
459–472.

Ward, G. L. 1998. LogLuv Encoding for Full Gamut High Dy-
namic Range Images. Journal of Graphics Tools, 3, 1, 15–31.

Ward, G., 2005. High Dynamic Range Image Encodings,
http://www.anyhere.com/.

Xu, R., Pattanaik, S. N., and Hughes, C. E. 2005. High-
Dynamic-Range Still-Image Encoding in JPEG 2000. IEEE
Computer Graphics and Applications, 25, 6, 57–64.

A mPSNR Parameters

In this appendix, we summarize the parameters used when
computing the mPSNR quality measure for the images in
Figure 10 (a–p). For all mPSNR computations, we have
computed the mean square error (MSE) only for the inte-
gers between the start and stop exposures (as shown in the
table below). For example, if the start exposure is −10, and
the stop exposure is +5, then we compute the MSE for all
exposures in the set: {−10,−9, . . . , +4, +5}.

Test image a b c d e f g h

Start exposure -9 -8 -8 -9 -3 -9 -4 0

Stop exposure +4 +2 +5 +3 +7 +3 +7 8

Test image i j k l m n o p

Start exposure -6 -12 -7 -6 -8 -6 -12 -4

Stop exposure +3 +1 +2 +5 +2 +3 +1 +5

B Shape Transform Coordinates

Below we present coordinates, (α, β), for each of the tem-
plate shapes in Figure 8.

Shape p1 p2 p3 p4
A (0, 0) (11/32, 0) (21/32, 0) (1, 0)
B (0, 0) (1/4, 0) (3/4, 0) (1, 0)
C (0, 0) (1/8, 0) (1/4, 0) (1, 0)
D (0, 0) (1/2, 0) (3/4, 1/4) (1, 0)
E (0, 0) (1/2, 0) (1/2, 1/2) (1, 0)
F (0, 0) (11/32, 11/32) (21/32, 11/32) (1, 0)
G (0, 0) (0, 1/2) (1, 1/2) (1, 0)
H (0, 0) (1/4, 1/4) (1/2, 0) (1, 0)

