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Compressing Dynamically Generated
Textures on the GPU

Abstract

In the area of computer graphics, texture mapping is often used to enhance the
appearance of rendered objects. To fit more data into the graphics cards memory,
and to speed up rendering, it is common to compress the images used for texture
mapping. The process of compressing an image, with currently available tools,
takes several seconds. This makes it impossible to use the benefits of compressed
textures if the textures are somehow dynamically generated by the application for
immediate use (e.g. dynamic environment maps or hardware accelerated window
managers).

This thesis presents a method that makes it possible to very rapidly compress tex-
tures to the S3TC format. This is achieved by simplifying an available compression
algorithm with speed in mind, and then adapting this simplified algorithm to take
advantage of the incredible computational power of modern GPUs. The result is a
compressor that compresses textures hundreds of times faster than available tools
while maintaining comparable image quality.

Att komprimera dynamiskt genererade
texturer pa GPUn

Sammanfattning

Inom omradet datorgrafik anvéands ofta texturmappning for att forbéattra utseen-
det hos renderade objekt. For att fa plats med mer data i grafikkortets minne
och for att oka renderingshastigheten, ar det vanligt att bilderna som anvénds
for texturmappningen komprimeras. Komprimeringen av en bild tar, med befint-
liga verktyg, flera sekunder. Detta gor det omdjligt att andvéinda fordelarna med
komprimerade texturer om dessa texturer pa nagot sitt dynamiskt genereras av
applikationen for omedelbar anvindning (t.ex. dynamiska environment maps eller
hardvaruaccelererade fonsterhanterare).

Detta examensarbete presenterar en metod som gor det mojligt att valdigt snabbt
komprimera texturer till S3TC-formatet. Detta mojligérs genom att en befintlig
komprimeringsalgoritm forenklas med hastighet i atanke, och sedan anpassas den-
na forenklade algoritm sa att den enorma berdkningskraften i moderna GPUer
utnyttjas. Resultatet dr en komprimerare som komprimerar texturer flera hundra

ganger snabbare én befintliga verktyg samtidigt som den bibehaller en jamforbar
bildkvalitet.
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Chapter 1

Introduction

A fundamental operation in real-time computer graphics is the drawing of a tri-
angle. A triangle is represented by three vertices and several triangles define a
mesh, representing a 3D object. The mesh is supplied by the user application to
the graphics card, which then projects the vertices onto the screen and raster-
izes the triangles. To enhance the coloring of triangles beyond that of a single
color, textures are used. Textures are bitmap images stored in the memory of the
graphics card. The user application supplies a texture coordinate for each ver-
tex and the textures are then mapped onto the triangles using perspective-correct
interpolation.

By compressing textures we gain a number of benefits [6, 2, 8]:

e Texture compression allows an application to use more textures:
By storing compressed textures, an application can fit more textures into the
limited memory of the graphics card, thus allowing more complex texturing.

e Texture compression can increase overall rendering quality:
Because texture compression is lossy (Section 2.2), compressing a texture will
decrease it’s image quality. However, when using compressed textures, higher
resolution images and more mipmap! levels can fit into the same amount of
memory. This will increase overall rendering quality, and generally, this
increase is more significant than the decrease due to lossy compression.

e Texture compression will reduce bandwidth usage:
When mapping textures onto triangles, color values are read from the graph-
ics cards memory. These color values are cached in a small on-chip memory
inside the GPU itself. By using compressed textures, less data has to be read
from memory, which will result in reduced memory bandwidth usage.

e Texture compression can increase performance:

'Mipmapping is beyond the scope of this thesis. See Williams 1983 [9].



Storing compressed color values in the cache allows more data to fit into the
same amount of on-chip cache memory. This will increase cache hit rate and,
since reading from the cache is extremely fast, performance will increase.

e Texture compression can reduce power consumption on mobile devices:
On mobile devices, a memory access is costly not only in terms of time, but
also in terms of battery power. Reducing memory bandwidth usage, e.g.
through using compressed textures, is a good technique for reducing overall
power consumption [1].

Modern graphics cards have the ability to use compressed textures in a number
of different formats. They do not, however, have the ability to compress textures.
Compression is done off-line using software tools such as ATT’s Compressonator or
NVIDIA’s DDS Utilities, and compression times of several seconds are common.
The textures are then uploaded in compressed form to the graphics card’s memory,
to be used when rendering.

1.1 Problem statement

The long compression times of traditional methods make these unusable when the
textures are dynamically updated for immediate use. Examples include composite
window managers (Mac OS X, UI engines on mobile devices, etc), as well as dy-
namically generated environment maps (dynamic reflections in games etc). To our
knowledge, there is currently no method for doing real-time texture compression.

1.2 Purpose

In this thesis, we intend to present a method for doing real-time on-the-fly texture
compression using the speed and programmability of modern graphics cards. The
goal is to be able to produce compressed textures that are comparable in quality
to those produced by current off-line texture compression tools. We also intend to
show the memory bandwidth savings that are possible by compressing dynamically
generated textures, and finally, indicate how texture casting and compression could
be included as part of the OpenGL API.



Chapter 2

Background

In this chapter, we explain the properties of the modern graphics processing units
(GPU), we use to accelerate texture compression. We describe the properties of
texture compression in general, and the S3 texture compression (S3TC) format [6]
in detail. The S3TC format is the target for our real-time texture compression
algorithm.

2.1 GPU architecture

As previously mentioned, modern graphics cards have the ability to very rapidly
draw triangles on the screen. An application provides triangles in the form of
vertices to the graphics card, through APIs such as OpenGL or DirectX. The ap-
plication may also supply additional data per vertex and transformation matrices.
Figure 2.1 shows a schematic image of how the GPU of a modern graphics card
transform vertices into colored triangles on screen. For a detailed description of a
GPU, see Kilgariff and Fernando’s article [5].

At the top, the vertex data stream from the application enters the vertex shader
unit. This unit is responsible for transforming (rotating, translating, etc) and pro-
jecting vertices. On modern graphics cards this unit is programmable, meaning
that an application can supply a vertex program that replaces the default func-
tionality. By using such a program, it is possible to have the vertex shader unit
move vertices, create animations or alter vertex data, such as vertex color or tex-
ture coordinates. Since the processing of a vertex is independent of other vertices,
throughput can be significantly increased by adding several vertex shader units
that operate in parallel.

The transformed vertex data stream is fed into the triangle setup and rasteriza-
tion unit of the GPU. This non-programmable unit basically builds triangles from
vertices and decide which pixels on screen that are to be colored for each triangle.
Vertex data is interpolated over each triangle so that each of the triangle’s pixels
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Figure 2.1: Simplified diagram of a typical GPU architecture

is assigned data corresponding to its position. The output from the triangle setup
and rasterization unit is called fragment data. Fragment data is information about
one pixel that is to be colored and interpolated vertex data for this pixel.

The fragment data stream is sent to the fragment shader unit. This unit is re-
sponsible for the final coloring of the pixels. Since fragment data can contain a lot
of information (interpolated surface normals, texture coordinates, etc), advanced
coloring such as texture mapping and lighting can be calculated in this unit. The
fragment shader unit is, like the vertex shader unit, programmable, allowing an
application to replace the simple default pixel coloring with a custom fragment
program. Since the coloring of a single pixel is independent of the coloring of
other pixels, the speed of this unit can be significantly improved by adding several
parallel fragment shader units.

After the color of each pixel has been calculated, these values are stored in a
memory area referred to as a framebuffer, which can be displayed on screen.

In both the vertex shader and fragment shader units, it is possible to do texture
lookups. This, combined with the ability to use a texture as the framebuffer
(render to texture) makes it possible to do advanced multi-pass rendering, where
the output of one pass is used as input in later passes.

The application supplies vertex and fragment shader programs, usually written in a
high level programming language such as GLSL, Cg [7] or HLSL. These languages
resemble C but are highly customized for GPU programming. They supply a
number of very useful features (vector and matrix data types and operations on
these, etc), but they also have a number of limitations. One limitation that this
thesis had to work around was the fact that GPUs only operate on floating point



numbers. Even though the high level programming languages supply integer data
types, there is no way to do bit manipulations such as AND, OR, SHIFT, etc.
It is also impossible to do random memory writes from within a fragment shader
program, because the only possible output destinations are at fixed positions in
the framebuffers (color, depth and stencil buffers).

Due to the fact that many parts of the GPU pipeline can be parallelized, it is fairly
easy to construct faster GPUs by adding more parallel units. This has resulted in
modern GPUs having incredible number crunching power.!

2.2 Variable vs fixed rate image compression

There are numerous popular compression formats for general image compression,
such as JPEG and PNG, most of which use variable bit rates. This means that the
average bit-depth per pixel vary over the image, being greater in complex areas.
Variable bit rate provides for high image quality or even lossless compression, while
keeping the compressed size down. There is, however, no way of directly knowing
where in the compressed data the color of a given pixel is stored. The only way
to find the color of a given pixel, is to decompress the image from the start and
continue until the wanted pixel is reached. Thus, if variable bit rate compression
was used for textures, the time and bandwidth needed for a single texture lookup
would be proportional to the position of the sought after pixel. This would make
texture lookups extremely costly, cancelling out the benefits of using compressed
textures. What is needed is a format that directly allows the decompressor to
know where in the compressed data stream the pixel value is stored. One solution
is fixed rate compression.

2.3 S3 Texture Compression

For this thesis the S3 Texture Compression (S3TC) format (first presented in 1996
by Knittel et al [6]), specifically the DXT1 version [3], was chosen as the output
format for the real-time texture compressor. S3TC is a fairly simple block-based
image compression format originally designed to be used for texture compression.
This format is fixed rate, and the logic needed to get a pixel color value from an
S3TC compressed texture is very simple. Texture lookups from S3TC textures are
supported by modern graphics cards, through both OpenGL and DirectX, making
these textures easy to use in applications.

IThe computational power of modern top-of-the-line desktop CPUs measure in tens of Gflops
while the power of modern top-of-the-line desktop GPUs measure in hundreds of Gflops.



S3TC Block structure

An image compressed in the S3TC format is stored as blocks of 4 x 4 pixels, using
64 bits per block. In the first 32 bits of a block, two 16-bit base colors are stored
using 5, 6 and 5 bits for the red, green and blue components respectively. During
decompression, two additional colors are derived from these base colors, giving
a local palette of 4 colors per block. The two last colors are derived differently,
depending on the order in which the two base colors are stored:

o [f the 16-bit unsigned integer value representing the first color is larger than
that representing the second, the last two colors are derived by interpolating
two colors evenly spaced between the base colors. In this paper, a block
encoded this way will be referred to as a type-1 block.

e [f the 16-bit unsigned integer value representing the first color is less than
or equal to that representing the second, the last two colors are derived by
interpolating one color midway between the base colors and setting the other
as black. In this paper, a block encoded this way will be referred to as a
type-2 block.

In the last 32 bits of a block, each of the 16 pixels is stored as a two bit index, refer-
encing one of the four colors in the local palette. See Figure 2.2 for an illustration
of the S3TC block structure.
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Figure 2.2: a) S3TC block structure. b) Ezample of how 4 x4 pizels could
be compressed and stored as an s3tc block, with the resulting decompressed
block to the right.

To sum up, an uncompressed block of 384 bits (4 x 4 pixels, each holding a 24-
bit color) is compressed to 64 bits (2 16-bit colors, and 16 2-bit indices) giving a
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compression ratio of 6:1 or an effective bit rate of 4 bits per pixel. In short, an
S3TC compression algorithm involves finding the two base colors that gives the
best local palette and given this palette, choose the color that best represents each
pixel.

Finding the base colors

When encoding an image to the S3TC format, there are a number of different ways
of finding the two base colors to store in each block. Three methods are described
below.

Brute-force A very naive brute-force method would be to encode the block
using all possible pairs of 16-bit colors as base colors, and choose the combination
that produces an S3TC block that most closely resembles the uncompressed block.
This would produce an optimal solution, but there are 4.2 billion combinations of
colors, which makes this method extremely slow.

Semi-brute-force A less naive, semi-brute-force method, would be to encode
the block using all possible pairs of colors from the uncompressed block as base
colors. This method produces good visual quality, but since there is no guarantee
that the optimal base colors are present in the original block, the solution will
generally not be optimal.

The semi-brute force method limits the number of combinations to try to 240,
which is a significant improvement compared to the brute-force method.

Analytical method The analytical method described here produces signifi-
cantly better results than the semi-brute force method, and executes in about
the same time. It is used in available texture compression tools, and the real-time
method developed for this thesis is based on it. The analytical method very quickly
finds very good estimates of the base colors by analyzing the set of colors in the
uncompressed block using a tool, borrowed from statistics, called principal compo-
nents analysis (PCA). See Johnson and Wichern’s book[4] for detailed information
on PCA.

RGB colors can be seen as points in RGB color space (Figure 2.3), where the
amount of red, green and blue is set off on the x-, y- and z-axis respectively. PCA
is used to fit a line to the 16 points representing the original colors in a block
and these points are then projected onto the fitted line (see Figure 3.1 for a 2D
analogy). The estimated base colors are found as the outermost projected colors.

To increase the chance of finding optimal base colors, the block is encoded several
times using colors in the vicinity of the estimate base colors, and the pair that
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Figure 2.3: Colors represented as points in RGB space.

produces the best block is chosen. There is no guarantee that this method will
find the optimal base colors, but the results are generally good. Since the analytical
part of this method is relatively quick, the compression time largely depends on
the number of combinations tried in this last stage.

Building the index table

Once the base colors have been found, it is a simple matter of iterating over the
pixels in the block and, for each pixel, insert the index of the most similar palette
color into the compressed block.

12



Chapter 3

Real-time texture compression

In order to speed up S3TC compression, to the point where it is usable for real-
time computer graphics, we simplified the analytical method from the previous
chapter with speed in mind and adapted this simplified algorithm to take advantage
of the computational power of modern GPUs. In this chapter, we describe the
simplifications made, the resulting simplified algorithm is described in detail, and
finally, we show how we adapted it for the GPU.

3.1 Simplifying S3TC for speed

Texture compression to the S3TC format, as it has been described in Section 2.3,
has an execution time measured in seconds.! Obviously, the compression algorithm
has to be altered somehow in order to do real-time on-the-fly texture compression.
To speed up compression we have simplified the analytical method in a number
of ways. These simplifications all have an impact on image quality, but if speed
is preferred over quality, we have found this quality impact to be acceptable. See
Chapter 4 for image quality comparisons. The following simplifications were made.

Use the base color estimates As mentioned in Section 2.3, the base colors
computed using PCA are very good estimates of the optimal base colors. We
avoid the time-consuming “searching part” of the analytical method and use the
estimated base colors directly.

Encode using type-1 blocks only In order to find out whether to encode a
block as a type-1 block or a type-2 block, the original block has to be compressed
twice, using the two different types of blocks, which significantly increases the

1 Using current CPUs. Texture sizes of 512 x 512 pixels and above.
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compression time. When compressing our eight test images using ATI Compres-
sonator, on average less than 1% of the blocks came out as type-2 blocks. Based
on this and the fact that those blocks still can be encoded as type-1 blocks with
reasonable quality, we decided not to use type-2 blocks at all.

Simplified error computation When deciding which of the four calculated
palette colors a certain color most closely resembles, the squared distance in RGB
space between this color and each palette color has to be calculated. On the GPU,
which has support for vector operations in hardware, the squared distance, d2,
between points a and b is easily calculated as:

d*=(a—b)-(a—Db).

There are 16 pixel colors to compare with 4 palette colors in each block and
calculating the squared distance on a CPU, which does not have vector operations,
involves a lot of multiplications. To speed this up in our CPU implementation, we
calculate Manhattan distance, which requires no multiplications, instead of true
distance. The Manhattan distance dy; between two points a and b is calculated
as:

dy = |ag — be| + |ay — by| + |a. — b.].

Using a real world 2D analogy, it is the travel distance between two locations in
an area with only perpendicular streets, hence the name.

3.2 Algorithm in detail

Our algorithm uses the analytical method, outlined in Section 2.3, with the above
simplifications. This section explains our algorithm in detail.

The first step in the algorithm is to fit a line to the 16 points, c;,¢ € [1,16], in
RGB space representing the 16 colors of a block. This line will go through the
mean, ¢, of the points, defined as:

and from the theory of PCA we know that if we split the colors into component
sets R, G and B, then the direction of the best fit line can be found as the first
eigenvector of the covariance matrix of these sets.

The covariance matrix is defined as
cov (R,R) cov(R,G) cov(R,B)
C=| cov(G,R) cov(G,G) cov(G,B) |,
cov (B,R) cov(B,G) cov(B,B)

14



255

Original block

Figure 3.1: Colors, best fit line and projections for an example block (only
red and green shown for simplicity). by and by are the estimated base
colors. As seen, ¢, ended up outside valid RGB space, and instead, the
closest valid color on the line was chosen as the base color.

where (with 16 values in the sets)

COU(X,Y):%Z(Xi_X) (Y, - 7).

An eigenvector of Cis a vector v=[ a b ¢ |T such that
Cv = v,
where A € R is the eigenvalue of C corresponding to v.

To calculate the sought after eigenvector v # 0 we first find the corresponding
eigenvalue:

Cv=Xv = Cv—-IAv=0 >

Cv—-Alv=0 = (C-A)v=0

If (C— AI)v = 0 for some v # 0 then C — AI cannot be invertible which in
turn means that det(C — AI) = 0. Expanding this results in a cubic equation

15



which can be solved to get the eigenvalues, X. If we insert the largest eigenvalue
in (C— AI)v = 0 we get a system of equations with three unknown variables
(a,b,¢) = v and three equations. Solving this system gives us the eigenvector v,
which is direction of the best-fit line.

We now have a line, defined by the point, €, and the direction vector, v. We
project the original colors ¢; onto this line (see Figure 3.1 for a 2D analogy), and
the estimated base colors are found as the outermost projected colors. If a color,
when projected, ends up outside the valid RGB space (as shown in the figure), the
color at the closest intersection between the line and the RGB space boundary is
used instead.

255

Original block

Compressed block

0 255

Figure 3.2: Two additional palette colors by and by have been calculated
through interpolation. The Manhattan distance (dashed) and true dis-
tance (solid) from a pizel color ¢ to each palette color is shown. In this
case, by would be selected using either distance for comparison, and the
value 3 (indices start at 0) would be inserted into the S3TC block as the
palette index for that pixel.

After the two base colors have been found, two additional colors are linearly inter-
polated between these to obtain the four palette colors (Figure 3.2). The distance
between each of the 16 original pixel colors and the four palette colors is calculated,
and the closest palette color is chosen for each pixel. Depending on whether the
algorithm is implemented on the GPU or on the CPU, either squared distance or
Manhattan distance is used.
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The base colors truncated to RGB565 format, and the palette index for each color
is then stored in the output block.

3.3 Achieving real-time performance

The algorithm described in the previous section, when implemented on a CPU,
executes reasonably fast (Section 4.1). Our goal was to be able to compress dy-
namically generated textures in real time, something an implementation running
on current CPUs cannot do. Another problem with compressing textures on the
CPU is that dynamically generated textures are, in many cases, already in the
GPU’s memory. Compressing such a texture would involve downloading it to the
CPU, compressing it and then uploading it to the GPU again, consuming a lot of
memory bandwidth. To solve these issues, we adapted our simplified algorithm to
run directly on the GPU.

Our GPU implementation does most of the work in the fragment shader unit. We
first create an RGBAS8 texture that is é the size of the texture to be compressed,
and through render-to-texture methods, this texture is set as the output frame-
buffer. We then draw a quad that completely covers the output buffer so that each
pixel will be filled once. By supplying a fragment program we can decide what
data will be written to each pixel in the output buffer.

Basically, we have created a fragment program that does 16 texture lookups from
the uncompressed texture, executes the algorithm from Section 3.2, and writes
an S3TC block to the output texture. Ideally, a single execution of the fragment
program would produce a full S3TC block from 16 input texture pixels, but since
a full block is 64 bits, and a fragment program can only output 32 bits! to a single
texture, this is not possible. Instead, the algorithm has two branches:

e For odd output pixels we compute and write the base colors.

e For even output pixels we compute the base colors then choose and write the
indices.

Figure 3.3 illustrates how the GPU version operates. The image shows four frag-
ment shader units running in parallel, meaning that two S3TC blocks are created
simultaneously. Top-of-the-line GPUs contain up to 24 fragment shader units,
allowing up to 12 S3TC blocks to be created in parallel.

GPUs do not provide any integer data types in hardware and no bitwise operations.
To solve this, we represent each of the 8 bit output color components as a float in
the fragment program, and simulate bitwise operations (AND, OR, SHIFT) with
combinations of standard arithmetics (+, -, *).

! Actually 64 bits of output is possible but only if the output buffer is in FP16 format (a
16-bit floating point value per color component), which is unusable for our purposes since we
need an integer output format in order to control which bits are set.

17
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Figure 3.3: Creation of S3TC blocks using a fragment shader program.
The same 4 X 4 pizels are used as input for two consecutive output pizels.
The code path for odd pixels outputs the first 4 bytes of an S3TC block
(base color part), and the even pixels code path outputs the last 4 bytes
(palette color indices).

When we output colors from the fragment program, color values have to be in the
range 0.0-1.0. These values are then automatically mapped, by the hardware, to
8-bit integers in the range 0-255 which are then stored in the output framebuffer.
If we for example need to store the value 127 in one of the output bytes, we output
the value 127.0/255.0 from the fragment program.

Once we have rendered the quad, our fragment program has written valid S3TC
blocks to the output RGBAS texture. Somehow, we now need to tell the hardware
that “from now on this RGBAS texture is an S3TC texture”, a procedure we
call texture casting. Unfortunately, there is currently no way, in either DirectX
or OpenGL to do this cast, though supplying it should be a simple matter of
updating the API and graphics driver. The only way we can make the texture
available for future rendering in S3TC format is to download the texture to the
CPU as an RGBAS texture and then upload the same data to the GPU as an
S3TC texture. This is the last step performed by our GPU implementation. Since
this download /upload step is an issue that could be solved by a simple API and
driver update, we omit the bandwidth implications of it when we calculate possible
bandwidth savings in Section 4.3 below.

With our method, we calculate the base colors twice for each block. One might
argue that if the ultimate goal is performance, then a two pass method (calculate
base colors in pass one and use this as input for pass two where we write the

18



indices) might be faster. We have decided not to explore this method further since
it would involve more memory reads and writes (due to texture caching, with our
method, the 16 pixels will only be read from memory once), which would increase
bandwidth usage and probably cancel out the benefits of calculating the base colors
once. A two pass method would also require two fragment programs and involve
OpenGL state changes, which would further slow down execution.
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Chapter 4

Results

For this thesis we have developed a fragment shader, written in the OpenGL shad-
ing language (GLSL), and supporting C++ classes making it possible to rapidly
compress textures to the S3TC format for immediate use. We have also created a
number of applications that use and test various aspects of our compressor. The
results are presented below.

4.1 Compression speed

As previously mentioned, compression when using available off-line tools, such as
ATTD’s Compressonator or NVIDIA DDS Utilities, typically takes several seconds.
One of the original ideas behind this thesis was to see whether real-time texture
compression could be achieved using the computing power of modern GPUs.

To test the speed of our simplified algorithm and our GPU implementation, we
created two test programs. They both repeatedly update a texture of 512 x 512
pixels, compresses it, and shows it on screen. The first program downloads the
uncompressed texture from the graphics card, compresses it on the CPU, using
our simplified algorithm, and then uploads it again. The other program does
the compression directly on the GPU using our fragment shader. To see how
fast compression is, the number of compressions per second is computed. On an
AMD Athlon64 3200+ (running at 2.0GHz), we achieve a rate of 20 compressions
per second, giving a compression time of 50ms. The GPU version running on a
NVIDIA GeForce 7900GTX graphics card achieves a rate of 240 compressions per
second. This gives a compression time of 4.2ms, 12 times faster than our CPU
version and several hundred times faster than traditional off-line methods.

20



4.2 Compressed image quality

A common method for testing the image quality of a compressed image is to
calculate the peak signal to noise ratio (PSNR). The formula for calculating PSNR
is most easily defined by first defining the root mean square error (RMSE):

>

-1 w-1
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where R,,, G, and B,, are the red, green and blue values of pixel (z,y), and w
and h is the width and height of the image.

From this, PSNR is defined:

2 2
PSNR = 10log,, (3 X 255 )

RMSE?

PSNR is measured in dB and a higher value means better quality. We calculated
the PSNR for eight test images compressed with our GPU compressor, ATI Com-
pressonator! and NVIDIA DDS Utilities?. The results are presented in Table 4.1

and Figure 4.1.

= zlg|2|2|8] s

) s w >

2 S| & | E|E| E| E| E s

5 5| 2| 5| 2| 2| 2| 2|2 =

Compressor = B 5 s S = ¥ i~ = = <
GPU S3TC 33.6 | 27.3 | 32.6 | 31.7 | 34.3 | 35.5 | 34.9 | 30.2 || 32.5

ATT Compressonator | 36.0 | 28.7 | 34.4 | 34.8 | 36.9 | 38.5 | 38.0 | 32.8 || 35.0

NVIDIA DDS 35.2 | 27.8 | 33.1 | 346 | 36.5 | 38.0 | 37.6 | 32.5 || 34.4
Utilities

Table 4.1: PSNR walues of various images compressed using different
compression tools. All values are in dB.

The PSNR values of our compression is on average 2.5dB lower when compared
with the values of ATT’s Compressonator, which gets the best overall results. This
is due to the simplifications we did to the compression algorithm in order to speed
up compression. 2.5dB is a significant difference (0.5 dB is normally visible), but
when visually comparing the actual images (See Appendix A for high resolution
images), the quality appears to be better than these numbers suggest, and defi-
nitely sufficient for most real-time applications.

Wersion 1.27.1066, RGB weights (1.0, 1.0, 1.0).
ZVersion 7.82, RGB weights (1.0, 1.0, 1.0).
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Figure 4.1: Graph of PSNR values of various images compressed using
different tools. All values are in dB.

4.3 Bandwidth savings

Using compressed textures reduces the amount of memory that has to be trans-
ferred from the graphics card’s memory to the shader units. Our compression
algorithm has to read the entire uncompressed image once and write the com-
pressed image once before the compressed texture can be used in rendering. The
compressed texture is one sixth the size of the original uncompressed image. This
means that if the uncompressed image is x bytes in size then compressing the tex-
ture involves transferring: =+ ¢ = % bytes to or from memory. If, when rendering
scenes using the texture, every pixel from the texture is used in every frame, then
rendering n frames requires %’” + % bytes to be transfered over the memory bus.
If we used the original uncompressed texture the corresponding number of bytes
would be nz. From this we can derive how many frames that have to be rendered
in order to save bandwidth using our compressor:

7—x+@<nxz>z<§n:>z<n:>n>14
6 6 6 6 5 o

So, when rendering more than 1.4 frames, compressing the texture before using it,
will reduce bandwidth usage.
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Chapter 5

Discussion

As shown in Chapter 4, the texture compressor developed for this thesis pro-
duces high quality compressed images, rapidly enough for use in real-time graph-
ics. There are, however, some cases of 4 x 4 pixels that cannot be compressed as
an S3TC block without a significant quality loss. This is mainly due to the fact
that an S3TC block can only contain four colors, and these colors are all on a line
in RGB space. If the 16 colors of the uncompressed block are evenly distributed
in RGB space or if some of the colors are far from the best fit line, then S3TC is
not the ideal format. This is not a problem that stems from our compressor, but
applies to all S3TC compressors.

There are cases where the use of type-2 blocks would help, i.e. when there are a
few very dark pixels standing out from the rest of the pixels in the block. These
cases are rare in natural images, such as photos, but more common in generated
images, such as screenshots of GUIs. Since this is mainly an issue regarding the
S3TC format, and not specific to our algorithm, exploring the use of other texture
compression formats could prove interesting. The problem with compression al-
gorithms for many other available formats is that they are based on compressing
the block many times to find the best alternative. Such algorithms are not as easy
to simplify as the S3TC algorithm is. Since most, if not all, compressed texture
formats are designed with image quality in mind, developing a format with speed
in mind, perhaps allowing a few more bytes per block, might be worthwhile as
future work.

The potential bandwidth savings presented in this thesis are calculated under the
assumption that texture casting can be done.! Since there is currently no such
functionality in graphics APIs and drivers, we would like to propose an OpenGL
function that could do this:

!Note, though, that even when “casting” is done by downloading and uploading the com-
pressed texture, compression pays off already after using the texture for a few frames.
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void glTexCastEXT(GLint internalformat)

Casts the currently bound texture to the format specified by
internalformat (currently only GL_COMPRESSED_RGB_S3TC_DXT1_EXT
is supported) .

The entire process of compressing a texture on the fly could also easily be integrated
into OpenGL. In keeping with the OpenGL way of doing things, this could be done
by introducing converter objects. Using these might look something like:

GLuint textures[2];
GLuint converter;

glGentextures(2,&textures)

/* create uncompressed texture */
glBindTexture (GL_TEXTURE_2D, textures[0] );
glTexImage2D (GL_TEXTURE_2D, O, GL_RGBA8, 512, 512, 0, GL_RGBA, NULL);

/* create compressed texture */
glBindTexture (GL_-TEXTURE_2D, textures[1] );
glCompressedTexImage2D (GL_TEXTURE_2D, 0, GL_COMPRESSED_RGB_S3TC_DXT1_EXT, 512, 512, 0, 0, 0);

/* create converter object */
glGenConvertersEXT(1,&converter) ;

/* bind output texture to converter object */
glBindConverterEXT (converter) ;
glConverterTexture2DEXT (textures[1]);

/* render to uncompressed texture somehow */
rendertotexture(textures[0]);

/* bind input texture */
glBindTexture (GL_.TEXTURE_2D, textures[0] );

/* convert currently bound texture to
converter object’s output texture */
glConvertEXT() ;

/* render using compressed texture */
glBindTexture (GL_TEXTURE_2D, textures[1] );
glBegin(...)

The potential areas where compression of dynamic textures could be useful are
many, and range a broad spectrum of applications within real-time computer
graphics. On one side we have computer games, where compression could be
used to compress cube maps either created directly after loading a level or created
continuously as objects move around the game world. On the other side we have
composite window managers where textures could be compressed, in order to save
bandwidth usage, prior to doing crossfades or other transition effects. Another
possible use could be compressing a video feed at a low frame rate and using it as
a texture in a high frame rate rendering.

The advantages of compressed textures are especially appealing in mobile devices,
where memory is limited and bandwidth usage costs in terms of battery power. The
results presented in this thesis are based on our algorithm running on state-of-the-
art desktop graphics cards and cannot currently be achieved on mobile devices.
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This may, however, change in the near future. More and more mobile devices
feature dedicated 3D hardware and the OpenGL ES 2.0 specification (OpenGL for
mobile platforms) includes fragment shader programs.

25



Bibliography

[1]

Tomas Akenine-Moller and Jacob Strom, Graphics for the masses: a hardware
rasterization architecture for mobile phones, ACM Trans. Graph. 22 (2003),
no. 3, 801-808.

Andrew C. Beers, Maneesh Agrawala, and Navin Chaddha, Rendering from
compressed textures, Computer Graphics 30 (1996), no. Annual Conference
Series, 373-378.

Pat Brown, GL_EXT texture_compression_s3tc, OpenGL Extension Registry,
http://oss.sgi.com/projects/ogl-sample/registry/, 2001.

R. A. Johnson and D. W. Wichern (eds.), Applied multivariate statistical anal-
ysis, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

Emmett Kilgariff and Randima Fernando, The geforce 6 series gpu architecture,
GPU Gems 2 (Matt Pharr, ed.), Addison-Wesley, March 2005, pp. 471-491.

Giinter Knittel, Andreas G. Schilling, Anders Kugler, and Wolfgang Strafer,
Hardware for superior texture performance, Computers & Graphics 20 (1996),
no. 4, 475-481.

William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard, Cy:
a system for programming graphics hardware in a c-like language, ACM Trans.
Graph. 22 (2003), no. 3, 896-907.

Jay Torborg and James T. Kajiya, Talisman: commodity realtime 3d graphics
for the pc, SIGGRAPH ’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques (New York, NY, USA), ACM
Press, 1996, pp. 353-363.

Lance Williams, Pyramidal parametrics, SIGGRAPH ’83: Proceedings of the
10th annual conference on Computer graphics and interactive techniques (New
York, NY, USA), ACM Press, 1983, pp. 1-11.

26



Appendix A

Visual image comparison

In this appendix, three of our test images are shown in high resolution. For each
image the original uncompressed image is shown along with the image compressed
using our GPU compressor, ATT Compressonator and NVIDIA DDS Utilities.

Due to copyright issues we cannot publish the other five images referred to in
Section 4.2.
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A.1 Lena

Uncompressed image GPU S3TC

ATI Compressonator NVIDIA DDS Utilities
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A.2 Mandrill

ncompressed image GPU S3TC

29



A.3 Lorikeet

GPU S3TC

Uncompressed image

NVIDIA DDS Utilities

ATI Compressonator
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